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Controllable odd-frequency Cooper pairs in multisuperconductor Josephson junctions
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We consider Josephson junctions formed by multiple superconductors with distinct phases and explore the
formation of nonlocal or intersuperconductor pair correlations. We find that the multiple superconductor nature
offers an additional degree of freedom that broadens the classification of pair symmetries, enabling nonlocal
even- and odd-frequency pairings that can be highly controlled by the superconducting phases and the energy of
the superconductors. Specially, when the phase difference between two superconductors is π , their associated
nonlocal odd-frequency pairing is the only type of intersuperconductor pair correlations. Finally, we show that
these nonlocal odd-frequency Cooper pairs dominate the nonlocal conductance via crossed Andreev reflections,
which constitutes a direct evidence of odd-frequency pairing.
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I. INTRODUCTION

Superconductivity is caused by electrons binding together
into Cooper pairs below a critical temperature and has
attracted great interest due to its properties for quantum tech-
nologies [1]. The applications of superconductors are thus
intimately linked to the Cooper pairs, specially to the sym-
metries or their wave function or pair amplitude. Due to
the fermionic nature of electrons, the pair amplitude is anti-
symmetric under the exchange of all the quantum numbers
describing the paired electron states plus the exchange of
their relative time coordinates. Of particular interest is that the
antisymmetry enables the formation of odd-frequency Cooper
pairs, where the pair amplitude is odd in the relative time, or
frequency ω, of the paired electrons [2–7]. As a result, the
odd-ω Cooper pairs characterize a unique type of supercon-
ducting pairing that is intrinsically dynamic [8–13].

Odd-ω Cooper pairs have been studied as bulk and induced
effects in several systems [8–13], such as in superconducting
heterostructures [14–69], multiband superconductors [70–82],
time-periodic superconductors [83–85], and non-Hermitian
superconductors [86]. There also exist experiments support-
ing the realization of induced triplet odd-ω pairs in hybrid
systems between superconductors with magnetic materials
[87–101]. All these studies show that, to induce odd-ω pairs,
the symmetries linked to the quantum numbers of the paired
electrons must break [12]. While this condition guarantees the
formation of odd-ω pairs, it does not restrict the appearance of
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even-ω pairs [81,102,103] which then mask the odd-ω signa-
tures. Yet another issue is that controlling odd-ω pairs, despite
the efforts [104–109], is still challenging without magnetic
materials.

In this work we demonstrate the generation, control,
and direct detection of spin-singlet odd-ω Cooper pairs in
Josephson junctions (JJs) formed by multiple superconduc-
tors (Fig. 1). In particular, we exploit the degree of freedom
offered by the multisuperconductor nature of the setup and
find that intersuperconductor even- and odd-ω Cooper pairs
naturally arise and can be controlled by the superconducting
phases and on-site energies of the superconductors. Interest-
ingly, for a JJ with two superconductors, the even-ω amplitude
vanishes either when the superconducting phase difference is
π or at zero on-site energy, leaving only odd-ω pairing. This
behavior remains when the number of superconductors in-
creases but only at weak couplings between superconductors.
Furthermore, we discover that crossed Andreev reflections
(CARs) directly probe odd-ω Cooper pairs and can be con-
trolled by the superconducting phases. Our work thus puts
forward multisuperconductor JJs as a powerful and entirely
different route for odd-ω Cooper pairs.

The remainder of this article is organized as follows. In
Sec. II, we introduce the multisuperconductor JJs studied in
this work, while in Sec. III we show how to obtain the emerg-
ing pair amplitudes. In Sec. IV we present the obtained even-
and odd-ω pair amplitudes and discuss their tunability by the
superconducting phases. In Sec. V we demonstrate how the
nonlocal odd-ω pair amplitude is detected via CAR processes.
Finally, in Sec. VI we present our conclusions.

II. MULTISUPERCONDUCTOR JJs

We consider JJs as shown in Fig. 1, where n conventional
spin-singlet s-wave superconductors are coupled directly. For
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FIG. 1. JJs formed by coupling superconductors Si with distinct
phases φi, and same induced pair potential �. In each Si local pairs
are depicted in gray ellipses containing two electrons (black filled
circles), referred to as intrasuperconductor (local) pairs. Due to the
tunneling between superconductors, intersuperconductor (nonlocal)
pair correlations emerge (cyan) which can be controlled by φi.
Normal leads (green) are attached to two Si for exploring nonlocal
transport and detecting intersuperconductor Cooper pairs.

the sake of simplicity, we model these JJs by only considering
the contact regions, with a Hamiltonian given by

HnJJ =
n∑

j=1

[ε jc
†
jσ c jσ + �eiφ j c†

jσ c†
jσ̄ + H.c.] + HT, (1)

where the first two terms describe the superconductor S j ,
where c jσ (c†

jσ ) annihilates (creates) an electronic state with
spin σ at site j with on-site energy ε j , phase φ j , and in-
duced pair potential � from a parent spin-singlet s-wave
superconductor with order parameter �sc. Moreover, HT =
t0

∑n
j=1 c†

jσ c j+1σ + H.c. represents the coupling between su-
perconductors with equal strength t0 and cn+1 = c1. Away
from the bulk gap edges, � is determined as � = τ 2/�sc

[110–113], where τ is the coupling between S j and the bulk
superconductor. Below we choose τ = 0.7 and � = 0.5 such
that �sc = 1 is larger than the induced gap and fix it as
our energy unit. We also drop the spin index for simplic-
ity but keep in mind that the superconductors in Eq. (1)
are spin singlet. Despite the simplicity of our model, it
captures the main effects we aim to explore in this work,
namely, the multisuperconductor nature and the distinct su-
perconducting phases. Systems involving multiple JJs have
been studied before but in the context of topological phases
[114–125]. Here, we expand the playground of these multi-
superconductor JJs for realizing controllable odd-ω Cooper
pairs.

III. SUPERCONDUCTING PAIR AMPLITUDES

We are interested in intersuperconductor pair correlations
which we also refer to as nonlocal pair correlations as
they reside between superconductors. Pair correlations are
described by the anomalous Green’s function Fnm(1, 1′) =
〈T cn(1)cm(1′)〉, where T is the time ordering operator, cn

annihilates an electronic state with quantum numbers n at
time and position 1 = (x1, t1) [126,127]. The fermionic nature
of electrons dictates the antisymmetry condition Fnm(1, 1′) =

TABLE I. Allowed superconducting pair symmetries in multi-
superconductor JJs under the presence of spin-mixing fields. The
classes ESEE and OSOE correspond to the pair correlations reported
in this work.

Pair symmetries in multisuperconductor JJs

Frequency Spin Sup. index Parity Pair symmetry class
(ω ↔ −ω) (↑↔↓) (n ↔ m) (x ↔ x′) (total exchange)

Even Singlet Even Even ESEE
Even Singlet Odd Odd ESOO
Even Triplet Even Odd ETEO
Even Triplet Odd Even ETOE
Odd Singlet Even Odd OSEO
Odd Singlet Odd Even OSOE
Odd Triplet Even Even OTEE
Odd Triplet Odd Odd OTOO

−Fmn(1′, 1), which enables the classification of supercon-
ducting pair correlations based on all the quantum numbers,
including time and space coordinates [8–13]. Thus this condi-
tion enables even- and odd-ω pair correlations when Fnm(ω) =
±Fnm(−ω), with Fnm(ω) being the Fourier transform of
Fnm(1, 1′) into frequency domain. In the case of multisu-
perconductor junctions, the multiple superconductor nature
introduces an additional quantum number n, the superconduc-
tor index, that broadens the classification of pair symmetries
in a similar way as the band index in multiband superconduc-
tors [12]. In Table I we present all the allowed pair symmetry
classes that respect the antisymmetry condition in JJs with
spin-singlet and spin-triplet superconductors: four classes
correspond to odd-ω pair correlations which are the four
bottom classes in Table I; see Supplemental Material [128]
for details. It is evident that the superconductor index (sup.
index) plays a crucial role for broadening the allowed pair
symmetries.

In the JJs with spin-singlet s-wave superconductors con-
sidered here, the symmetric and antisymmetric combination
F+(−)

nm = (Fnm ± Fmn)/2 become even- and odd-ω pair sym-
metry classes, respectively [128]. These two pair symmetry
classes correspond to the ESEE and OSOE classes in
Table I. In practice, the pair correlations Fnm are obtained
from the electron-hole component of the Nambu Green’s
function, whose equation of motion in frequency space reads
[ω − HnJJ]G(ω) = I, where HnJJ is the Nambu Hamiltonian
of the JJ with n superconductors described by Eqs. (1) in the
basis 	 = (c1, c†

1, c2, c†
2, . . . , cn, c†

n )T.

IV. INTERSUPERCONDUCTOR PAIR
AMPLITUDES IN JJs

To begin, we focus on the pair correlations in a JJ with
two superconductors coupled directly. This system is modeled
by H2JJ with n = 2 in Eq. (1). As described in the previous
section, the pair correlations are obtained from electron-hole
components of the Green’s function associated to the Nambu
Hamiltonian in the basis 	 = (c1, c†

1, c2, c†
2)T. Without loss of

generality, we assume a phase difference φ2 − φ1 = φ. Then,
considering ε1,2 ≡ ε, the symmetric and antisymmetric pair
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FIG. 2. (a), (b) Symmetric even-ω and antisymmetric odd-ω non-
local pair amplitudes (F±

12 ) in a JJ with two superconductors coupled
directly as a function of ω and φ at ε = 0.1, with the color scale
cut off at 10 for visualization. White arrows in (a) indicate that |F+

12 |
vanishes at φ = π . (c) Ratio R± = |F+

12 |/|F−
12 | as a function of ε and

φ at ω = 0.2. Cyan arrows indicate that R vanishes either at ε = 0 or
φ = π . (d) Line cuts of (a), (b) at fixed ω. Parameters: � = 0.5 and
t0 = 0.3.

amplitudes in superconductor index are given by [128]

F+
12 (ω) = 2ε�t0 cos(φ/2)

P + 2�2t2
0 cos(φ)

,

F−
12 (ω) = 2iω�t0 sin(φ/2)

P + 2�2t2
0 cos(φ)

, (2)

where ω represents complex frequencies unless otherwise
stated and P = (�2 − ω2 + ε2)2 − 2t2

0 (ω2 + ε2) + t4
0 . First,

both pair amplitudes in Eqs. (2) have the same denominator
which is an even function of ω and reveals the formation
of Andreev bound states (ABSs) when P + 2�2t2

0 cos(φ) =
0. This is seen in the bright regions of Fig. 2, where we
plot the absolute value of the symmetric and antisymmetric
amplitudes as a function of the phase difference φ. Second,
the numerators of both F+

12 and F−
12 have different functional

dependences, oscillating with the phase difference φ in an al-
ternate fashion as cos(φ/2) and sin(φ/2), respectively [129].
While the numerator of the symmetric term is an even func-
tion of ω with a linear dependence on ε, the antisymmetric
component is interestingly linear in ω and, therefore, an odd
function of frequency. The symmetric even-ω part vanishes
either when ε = 0 or φ = π , while the antisymmetric odd-ω
pair amplitude remains remarkably finite at these points and
even acquires large values. The surprising features of the
nonlocal pair amplitudes can be seen by comparing the panels
of Figs. 2(a), 2(b) and 2(d), where the vanishing values of the
even-ω part are indicated by white arrows in Fig. 2(a). The
vanishing values of the even-ω pairing can be better seen in
Fig. 2(c), where we plot the ratio between the two pair am-
plitudes, R± = |F+

12 |/|F−
12 | = |(ε/iω)cot(φ/2)|: R± vanishes

either at ε = 0 or φ = π . Note, however, that since F−
12 is

an odd function of ω and thus vanishes at ω = 0, R± has
a clear interpretation only for ω 	= 0. In sum, JJs with two

FIG. 3. (a), (b) Symmetric even-ω (F+
12 ) and antisymmetric odd-

ω (F−
12 ) nonlocal pair amplitudes in a JJ with three superconductors

coupled directly as a function of φ2 and φ3 at ω = 0.1 and t0 = 0.3,
with the color scale cut off at 5 for visualization. (c), (d) Same as in
(a),(b) but at ω = 1 and t0 = 0.5. Parameters: � = 0.5, ε = 0, and
φ1 = 0.

superconductors exhibit highly tunable odd-ω pairing that is
the only type of intersuperconductor pair correlations.

For JJs with more superconductors n > 2, the expressions
for the nonlocal pair amplitudes become lengthy, but still
capturing the formation of ABSs in the denominator and with
numerators that strongly depend on all φi [128]. We find that
the symmetric and antisymmetric pair amplitudes between
nearest neighbor superconductors develop even- and odd-ω
symmetries, respectively. While the odd-ω part is proportional
to ∼(eiφ j+1 − eiφ j ), the even-ω term is to ∼(eiφ j+1 + eiφ j ) +
P(φ1,...,n), where P is a function of all the system parameters
[128]. Thus the odd-ω term depends on the sine of the phase
difference of the involved superconductors as in JJs with two
superconductors discussed above. However, the even-ω part
has a cosine part as for JJs with two superconductors, but
also an additional contribution due to the rest of the system.
Nevertheless, both pair amplitudes exhibit a high degree of
tunability by means of the superconducting phases. To visu-
alize this fact, in Fig. 3 we plot the even-ω and odd-ω pair
amplitudes for a JJ with three superconductors as a function of
φ2 and φ3 at φ1 = 0. The main feature of this figure is that the
behavior of both pair amplitudes is highly controllable by the
superconducting phases. Interestingly, there are regions where
the even-ω component acquires vanishing small values while
the odd-ω remains sizably large; see dark and bright regions
in Figs. 3(a) and 3(c) and Figs. 3(b) and 3(d), respectively.

The vanishing and finite values of the even- and odd-ω
pair amplitudes can be further visualized in a simpler regime.
Specially, for very weak couplings between superconductors
t0 and for superconductors with the same on-site energy ε, the
nearest neighbor nonlocal pair amplitudes up to linear order
in t0 are given by [128]

F+
j, j+1(ω) ≈ ε�t0(eiφ j+1 + eiφ j )

(�2 − ω2 + ε2)2
,

F−
j, j+1(ω) ≈ ω�t0(eiφ j+1 − eiφ j )

(�2 − ω2 + ε2)2
, (3)
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where j = 1, . . . , n and φn+1 = φ1. Strikingly, only the pair
amplitudes between nearest neighbor superconductors remain
finite at leading order in t0 [130]. As expected, F+

j, j+1 and
F−

j, j+1 in Eqs. (3) exhibit even- and odd-ω spin-singlet symme-
tries, respectively. Interestingly, both pair amplitudes acquire
the same form as their counterparts in JJs with two super-
conductors; see Eqs. (2). In this regime, the even-ω pairing
thus vanishes either at ε = 0 or when eiφ j+1 + eiφ j = 0, which
needs a phase difference of φ j+1 − φ j = π between super-
conductors. However, the odd-ω component remains always
finite in this regime, exhibiting high tunability by φ j . We
have verified that this behavior remains even in JJs with finite
superconductors and also in JJs with superconductors coupled
via a normal region [128]. Hence multisuperconductor JJs
represent a rich platform for the generation and control of
nonlocal odd-ω pair correlations that do not require magnetic
elements. Before closing this part, we highlight that the odd-
ω pair amplitudes presented here are a proximity-induced
superconducting effect bound to the device, exhibiting wide
controllability by the superconducting phases and with impor-
tant impact on physical observables as we discuss next.

V. CAR DETECTION OF ODD-ω PAIRING

Having established the emergence of intersuperconductor
odd-ω pairs in multisuperconductor JJs, now we inspect a
direct detection protocol. Due to the nonlocal character of the
pair correlations found here, it is natural to explore nonlo-
cal transport of Cooper pairs [28,36,75,131]. Without loss of
generality, we focus on JJs formed by two superconductors
and aim at detecting the odd-ω pairs obtained in Eqs. (2).
Hence we attach two normal leads at the left and the right
of the system as in Fig. 1 and include them in our model via
retarded self-energies 
r

L(R), such that the system’s retarded
Green’s function is Gr (ω) = (ω + i0+ − H2JJ − 
r

L − 
r
R)−1

[132]. Here, H2JJ describes the JJ described by Eq. (1) with
n = 2 and ω now represents real frequencies. In the wideband
limit, 
r

j = −i� j/2, where � j = π |τ |2ρ j characterizes the
coupling to lead j with surface density of states ρ j and τ is
the hopping between leads and superconductors.

At weak � j , the JJ can be probed by nonlocal transport.
Specially, the transport of Cooper pairs is characterized by
nonlocal Andreev reflection or crossed Andreev reflection
(TCAR), which competes with electron tunneling (TET) to deter-
mine the nonlocal conductance ∼(TCAR − TET) [128]. These
CAR and ET processes involve electron-hole (hole-electron)
and electron-electron (hole-hole) transfers, TCAR = Teh + The

and TET = Tee + Thh, which can be obtained from Gr as [75]

Tee = �e
L�e

R

∣∣gr
12

∣∣2
, Thh = �h

L�h
R

∣∣ḡr
12

∣∣2
,

Teh = �e
L�h

R

∣∣F r
12

∣∣2
, The = �h

L�e
R

∣∣F̄ r
12

∣∣2
, (4)

where gr
12 (ḡr

12) and F r
12 (F̄ r

12) are the normal and anomalous
(or pair amplitude) components of the intersuperconductor
retarded Green’s function, obtained from Gr [128]. Interest-
ingly, the CAR processes Teh(he) are directly determined by the
squared modulus of the intersuperconductor pair amplitudes
F r

12. We note that, while the pair amplitudes F r
12 and F̄ r

12 are
not directly measurable, their modulo respectively determines

FIG. 4. Electron tunneling (top row) and crossed Andreev re-
flection (bottom) processes as a function of ω and φ. Parameters:
� = 0.5, ε = 0, � j = 0.1, and t0 = 0.5.

the finite value of the nonlocal probabilities Teh and The, thus
facilitating the detection of these emergent pairings.

Under general circumstances, F r
12 includes both symmetric

even-ω and antisymmetric odd-ω terms and the symmetric
part vanishes at ε = 0 for any φ; see Eqs. (2). Thus the CAR
amplitudes have the potential to directly probe the antisym-
metric intersuperconductor odd-ω pairing. However, as shown
above, the CAR processes Teh(he) are always accompanied by
electron tunnelings Tee(hh). Therefore, even if Teh(he) directly
probes odd-ω pairs, their total effect in the nonlocal conduc-
tance can be masked if Tee(hh) are larger. For this reason, to
directly detect intersuperconductor odd-ω pairing, a regime
where Tee(hh) � Teh(he) is needed. Even though this regime
might sound challenging to find, we now demonstrate that
it is in fact possible. To show this, we consider φ1 = −φ/2,
φ2 = φ/2 and assume symmetric couplings to the leads � j =
�. Then, for ε = 0, gr

12 and the antisymmetric pair amplitude
F r,−

12 are given by [128]

gr
12 = −4t0

{
(� − 2iω)2 + 4t2

0 + 4�2e−iφ
}
/D,

F r,−
12 = 16it0�(2ω + i�)sin(φ/2)/D, (5)

where D = 16t4
0 + [4�2 + (� − 2iω)2]2 + 8t2

0 (� − 2iω)2 +
32t2

0 �2cos(φ), ḡr
12(φ) = −gr

12(−φ), and F̄ r
12(φ) = F r

12(φ).
We note that F r

12 can be obtained from Eqs. (2) by replacing
ω → ω + i0+ + i�/2. Now, we can exploit the fact that the
energy of the ABSs at ε = 0 and φ = π is given by |ω±| =
|t0 − �|, which clearly vanishes for t0 = �. In this regime we
have |gr

12|/|F r,−
12 | ≈ ω/(2�) � 1 for low frequencies. Thus it

is possible to obtain a regime where the antisymmetric pair
amplitude is larger than the normal contribution. Hence, in
this regime, Teh(he) are expected to be larger than Tee(hh) and
constitute the main contribution to the nonlocal conductance,
whose finite value indicates a direct evidence of intersuper-
conductor odd-ω pairing.

To visualize the above argument, in Fig. 4 we plot ET and
CAR processes as a function of φ and ω at ε = 0. The most
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important feature is that, at high frequencies, ET processes
Tee(hh) acquire large values near φ = 0, 2π but are vanishing
small at low ω near φ = π , in line with the discussion pre-
sented above. Interestingly, the CAR processes Teh(he) acquire
large values around φ = π at low frequencies but smaller
values at higher frequencies. The finite values of these CAR
processes directly probe the formation of induced odd-ω pairs.
Of particular relevance here are the values around φ = π and
low ω, because, at such points, CAR dominates over ET and
it thus determines the nonlocal conductance. We have verified
that this behavior also holds for JJs with more than two super-
conductors but in the weak tunneling regime, thus supporting
the direct detection of proximity-induced intersuperconductor
odd-ω pairing in a nonlocal transport measurement. Hence,
despite being an induced effect, the nonlocal odd-ω pairs de-
termine CAR processes by simply tuning the superconducting
phases in multisuperconductor JJs.

VI. CONCLUSIONS

In conclusion, we have studied multisuperconductor
Josephson junctions and found that intersuperconductor even-
and odd-ω Cooper pairs can be generated, controlled, and
detected by virtue of the superconducting phases. We found
that even-ω pairing vanishes when the phase differences be-
tween two superconductors is π , thus leaving odd-ω pairing as
the only type of intersuperconductor pair correlations. While
this finding is exact for Josephson junctions with two su-
perconductors, it is only valid at weak couplings between
superconductors in junctions with more than two supercon-
ductors. Due to the vanishing of even-ω pairing, only odd-ω
pairs contribute to CAR processes, whose finite values di-
rectly probe the presence of odd-ω Cooper pairs.

Given the advances in the fabrication of superconducting
heterostructures, including a promising tunability of CAR
processes [133], we expect that the physics discussed here
could be soon realized in multiterminal Josephson junc-
tions [117,122,134–136] and in superconducting quantum
dots [137–146]. Of particular relevance are Refs. [117,122,
134–136] because they have already demonstrated the fab-
rication of multisuperconductor Josephson junctions and the
control of several superconducting phases. In this regard, our
work offers an entirely different route for the generation,
control, and detection of odd-ω Cooper pairs that might be
even possible to explore using already existing experimental
techniques.
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