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Nonadiabatic polariton condensation in annular optical traps
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In analogy with superfluidity, nonequilibrium polariton condensation can be phenomenologically described in
terms of separated condensed and normal fractions. Under the assumption of a significantly shorter characteristic
timescale, the incoherent part is frequently traced out adiabatically. In this work, we stress the importance of
accounting for the time-resolved coupling between the condensed and normal fractions. Even in the case of a
significant mismatch in the evolution rates, the coupling with the normal fraction drastically alters the condensate
dynamics and leads to a variety of previously overlooked phases in a confined configuration. Focusing on the
case of annular optically induced traps for polaritons, we elaborate on the nonadiabatic model of polariton
condensation. Using the two-mode approximation, accounting for a couple of quantized polariton vortices with
opposite angular momenta, we identify the range of validity for the adiabatic elimination of the incoherent
reservoir. Beyond this range, the nonadiabatic interaction with a circularly symmetric trapping reservoir supports
multistability, limit cycle dynamics, and the formation of a neutral equilibrium standing-wave phase featuring
spontaneous breaking of the continuous radial symmetry. In the presence of a weak trap asymmetry, the
nonadiabaticity prevents the formation of giant polariton vortices. We argue that our detailed description provides
an interpretation of the dominance of the standing-wave phase over the persistent vortex phase in experimental
observations.
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I. INTRODUCTION

Optically induced traps represent a versatile platform
for creating and manipulating nonequilibrium bosonic con-
densates of exciton polaritons [1–3]. Recently developed
techniques of all-optical control over polariton condensates
allow for various potential applications in lattice simulators
[4–6], topological photonics [7–9], and qubit engineering
[10–12]. The trapping potentials of this type are typically
formed by a spatially sculptured nonresonant optical pump
creating incoherent excitons [13,14]. The resulting hot exciton
gas simultaneously confines the coherent condensate due to
interparticle repulsion and sustains its density due to stim-
ulated scattering from the incoherent fraction compensating
for radiative losses. Because of this driven-dissipative nature,
polariton condensates can occupy excited states of the trap,
which, in combination with strong exciton-exciton interac-
tions, gives rise to nonlinear bifurcations and multistability in
spin [15,16] or orbital [17] degrees of freedom.

The mean-field model of polariton condensation typically
takes advantage of a reduced description of the hot exciton gas
treating it as a completely uncorrelated reservoir [18] which
is fully characterized by its density distribution. The further
simplification of this model employs an adiabatic approxima-
tion by assuming a rapidly adapting reservoir, which is finally
eliminated. This leads to the open-dissipative Gross-Pitaevskii
equation (ODGPE) for the condensate order parameter [19].

The validity of the adiabatic approximation relies on sev-
eral conditions, one of which requires a low ratio of the

condensate and reservoir decay rates [20]. At the same
time, the polariton lifetime is mainly governed by the cav-
ity quality factor [13] and does not exceed a few hundred
picoseconds [21]. Yet, the reservoir lifetime is determined
by the much slower nonradiative exciton decay [22], which
occurs on the subnanosecond timescale [23]. Nevertheless,
the ODGPE model with adiabatically excluded reservoir
proved very efficient for describing experimentally observed
phenomena with incoherently pumped polariton conden-
sates. However, certain effects, such as reservoir depletion
[24] and condensate instability due to effective reservoir-
mediated attraction [18,25,26], can only be described in the
full condensate+reservoir model and are therefore inherently
nonadiabatic.

An important application of optical traps is the creation of
the annular geometry, which enables the formation of whirling
polariton condensates, exhibiting persistent rotating currents
and emitting coherent optical vortices. However, in the ab-
sence of explicit chiral symmetry breaking, such as rotation
[27,28] or gain chirality [29], annular traps were shown to
exhibit polariton condensation in the combinations of nonzero
orbital momentum states with no net vorticity [30,31]. In this
case, the condensate resembles the standing-wave superpo-
sition of whispering gallery modes or counter-rotating giant
vortices.

The mean-field ODGPE description attributed such a
nonchiral condensation to the external breaking of continuous
rotational symmetry due to disorder or pumping asymmetry,
which couples counter-rotating polaritons [32]. Even then,
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the ODGPE predicts destabilization of the standing-wave
condensate with increasing pump power. The condensate is
expected to transform into a giant vortex with a high angular
quantum number due to spontaneous chiral symmetry break-
ing triggered by the nonlinear interactions. However, such
a spontaneous formation of vortices with stochastic rotation
direction, randomly selected during the condensate formation
stage, was only observed in small traps supporting vortex
angular number l = 1 [33].

In this work, we demonstrate that the observed domi-
nance of nonchiral states over vortices may be interpreted
as a manifestation of the nonadiabatic coupling with an an-
nular reservoir of incoherent excitons (hereafter referred to
as a reservoir for brevity). Accounting for two oppositely
rotating polariton modes coupled to three relevant angular
harmonics of the reservoir, we describe the reported nonchiral
condensation by a mechanism akin to the reservoir-mediated
self-trapping effect [18]. This result can be analytically ob-
tained once the circular symmetry of the trap is respected and
proven numerically in the case of a reduced symmetry. We fur-
ther explore the respective four-dimensional parameter space
of the problem, and, in addition to vortexlike and nonchiral
condensates, we describe peculiar dynamical phases with self-
pulsating density angular distribution and vorticity [12].

This paper is organized as follows. We develop the nona-
diabatic mean-field model and discuss its experimentally
relevant parameters in Sec. II. A set of its stationary solutions
together with their dynamical stability properties are investi-
gated in Sec. III. Modification of the model due to asymmetry
of the incoherent pump and its impact on the stability of both
nonchiral and stochastic vortex condensates are described in
Sec. IV. The conditions allowing adiabatic elimination of
the reservoir, as well as the differences in predictions of the
full model and its adiabatic approximation, are discussed in
Sec. V. In the concluding section, we provide a list of possible
implications of the nonadiabatic effects in the interpretation of
recent experiments with ring-shaped polariton condensates.

II. NONADIABATIC TWO-MODE MODEL

We begin with the standard semiphenomenological de-
scription of the nonresonantly excited nonequilibrium bosonic
condensate of microcavity polaritons [34,35] sketched in
Fig. 1(a):

ih̄∂t� =
[
− h̄2�

2m
+ n

α + iβ

2
− ih̄

�

2
+ α1|�|2

]
�, (1a)

∂t n = P −
(

γ + β|�|2
h̄

)
n. (1b)

Here � and n are the condensate wave function and the reser-
voir density, m > 0 is a polariton effective mass, � stands
for the two-dimensional Laplace operator, α > 0 governs
the strength of the condensate repulsive interaction with the
reservoir while α1 > 0 is a parameter of polariton-polariton
repulsion within the condensate, β > 0 determines the rate of
stimulated scattering from the reservoir into the condensate,
and � > 0 and γ > 0 are the polariton and exciton decay
rates, respectively. A circular optical trap is created with a
spatially patterned laser pump beam that can be realized using

FIG. 1. (a) Momentum-space representation of the nonres-
onantly excited polariton condensate. The reservoir of high-
momentum states of the lower polariton dispersion branch is created
from the continuum of free carriers (dim red cloud) generated un-
der high-energy laser radiation. Due to phonon-mediated cooling,
these excitonlike particles (red beads) accumulate near the region
of the dispersion inflection from where they can be scattered (blue
arrows) to the discrete set of leaky polariton modes (blue-shaded
levels) that arise from the spatial quantization in the trap. The mode
with the fastest net gain rate (not necessarily the lowest in energy)
accumulates a microscopically large number of particles, thereby
manifesting the formation of the condensate (glowing yellow level).
The ODGPE model (1) describes the dynamics of the incoherent
reservoir by the net scattering rate β and the effective reservoir
relaxation γ and filling P rates. (b) A sketch of the burner-shaped
polariton condensate created with a ring-shaped optical pump. The
density of the ridged reservoir is shown upside down.

a spatial light modulator [12]. Without loss of generality, we
neglect the thickness of the ring-shaped pump profile and
assume its form as P(r) = P0δ(r − R)/R, with R being the
radius of the annular trap, and r is the radial coordinate. A
sketch of the real-space polariton condensate excited in the
considered system is depicted in Fig. 1(b).

Due to the trap-induced confinement, the subspace of co-
herent polaritons falls into a set of quantized levels. In the
next section, we argue that the driven-dissipative condensate
prefers to stay in a combination of energy-degenerate vor-
tex states with the winding numbers uniquely governed by
the trap parameters. The winding number selection mecha-
nism based on the mode competition dynamics allows us to
describe the variety of experimental data collected before.
To account for the nonadiabatic effects, we then extend our
two-wave model into the nonlinear regime by considering the
dynamics of the incoherent reservoir.

A. Linear limit

We first address the linear case neglecting nonlinear terms
in Eqs. (1), which is valid below and in the vicinity of
the condensation threshold. The complex spectrum of the
resulting linear problem allows for a determination of the
threshold pumping strength together with the properties of
the condensate state, namely its angular momentum l and
single-polariton energy El

th.
Because of the rotational symmetry of the problem, it is

natural to search for the condensate eigenstates in the form of
vortices parametrized with an integer phase winding number l .
With exciton diffusion neglected, the reservoir profile follows
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that of the pump:

n(r) = P0

γ

δ(r − R)

R
. (2)

In this case, polariton modes can be piecewise defined inside
and outside the circle of radius R:

�l (r, ϕ) = exp(ilϕ − iω0t ) ×
{

AJl (κr), r < R,

BHl (κr), r > R,
(3)

where Jl and Hl are the Bessel and Hankel functions of the
first kind, κ = √

2m(ω0 + i�/2)/h̄ with the principal square
root value, and ϕ is the polar angle. The coefficients A and
B are determined from the wave-function continuity at r = R
and the normalization condition

∫ |�l |2d2r = 1.
Let us define a critical pump amplitude Pl

th, above which
the lth azimuthal mode is amplified. Exactly at P0 = Pl

th, the
single-polariton energy h̄ω0 = El

th is purely real. This value
can be found from the eigenvalue problem, which reduces to

Jl (κR)[lHl (κR) − κRHl (κR)]

Hl (κR)[lJl (κR) − κRJl+1(κR) + cJl (κR)]
= 1, (4)

with c = m(α + iβ )Pl
th/(h̄2γ ).

If the above-threshold condition P0 > Pl
th holds for several

l , these modes compete with each other during the onset of
the condensation. Typically, the winner depends on the weak
fluctuating occupation of the modes at the moment of time
when the pump is switched on. However, if the pump intensity
increases slowly at the condensate formation timescale (about
a few picoseconds), the condensation is expected to occur in
the mode with the lowest threshold Pl

th. Note that the perfectly
circular pump implies the possibility of spontaneous chiral
symmetry breaking as all excited modes |l| � 1 are twice
degenerate, so that Pl

th = P−l
th and El

th = E−l
th .

Introducing the characteristic polariton attenuation length
R0 = √

h̄/(m�), the parameter space of the linear model can
be reduced to only the dimensionless trap size ρ0 = R/R0 and
the ratio ε = α/β between the real and imaginary parts of
the condensate-reservoir interaction. Numerically solving the
eigenvalue problem (4) and minimizing the obtained values of
Pl

th, one obtains the condensate angular number l (ρ0, ε) [36].
This dependence presents a ladder of incremental transitions
l → l + 1 from l = 0 (at low values of both ρ0 and ε), shown
with dashed lines in Fig. 2(a). Figure 2(b) shows that the
dependence l (ρ0) may be approximated as l ∼ a(ε)ρ5/3

0 for
sufficiently high angular numbers l ∼ 50 in a broad range of
ε values, in contradiction to the previously reported quadratic
dependence [30].

Comparing the diagram in Fig. 2(a) with the experimental
observations reported in Refs. [17,30,31], we estimate the
ratio of the condensate-reservoir interaction parameters ε to
be below 1 (α/β ∼ 0.1) in the former reports [17,30] [with
� ≈ (10 ps)−1, m ≈ 5 × 10−5me, R0 ≈ 5 µm] and above 1
(α/β ≈ 3) in the latter setup [31] [with � ≈ (135 ps)−1, m ≈
5 × 10−5me, R0 ≈ 18 µm]. The corresponding ranges of the
estimated α/β-ratio are highlighted with thick color lines and
the red dot in Fig. 2(a). In the following sections, we reveal a
qualitatively different behavior of the condensate in these two
regimes.

FIG. 2. Predictions of the linear model based on numerical solu-
tion of the eigenvalue problem (4). (a) The linear phase diagram on
the parameter space spanned by the normalized trap size ρ0 = R/R0

and the ratio ε = α/β. Each gray dashed line corresponds to the
angular number increment by 1. The leftmost region corresponds
to ground-state condensation with l = 0; transitions at l � 50 are
not shown. The dashed vertical lines correspond to the normalized
radii of the trapping potentials realized in Refs. [30] (blue, l =
3, 5, 10, 22, 40), [31] (red, l = 14), and [17] (magenta, l = 1). Thick
colored vertical bars highlight the allowed range of the ε parame-
ter, corresponding to experimentally observed values of the angular
quantum number l . (b) The cascade of the condensate angular num-
ber transitions that occur with increasing trap size ρ0. The solid lines
correspond to the angular number l minimizing Pl

th. The dashed lines
stand for the asymptotic fitting for l � 1 for ε ≡ α/β = 0.01, 0.1,
1, 10 (yellow, green, cyan, orange).

B. Nonlinear extension

To describe the condensate dynamics beyond the conden-
sation threshold, we extend our description accounting for the
nonlinear terms in Eqs. (1). However, we focus on the regime
of weak interactions, including them perturbatively and using
the linear model spectrum as an unperturbed seed.

Using the radial symmetry of the system, we employ a two-
mode approximation that is valid if the interaction energy is
small compared to the energy distance to the nearest levels
of the linear spectrum. We thus assume that the degenerate
doublet of ±l states (3) is decoupled from all other states, and
the condensate wave function reads

� = ψ+�+l + ψ−�−l , (5)

where ψ± are complex numbers. Expression (5) enables an
azimuthal dependence of the reservoir density with the angu-
lar harmonics being twice the condensate orbital number l:

n(r, ϕ) = [nth + n0 + n1 cos(2lϕ) + n2 sin(2lϕ)]
δ(r − R)

R
,

(6)

where nth = Pl
th/γ , and n0, n1, and n2 are three real numbers

defining azimuthal distribution of the reservoir density.
Let us now introduce the three-dimensional vector s =

ψ†σψ/2 analogous to the classical spin, with ψ = [ψ+, ψ−]ᵀ

and σ being the Pauli vector. The magnitude s governs the
condensate population while the direction s/s describes its
rotational degree of freedom. In particular, the s-vectors be-
longing to the xy plane correspond to nonrotating condensates
with 2l nodes in the angular density distribution. In what fol-
lows, we refer to these standing-wave condensates as “petals”
following Ref. [30] or “burner” due to its visual similarity
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with the flame of a gas range burner—see Fig. 1(b). In con-
trast, vectors close to the z axis describe the vortex states with
the rotation direction determined by the sign of sz.

We therefore proceed with projecting Eq. (1) into the
spin space with the use of Eq. (6) for the reservoir density
components; see Appendix. To reduce the number of inde-
pendent parameters, we renormalize the obtained equations.
In particular, using the dimensionless time τ = γ t and intro-
ducing normalized condensate spin S = bs/γ and reservoir
angular harmonics Nj = 2πbn j/γ , where b = β|�l (R)|2/h̄
stems from the condensate overlap with the δ-ring reservoir,
we obtain the dimensionless two-mode model of nonadiabatic
polariton condensation:

Ṡx = N0Sx + 1

2
N1S + ε

2
N2Sz + ξSySz, (7a)

Ṡy = N0Sy + 1

2
N2S − ε

2
N1Sz − ξSxSz, (7b)

Ṡz = N0Sz + ε

2
(N1Sy − N2Sx ), (7c)

Ṅ0 = W − (1 + 2S)N0 − 2SNth − SxN1 − SyN2, (7d)

Ṅ1 = −(1 + 2S)N1 − 2Sx(Nth + N0), (7e)

Ṅ2 = −(1 + 2S)N2 − 2Sy(Nth + N0). (7f)

Here ε = α/β and ξ = a/b, with a = 4πα1
∫ ∞

0 |�l |4rdr/h̄
accounting for condensate self-interactions. The pump varia-
tion from the threshold value is quantified by W = 2πb(P0 −
Pl

th )/γ 2. It is noteworthy that in the adopted notations, the
normalized threshold density of the reservoir Nth = �/γ is
equal to the ratio between the reservoir and the condensate
lifetimes, which is typically used as a main criterion of the
adiabatic elimination of the reservoir [20]. In what follows,
we mainly focus on the case of Nth > 1 corresponding to the
nonadiabatic reservoir response.

Parameter ξ = a/b in Eqs. (7) quantifies the strength
of the condensate self-repulsion accounting for the conden-
sate density profile and its overlap with the reservoir. As
shown in Appendix, one can introduce the dimensionless
form factor Iξ , which quantifies the condensate wave-function
localization:

Iξ = 2

pl
th

[∫ ρ0

0

∣∣∣∣ Jl (κρ)

Jl (κρ0)

∣∣∣∣
4

ρdρ +
∫ ∞

ρ0

∣∣∣∣ Hl (κρ)

Hl (κρ0)

∣∣∣∣
4

ρdρ

]
,

(8)

such as the ξ -parameter expressed as ξ ≡ α1Iξ /β. Here κ =√
2ω0/� + i with the principal square root value.
The numerically computed parameter Iξ extracted from the

solution of the eigenvalue problem (4) is shown in Fig. 3. Note
that for any fixed ε, Iξ reaches its maximal value at a small
trap size corresponding to the l = 1 condensate. Surprisingly,
at larger trap sizes, Iξ saturates at a certain level whose value
increases with ε; see Fig. 3(b).

Note that the developed nonadiabatic model (7) respects
continuous radial symmetry. It would seem to preclude the
dominance of the burnerlike states with inhomogeneous po-
lariton density. In the next section, we demonstrate that this
unexpected symmetry breaking can take place due to the
nonadiabatic coupling with the reservoir. To this end, we
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FIG. 3. (a) Dimensionless form factor Iξ given by Eq. (8).
(b) Cross-sections at ε = 3.0 and 0.3, shown with dotted lines in (a).
The values of Iξ for ε = 0.3 are multiplied by 10 for visibility. In the
range of trap sizes, corresponding to condensation at the ground state
l = 0, where the two-mode model is inapplicable, Iξ is plotted with
dashed lines.

analyze a set of stationary states of the nonadiabatic polariton
condensate.

III. STATIONARY STATES

The nonadiabatic two-mode model (7) has two types of sta-
tionary solutions: the vortex and the burnerlike condensates.
In particular, there are two symmetric vortex states on the z
axis in the s-vector space. They are characterized by Sz = ±S
with S = W/(2Nth), and vanishing reservoir components N0 =
N1 = N2 = 0 according to Eqs. (7d)–(7f). In addition, due to
the circular symmetry of the problem, there is a continuum of
burner-type solutions corresponding to the ambiguity in the
azimuthal orientation of polariton density petals. These states
belong to the (x, y)-plane of the spin space and are given by
N1,2 = −2N0Sx,y/S and S = (W − N0)/(2Nth ) with

N0 = 1
2 [3Nth + W −

√
(3Nth + W )2 − 4NthW ]. (9)

It is crucial to stress that only those states that are stable
against weak perturbations can be observed experimentally.
The dynamical stability of both vortex and burner states
is governed by the eigenvalue spectrum of the correspond-
ing Jacobi matrices. Although this problem is analytically
tractable, the involved expressions are quite cumbersome and
are therefore omitted here. Note that broken continuous radial
symmetry implies the emergence of a Goldstone mode in the
corresponding excitation spectrum [37], responsible for the
neutral stability of burner states with respect to the azimuthal
orientation of petals.

To limit the dimensionality of the parameter space, we
consider two experimentally relevant values of ε-parameter,
namely the case of a strong (ε = 3) and a weak (ε = 0.3)
repulsive interaction between the condensate and the reser-
voir; see Fig. 2(a). In the following, we show that the
behavior of the condensate is qualitatively different in these
two regimes. In particular, burners are only stable at ε >

1, while in the opposite case ε < 1 the system exhibits
peculiar nonlinear periodic behavior, where the condensate
alternates its rotation direction in a strongly anharmonic
manner.
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FIG. 4. (a) Stability diagram at ε = 3. Overlapping yellow and
blue regions correspond to stability domains of the burner-shaped
and vortex condensates, respectively. (b) Stability diagram horizontal
cross-sections at Nth = 3 (solid lines) and Nth = 1 (dashed lines).
Realization probabilities of petals (yellow), vortices (blue), and limit
cycles (LC, peach tone) are shown with color for the case Nth = 3.

A. Strong repulsion

Let us first address the strong-repulsion case ε = 3, where
the elastic condensate-reservoir scattering dominates over
inelastic processes. The corresponding stability diagram is
demonstrated in Fig. 4. In particular, stability regions of the
vortex (blue) and the burner (yellow) solutions are shown in
the 3D space of parameters Nth, ξ , and W . Quite surprisingly,
within a large domain, the nonchiral burner-type condensates
remain a single stable solution.

Figure 4(b) illustrates the horizontal cross-sections of the
phase diagram in detail. The solid lines show the boundaries
of the stability domains for burners (blue) and vortices (red)
at Nth = 3, while the dashed lines correspond to Nth = 1. The
vertical segments of the burner stability boundary correspond
to a Hopf bifurcation, where fixed-point solutions on the
(x, y)-plane continuously evolve into closed orbits represent-
ing stable limit cycles (LCs).

To illustrate multistability among vortices, burners, and
LCs, we numerically integrate Eqs. (7) with randomly dis-
tributed initial conditions. The probabilities of attraction to
either of the stable states are shown with color in Fig. 4(b).
Within the region of multistability, the volume of the relative
basin of attraction is gradually transferred from the vortex
to either the petal or the LC. Note that within the whole
parameter space, the rotation direction of the observed vortex
solutions is stochastic, in the sense that it depends on the
initial spin orientation seeded at the condensate formation
stage.

It is crucial that in the absence of external radial symme-
try breaking, the ODGPE-based model predicts a ubiquitous
instability of the burner-type condensate, as was shown in
Refs. [17,32]. Indeed, under the assumption of a quickly
adopting reservoir, the system is reduced to the model of
two modes coupled via a common depletable gain source; see
Sec. V for the details. Elimination of the reservoir under the
adiabatic approximation leaves a strongly asymmetric gain-
saturation mechanism [38] which enters as ψ̇± ∝ −(|ψ±|2 +
2|ψ∓|2)ψ± in the corresponding mode evolution equations.
Under the assumption of a small condensate occupancy, the
corresponding equation for the S-vector reads (details of the
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FIG. 5. (a) Stability diagram at ε = 0.3. Far above the threshold,
the vortex is a single stable state. The blue surface indicates the
vortex stability boundary. Above it, the polariton condensate exhibits
regular switching between vortex states. The inset demonstrates a
corresponding trajectory in the S-vector space. (b) The switching
period Ts on the (W, ξ ) parameter plane at Nth = 150. The inset
demonstrates the time dependence of Sz at W = 150 and ξ = 8.

derivation are given in Sec. V)

Ṡ = W S − (g · S)NthS + [S × B], (10)

where B = (0, 0, [ξ − Nthε]Sz )ᵀ, and g = (3, 3, 2)ᵀ describes
the gain depletion anisotropy. An equal-amplitude configura-
tion corresponding to the petalled solution is unstable against
weak population imbalance. In particular, a small addition to
the population of mode l reduces gain of the opposite mode
−l to a lesser extent than its own. The resulting gain imbal-
ance grows and eventually leads to the vortex formation. This
clearly contradicts experimental findings [30,31] that reported
the existence of the stable burnerlike condensates.

The emergent stability of burners in the present nonadi-
abatic model (7) may be interpreted via the so-called hole
burning effect [18,24,39]. In this picture, the petalled con-
densate locally reduces the reservoir density, thus digging an
azimuthally periodic potential grating for itself that prevents
vortex formation as sketched in Fig. 1(b). However, suffi-
ciently strong self-repulsion quantified by the parameter ξ

counters the reservoir-mediated trapping effect and therefore
favors vortex formation; see Fig. 4.

B. Weak repulsion

At the weak condensate-reservoir repulsion, ε < 1, the
reservoir-mediated potential is unable to stabilize burner solu-
tions, which unavoidably transform to the vortex states. While
burners are always unstable at ε < 1, the vortex states lose
their stability at sufficiently high values of Nth ≡ �/γ . The
corresponding 3D stability diagram for the case of ε = 0.3 is
shown in Fig. 5(a).

Beyond the vortex stability domain, the numerical solution
of Eqs. (7) reveals the establishment of a limit cycle behavior,
illustrated in the inset in Fig. 5(a). In this regime, the con-
densate remains close to the vortex state most of the time,
while its vorticity periodically changes direction by means of
rapid jumps; see the inset in Fig. 5(b). The period of vorticity
switching Ts shown on the (W, ξ )-plane in Fig. 5(b) reaches
103 (corresponding to a few microseconds with the expected
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nonradiative exciton lifetime exceeding a nanosecond) in the
slow-reservoir regime corresponding to �/γ ∼ 102.

IV. BROKEN RADIAL SYMMETRY

In this section, we test the obtained results against ge-
ometrical imperfections which explicitly break the circular
symmetry. Although various mechanisms including planar
disorder of the microcavity parameters can be responsible for
the symmetry reduction, we only consider the one stemming
from the imperfect optical pump shape.

Without loss of generality, we account for the azimuthal
pump profile asymmetry by adding a constant term δW to
the right-hand side of Eq. (7e). This modification is expected
to introduce an effective non-Hermitian potential grating and
alter the allowed states of the condensate. In particular, the
presence of the pump asymmetry leaves only two burnerlike
states from the continuum, eliminating the ambiguity of the
petals orientation. The allowed states respect parity (mode
swapping) symmetry, Sx = ±S, and we refer to them as sym-
metric (Sx = S) and antisymmetric (Sx = −S) burners. They
are given by Sy = Sz = N2 = 0, N±

1 = ∓2N±
0 , S± = (W −

N±
0 )/(2Nth ), and

N±
0 = 1

2 [3Nth + W −
√

(3Nth + W )2 − 4(W ∓ δW )Nth].

(11)

In contrast to the symmetric case, the vortex-type solutions
emerge only above a critical pumping Wc ∝ δW manifest-
ing spontaneous breaking of the mode-swapping symmetry
[32,40,41]. Although the relevant S-vectors are generally
close to the z axis, they also have nonzero in-plane com-
ponents Sx, Sy � |Sz|, which generally cannot be given in
closed-form expressions.

The stability of numerically found vortex solutions and
analytic burner-type states at the asymmetry strength δW =
0.5 is shown in Fig. 6(a). Here we consider the previously
addressed case ε = 3 to allow direct comparison.

Symmetric burners are stable only at the low pump
powers close to the condensation threshold (W � δW ). An-
tisymmetric burners, on the contrary, are stable at much
stronger pumping W � δW . Their stability region continu-
ously evolves from that of self-trapping burners addressed
in the previous section as the defect strength δW increases.
Note that such antisymmetric burners are always unstable in
the reservoir-free model (10), as is shown, e.g., in Ref. [32].
This points out an intrinsically nonadiabatic nature of these
states.

A horizontal cross section of the 3D stability diagram at
Nth = 3 is demonstrated in Fig. 6(b), which is an extension
of Fig. 4(b) to the reduced symmetry case. In addition to
solid lines, which limit the stability regions of vortices (red)
and symmetric burners (green) at δW = 0.5, the correspond-
ing color-coded dashed lines illustrate the weak-defect case
δW = 0.1, which features the existence of stable antisymmet-
ric burners (blue hatched region).

A surprising consequence of the symmetry reduction is an
extension of the regions with no stable fixed-point solutions;
cf. Figs. 4(a) and 6(a). Within these domains, the system
evolves into the oscillating regime; see the peach region in
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FIG. 6. (a) Stability diagram at ε = 3 and δW = 0.5. The orange,

yellow, and blue regions correspond to stable symmetric burners,
antisymmetric burners, and vortices, respectively. (b) Horizontal
cross-section at Nth = 3. The lines limit the stability regions of vor-
tices (red), and symmetric (green) and antisymmetric (blue) burners
at δW = 0.5 (solid) and δW = 0.1 (dashed). Realization probabil-
ities of different states are shown with filling, blue for vortices,
orange for symmetric burners (labeled as S burner), and peach for
limit cycles (LC). The hatched region corresponds to the stable
antisymmetric burners (labeled as AS burner) at δW = 0.1. (c) Time-
averaged distance of the direction vector S/S from the (x, y)-plane
for the limit cycle trajectories from panel (b). (d), (e) Time-averaged
condensate density distribution at l = 5 and the limit cycle loop in
the classical spin space (projected into the unit sphere for clarity) for
the two points from panel (c), namely at ξ = 2, W = 1.2 (d) and at
ξ = 2, W = 8 (e).

Fig. 6(b). In addition, there is a region of bistability be-
tween the vortex and LC where the corresponding basins of
attraction exhibit continuous redistribution as shown by the
probability map in Fig. 6(b).

Figures 6(c)–6(e) further characterize numerically ob-
served LC solutions. In particular, Fig. 6(c) shows the
time-averaged normalized population imbalance 〈|Sz|/S〉T ,
where 〈·〉T stands for the averaging over the period of LC os-
cillations. This parameter describes how far the state deviates
from the burner-type solution belonging to the (x, y)-plane.

The typical LC trajectories in the spin state projected
onto the unit sphere and the corresponding time-averaged
real-space polariton density distributions, assuming l = 5, are
shown in Figs. 6(d) and 6(e). It turns out that such oscillating
states are hardly distinguishable from the stationary burnerlike
condensates under the typical experimental conditions with
signal time-averaging.

Note that the limit cycle loop shown in Fig. 6(d) qual-
itatively reproduces oscillations of the condensate vorticity
reported in Ref. [12]. The oscillation period ∼2 [∼7 for
Fig. 6(e)] in real values corresponds to 6�−1 [21�−1] in the
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considered case of �/γ = 3. For a typical polariton lifetime
of about a few tens of picoseconds, it results in the oscillation
period exceeding one hundred of picoseconds, in accordance
with the results reported in Ref. [12].

In summary, in the nonadiabatic regime, breaking of the
radial symmetry suppresses burner states and narrows their
domain of existence. Instead, they are replaced with weakly
oscillating states whose time-averaged density patterns fea-
ture the same burnerlike structure.

V. COMPARISON WITH ADIABATIC MODELS

In the previous sections, we pointed out the differences
between the predictions of the nonadiabatic two-mode model
(7) and its reservoir-free symmetric approximation (10). How-
ever, the structure of the gain-saturation term in Eq. (10),
originating from the condensate-to-reservoir coupling, stems
from the linearization in the condensate density. This assump-
tion is typically valid close to the condensation threshold only
[38]. Thus the emerged discrepancies between the models
could be attributed to linearization rather than nonadiabaticity.
Here we further investigate this aspect and compare stability
diagrams in three models:

(i) The nonadiabatic model (7) developed in Sec. II.
(ii) The model with an adiabatically excluded reservoir.
(iii) The linearized adiabatic model (10) with included

asymmetry.
Let us first follow the reservoir elimination procedure [20].

The reservoir dynamics may be decoupled from the conden-
sate evolution if its characteristic timescales are shorter than
that of the condensate. Under this assumption, the angular
components of the quickly adopting reservoir density are
expressed in the slowly varying condensate S-vector from
Eqs. (7d)–(7f):

N (0)
0 = W (1 + 2S) − 2Nth

(
S + S2 + S2

z

) − SxδW

1 + 2S + 2
(
S + S2 + S2

z

) , (12a)

N (0)
1 = δW − 2Sx

(
Nth + N (0)

0

)
1 + 2S

, (12b)

N (0)
2 = −2Sy

(
Nth + N (0)

0

)
1 + 2S

, (12c)

where we also account for the presence of pump asymmetry
in Eq. (7e).

The deviations from the corresponding quasistationary val-
ues obey

˙δN0 = −(1 + 2S)δN0 − SxδN1 − SyδN2, (13a)

˙δN1 = −(1 + 2S)δN1 − 2SxδN0, (13b)

˙δN2 = −(1 + 2S)δN2 − 2SyδN0. (13c)

Therefore, the evolution of perturbations is characterized
by the relaxation rates γ0 = 1 + 2S and γ± = 1 + 2S ±√

2(S2
x + S2

y ) with the slowest rate being γ−.
The general adiabatic model (ii) is obtained by substituting

expressions (12) into Eqs. (7a)–(7c). One can then extract
the set of characteristic timescales of the fast condensate
dynamics. The terms originating from the Hermitian part of
the corresponding Hamiltonian yield the self-induced Larmor

FIG. 7. (a) Stability domains of the vortex (blue regions bounded
by the red lines) and the burner (orange regions bounded by the green
lines) at ε = 3, Nth = 3, and δW = 0.5. The solid lines correspond
to the prediction of the full nonadiabatic model (7), which accounts
for the presence of the reservoir. The dashed lines correspond to the
case of an adiabatically excluded reservoir, while the dash-dotted
lines correspond to the adiabatic model with linearized condensate-
to-reservoir coupling, Eqs. (17). (b) The ratio between the absolute
value of the effective Larmor precession frequency � and the slowest
reservoir relaxation rate γ−. The black line limits the vortex state
existence domain, while the red lines indicate the stability boundary
shown in panel (a).

precession about the z-axis [42] with the frequency

� =
(

ξ − ε
Nth + N (0)

0

1 + 2S

)
Sz. (14)

The positive contribution ξSz stems from the condensate self-
repulsion, while the negative one manifests effective attraction
due to reservoir depletion. In turn, the anti-Hermitian terms
affecting the spin magnitude S yield a couple of dissipation
rates:

�z = N (0)
0 , �xy = N (0)

0 − Nth + N (0)
0

1 + 2S
S, (15)

responsible for the decay of the out-of-plane Sz and the in-
plane Sx and Sy components, respectively.

The condensate dynamics can be self-consistently treated
as slow under the condition

γ− � �, �z, �xy. (16)

The detailed comparison between the full (solid lines) and
the adiabatic (dashed lines) models beyond the low-density
approximation is demonstrated in Fig. 7 for the same param-
eters as in Fig. 6. The nonadiabatic behavior is manifested
by the mismatch of the symmetric burner stability domains
at large ξ � 4; see the pale and bright orange shadings in
Fig. 7(a). However, the most significant discrepancy occurs
for the vortex solutions (blue shading) at the strong pumping
and relatively weak self-repulsion ξ . Under these conditions,
the slow condensate relaxation criterion �z, �xy � γ− still
holds despite the fact that the considered case of Nth ≡ �/γ =
3 suggests the opposite [20]. However, the main reason for the
nonadiabatic behavior is a large Larmor frequency �, which
benefits from the large out-of-plane Sz component charac-
teristic of the vortex state. Indeed, the adiabaticity criterion
�/γ− � 1 is satisfied only in a narrow region of the vortex
existence domain; see Fig. 7(b).
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The analysis of the adiabatic model is severely complicated
by an intricate structure of nonlinear terms given by Eqs. (12).
That is why it is often reduced to its simplified analog (10).
This requires linearization of the quasistationary reservoir
density harmonics (12) in the S-vector components assuming
low condensate occupancy S � 1. This way, the asymmetric
extension of model (10) can be derived from Eqs. (7a)–(7c):

Ṡx = (W − 3NthS)Sx + δW

2
S + (ξ − Nthε)SySz, (17a)

Ṡy = (W − 3NthS)Sy − εδW

2
Sz − (ξ − Nthε)SxSz, (17b)

Ṡz = (W − 2NthS)Sz + εδW

2
Sy. (17c)

Note that the pump asymmetry imprints an effective mag-
netic field εδW/2 directed along x and a gain imbalance term
δW/2 in Eq. (17a). Both factors favor pinning of the state
vector to the x-axis corresponding to the burner-type solution.

According to the rigorous bifurcation analysis of Eqs. (17)
performed in [32], the symmetric burner is indeed the only sta-
ble solution at weak pumping W � δW . However it inevitably
loses stability above a certain critical pumping which depends
on ξ and δW ; see the green dash-dotted line in Fig. 7(a). In
addition, at this or greater pumping [the red dash-dotted line
in Fig. 7(a)], two opposite vortices appear that are always the
only stable solutions within the domain of their existence.
Therefore, both simplified (17) and nonlinearized adiabatic
models miss a wide vortex instability region predicted by the
full model (7) [see the red solid and the red dash-dotted lines
in Fig. 7(a)].

In contrast to vortices, the antisymmetric burners are al-
ways unstable within the linearized model (17); see Ref. [32].
This result also holds for the general adiabatic model (ii)
as we have checked numerically. It apparently contradicts
with the nonadiabatic model (7) which supports stable self-
trapping burners at the strong pumping and weak effective
self-repulsion.

Therefore, the adiabatic approximation remains valid ei-
ther in a very close vicinity of the threshold when the burner
state is expected, or at the very strong pumping conditions
when nonlinear interactions dominate and the vortex state is
formed. In the concluding section, we summarize the main
conclusions drawn from the analysis of the nonadiabatic opti-
cally trapped condensate model.

VI. DISCUSSION AND CONCLUSIONS

The simple reservoir-free models of polariton condensation
in annular optical traps are able to explain the formation
of the standing-wave condensate with large angular num-
ber, in agreement with experimental results. However, within
the adiabatic approximation, these states are doomed to
be replaced by giant vortices as the pumping grows away
from the condensation threshold. To the best of our knowl-
edge, such a symmetry-breaking transition has not been
observed in circular optical traps so far. We hypothesized
that it may be due to the nonadiabatic nature of polariton
condensation.

Our analysis revealed several new phenomena connected
with nonadiabatic behavior. The most important features are

manifested under the condition of dominance of the elastic
interaction with reservoir over inelastic scattering, ε = α/β >

1, and at weak self-repulsion ξ where the reduced model
predicts spontaneous vortex formation. In this regime, the
stable nonchiral burner-shaped condensates exist far above the
threshold even in the absence of external symmetry breaking.
The possible explanation of this phenomenon is the hole-
burning effect [18,24]. The burner-shaped condensate locally
depletes the reservoir, giving it the form of a comb that acts
as the effective potential grating. Under the conditions of a
slow reservoir, such a confining potential is rigid against weak
perturbations in the condensate and thus is able to stabilize it.
In the case of reduced radial symmetry of the pump, these
self-trapping solutions are transformed into a distinct type of
antisymmetric burners.

Another distinct manifestation of nonadiabatic behavior
is the instability of vortex condensates at weak self-
repulsion. Within this instability domain, the condensate
experiences fast pulsations. The corresponding time-averaged
condensate density distribution is practically indistinguishable
from the burner states. Therefore, previous experimen-
tal studies may have overlooked this regime. A reliable
detection of such fast oscillations requires time-delayed
autocorrelation measurements such as those performed
in Refs. [12,43,44].

The stable vortex condensates are expected to appear either
at ε < 1 or at ε > 1 in the regime of strong pumping with
large self-interaction parameter ξ . However, the numerical
computation of the dimensionless self-repulsion form factor
Iξ shows that higher angular momentum condensates with
l � 1, which are supported by wider traps, are characterized
by lower values of ξ ; see Fig. 3. This gives a possible inter-
pretation to the absence of reported observations of such giant
vortex condensates in annular optical traps.

In addition, at ε < 1 and �/γ � 1, a new self-induced
oscillating regime is predicted, where the condensate is pe-
riodically switching between the two vortex states. These
oscillations also exist in the traps with reduced symmetry as
we have checked numerically. Our estimates of the parameter
ε based on the available experimental data show that both
ε > 1 and ε < 1 regimes are achievable and were in fact
experimentally studied.

In conclusion, we mention other mechanisms that could
potentially contribute to the instability of vortex condensates
on par with nonadiabaticity of the condensate-reservoir sys-
tem. Dynamic or dissipative interaction between the states
with different angular momenta |l|, allowed by the selection
rules of effective photonic spin-orbit coupling [45], could
result in bistability or limit cycle behavior involving different
orbital momentum states. Furthermore, interaction-induced
mixing of radial modes, which is neglected in our model,
eventually leads to the interaction-dominated Thomas-Fermi
regime of a condensate, where vortices with cores of the size
of the healing length are formed, at the pumping powers well
above the condensation threshold [19].

Instability of multiply charged optically trapped polariton
vortices, l � 1, attributed to the Kelvin-Helmholtz mech-
anism, was also observed in numerical simulations in the
strongly nonlinear regime well above the condensation thresh-
old [46]. In this case, however, instability switches on once
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the rotation speed reaches the local speed of sound vc ∝√
|�|2. On the contrary, in the vicinity of the condensa-

tion threshold, the vortex speed is governed by trap size,
and the nonadiabaticity-induced instability occurs once the
condensate density |�|2 ∝ s ∝ W reaches a critical value
(see Fig. 4).

In the intermediate range of pumping powers above the
condensation threshold, the formation of periodically evolv-
ing vortex-antivortex clusters with spatially separated cores
was reported in [47]. As the orientation of clusters was pinned,
this periodic behavior was attributed to beats of optically
trapped polariton modes. However, no spontaneous symmetry
breaking with the formation of a persistent rotating polariton
condensate was observed, indicating instability of such states
with a fixed vorticity sign, which is interpreted in our work.
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APPENDIX: DERIVATION OF THE NONADIABATIC
TWO-MODE MODEL OF POLARITON CONDENSATION

In this Appendix, we provide a derivation of the dimension-
less two-mode model of nonadiabatic polariton condensation
in ring-shaped optical traps. We start from the general two-
dimensional model (1) and account for the δ-ring shape of
the pump, P(r) = P0δ(r − R)/R. Using the two-mode rep-
resentation of the condensate wave function (5) and the
corresponding definition (6) for the reservoir density, we in-
tegrate out the radial and the azimuthal degrees of freedom.
The resulting equation for the total condensate occupancy
parametrized by the magnitude of the classical spin s =
ψ†σψ/2 then reads

ṡ = πb[2n0s + n1sx + n2sy]. (A1)

Here b = β|�l (R)|2/h̄ arises from the overlap between the
condensate and the thin-ring reservoir, which follows the
shape of the pump.

The spin components, in turn, obey the following
equations:

ṡx = πb[2n0sx + n1s + εn2sz] + asysz, (A2a)

ṡy = πb[2n0sy + n2s − εn1sz] − asxsz, (A2b)

ṡz = πb[2n0sz + ε(n1sy − n2sx )], (A2c)

where a = 4πα1
∫ ∞

0 |�l |4rdr/h̄ describes the strength of the
condensate self-interactions accounting for its density profile,
and we defined ε = α/β.

The equations for the corresponding reservoir density com-
ponents (6) read

ṅ0 = P − Pth − γ n0 − 2bs(nth + n0) − b(sxn1 + syn2),

(A2d)

ṅ1 = −(γ + 2bs)n1 − 2bsx(nth + n0), (A2e)

ṅ2 = −(γ + 2bs)n2 − 2bsy(nth + n0), (A2f)

where nth = Pl
th/γ is the reservoir density at the threshold

pumping P0 = Pl
th corresponding to condensation in the vortex

state with azimuthal number l . Note that the value of l is not
arbitrary but is uniquely determined by the linear parameters
of the problem; see Sec. II A.

Then we introduce the dimensionless time τ = γ t and use
the dimensionless representations of the spin vector S = bs/γ
and the reservoir density components Nj = 2πbn j/γ . This
yields the dimensionless version of Eqs. (A2), which corre-
sponds to Eqs. (7) in the main text. With these notations, the
threshold density of the reservoir reads Nth = 2πbnth/γ . Here
the numerator stands for the effective gain rate feeding the
state l . In the threshold conditions, this gain is compensated
by the dissipation � term. Therefore, we obtain Nth = �/γ .
Below we will rigorously derive this expression from the
condensate continuity condition.

For this purpose, we resort to the stationary version of
the one-dimensional Gross-Pitaevskii equation (GPE), which
governs the radial distribution of the condensate rotating with
the angular quantum number l . At the threshold pumping
rate, the reservoir remains in the steady state with a constant
density Nth. Therefore, the radial part of the condensate wave
function obeys[

− 1

ρ
∂ρ (ρ∂ρ ) + l2

ρ2
− i + (ε + i)pl

th
δ(ρ − ρ0)

ρ0

]
�l (ρ)

= 2ω0

�
�l (ρ), (A3)

where ρ = r
√

m�/h̄ is the normalized radial coordinate, and
ρ0 stands for the normalized pump radius. At the threshold
pumping strength pl

th = Nthβmγ /(2πbh̄2) = Pl
thβm/(h̄2γ )

the condensate frequency ω0 is real. Using Eq. (A3), it is
straightforward to obtain an effective continuity equation that
reads at the threshold

ρ−1∂ρ (ρ j) =
(

pl
th

δ(ρ − ρ0)

ρ0
− 1

)
|�l (ρ)|2, (A4)

where j = (�∗∂ρ� − �∂ρ�
∗)/(2i) stands for the dimen-

sionless radial current. The right-hand side of Eq. (A4) stands
for the inflow of polaritons from the outer region, while the
left-hand side describes the local gain-dissipation balance. In-
tegrating the last expression over the radial coordinate yields

pl
th|�(ρ0)|2 = m�

2π h̄
+ (ρ j)|∞0 , (A5)

where we account for the normalization condition∫ |�l |2ρdρ = m�/(2π h̄). The last term in (A5) vanishes
since limρ→0 j �= ∞ and limρ→∞ j = 0. Therefore, the
threshold pumping strength that governs the net gain rate
is governed only by the condensate density at the pump
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position:

pl
th = m�

2π h̄|�(ρ0)|2 . (A6)

Using expression (3) for the wave-function modulus, we
obtain

pl
th =

[∫ ρ0

0

∣∣∣∣ Jl (κρ)

Jl (κρ0)

∣∣∣∣
2

ρdρ +
∫ ∞

ρ0

∣∣∣∣ Hl (κρ)

Hl (κρ0)

∣∣∣∣
2

ρdρ

]
. (A7)

This expression implicitly connects the threshold pumping
strength with the pump radius ρ0 through the condensate
frequency ω0, which enters the parameter κ = √

2ω0/� + i
governed by the eigenvalue problem (4).

According to the definition, ξ = a/b, where a and b
quantifies the overlap of the condensate with itself and with
the reservoir, respectively. Since we consider the limit of a

δ-shaped reservoir, the b-parameter is merely the condensate
gain rate at the pump position, b = β|�(ρ0)|2/h̄. Therefore,
using Eq. (A6) and calculating parameter a with the
wave-function definition (3), we obtain ξ = Iξα1/β. Here the
form factor Iξ is connected with the dimensionless threshold
parameter:

Iξ = 2

pl
th

[∫ ρ0

0

∣∣∣∣ Jl (κρ)

Jl (κρ0)

∣∣∣∣
4

ρdρ +
∫ ∞

ρ0

∣∣∣∣ Hl (κρ)

Hl (κρ0)

∣∣∣∣
4

ρdρ

]
;

(A8)

see Eq. (8).
Note that Eq. (A6) can be represented as pl

th =
γ�/(2πb)βm/(h̄2γ ). Combining it with the expression for
pl

th given after Eq. (A3), we finally obtain Nth = �/γ , which
manifests a balance between the net gain and the losses stated
in the continuity equation (A4).
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