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The strong chiral light-matter interaction is crucial for various important fields such as chiral optics, quantum
optics, and biomedical optics, driving a quest for the extreme intrinsic chirality assisted by ultra-high-quality (Q-)
factor resonances. In this quest we propose a straightforward method to achieve extreme intrinsic chirality in loss-
less planar structures by manipulating the quasi-BIC through in-plane perturbation. The temporal coupled-mode
theory is employed to derive the conditions necessary for achieving maximal intrinsic chirality. The quasi-BIC
should be excited within the transparent spectral range of the structure and couple with x- and y-polarized waves
with the same intensity but a phase difference of π/2. For an illustration, a planar chiral dielectric dimeric
waveguide grating is designed that strongly interacts with left circularly polarized light while decoupling from
right circularly polarized light through in-plane symmetry engineering. Furthermore, by adjusting the magnitude
of the in-plane asymmetry, we can independently manipulate the Q factors of the chiral quasi-BIC while
maintaining near unity circular dichroism. Our results provide a simple yet powerful paradigm for achieving
extreme intrinsic chirality on an easily manufacturable platform, which may have potential applications in chiral
emission, chiral sensing, and enantiomer separation.
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I. INTRODUCTION

Chirality refers to the geometric property of an object that
cannot be superimposed onto its mirror image by rotation or
translation [1]. In the context of optics, chiral objects inter-
acting with left or right circularly polarized (LCP, RCP) light
can induce chiroptical effects, including optical activity and
circular dichroism. Optical devices with a strong chiroptical
response are crucial in various applications, such as chiral
molecule sensing [2], enantiomer selection [3], and quantum
optics [4]. However, the chiral light-matter interactions in nat-
ural materials are typically very weak, making it challenging
to detect the resulting optical response for small amounts.
In recent years, benefiting from the unprecedented flexibility
for design, various chiral nanophotonic structures have been
considered to generate strong chiral optical responses, such
as the helices [5,6], twisted cross structures [7,8], and multi-
layered structures [9,10]. Nevertheless, due to absorption and
scattering losses, these structures only support low-Q-factor
optical responses, which inevitably hampers their potential
applications, relying on strong chiral light-matter interactions.

Recently, the emergence of bound states in the contin-
uum (BICs) has provided a viable alternative to enhance the
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strength of chiral light-matter interactions, owing to their
unique ability to confine energy [11–15]. BICs are localized
photonic eigenstates embedded in the radiation continuum,
which can be considered as a resonance with zero linewidth or
an infinite Q factor due to the energy being perfectly confined
within the system [16,17]. Typically, the limited size of the
structure, material losses, and other external perturbations
can cause BICs to come into Fano resonance with finite but
high Q factors, which are referred to as quasi-BICs [18–24].
The quasi-BICs with significantly high Q factors have been
applied in areas such as low-threshold lasing [25–27], effi-
cient nonlinear optical processes [28–32], and unidirectional
emission [33–36]. Importantly, when a quasi-BIC acquires
intrinsic chirality, the resulting chiral quasi-BIC can generate
strong chiroptical effects accompanied with high Q factors.
For example, a bilayer twisted structure could efficiently con-
trol chirality due to the absence of all mirror symmetries
[37]. The maximum intrinsic chirality can be achieved by
introducing out-of-plane perturbations to control the coupling
of quasi-BIC with circularly polarized waves, as exemplified
by pairs of ellipse dimers with a small out-of-plane distance
[38–40], tilted etch twisted dimers [34], and slanted trapezoid
nanoholes in dielectric film [41]. However, the introduced
out-of-plane perturbations resort to three-dimensional sophis-
ticated geometries, which is challenging to conventional 2D
photolithography manufacturing techniques.

In this work we propose a straightforward method to
achieve the extreme intrinsic chirality in planar structures
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FIG. 1. The schematic configuration of the planar chiral waveg-
uide grating composed of periodic dimeric rectangular bars arranged
on a waveguide layer. The incident light is assumed to be a plane
wave propagating along the z direction.

through manipulating the quasi-BIC via in-plane perturbation.
Based on the temporal coupled-mode theory (CMT), we de-
rive the conditions necessary for achieving maximal intrinsic
chirality: (i) the quasi-BIC resonance should occur within the
transparent spectral range of the structure, (ii) the dissipation

loss must be negligible, and (iii) the quasi-BIC must couple
with x- and y-polarized waves with exactly the same inten-
sity but with a phase difference of π/2. As an example, we
designed a planar waveguide grating comprising a dimeric
grating and a waveguide layer that fulfill the above conditions.
Through in-plane symmetry engineering, a quasi-BIC corre-
sponding to the high-Q guided resonance (GR) is excited,
which exhibits strong interaction with LCP light while de-
coupling from RCP light. The simulation results demonstrate
99.5% transmittance and reflectance for RCP and LCP waves,
respectively. Moreover, by adjusting the magnitude of the
in-plane asymmetry, we can independently manipulate the Q
factors of the chiral quasi-BIC while maintaining nearly unity
circular dichroism (CD).

II. THEORETICAL ANALYSIS OF MAXIMUM CD

Figure 1 schematically shows the concept and configura-
tion of maximal intrinsic chirality. Circularly polarized lights
are normally incident on the configuration, in which the RCP
light is fully transmitted with same handedness and the LCP
light is completely reflected. We start by discussing the nec-
essary condition for maximal chirality based on Jones matrix
analysis. Here the transmission matrices between the circular
and linear polarization bases are related as [42]

Tcirc =
(

tRR tRL

tLR tLL

)
= 1

2

((
txx + tyy

) + i
(
txy − tyx

) (
txx − tyy

) − i
(
txy + tyx

)(
txx − tyy

) + i
(
txy + tyx

) (
txx + tyy

) − i
(
txy − tyx

)), (1)

where the first and second subscripts refer to the transmit-
ted and incident waves, R and L denote the right-handed
circularly polarized wave (RCP) and left-handed circularly
polarized wave (LCP), and x and y represent the two orthogo-
nal linearly polarized waves. The transmission CD is defined
as CD = |tRR|2 + |tLR|2 − |tRL|2 − |tLL|2. The maximal CD
requires that the chiral structures completely transmit one
helicity of circularly polarized incident light but completely
reflect circularly polarized incident light with the opposite
handedness. For maximal CD, we can consider following two
cases. Case (1): the CD originates from anisotropy-induced
polarization conversion, which is usually referred to as “false
chirality” [41,43–48]. We can readily prove the maximal CD
follows a Jones matrix in the linear and circular polarization
bases:

Tlin =
(

txx txy

tyx tyy

)
= eiϕ

2

(
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)
, Tcirc = eiϕ

(
0 1
0 0

)
.

(2)

Case (2): only one helicity of circular polarization incidence
can be transmitted without polarization conversion, which is
considered as “true chirality” or “intrinsic chirality” [41]. In
this case, the maximal CD follows a Jones matrix in the linear
and circular polarization bases,

Tlin =
(

txx txy

tyx tyy

)
= eiϕ

2

(
1 −i
i 1

)
, Tcirc = eiϕ

(
1 0
0 0

)
,

(3)

where ϕ is an arbitrary phase shift through the chiral structure.
Due to limitations in applications caused by false chirality in
important fields such as chiral emission and polarized pho-
todetection, we focus solely on intrinsic chirality in this study.

To describe the light transmission and reflection through
the chiral structure, we can exploit the S matrix, which relates
the incoming and outgoing wave coefficients in the basis of
linear polarizations, given as

S =

⎛
⎜⎜⎝

r1xx t2xx r1xy t2xy

t1xx r2xx t1xy r2xy

r1yx t2yx r1yy t2yy

t1yx r2yx t1yy r2yy

⎞
⎟⎟⎠, (4)

where the rm jk and tm jk are the reflection and transmission
coefficients of j-component under incident k-component light
from structure sides m. Here we resort to phenomenological
CMT to derive the reflection and transmission coefficients in
Eq. (4) and give the physically meaningful parameter condi-
tion for maximal intrinsic chirality in Eq. (3). In our CMT, we
only consider the chiral structure hosting a single resonance.
The dynamic equations for the amplitude A of the resonance
mode can be written as [42,49,50]

dA

dt
= (−iω0 − γ )A + κT a, (5)

b = Sa = Ca + MA, (6)
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where ω0 and γ are the center frequency and the decay rate of
the resonance, respectively; a = [a1x a2x a1y a2y]T and
b = [b1x b2x b1y b2y]T represent the amplitudes of in-
coming and outgoing waves, where the subscripts denote the
side of the structure and polarizations; C is the scattering
matrix for the background transmission and reflection through
the structure; and κ = [m1x m2x m1y m2y]T describes the
coupling between the resonance and the incoming waves. Ac-
cording to Lorentz reciprocity, the matrix M is related to κ and
is given by M = κ. Naturally, the single resonance is coupled
to all linearly polarized waves on both sides of the structure.
The stationary solution of Eqs. (5) and (6) determines the S
matrix from Eq. (4) as

S = C − MκT

i(ω − ω0) − γ
. (7)

From Eq. (7) we can obtain all the reflection and transmission
coefficients in Eq. (4) by the model parameters. To achieve the
intrinsic chirality describing in Eq. (3), the structure usually
needs to have C4 rotational symmetry with respect to the z
axis [42]. However, the intrinsic chirality in C4-symmetric
structure is very weak, especially for a two-dimensional plane
configuration [51,52]. Interestingly, the intrinsic chirality in
Eq. (3) could be satisfied when the structure hosts a resonance
in a spectral range where the background is perfectly trans-
parent. In this case the scattering matrix of the background is
given by

C =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (8)

According to energy conservation and time-reversal symme-
try, we have [53]

Cκ∗ = −M, (9)

M∗M = 2γ . (10)

From Eqs. (9) and (10), we can obtain the coupling parameters
on different sides of the structure: m2x = −m∗

1x, m2y = −m∗
1y,

and |m1x|2 + |m2x|2 + |m1y|2 + |m2y|2 = 2γ . Due to Lorentz
reciprocity, we consider the transmission matrix only from
side 1 of the structure,

Tlin1 =
(

t1xx t1xy

t1yx t1yy

)
=

⎛
⎝1 + |m1x |2

i(ω−ω0 )−γ

|m1x ||m1y|ei��

i(ω−ω0 )−γ

|m1x ||m1y|e−i��

i(ω−ω0 )−γ
1 + |m1y|2

i(ω−ω0 )−γ

⎞
⎠,

(11)

where �� is phase difference between the coupling pa-
rameters m1x and m1y. From Eq. (11) we can obtain the
necessary condition for the maximal intrinsic chirality in
Eq. (3): |m1x| = |m1y| and �� = π/2. The transmission ma-
trix for circular polarization waves is then written as

Tcirc =
(

1 0

0 1 + γ

i(ω−ω0 )−γ

)
, (12)

where the maximal intrinsic chirality in the structure is
achieved at the resonant frequency of ω = ω0.

The above analysis concludes the necessary condition to
realize the maximal intrinsic chirality in a structure: the
resonance should occur in the spectral range of structure
transparency, the dissipation in the structure material can be
negligible, and the structure must couple with the x-polarized
and y-polarized waves satisfying the given condition: |m1x| =
|m1y| and �� = π/2.

III. DESIGN OF PLANAR WAVEGUIDE GRATING
WITH MAXIMUM INTRINSIC CHIRALITY

To fulfill the physical conditions as discussed above, a
planar chiral waveguide grating consisting of periodic dimeric
rectangular bars arranged on a waveguide layer is designed, as
illustrated in Fig. 1. The distance between the centers of the
two rectangular bars along the x direction is �/2 at the origi-
nal position. The in-plane symmetry of the structure is broken
by moving one of the rectangular bars, and the distance of the
move along the x and y directions is denoted as �x and �y,
respectively. The presence of the waveguide layer breaks the
structural symmetry in the z-axis direction, forming a planar
chiral structure. Such a planar structure can be manufactured
using conventional photolithography techniques [54–57].

In our design, the transparent background in the desired
wavelength is achieved by virtue of the Fabry-Perot interfer-
ence. Here the structure is made entirely of silicon nitride
(Si3N4, the permittivity is 4.08), and each unit cell is charac-
terized by a period � = 600 nm; width, length, and thickness
of rectangular bars are w = 135 nm, l = 148 nm, and t1 =
205 nm, respectively; and waveguide layer thickness is t2 =
165 nm. For achieving maximum intrinsic chirality, one needs
to precisely control the coupling between the resonant mode
and the incoming waves. In the following, we present a
step-by-step design of such a resonant mode starting from
BICs and carefully enable their equivalent coupling with x-
and y-polarized waves through in-plane symmetry engineer-
ing. To capture a resonant mode, we exploit the engineered
Brillouin zone folding-induced quasi-BIC. The first Brillouin
zone (FBZ) of the structure is shown in Fig. 2(a). The blue
and red boxes represent FBZs with and without perturbations,
respectively. The blue shaded region indicates that the FBZ
has been halved in the x direction due to the doubling of
the period in the x direction. The momentum properties, i.e.,
the dispersion relation branches ω − nk in usual terms, are
simulated with the commercial finite-element software COM-
SOL MULTIPHYSICS. In the simulations, the Floquet periodic
boundary conditions are applied to a single unit cell, and the
perfectly matched layers are used in the z direction. Here,
we focus on a transverse-magnetic (TM)-like eigenmode in
the waveguide layer. When �x = 0 nm and �y = 0 nm, the
grating degenerates to a half-period grating along the x di-
rection with �′ = �/2, and its band corresponds to the red
line in Fig. 2(b). It can be observed that the TM-like mode is
below the light line (gray), indicating that the mode behaves
as guided mode and cannot couple with the external incident
light due to wave-vector mismatch. While introducing a pe-
riod perturbation along the x direction by moving one of the
rectangular bars along the x or y direction, the grating period
became �, and its band (blue) is folded from the band of the
half-period structure (red). Then, the guided mode rises to the
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FIG. 2. (a) The first Brillouin zone of the structure. (b) The band
structure of eigenmodes simulated with unit- (blue) and half- (red)
period boundary; the light cone is represented a gray shaded area.
(c) The eigenelectric field distribution with z component (Ez) at the
	 point. (d) The eigenmagnetic field distribution (|H |) at the 	 point.

	 point above the light line and couples with the external
incident light, turning into GR. Since the GR is born from
a small geometric perturbation, the coupling of the guided
mode with the external incident light can be considered as a
GR-assisted quasi-BIC.

The corresponding electromagnetic field distributions at
the 	 point is shown in Figs. 2(c) and 2(d), respectively. As
illustrated in Fig. 2(c), the z component of the electric field
exhibits an odd symmetry under a 180◦ rotation around the z
axis. The symmetries of the quasi-BIC can be tracked in the
language of group theory by the irreducible representation B1

mode of the point group C2v . The selection rules show that the
B1 mode can radiate into free space in different polarization
directions by introducing different perturbations [37,58,59].
When one of the rectangular bars moves along the x direc-
tion, the breaking of the symmetry along the x direction will
introduce a leaky channel coupled to the continuum for x-
polarized light, while for the rectangular bar moving along the
y direction the structure lacks any in-plane mirror symmetries,
other than in-plane inversion (C2) symmetry, which will lead
to the y-polarized light exhibiting a leaky resonance. Here, the
magnetic field (|H |) suggests that the guided mode is strongly
localized in the waveguide layer, as shown in Fig. 2(d).

To visualize the GR-assisted quasi-BIC, the transmissions
through structure for different values of geometric perturba-
tion are shown in Figs. 3(a)–3(c). For normal-incident linearly
polarized light, the structure with �x = 0 nm and �y = 0 nm
is perfectly transparent in the range of the concerned wave-
lengths. As shown in Fig. 3(a), the transmittance spectra show
a wideband total-transmission Fabry-Perot background. Fol-
lowing the selection rules, we can manipulate the quasi-BIC
radiation to different polarization directions by moving one of
the rectangular bars along the x or y directions. Figures 3(b)
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FIG. 3. The transmittance spectra under normal-incident, lin-
early polarized light for (a)�x = 0 nm and �y = 0 nm, (b) �x = 70
nm and �y = 0 nm, (c) �x = 0 nm and �y = 45 nm. The Q factors
of the quasi-BIC mode as a function of (d) �x and (e) �y.

and 3(c) illustrate the transmittance spectra of the struc-
ture for the normal-incident linearly polarized lights when
�x = 70 nm and �y = 45 nm, respectively. When one
of the rectangular bars moves along the x direction, the
x-polarized light leads to a leaky resonance in the transmis-
sive Fabry-Perot background [Fig. 3(b)]. In contrast, when
the rectangular bar only moves along the y direction, the
y-polarized light results in a leaky resonance [Fig. 3(c)]. Fur-
thermore, Figs. 3(d) and 3(e) illustrate the Q factors as a
function of �x and �y, respectively. The Q factors of the
quasi-BIC resonance experience a dramatic increase as �x
or �y decreases and diverges to infinity near �x = 0 nm or
�y = 0 nm. According to the signature of quasi-BICs, its Q
factor approximately follows an inversely quadratic law of
asymmetric perturbations [13], i.e., Qx = α/�x2 and Qy =
β/�y2, where α and β present the different sensitivities of
quasi-BIC resonance to �x and �y. This relation is verified
by fitting results in Figs. 3(d) and 3(e) with the sensitivity
factors of α = 4.22 × 107 and β = 1.67 × 107. Meanwhile,
the amplitudes of quasi-BIC resonance coupling to x and y
polarization are proportional to the square root of the Q factor,
i.e., |mx| ∼ 1/

√
Qx and |my| ∼ 1/

√
Qy. And therefore, the

equivalent coupling (|mx| = |my|) can be estimated by �x =
g�y (where g = √

α/β = 1.58). Importantly, there is a π/2
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phase difference between mx and my because the quasi-BIC
is aligned to a transmissive Fabry-Perot background and the
structure lacks z-axis mirror symmetry [37].

In the following, the cooperation perturbations are con-
sidered to manipulate the quasi-BIC transforming from
the linear polarization base into circular polarization base
(i.e., chiral quasi-BIC). We first calculated the amplitudes
and phases of the structure under linearly polarized inci-
dence, as shown in Figs. 4(a) and 4(b). Here, we choose
�x = 70 nm and �y = 45 nm, which approximately sat-
isfy the select law �x = 1.58�y. It can be found that the
amplitudes of the copolarization and crosspolarization trans-
mission coefficients are identical |txx| = |tyx| = |tyy| = |txy| at
the quasi-BIC resonance wavelength. Meanwhile, their phase
differences at the quasi-BIC resonance wavelength satisfy
ϕxx = ϕyy, ϕyy − ϕyx = π/2 and ϕyx − ϕxy = π . These results
fully satisfy the condition of Eq. (3). And then we calculated,
using the above parameters, the transmittance spectrum for
circularly polarized incidence, as shown in Fig. 4(c). The RCP
light is fully transmitted with the same handedness, whereas
the LCP light is directly reflected. At the resonant wavelength
of λ = 649.56 nm, the CD reaches near unity, 0.995. As
shown in Fig. 4(d), the simulated results can also be well fitted
by the analytical model using Eq. (12).

In prior publications there exists an inherent limit between
the Q factors and CD of the chiral quasi-BIC, i.e., an increase
in the asymmetric parameters on the one hand leads to an
increase in the CD, but on the other hand, an exponential
increase in the radiation loss [35,37,38,44,60]. However, this
limitation can be broken in our design. According to the above
discussion, the intrinsic chirality of the quasi-BIC can be
maintained as long as the two perturbations �x and �y are
changed cooperatively. The Q factor of the chiral quasi-BIC
resonance in the designed planar chiral structure can be, in
principle, continuously boosted, while the amplitude of the
CD remains near unity, as shown in Fig. 5(a). What is more,
the inherent linkage between �x and �y for the maximal in-
trinsic chirality can be theoretically predicted by |mx| = |my|,
following a linear relationship of �x = g�y (fitted by blue
line), which is confirmed by simulation results in Fig. 5(b).
Here, the scale factor is related to the mode profile and could
take different values for different chiral quasi-BICs. When the
associated perturbations �x and �y are small, the Q factor of
quasi-BIC roughly scales with the inversely quadratic square
of all the perturbations [13,41]: Q ∼ 1/(�x2 + g2�y2). The
simulated results agree with the formula very well, as depicted
by the red line in Fig. 5(b). In the present design, the Q
factors of quasi-BICs cover from 4 × 103 to 2.8 × 105, which
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corresponds to the FWHM of CD spectra from 0.16 to
0.02 nm. When considering the experiment, the chiral quasi-
BIC with a Q factor of ∼103 is feasible [41,44]. Also, the
angular dependence of the chiral quasi-BIC resonances is
discussed in Fig. S1 of the Supplemental Material [61].

IV. CONCLUSIONS

In conclusion, we propose a straightforward method to
achieve the extreme intrinsic chirality in planar structures
through manipulating the quasi-BIC via in-plane perturbation,
and we demonstrate it in a two-dimensional waveguide grat-
ing composed of a dimeric grating and a waveguide layer. The
CMT is initially employed to derive the conditions necessary
for achieving maximal intrinsic chirality in lossless structures.
Benefiting from the precise control of the introduced in-plane
perturbation to the coupling of quasi-BIC with linearly polar-
ized waves, the high-Q guided mode resonance corresponding
to the quasi-BIC is excited within the transparent spectral
range of the structure and coupled with x- and y-polarized
waves with the same intensity but a phase difference of π/2,
ultimately resulting in the attainment of the extreme intrinsic
chirality. The simulation results demonstrate the quasi-BIC
exhibits strong interaction with LCP light while decoupling
from RCP light, with a CD value of 0.995. Importantly, by

adjusting the magnitude of the in-plane asymmetry, the Q
factors of the chiral quasi-BIC are independently manipu-
lated, exceeding nearly two orders of magnitude while the
CD is maintained at near unity. It should be pointed out
that the mechanism for realization of chiral quasi-BICs with
tunable Q factors is universal and can be applied to other
chiral waveguide grating structures (see detailed information
in Fig. S2 of the Supplemental Material [61], for exam-
ple). Our work provides a simple but powerful paradigm of
achieving strong chiral light-matter interactions on an easily
fabricated platform, which could offer the possibility of de-
signing high-performance spin-selective optical devices such
as chiral emitters, sensors, photonic circuits, etc.
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