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Valley focusing effect in a rippled graphene superlattice
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Graphene corrugations affect hybridization of π and σ orbitals of carbon atoms in graphene based systems.
It can as well break differently the symmetry of the electron transfer integrals for different strip boundaries.
Using these facts, we found that the momentum distribution of electrons in ballistically propagating beam can
be selective without external electric and/or magnetic fields in the graphene strip under experimentally feasible
periodic potential. Such a potential is created by means of the superlattice that consists of periodically repeated
graphene elements (flat and rippled junction) with different hybridization of carbon orbits, produced by variation
of the graphene surface curvature. As a result it gives rise to the valley dependent focusing effects that can be
controlled by alteration of the number of superlattice elements.
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I. INTRODUCTION

The exceptionally high charge carrier mobility in graphene
has generated enormous experimental and theoretical activ-
ity, with various potential applications in nanotechnology in
mind (see textbooks [1,2]). The remarkable graphene proper-
ties have been explained as a consequence of linear energy
dispersion of the gapless low-energy excitations, provided
by graphene crystal structure that consists of two equivalent
carbon sublattices. Consequently, one can introduce graphene
quasiparticles with different pseudospin quantum numbers as-
sociated with the corresponding sublattices. It is notable that
this linear energy dispersion in the low-energy spectrum of
graphene is similar to the Dirac-Weyl equation for massless
neutrino [3].

It was shown in [4] that the conservation of the pseu-
dospin forbids strictly charged carrier backscattering in a
graphene monolayer with electrostatic potential scattering
that mimics the n-p junction. The barrier always remains
perfectly transparent for the normal incidence of electrons,
while the transmission decreases for other angles. By virtue
of this fact, electron focusing analogous to optical effects
that occur in negative refractive index material is predicted
[5]. It is noteworthy to mention that the above discussed
results are based on assumption of use of external elec-
trical or magnetic accessories to control the focusing of
electron flow.

We recall, however, that graphene sheets are not perfectly
flat, and ripples are considered as most natural sources that
might be used to control the electron mobility as well. A
number of proposals have been suggested in support of this
idea. It was predicted in the tight-binding approximation
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that a corrugation (ripple) could create in graphene electron
scattering, caused by the change in nearest-neighbor hopping
parameters by the curvature [6,7]. Further on, it was found that
electrons in opposite valleys can be perfectly transmitted or
totally reflected in the presence of strain [8]. In Ref. [9] it was
shown how inhomogeneous strains can be used to create wave
guides for valley polarized transport of Dirac fermions in
graphene.

Note that the lattice deformation changes the distance be-
tween ions, pz orbital orientation, and is leading to shift of
the on-site energies of pz orbitals. This affects the effective
Dirac equation that could simulate the low energy electron
states as a result of a deformation-induced gauge field [10].
Moreover, the lattice deformation changes the relative orien-
tation of the orbitals of the corrugated graphene sheet, leading
to the hybridizations of the π and σ bonds (see details in the
Appendix). The π orbital dependence on the surface curva-
ture means that the local chemical potential varies with the
curvature. In fact, the hybridization leads to inhomogeneous
charge distribution, and acts as potential barriers for electrons
leading to their localization [11]. This effect becomes impor-
tant once it would be possible to create a graphene system
with controlled variation of the surface curvature. In fact,
the DFT and molecular dynamics simulations predict that the
graphene sheet can be stretched up to about 20%–30% without
being damaged [12]. The amplitude and the orientation of the
unidirectional ripples can be controlled with the aid of the
applied strain [13]. Further, it was shown that by using the
hydrogenation it is possible to induce periodic ripples with
various thermal conductivity [14].

The discussed above theoretical ideas are supported,
indeed, by a few experimental techniques that demonstrate
evidently a spatial variation in graphene sheets nowadays.
The strain effect can be achieved by putting the material on
substrate that is microstructured [15] or mechanically
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FIG. 1. The corrugated graphene structure. The flat graphene pieces are located in region (I), −∞ < x < −R cos θ0, −∞ < y < ∞; and
region (III), R cos θ0 < x < ∞, −∞ < y < ∞. In region (II), −R cos θ0 < x < R cos θ0 and −∞ < y < ∞, we consider a ripple (a curved
surface in a form of arc of a circle). The ripples are ordered in the x direction with the symmetry y axis.

deformed [16]. Ripples can be formed by means of the
electrostatic manipulation without any change of doping
[17]. Periodically rippled graphene can be fabricated by the
epitaxial technique (e.g., [18]). In this case, in contrast to
free-standing graphene, a strong modification of the electronic
structure of graphene is observed, that gives rise to localized
phonon [19] and plasmon [20] modes. Periodic nanoripples
can be created as well by means of the chemical vapor depo-
sition [21]. It is found that ripples or wrinkles act as potential
barriers for charged carriers leading to their localization [22],
in agreement with the theoretical estimations [11].

One of the main aims of the present paper is to demonstrate
that strain effects could provide the ability of the valleytronics
to manipulate and detect the valley degree of freedom of
the ballistic electron transport. To this aim we employ the
model of rippled graphene superlattice discussed in [23,24].
In the present paper we extended this model by considering
the dependence of the hopping integrals between π orbitals
in zigzag and armchair graphene surface curvatures following
the approach developed by Ando [25]. We recall that typical
transition lengths for n-p junctions are less than 100 nm (e.g.,
[26]), which allows to employ a ballistic transport model for
the study of physics n-p junction devices [27]. To demonstrate
the effect of valleytronics, various authors introduced either
electrical/magnetic fields or additional potentials to simulate
strain effects (see for a review [28]). We will show that the
effective potential determined by the variation of the local
curvature of the graphene sheet provides an additional design
degree of freedom for both fundamental studies and graphene-
based electronic devices.

II. SCATTERING MODEL

We suppose that incident ballistic electrons move from the
left planar graphene piece to the right planar piece passing
through N elements of the superlattice. The unit element of
the superlattice is composed of one ripple and one planar
piece. The graphene strip (the superlattice) is terminated in
the x direction by zigzag or armchair boundaries, while it
infinitely long in the y direction. Each element represents a
single junction described below.

A. Eigenvalue problem

The corrugated graphene structure is modeled by a curved
surface in a form of an arc of a circle connected from the

left-hand and the right-hand sides to two flat graphene
sheets (see Fig. 1). Hereafter, we consider a wide enough
graphene sheet W � M, where W and M are, respectively,
the width along the y axis and the length along x axis
of the graphene sheet. It means that we keep the trans-
lational invariance along the y axis and neglect the edge
effects.

To analyze our junction, we take into account (i) the vari-
ation of the hybridization of the carbon atom orbitals with a
surface curvature of a graphene sheet (see the Appendix); and
(ii) the modification of the electron transfer integrals, caused
by the variation of the surface curvature. The variation of the
hybridization can be described by an effective electric poten-
tial ε(x). The modification of the electron transfer integrals
can be calculated as a shift of a vector potential �k̂ in the
matrix Hamiltonian in the effective mass approximation. In
order to find these modifications we extended the approach,
developed by Ando (see discussion in Ref. [25]), and derived
the corresponding Hamiltonian (the details will be published
elsewhere). Thus, in the effective mass approximation the
eigenvalue problem for the envelope function can be written
in the following form:(

ε(x) Dτ

D−τ ε(x)

)(
FA

FB

)
= E

(
FA

FB

)
, (1)

Dτ = γ [(k̂x + �kx ) − iτ (k̂y + �ky)], (2)

where τ = + corresponds to the K point, while τ = −
corresponds to the K ′ point. The two components of the
wavefunction refer to the two sublattices of carbon atoms. The
additional spin degeneracy of the excitations are not important
in our consideration.

As it is shown in the Appendix, the dependence of energy
επ on the local surface curvature can be expressed in the form

επ = ε2p + α
( a

R

)2
. (3)

Here ε2p = 〈pz|H |pz〉 is the |pz〉 orbital energy of the carbon
atom, R is the ripple radius, and α = −0.58 eV. Thus, the
energy difference between the π orbitals in the curved and
flat graphene is

ε = ε2p − επ = �ε = |α|
( a

R

)2
≈ 0.58

( a

R

)2
eV. (4)

This difference can be considered as a contribution of the
effective electric field produced by the curvature depen-
dence of the hybridization. In the case of the flat graphene
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FIG. 2. A schematic illustration of the scattering process in the superlattice composed of N elements. Each element contains the flat region
of the length L1 connected to the ripple of the length L2. The energy ε is brought about by the curvature dependence of the hybridization effect
(see text). For a separate undoped flat graphene sheet (F ), the Fermi energy lies exactly at the Dirac point ε2p (indicated by a solid line that
crosses the Dirac point, the left side). A similar picture takes place for a separate curved graphene piece (C), where the position of the Fermi
energy επ , indicated by the dotted line on the right side. For the hybrid system that consists of F + C pieces, there are two cases with the
electron incident energies indicated by the lines A and B.

R → ∞ and, consequently, ε(x) = ε2p. The difference be-
tween επ (curved region) and ε2p (flat region) is important
when the systems with different surface curvature are cou-
pled. Hereafter, for the sake of simplicity we assume
that επ = 0.

In the flat regions (I and III), the eigenstate of Eq. (1) has
the following form:

F (x, y) = eikxxeikyy 1√
2

(
se−iτϕ

1

)
, s = ±1, (5)

and the eigenenergy is

E = ε + sγ
√

k2
x + k2

y , (6)

where s = +1(−1) is associated with the conductance (va-
lence) band. Here

e−iϕ = kx − iky√
k2

x + k2
y

. (7)

The eigenfunction and eigenenergy in region II (a ripple) are
obtained in the following forms:

F (x, y) = eiκxxeikyy 1√
2

(
se−iτχ

1

)
, (8)

E = sγ
√

(κx + �kx )2 + (ky + �ky)2. (9)

Here

e−iχ = (κx + �kx ) − i(ky + �ky)√
(κx + �kx )2 + (ky + �ky)2

. (10)

The vector field �
k depends on the graphene surface curva-
ture. The concrete form of this field will be used to investigate
the transport properties of a corrugated graphene with zigzag
and armchair boundaries.

We assume that the flat segment has the length L1, while
the a ripple has the length L2 = Rφ, see Figs. 1 and 2. We
consider the scattering at the interface introduced by different
hybridizations in the flat and the curved graphene regions. The
interface is assumed to be smooth on the length scale of a
graphene unit cell (an inverse Brillouin momentum 2π/K).

Consequently, it does not induce the intervalley (K → K ′)
scattering.

B. Transport phenomena

1. Single junction

Before we analyze the ballistic transport through the su-
perlattice S we have to consider the transmission of electrons,
traveling with energy E through the hybrid subsystem F + C
(the unit element), at two most typical cases: above and below
the effective potential ε (see Fig. 2). In the both cases we
have to match the corresponding wave functions in the flat
and curved graphene pieces.

In the first flat (F) sector of the S region [XL � x < XL +
L1, |y| < W ] we consider the wave function in the form

�(x, y) = eikyy

√
2

{
eikxx

(
e−iϕ

1

)
+ re−ikxx

(−eiϕ

1

)}
, (11)

and for the first rippled (C) sector of the S region [XL + L1 �
x < XL + L1 + L2, |y| < W ] we define the wave function in
the form

�(x, y) = eikyy

√
2

{
α1eiκxx

(
e−iχ

1

)
+ β1e−iκxx

(−eiχ

1

)}
, (12)

and so on. For the last flat region [XL + N (L1 + L2) � x < M,
|y| < W ] we have

�(x, y) = eikyy

√
2

teikxx

(
e−iϕ

1

)
. (13)

The unknown coefficients αi, βi can be obtained from the
continuity conditions on the boundaries.

Let us consider the specific features of the transmission,
related to the incident electron energy E with regard to the
effective potential ε.

(i) E > ε.
In this case we have the following condition for the incident

electron energy E (denoted as a line B in Fig. 2):

E = ε + γ

√
k2

x + k2
y = γ

√
(κx + �kx )2 + (ky + �ky)2.

(14)
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For this particular case we obtain for transmission
coefficients

T11 = eikxL1 [cos κxL2 − i sin κxL2 f (−)], (15)

T11 = T ∗
22, (16)

where

f (±) = 1 ± sin ϕ sin χ

cos ϕ cos χ
, (17)

and

T21 = e−iϕeikxL1 sin κxL2
sin χ − sin ϕ

cos ϕ cos χ
, (18)

T21 = T ∗
12. (19)

Based on the above relations, we have the following useful
equation

T11 + T22

2
= a1 − a2 f (−), (20)

a1 = cos kxL1 cos κxL2, (21)

a2 = sin kxL1 sin κxL2. (22)

The valley dependence relations between quantities
ky, kx, κx are defined by Eq. (14).

(ii) 0 < E < ε.
In this case we have the following condition for the incident

electron energy E (denoted as a line A in Fig. 2):

E = ε − γ

√
k2

x + k2
y = γ

√
(κx + �kx )2 + (ky + �ky)2.

(23)

For transmission coefficients we obtain the following results:

T11 = e−ikxL1 [cos κxL2 + i sin κxL2 f (+)], (24)

T21 = e−iϕeikxL1 sin κxL2
sin χ + sin ϕ

cos ϕ cos χ
. (25)

The same relations, Eqs. (16) and (19), are valid as well,
which yield another useful equation:

T11 + T22

2
= a1 + a2 f (+). (26)

Here, the relations between ky, kx, κx are defined by
Eq. (23).

2. Superlattice

Using the continuity conditions on boundaries, we arrive
to the equations for the transmission coefficient t through
the block of N ripples and the corresponding reflection
coefficient r :(

1
r

)
=

(
T11 T12

T21 T22

)N

=
(

N11 N12

N21 N22

)(
t
0

)
. (27)

These equations yield the obvious relations:

t = 1/N11; r = N21 t . (28)

With the aid of Eqs. (15)–(19), (24), and (25) it is ready to
show that

det (T ) = 1. (29)

We recall that the T matrix is subject to the condition(
T11 T12

T21 T22

)(
a
b

)
= λ

(
a
b

)
. (30)

With the aid of Eqs. (29) and (30), we obtain the eigenvalues

λ1,2 = β ±
√

β2 − 1, β = (T11 + T22)/2. (31)

The transformation U (that diagonalizes the matrix T )

U =
(

a1 a2

b1 b2

)
⇒ U −1TU =

(
λ1 0

0 λ2

)
(32)

yields, in virtue of Eqs. (27) and (32), the following relation:

U

(
λN

1 0

0 λN
2

)
U −1 =

(
N11 N12

N21 N22

)
. (33)

By means of the standard procedure it is ready to obtain the
matrices U and U −1 (UU −1 = 1). As a result, taking into
account that λ1λ2 = 1, we obtain the following definitions:

N11 = T11
(
λN

1 − λN
2

) + λN−1
2 − λN−1

1

λ1 − λ2
= N∗

22, (34)

N12 = T12
λN

2 − λN
1

λ2 − λ1
= N∗

21. (35)

Evidently, the relation (27) between the matrices T and N , and
Eq. (29) yield the fulfillment of the following condition:

det (N ) =
∣∣∣∣N11 N12

N21 N22

∣∣∣∣ = |N11|2 − |N21|2 = 1. (36)

This secures that the condition |r|2 + |t |2 = 1 is fulfilled,
taking into account the definitions Eq. (28). As a result, by
means of Eqs. (28), (36), and the definition (35), we obtain
the following expression for the total transmission probability
through N elements of the superlattice:

TN = |t |2 = 1

|N11|2 = 1

1 + |N21|2

= 1

1 + |T12|2
(

λN
2 −λN

1
λ2−λ1

)2 . (37)

Evidently, the transmission probability (37) is a function
of the incident electron energy E that determines the motion
along the superlattice [i.e., the wave numbers kx and ky; see
Eqs. (6) and (9)]. It is convenient to determine the transmis-
sion probability as a function of the wave number ky which
together with the wave number kF = |E − ε|/γ determines
details of electron transport. With the aid of the transmis-
sion probability, the conductance is given by the Landauer
formula:

GN = 4
e2

h

∫ kF

−kF

TN (ky)
dky

2π/W
= 4

e2

h

kFW

π
IN . (38)
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FIG. 3. Zigzag surface. Transmission probabilities TN as a function of x = ky/kF for N = 10 elements (dotted line); N = 20 elements
(dashed line); N = 50 elements (solid line). The energy of the incoming electrons is E = ε/2, L1 = 10a, a  2.46 Å, φ = π ; (a) R = 8 Å;
(b) R = 18 Å.

Here, the integral IN , defined by the expression

IN = 1

2

∫ 1

−1
TN (u)du, u = ky

kF
, (39)

characterizes the efficiency of the selection specific electron
trajectories entering into the considered system.

For the perfect transmission, i.e., for T (ky) = 1, the
conductance

Go = 4
e2

h

∫ kF

−kF

dky

2π/W
= 4

e2

πh
kFW (40)

is the natural unit, since GN = GoIN . For the discussion below
we introduce the following terms:

G+
N = G0

2

∫ 1

0
TN (u)du, G−

N = G0

2

∫ 0

−1
TN (u)du. (41)

III. DISCUSSION

Let us analyze common and distinctive properties of the
transport through the superlattice with zigzag and armchair
graphene surface curvatures. In order to illuminate the effect
of the dependence on two interfaces, we have to calculate
the shift in the origin of kx,y by �kx,y, produced by terms of
the order of (a/R)2. In our analysis we follow the arguments
discussed by Ando (see Sec. 5 in [25]). The most interesting
case is the transport phenomena at the incident electron energy
0 � E � ε (see Fig. 2, line A), which we study below in
detail.

(i) Zigzag surface.
In the effective mass approximation for the zigzag inter-

face, we obtain

�kx = ∓ a

4
√

3R2

(
1 − 3

8

γ ′

γ

)
, (42)

�ky = 0, (43)

where the upper sign corresponds to the K point, while the
lower sign to the K ′ point. The parameter γ = √

3γ0a/2 =
−√

3V π
ppa/2, γ ′ = √

3(V σ
pp − V π

pp)a/2, where V π
pp and V σ

pp
are the hopping integrals for π and σ orbitals, a is the
length of the primitive translation vector. We recall that in
our model it is assumed that V π

pp ≈ −3 eV and V σ
pp ≈ 5 eV.

Therefore, we have γ ′/γ ≈ 8/3, i.e., �kx ≈ 0. Thus, in the

case of zigzag interface, the shifts are negligibly small, i.e.,
�kx ≈ 0 and �ky = 0. It seems that in this case the symme-
try between K and K ′ is conserved.

In order to trace the dependence of the transmission
probability on the incident angle of electrons, we calculate nu-
merically Eq. (37) as a function ky (see Fig. 3). It is noteworthy
that the superlattice leads to the selective transmission of elec-
trons. For a small number of N elements in the S subsystem
the transmission probability is nonzero for a wide range of
values of ky (see results for N = 10, 20). However, the larger
the number of N elements in the superlattice, the stronger the
selectivity effect for ballistic electrons. Our system focuses
the electronic flow, selecting the transmission of those trajec-
tories that are close to the normal incidence. In fact, for a large
enough number of N elements of the superlattice, the selection
does not depend on the incident direction of an electron flow
at all. Indeed, at N � 1, only for the direction perpendicular
to the surface of the S subsystem, there is almost the ideal
transmission, while for the other angles (ky �= 0) there is only
reflection. Note, however, that the increase of the ripple radius
decreases the selectivity effect [see Fig. 3(b)].

The selective electrons transmission across the interface
created by N units is demonstrated in Fig. 4, where the depen-
dence of GN/Go on the length of the flat region L1 is depicted.
The electron conductivity GN across the interface with N units
is much smaller in comparison to Go for enough large N at
a relatively small value of the flat region L1 � 10a in the
superlattice at the small value of the ripple radius R = 8 Å.
With the increase of the flat region L1 � 18a the conductivity
tends to the limit manifested for a small number of ripples,
simultaneously losing the selective properties. For a large rip-
ple radius R = 18 Å the selectivity effect and the conductivity
decrease with the increase of the flat region L1 [see Fig. 4(b)].
Thus, there is an optimal set of parameters, such as the ripple
radius R, the flat region length L1, and the number of elements
of the superlattice, which provide the most efficient focusing
effect. We return to this point below.

(ii) Armchair surface.
In the effective mass approximation for the armchair inter-

face, we obtain

�kx = 0, (44)

�ky = ∓ 1

4
√

3a

( a

R

)2
(

5

8

γ ′

γ
− 1

)
∼ ∓ 1

6
√

3a

( a

R

)2
. (45)
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(a) (b)

FIG. 4. The conductivity GN/G0 as a function of the length L1 of the flat region in a units. Similar parameters are used as for Fig. 3.

In many ways, the transport properties of this system are
similar to those of the zigzag surface (see Figs. 3 and 4). The
basic difference consists in the asymmetry of the focusing
effects in K and K ′ valleys (see Fig. 5). It was speculated in
Ref. [29] that the vector fields arising from strain might be
utilized to impose a valley-dependent filtering in a corrugated
graphene sheet. Indeed, our results demonstrate evidently that
the replacement ϕ → −ϕ leads to a mirror image of the con-
ductivity behavior in the other valley (K ⇔ K ′). It is notable
to mention that the electron conductivity is very similar to
the one studied above. Indeed, the conductivity decreases with
increase of ripple radius (see Fig. 6). However, for the zigzag
edge termination there is a decrease of the contribution G±

N /G0

around the position x = 0. In contrast, with a total decrease
of the conductivity in the system with the armchair edge
termination there is a prevailing of the G+

N /G0 contribution
over the G−

N /G0 contribution around the position of the super-
collimation angle (see Figs. 5 and 6) with the increase of the
number of N elements. We return to this point below in detail.

To illuminate the basic features of the transport in the
superlattice, let us compare the selectivity effects of the latter
case with that produced by the smooth step [4,30]. We recall

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

T N

FIG. 5. Armchair surface. Transmission probabilities TN as a
function of x = ky/kF for (i) N = 15 elements (valley K , long dashed
line), (valley K ′, short dashed line); and (ii) N = 70 elements (valley
K , solid line), (valley K ′, dotted line). Filtering in ϕ space, induced
by N elements of the superlattice, results in valley focusing effect.
The action of a ϕ filter allows for electrons in valley K to be trans-
mitted freely, while blocking them in valley K ′ at the same value
of the angle ϕ. The energy of the incoming electrons is E = ε/2,
L1 = 10a, a  2.46 Å, φ = π , and R = 8 Å.

that the estimation for the smooth step (which produces the
focusing) yields the value

Gsm = 2
e2

πh
W

√
kF

l
= Go

2
√

kF �
, (46)

that describes the conductivity at the condition kF � � 1 (� is
the step length). In order to achieve the smooth step effect, the
corrugations with gradually increasing curvature can be used
in our case. This conditions leads to the inequality

Gsm > GN ⇒
√

2π�/λF × IN < 1/2. (47)

If we hold fixed the condition � = N (L1 + L2), this inequality
determines the number of elements N and their length L1 + L2

at the same length � for the smooth potential and the superlat-
tice. Thus, by appropriate choice of the product N (L1 + L2),
one can always use the advantage of electron flow focusing
through the superlattice, where a number of elements can
be controlled externally. Moreover, one can additionally use
the fine tuning of the ripple radius and change carrier charge
densities on different sides of our hybrid system.

For completeness we present the results for transmission
probabilities at E > ε for different surfaces (see Fig. 7).
Again, we observe the conservation of symmetry between K
and K ′ valleys in a graphene sheet with a zigzag surface, while
it is broken in that with an armchair surface. We found that
the number of the ripples has a slight influence on the electron
transmission.

Depending on the energy of the incident electron beam
it is possible to determine analytically the angle of the su-
percollimation in the case of the zigzag and armchair edge
terminations. Evidently, this angle is subject to the condition
TN = 1 ⇒ |T12|2 ≡ |T21|2 = 0 [see Eq. (37)], which holds for
the incident electron energy E > ε and E < ε. Let us consider
each case in detail.

(i) E > ε: In this case the condition |T12|2 = 0 ⇒ sin ϕ =
sin χ [see Eq. (18)]. Since the energy of incoming electrons
in the flat graphene piece E = ε + γ

√
k2

x + k2
y , we have [see

also Eq. (7)]

sin ϕ = ky

(E − ε)/γ
. (48)

Taking into account the definition of energy of
transmitted electrons in the curved graphene piece
E = γ

√
(κx + �kx )2 + (ky + �ky), we have [see also
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(a) (b)

FIG. 6. The conductivity G±
N /G0 as a function of the ripple radius R in a units for N = 5 elements (dotted line); N = 15 elements (dashed

line); and N = 60 (solid line). The incident electron energy is E = ε/2, L1 = 10a, and φ = π , armchair surface. The results are given for
valley K .

Eq. (10)]

sin χ = ky + �ky

E/γ
. (49)

As a result, we obtain

sin χ = sin ϕ ⇒ x = ky

kF
= γ�ky

ε
, (50)

where kF = (E − ε)γ , and �ky is determined by Eq. (45).
(ii) E < ε. In this case the condition |T12|2 = 0 ⇒ sin ϕ =

− sin χ [see Eq. (25)]. Since in the flat graphene piece the
energy of incoming electrons (moving in the valence band, see

Fig. 2) is E = ε − γ
√

k2
x + k2

y [see also Eq. (23)], we have

sin ϕ = ky

(ε − E )/γ
. (51)

Taking into account Eq. (49), we obtain

sin ϕ = − sin χ ⇒ x = ky

kF
= −γ�ky

ε
. (52)

Thus, we obtain the definition of the supercollimation
angle that is determined by the contribution ε produced by
a curvature dependence hybridization, and by a magnitude
of the vector field �
k brought about by a graphene surface
curvature. In particular, at the incident electron energy E < ε,

we obtain for valley K,

sin ϕ = −
(

γ τ |�ky|
ε

)

=
[√

3

2
aγ0

1

6
√

3a

( a

R

)2
]/[

0.58
( a

R

)2
]

≈ 0.43, τ = −1, (53)

which corresponds to the angle ϕ ≈ 25.5
◦
.

The existence of transmissions associated with valley
quantum numbers raised the lovely discussion on exploiting
of the valley degree of freedom for development carbon-
based electronics named graphene valleytronics [31]. Valley
polarization, valley inversion [32], and valley-contrasting
spatial confinement [33] of massless Dirac fermions were
demonstrated experimentally in strained graphene under inho-
mogeneous pseudomagnetic fields and tunable real magnetic
fields.

The results for transmission at N � 1 and ε > E (see
Figs. 3 and 5) indicate that propagating modes with the wave
vector k ∈ [0, kF ] lie in the K valley, whereas modes with
the wave vector k ∈ [0,−kF ] lie in the K ′ valley. At ε < E
we have the opposite situation. Therefore, for the sake of
discussion we consider the most interesting case ε > E . With
the aid of Eqs. (37), (38), and (40) the valley polarization of

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

T N

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

T N

(a) (b)

FIG. 7. Transmission probabilities TN as a function of x = ky/kF for the K ′ valley. The energy of the incoming electrons is E = 1.001ε,
L1 = 10a, R = 18 Å, and φ = π ; (a) armchair surface; (b) zigzag surface. The number of elements of the superlattice is similar to Fig. 3.
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the transmitted current is quantified by

Pτ
N =

∫ kF

0 T τ
N (ky, τξ ) dky

2π/W − ∫ 0
−kF

T τ
N (ky, τξ ) dky

2π/W∫ kF

−kF
T τ

N (ky), τξ ) dky

2π/W

, (54)

where ξ = |�ky|, and the valley dependent �ky is defined by
Eqs. (43) and (45); τ = (−/+) corresponds to K/K ′ valleys,
respectively. Taking into account the results of calculations
for the transmission probability (see Fig. 3), we obtain PK

N =
PK ′

N = 0 for the superlattice with zigzag edge termination for
the both valleys. It is notable, that the conductivity is decreas-
ing with the increase of the number of N elements, focusing
between ϕ � |20

◦ |, being symmetric for the superlattice with
zigzag edge termination. For superlattice with armchair edge
termination, the polarization is P ∈ [−1, 1], with P = 1 if the
transmitted current lies fully in the K valley and P = −1 if
it lies fully in the K ′ valley (see Fig. 5). In this case the
conductivity decreases with the increase of the number of N
elements of the superlattice.

IV. SUMMARY

Based on the fact of the different type of hybridization of
carbon atom orbitals in the flat and the corrugated graphene
pieces, we developed the model that simulates n-p junction
by means of the superlattice and describes the valley focusing
effect. In the approximation of the effective mass Hamilto-
nian, the curvature dependence of the π orbitals yields the
variation of the local chemical potential. This fact corresponds
to the effective electric field that depends on the electron lo-
calization. The variation of the graphene curvature affects the
transfer integrals as well, that, together with the hybridization,
provides the necessary conditions for the implementation of
the valley focusing effect. It is notable that the modification
of the transfer integrals becomes important in the corrugated
graphene sheet with the armchair surface, while it is negligible
in the case of the corrugated sheet with the zigzag surface.

Our analysis of the superlattice system that consists of
the periodically repeated flat and ripple pieces demonstrates
the strong selectivity effect of transmitted electron trajectories
with the increase of number N (elements of the superlattice).
This effect becomes essential for incident electrons, moving
in the energy interval 0 < E < ε, where ε is the energy dif-
ference between the π orbitals in the curved and flat graphene
sheet. The ballistic electron transmission depends on the ra-
dius of the ripple, on the length of the arc of the ripple, and
on the width of the flat region between ripples. It is remark-
able, however, that in a multirippled graphene structure the
maximum of the transmission for the both valleys is reached
at different angles that are characteristic constants: ϕ = 0

◦
for

the structure with zigzag edge termination, and |ϕ| ≈ 25.5
◦

for the one with armchair termination. The superlattice, de-
scribed in the paper, enables to one to control the filtering
effect without any additional electrical or magnetic sources.
The larger the number of elements N , the stronger is the
selectivity. At N � 1, only for the direction perpendicular to
the surface of the S subsystem, there is almost the ideal trans-
mission, while for the other angles (ky �= 0) there is the strong
reflection for the superlattice with zigzag edge termination.
In the superlattice with armchair edge termination, similar

filtering takes place at the supercollimation angle |ϕ| ≈ 25.5
◦
.

This phenomenon is due to the Klein tunneling that is
grown in our system by virtue of controlled graphene surface
curvature.
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APPENDIX : HYBRIDIZATION
IN A CURVED GRAPHENE

Let us compare the hybridization of π and σ orbitals in the
flat and curved graphene systems. We consider the Hamilto-
nian for the K point (a similar approach can be applied for
K ′ point). It depends on two operators k̂x = −i ∂

∂x , k̂y = −i ∂
∂y ,

and yields the equation for the envelope function of the flat
graphene in the effective mass approximation (e.g., [34]):(

ε2p γ (k̂x − ik̂y)

γ (k̂x + ik̂y) ε2p

)(
F K

A

F K
B

)
= E

(
F K

A

F K
B

)
. (A1)

Here, the parameter γ = √
3γ0a/2 depends on the length of

the primitive translation vector a = √
3d  2.46 Å with d

being the distance between atoms in the unit cell, and it is
assumed that γ0 ≈ 3 eV. The energy ε2p = 〈2pz|H ′′|2pz〉 is
the energy of 2pz orbitals of carbon atoms in the flat graphene,
directed perpendicular to the graphene surface; H ′′ is the tight-
binding Hamiltonian of the graphene. The solution of Eq. (A1)
determines the wave function

F (x, y) = eikxxeikyy 1√
2

(
se−iϕ

1

)
, (A2)

e−iϕ = (kx − iky)/
√

k2
x + k2

y ,

and the energy

E = ε2p + sγ
√

k2
x + k2

y . (A3)

Here, the sign s = −1(+1) is associated with the valence
(conductance) band. In the flat graphene we have the follow-
ing hybridization of π and σ orbitals:

|π〉 = |2pz〉, (A4)

|σ1〉 = 1√
3
|2s〉 +

√
2

3
|2py〉, (A5)

|σ2〉 = 1√
3
|2s〉 +

√
2

3

(√
3

2
|2px〉 − 1

2
|2py〉

)
, (A6)

|σ3〉 = 1√
3
|2s〉 −

√
2

3

(√
3

2
|2px〉 + 1

2
|2py〉

)
. (A7)

Let us discuss in detail the hybridization of σ and π or-
bitals in the graphene with nonzero curvature. The σ orbitals
create the bonds between carbon atoms, while the π orbitals
determine the electronic properties of the graphene. For the
sake of illustration we consider a zigzag nanotube.
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For the curved graphene (the arc, characterized by the
radius R) we obtain the space coordinates of the three nearest-
neighbor vectors 
τi in the following form:


τ1 = d (0, 1, 0), (A8)


τ2 = d
(√

3
2 cos ϑ,− 1

2 ,−
√

3
2 sin ϑ

)
, (A9)


τ3 = d
(
−

√
3

2 cos ϑ,− 1
2 ,−

√
3

2 sin ϑ
)
, (A10)

where sin ϑ = a/4R. At the limit R → ∞, the vectors 
τi trans-
form to those of the flat graphene. Evidently, the σi orbitals are
determined by the vectors 
τi. As a result, the σi and π orbitals
can be expressed as follows:

|π〉 = d1|2s〉 + d2|2px〉 + d3|2py〉 + d4|2pz〉, (A11)

|σ1〉 = c1|2s〉 +
√

1 − c2
1|2py〉, (A12)

|σ2〉 = c2|2s〉 +
√

1 − c2
2(|χ1〉 − |χ2〉), (A13)

|σ3〉 = c3|2s〉 −
√

1 − c2
3(|χ1〉 + |χ2〉), (A14)

|χ1〉 =
√

3

2
cos ϑ |2px〉, (A15)

|χ2〉 = 1

2
|2py〉 −

√
3

2
sin ϑ |2pz〉. (A16)

With the aid of the orthonormality conditions 〈σi|σ j〉 =
δi j , 〈π |σ j〉 = 0, and 〈π |π〉 = 1, we determine the parameters
{ck, dl} and obtain the following expressions for the π and σ

orbitals in the lowest order of the ratio a/R:

|π〉 ≈ |2pz〉 + a

2
√

6R
|2s〉 + a

4
√

3R
|2py〉, (A17)

|σ1〉 = 1√
3
|2s〉 +

√
2

3
|2py〉, (A18)

|σ2〉 = 1√
3
|2s〉 +

√
2

3

(√
3

2
|2px〉 − |χ3〉

)
, (A19)

|σ3〉 = 1√
3
|2s〉 −

√
2

3

(√
3

2
|2px〉 + |χ3〉

)
, (A20)

|χ3〉 = 1

2
|2py〉 +

√
3a

8R
|2pz〉. (A21)

The π orbitals are the same for the zigzag and armchair
nanotubes in the lowest order of a/R. They are used to create
the Bloch function in the tight-binding approximation. As a
result, we obtain the following π orbital energy of the curved
graphene surface of radius R

επ = 〈π |H ′′|π〉 = 〈2pz|H ′′|2pz〉 + 1

24

( a

R

)2
〈2s|H ′′|2s〉

+ 1

48

( a

R

)2
〈2py|H ′′|2py〉 = ε2p + α

( a

R

)2
, (A22)

α = 1

24
〈s|H ′′|s〉 + 1

48
〈py|H ′′|py〉. (A23)

Note, that the orbitals 2py,z, 2s are localized on the same
carbon atom and contribute to the π orbital energy [31], while
there is no such contribution from the nondiagonal matrix
elements. As a result, we obtain that the energy of the curved
graphene consists of the energy of the flat graphene ε2p,
and the energy of the 2s, 2py orbitals brought about by the
curvature.

Using the numerical values for the energies of the |s〉
and |py〉 orbitals of the carbon atom 〈s|H ′′|s〉 = −12eV,
〈py|H ′′|py〉 = −4eV (e.g., [35]), we obtain for the parameter
α  −0.58 eV.
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