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Soliton formation in an exciton-polariton condensate at a bound state in the continuum
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Bound states in the continuum (BICs) are of special interest in photonics due to their theoretically infinite
radiative lifetime. In this work, we take a specific example (a structure composed of GaN and a TiO2 photonic
crystal slab), showcasing how the interactions affect BICs. The photonic BIC hosted by the photonic crystal slab
couples with the excitons of GaN to form a polaritonic BIC with a negative mass. This allows condensation to be
reached with a low threshold in a structure suitable for electrical injection, paving the way for room-temperature
polariton microdevices. We study in detail how the repulsive interaction between exciton-polaritons affects
the condensate distribution in reciprocal space and, consequently, the condensate’s overlap with the BIC
resonance and, therefore, the condensate lifetime. We study an intrinsic contribution related to the formation
of a bright soliton and the extrinsic contribution related to the interaction with an excitonic reservoir induced by
spatially focused nonresonant pumping. We then study the peculiar dynamics of the condensation process in a
BIC state for interacting particles using Boltzmann equations and hybrid Boltzmann–Gross-Pitaevskii equations.
We find optimal conditions allowing one to benefit from the long lifetime of the BIC for polariton condensation
in a real structure.
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I. INTRODUCTION

A large part of physics is built upon the conservation of
quantities, such as energy or momentum, related to symme-
tries [1]. This is the case of the Hamiltonian description of
classical mechanics and then of quantum mechanics. How-
ever, the irreversible decay of a particle or a mode because
of its coupling to a continuum is ubiquitous and, therefore,
essential to describe various phenomena. Techniques have
been developed, for example in quantum optics, which sep-
arate the reversible Hamiltonian dynamics and the dissipative
dynamics related to the irreversible decay toward a continuum
[2]. A somewhat simpler description of multimode nonconser-
vative systems came with the development of non-Hermitian
theories, where modes have complex energies with imaginary
parts describing their decay [3]. The coupling between two
such modes hybridizes them but also redistributes [4] their
imaginary parts �1,2. In the case of a Hermitian coupling,
the maximal redistribution occurs at exceptional points (EPs),
where the mode decay becomes the mean value of that of
the uncoupled modes (�1 + �2)/2. It can be zero only in
systems with equal gain and loss (PT-symmetric) for the
original modes. The study of non-Hermitian systems and in
particular of EPs became extremely popular in the last decade
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[5], partly because of the possibility offered to control the
decay of the modes. This is essential for many applications
including lasing [6], and can even lead to fundamentally new
concepts, such as the non-Hermitian skin effect [7,8].

Extra opportunities in this quest of controlling lifetimes
came from the so-called dissipative coupling introduced in
the 1980s [9]. The idea is that two modes are coupled to
the same continuum, and because of this coupling, a transfer
of particles from one mode to another can take place with
a rate computed as i

√
�1�2 [10]. This non-Hermitian term

offers a new resonance condition, where one eigenmode of
the coupled system becomes entirely nondecaying. This type
of mode is called a bound state in the continuum (BIC) [11]. It
was described long ago in the context of quantum mechanics
[12], but BICs in photonic systems appear very appealing
and commonly present [13]. BICs in photonic crystal slabs
or metasurfaces are modes that lie above the light cone but
are not coupled to the far field. One should note that other
decay mechanisms, such as disorder-induced elastic scatter-
ing toward other modes, are not suppressed for BICs, which
means that, in reality, their lifetime is finite. In the 2000s,
when photonic crystal slabs became widely studied, a very
important goal was to improve the lifetime of the modes to re-
alize lasers, but the BIC concept had not yet been established.
Nevertheless, experimental and theoretical works found that
modes with a long lifetime could be realized near the � point
of photonic crystal dispersion [14,15]. Here, the BICs form
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when two modes of the same polarization and parity couple
through the continuum.

Recently, BICs have been implemented in strongly coupled
exciton-photon systems where exciton-polaritons (polaritons)
form with transition metal dichalcogenides (TMDs) [16–18]
and GaAs active regions [19,20]. As expected, nonresonantly
pumped polaritons were found to accumulate in the state with
the longest lifetime, namely the BIC state, forming a Bose-
Einstein condensate (BEC) [21,22]. A principal advantage
of a polariton condensate versus a photon laser is that the
transparency condition required for lasing is not necessary
for polariton lasing [23,24]. The only lasing condition for
polaritons (which is also present for photon lasers) is that
scattering toward a state overcomes its losses, which are ex-
pected to be essentially radiative losses for polaritons and that
vanish for BICs. Another key difference between polaritons
and bare photons is that polaritons are interacting particles.
They interact with themselves and with reservoir excitons
created by an external pumping. Depending on the sign of the
effective mass, these interactions, which are typically repul-
sive, can either tend to delocalize particles [25] in real space
or localize them, forming bright solitons [26,27] or simply
reservoir-induced localized states [28]. In systems with both
positive and negative mass states, the localization near the
exciton reservoir induced by the pump on negative mass states
tends to favor condensation in these states [26,28,29]. An
important consequence of the formation of either a soliton-
like BEC or of a BEC bound to a spatially localized exciton
reservoir is that it broadens the condensate distribution in k
space. Finally, a BIC-based polariton BEC has been demon-
strated in GaAs-based structures at low temperature [21,22].
The potential use of polariton-based devices requires room-
temperature operation, which is typically implemented either
using large-band-gap semiconductors (ZnO [30–32], GaN
[33–35]), organic materials [36,37], or perovskites [38–40].
In that perspective, GaN-based devices remain the best po-
tential choice since this material offers the best stability as
an inorganic semiconductor, and also the possibility to fabri-
cate electrically injected devices. In recent works [21,41,42],
the specific features of polariton BICs were investigated ex-
perimentally and theoretically. However, the effect of the
interactions on the shape of the condensate and the resulting
losses has not been investigated.

In this work, we propose to deepen the understanding of
the phenomenology related to interacting photonic (e.g., po-
laritonic) condensates in BICs. Indeed, we go further than
previous models and take into account the extension of the
interacting state (soliton) in reciprocal space, and not only the
high lifetime of the BIC. We also use coupled Boltzmann–
Gross-Pitaevskii equations to find the stationary states and
estimate the condensation threshold in several experimentally
accessible configurations.

The paper is organized as follows. We first propose a de-
sign of a realistic BIC-based polariton laser in a GaN/TiO2
polaritonic crystal slab, using finite-element methods to solve
Maxwell’s equations. We then use this structure as an example
to study analytically and numerically polariton-specific fea-
tures, particularly the role played by interactions (which is
remarkably interesting for materials such as wide-band-gap
semiconductors and TMDs). In the conservative limit, we

determine the shape of the polariton BEC with and without
the reservoir potential. This allows us to analytically compute
the average BEC particle lifetime in both cases. We then use
the computed lifetimes to model quantitatively the polariton
condensation using Boltzmann equations. We find that the
advantage of having a BIC is strongly reduced, if not canceled,
when the interaction with a reservoir reduces too strongly the
condensate extension in real space (so it broadens in k space),
explaining recent experimental results [41]. We find that even
without any confinement from the reservoir, the formation of a
soliton provides anyway an intrinsic limitation to the lifetime
enhancement provided by the BIC, although the threshold
can still be reduced by more than one order of magnitude.
At large pumping density, the formation of a soliton pro-
vides saturation of the condensate density growth rate versus
pumping, which scales as P1/3 instead of being linear. Finally,
we model the polariton condensation process, solving nu-
merically hybrid Boltzmann–Gross-Pitaevskii equations [43],
which allows us to take into account self-consistently the
energy relaxation and the interparticle interactions.

II. STRUCTURE DESIGN

In this section, we describe a possible structure that can
be used to obtain a BIC at room temperature. The purpose
is to give a concrete example of how a photonic BIC can
arise in a structure with exciton-polaritons using a promising
platform for reaching electrical injection at room temperature
(GaN). However, the results obtained in the sections following
the present one are not specific to this structure but can be
applied to any interacting photonic BIC, up to the extent that
the parameters (for instance, the strength of the interactions)
may change considerably.

The structure we consider is sketched in Fig. 1(a). It is
composed of a TiO2 slab deposited on top of a GaN waveg-
uide. The GaN slab is isolated from the bulk GaN substrate
by a cladding layer, which we choose to be AlxGa1−xN, with
x ≈ 0.2, as often done in experiments [35]. The TiO2 layer is
patterned with a 1D step pattern, forming a photonic crystal
slab. Its lattice constant is denoted a0. The width of the steps
is a1, while the space between them is a2, with a1 + a2 = a0.

We simulate the structure in COMSOL and find the dis-
persion relation of the photonic modes Ep(k), together with
their radiative losses �r (k). The structural parameters we use
are a0 = 135 nm, a1 = 80 nm, a2 = 55 nm, h0 = 50 nm, and
hGaN = 100 nm. The dispersion relation is plotted in Fig. 1(b)
(dashed lines). We see that there are two photonic branches,
both behaving quadratically for low wave vectors. We call the
negative-mass photonic branch the “BIC” branch because it
contains the BIC (at k = 0), while the branch at higher energy
is called the “lossy” branch because the states are lossy at
all wave vectors. A dashed arrow indicates the photonic BIC
(state) at k = 0. We can approximate the photonic dispersion
relation with a quadratic dispersion of the form

EBIC/lossy
p (k) = EBIC/lossy

0,p + h̄2k2

2mBIC/lossy
p

, (1)

where h̄ is the reduced Planck’s constant and mp the photonic
effective mass. E0,p is the energy of the branches at k = 0. The
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FIG. 1. (a) Sketch of the photonic crystal slab structure studied.
A two-layer waveguide (TiO2 in yellow and GaN in pink) is sepa-
rated from the substrate by a cladding layer (AlGaN in purple). The
TiO2 layer is etched with a steplike profile (step width a1). (b) Pho-
tonic dispersion relation (dashed lines) for the branch containing a
BIC (BIC branch, in blue) and the branch containing no BIC (lossy
branch, in red). The corresponding polaritonic dispersion relations
are plotted in solid lines (red/blue for the polariton dispersion rela-
tion calculated from the photonic lossy/BIC branch, respectively).
There are two polariton branches (upper/lower polariton branch) for
each photonic branch. The exciton effective energy is indicated as
a dotted line. We extract m from the BIC LPB. (c) Imaginary part
of the energy of the photonic branches (dashed lines) and lower
polaritonic branches (solid lines) versus wave vector. The red/blue
curve corresponds to the lossy/BIC branch. We extract � from
the BIC LPB. (d) Photonic/polaritonic (dashed/solid line) lifetime
(log scale) against wave vector. (e) Maximum lifetime achievable
depending on the structure length L. The blue/pink lines indicate the
radiative/nonradiative lifetimes. In (b)–(d), the polaritonic/photonic
BIC at k = 0 is indicated with a solid/dashed black arrow.

lossy branch has a positive mass, while the BIC branch has a
negative one in our case. This can be inverted by tuning the
parameters, particularly the filling factor a1/a0.

In Fig. 1(c), we show the radiative losses (imaginary part of
the energy, h̄�) of the photonic modes. We can see that while
the radiative losses of the BIC branch are zero for k = 0, the

losses of the lossy branch are always nonzero. Similarly to the
real part of the energy, the imaginary part can be approximated
by a square dependence on the wave vector:

�BIC/lossy
r (k) = �

BIC/lossy
r0 + γ BIC/lossy

r k2, (2)

where �r0 are the radiative losses at k = 0. For the BIC
branch, this term is zero because the losses vanish at the BIC
at k = 0:

�BIC
r (k) = γrk2. (3)

In our simulations, we neglect the imaginary part of the
permittivity of the materials. This is possible because, for
the specific structure we consider, the imaginary part of the
permittivity is 3–4 orders of magnitude lower than its real part
at the energy of the BIC. Most of this absorption corresponds
to the creation of excitons, which is properly accounted for by
the strong-coupling Hamiltonian below. This is what allows
the observation of high quality factors for polaritonic modes
in GaN [44].

We can calculate the lifetime of the modes from the radia-
tive losses as

τr (k) = 1

2�r (k)
, (4)

and we see that the radiative lifetime of the BIC is theoret-
ically infinite, as can be seen in Fig. 1(d). However, several
limitations prevent real BICs from having an infinite lifetime.
The first limitation results from the finite size of the structure.
Indeed, the size of the full structure L limits the minimal wave
vector that can be achieved kmin ≈ 2π

L . The radiative lifetime
of the BIC branch is infinite only at k = 0, so since this value
is not achievable, the radiative lifetime of an ideal photonic
BIC is limited to

τBIC
max = L2

8π2γr
. (5)

This is represented in Fig. 1(e) as a green line: the larger the
structure, the longer the radiative lifetime, but a real (finite)
structure will never exhibit an infinite lifetime. Moreover,
nonradiative losses can also play an important role, as we
explore in the following.

We designed the structure so that the energies of interest
are close to the excitonic resonance of GaN. The photonic
modes will thus couple to the excitonic modes and form
exciton-polaritons, which are part-light, part-matter quasipar-
ticles. To find the polaritonic dispersion relation out of the
photonic dispersion relation containing the lossy branch and
the BIC branch, we consider the strong coupling between
excitons and photons through the effective strong-coupling
Hamiltonian:

MSC =

⎛
⎜⎜⎜⎜⎝

EX(k) ρ h̄�R/2 0 0

ρ h̄�R/2 E lossy
p (k) 0 0

0 0 EX(k) ρ ′h̄�R/2

0 0 ρ ′h̄�R/2 EBIC
p (k)

⎞
⎟⎟⎟⎟⎠,

(6)

where EX(k) ≈ EX = 3480 meV at 5 K and 3520 meV at
room temperature [45,46] is the effective excitonic resonance
of GaN, which groups both A and B exciton contributions.
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The two different photonic modes have distinct spatial dis-
tributions and are coupled to distinct spatial distributions of
excitons, which explains the structure of the Hamiltonian.
Ep(k) are the photonic dispersions found in COMSOL, and we
take the Rabi splitting h̄�R = 100 meV for GaN [45]. ρ and
ρ ′ are the fractions of the lossy/BIC modes, respectively, that
are located in the GaN layer. Indeed, since the waveguide is
composed not only of GaN but also of a TiO2 photonic crystal
slab, which does not contain excitons, we take it into account
in the overlap integral between the photon and excitons wave
functions, which sets the Rabi splitting value, as we did pre-
viously [47]. In our design, the value of ρ is typically around
60%, while the value of ρ ′ is close to 75%. The polaritonic
dispersion arising from the strong coupling between excitons
and photons is determined by finding the eigenvalues of the
matrix MSC. The polaritonic dispersions read

E±(k) = EX + Ep(k)

2
± 1

2

√
(ρ h̄�R)2 + [EX − Ep(k)]2, (7)

where the + sign corresponds to the upper polariton branches
(UPBs) with energies above the exciton resonance, and the
sign corresponds to the lower polariton branches (LPBs)
whose energies lie below the exciton resonance.

We plot the resulting polaritonic dispersion in solid lines in
Fig. 1(b). The exciton energy is represented as a dotted black
line, which is horizontal because the mass of the excitons is
orders of magnitude larger than the effective mass of photons.
One obtains four polaritonic branches from the two excitonic
and two photonic modes. The UPB and LPB corresponding
to the BIC (blue) and lossy (red) branches are shown in the
figure. The main branch of interest for us is the BIC LPB,
represented as a solid blue line with an energy below the
exciton energy. The BIC is located at k = 0 and indicated by
a black arrow. We see that at low wave vectors, the dispersion
relation of this branch can be approximated by a quadratic
dependence on the wave vector:

E (k) ≈ EBIC
0 + h̄2k2

2m
, (8)

where m = −(1.5 ± 0.1) × 10−6m0 is the fitted polariton
mass, m0 being the free electron mass. This effective mass is
negative. EBIC

0 is the energy of the BIC LPB branch at k = 0.
In the strong-coupling regime, the imaginary part of the

polariton energy � can be expressed as [24]

� = CX(k)�X + [1 − CX(k)]�p(k), (9)

where �p,X are the losses of the photonic/excitonic modes,
respectively, and CX is the exciton fraction. This fraction can
be modulated by engineering the dispersion relation; more
precisely, it depends on the detuning between the exciton
energy and the photonic energy at k = 0. Thus, by engineering
the structure (period, etc.), one can increase the excitonic part
of the polaritonic modes and consequently increase the inter-
actions, which have been experimentally measured in GaN
just recently [48].

The lifetime of the polaritons, as that of the photonic
modes, can be fitted by a quadratic dependence on the wave

vector for small k. The approximate expression is given by

h̄�pol(k) ≈ h̄�0 + �
h̄2k2

2m
, (10)

where �0 are the constant losses and � = −0.27 ± 0.03 is
obtained from a fitting. � is negative here because m is nega-
tive while the losses increase with the wave vector for the BIC
branch.

Ultimately, the nonradiative lifetime introduced by the ex-
citons will limit the lifetime of a polaritonic BIC. According to
Ref. [49], the order of magnitude of the nonradiative excitonic
lifetime is 50 ps at room temperature in GaN. This means
that the longest lifetime possible for a polaritonic BIC in this
structure is limited, even in an infinite structure. Figure 1(e)
shows that the lifetime of the BIC is limited by the size of
the structure when the structure is small but finally, for large
structures, the nonradiative lifetime will limit the polaritonic
lifetime. Still, depending on the parameters, very high life-
times can be observed in realistically large structures. For a
structure of 100 µm length, the lifetime achieved thanks to
the BIC is of the order of 20 ps, corresponding to a qual-
ity factor of Q ≈ 20 000. For a room-temperature operation,
this is a high value compared to the literature with guided
modes [50] (and here, the mode is above the light cone). In
cavities, condensation has been observed already for quality
factors close to 1000 [34,51,52], which is much lower than
the value we found. Even if we consider a 5% uncertainty
on the geometrical parameters in the fabricated structure, we
estimate from numerical simulations that the quality factor in
our structure can be of the order of 5000, so it would still allow
polariton condensation. For larger structures, the lifetime is
ultimately limited by the nonradiative lifetime, not by the
structure’s size.

III. INFLUENCE OF THE INTERACTIONS
ON THE LIFETIME

In this section and the following, we quantify the influence
of the interactions on the lifetime of a BEC originating from
a BIC. We will take the structure simulated in the previous
section as an example, but the formalism could be applied
to any photonic structure containing interacting particles. In
particular, we want to stress that it is particularly adequate to
consider these effects when studying photonic BICs coupled
to dipolar excitons provided by 2D materials, such as transi-
tion metal dichalcogenides (TMDs), for which the interactions
are very strong [53–55].

In this section, we use the k-dependent losses of the BIC
to compute the losses of the states hosted by the structure.
Indeed, as shown in the previous section, the decay rates (and
lifetimes) of modes around the BIC are strongly k dependent
(this feature is universal and not specific to the particular
structure studied here). An ideal noninteracting homogeneous
condensate would occupy a single state k = 0 and benefit
from the corresponding extremely long lifetime. However, dif-
ferent mechanisms can lead to a localization of the condensate
in real space and thus to a broadening in k space, leading to an
increase in the overall condensate decay rate (decrease of the
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lifetime). This contribution can be computed as

〈�pol,r〉 = 1

N

∫
�pol,r (k)|ψ (k)|2dk, (11)

where ψ (k) is the k component of the condensate wave func-
tion normalized to the number N of condensed particles and
h̄�pol,r (k) = �h̄2k2/2m is the wave-vector-dependent part of
the polariton decay rate (10).

There are two localization mechanisms in real space for
negative-mass particles with repulsive interactions. The first
one is an intrinsic mechanism related to the formation of
a bright soliton, whose width is related to N . The second
mechanism takes place if the pump is nonuniform (localized)
in real space. The generated excitonic reservoir repulsively
interacts with the condensate, playing the role of an attractive
potential. Generally, both mechanisms are present [26]. We
first treat this problem analytically, using the conservative
Gross-Pitaevskii (GP) equation,

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ α|ψ |2ψ + U (x)ψ, (12)

where α is the polariton-polariton interaction constant and
U (x) an external potential induced by the exciton reservoir.
This equation describes contact interactions, and so our re-
sults cannot be directly applied to dipolar exciton-polariton
systems.

So far, the losses have been neglected. We start with the
intrinsic mechanism of bright soliton formation [without any
external potential U (x) = 0]. The bright soliton solution of
the GP equation without external potential reads

ψs = ψ (0)
s

cosh(x/
√

2ξ )
, (13)

where ξ is the healing length defined as

ξ = h̄√
2|mα|ψ (0)

s

(14)

and ψ (0)
s is the value of the wave function at x = 0, defined as

ψ (0)
s =

√|mα|N
2h̄

, (15)

which ensures the normalization of the wave function to N .
Finally, the healing length can be rewritten explicitly as a
function of N as

ξ =
√

2h̄2

|mα|N . (16)

This shape allows us to compute analytically the decay rate
in the presence of a BIC using formula (11) as

〈h̄�r〉 = �
α2m

12π2h̄2 N2. (17)

This nonlinear loss rate will saturate the growth of N after
the condensation threshold. Qualitatively, the accumulation
of particles in the soliton renders it larger in k space, which
increases the decay rate, which then limits the growth of N .

We now consider the localization by an external potential
induced by the finite size of a Gaussian reservoir created by a

nonresonant pumping:

U (x) = U0e− x2

2σ2 , (18)

where U0 is the height of the potential “trap” formed by
the pump and σ is its width in real space. The full width
at half maximum (FWHM) of the pump is 2

√
2 ln(2)σ . We

approximate the potential by a parabolic profile found from
the Gaussian profile by a series expansion:

U ≈ U0

(
1 − x2

σ 2

)
. (19)

The solutions to the Schrödinger equation for negative-mass
particles in this harmonic potential correspond to the solu-
tions for positive-mass particles but with a potential −U . The
solutions are the well-known states of the harmonic oscilla-
tor, which are the products of Hermite polynomials and of
a Gaussian function. This harmonic oscillator description is
valid only for particle energies within the gap between the BIC
and lossy branches. This limits the number of modes confined
by the potential and, in practice, we will only consider the two
first modes ψ̃0,1 defined as

ψ̃0 = 1√
w

√
π

e− x2

2w2 , ψ̃1 =
√

2
x

w
ψ̃0, (20)

where w is the width of the Gaussian wave function. The state
1 is expected to host a condensate when the energy of the state
0 becomes larger than the gap and is therefore not confined
anymore [26,28,41,42].

Because of the presence of both the interactions and
the potential, the Gross-Pitaevskii equation is not exactly
solvable. We use the variational approach to find the solu-
tion analytically, using the width w of the Gaussian wave
function as a variational parameter. We start with a trial
wave function of a Gaussian shape, given by ψ0 = √

Nψ̃0,
where N is the number of particles (note that

∫ |ψ0|2dx = N
while

∫ |ψ̃0|2dx = 1). We then find the width w that mini-
mizes the total energy of the system Etot , which is the sum of
the kinetic, potential, and interaction energy:

Etot = Ekin + Epot + Eint. (21)

The minimization condition allows us to write an equation for
w that we solve:

∂Etot

∂w
= 0. (22)

The different energy terms are calculated from the trial
wave function as follows [25]:

Ekin =
∫

−ψ∗
0

h̄2

2m

∂2ψ0

∂x2
dx, (23)

Epot =
∫

|ψ0|2Udx, (24)

Eint =
∫

α

2
|ψ0|4dx. (25)

In the end, we find the total energy, written here per particle:

Etot/N = h̄2

4mw2
+ w2U0

σ 2
+ αN

2
√

2πw
. (26)
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In the absence of interactions (α = 0), the energy is mini-
mized for a width [56,57]

w|α=0 ≡ w0 =
√

h̄σ√|m|U0
. (27)

The trial function is an exact solution in this case. The decay
rate can be found analytically. It reads

〈�r,0〉 = π�h̄

2mw2
. (28)

A similar analysis can be made for state 1, and the decay rate
reads

〈�r,1〉 = 3 〈�r,0〉 , (29)

and more generally, the losses of the state M are given by

〈�r,M〉 =
(
M + 1

2

)
π�h̄

mw2
. (30)

When interactions are present, Eq. (22) becomes

U0

σ 2
w4 − αN√

2π
w − h̄2

2m
= 0. (31)

This is a 4th-order polynomial equation. It is perfectly solv-
able; however, the expressions of the solutions are quite
cumbersome. Among the four solutions only one is real pos-
itive, which is the only one we keep since w is a length. To
understand the behavior of the system, we consider analyt-
ically the two limits N → 0 and N → ∞, which give two
different expressions for w by expansion in Laurent series.
We find that

w|N→0 ≡ w−(N ) = w0 − ασ
√|m|

4h̄
√

2πU0
N (32)

and

w|N→∞ ≡ w+(N ) =
√

2π h̄2

|mα|N . (33)

The two limits coincide for a value of N that we denote

Ncrit = 2h̄

α

√√√√ 2π h̄

|m|σ

√
U0

|m| , (34)

obtained by solving the equation w− = w+. This is the critical
value for which interactions within the condensate become the
dominant mechanism controlling its width. We can therefore
write an approximate expression for the width w(N ) using the
two asymptotic expressions

w ≈ w−U (−(N − Ncrit )) + w+U (N − Ncrit ), (35)

where U denotes the Heaviside step function. Figure 2(a)
shows the width of the 0 mode versus N , which is here
considered as an external parameter. At low N , the mode
width is w0 governed by the reservoir potential. The width
then decreases and becomes dominated by the interactions
within the condensate for N > Ncrit . At very large N , the width
becomes the same as the one of the bare bright soliton ξ . The
full solution of (31) is shown as a thick black line, while the
two asymptotic solutions combined by (35) are shown by gold
and orange lines.
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FIG. 2. (a) Width of the Gaussian wave function w (black thick
line) and healing length of the soliton ξ (blue line) as a function
of the number of particles N . w± (respectively gold/orange lines)
are the approximations of w for large/small N , and w0 is the width
in the noninteracting case. (b), (c) Profile of the wave function in
real space for N = Ncrit/10 (b) and N = 10Ncrit (c). The confining
potential (light blue) has a predominant effect at small N but a small
effect at large N . (d), (e) Profile of the wave function in reciprocal
space for N = Ncrit/10 (d) and N = 10Ncrit (e). The k2 losses close to
the BIC (green line) give very low losses at low N but high losses at
large N . In (b)–(d), the dark blue curve is the soliton wave function
and the orange/red curves are the wave functions of the states 0 and
1, respectively.

We now consider the second confined state ψ1, for which
we perform the same type of analysis. We use the spec-
troscopic notation for the states, as is often done since the
polaritonic trap can be considered an artificial atom. The states
0 and 1 therefore correspond to s and p, respectively. We
recall that state 1 can host the condensate when the energy of
state 0 overcomes the band gap between the BIC and lossy
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FIG. 3. (a) Losses of the soliton (blue line) and s and p states with respect to the number of particles N (in log-log scale). (b) Losses of
the s state (orange lines) and p state (red lines) for a band with a BIC (solid lines) and without a BIC (dashed lines). The left (right) gray line
corresponds to the situations of Ref. [41] (Ref. [21]), and the black arrows represent the difference between losses of the s state for a non-BIC
state and the p state for a BIC state.

branches. We plot in Figs. 2(b)–2(e) the real- and k-space
profiles of the different modes for low N [panels (b), (d)]
and large N [panels (c), (e)]. For a low number of particles,
the confined states are mostly determined by the width of the
confining potential, whereas a free soliton is much broader in
real space. On the contrary, for large N , the interactions make
all modes narrower so that the confining potential [which does
not change between (b) and (c)] has only a minor influence on
the width of the confined states, which is close to that of the
free soliton.

In k space, the trend is inverse: the narrow states in real
space are broad in k space. The broadening in k space for all
states increases linearly with the growth of N [Eqs. (16), (33)].
Another important aspect is that the p state shows a node at
k = 0 and shows, in all cases, a smaller overlap with the BIC
resonance compared with the soliton and the s states. On the
other hand, for large N , all states are broad in reciprocal space.
This means that most of their probability density is located
outside the BIC point and, therefore, these states almost do
not benefit from the extremely long BIC lifetime.

These features are summarized in Fig. 3(a), which shows
the radiative losses of the soliton, the s, and the p states versus
N . We observe the N2 dependence of � for the soliton case.
We observe at N = Ncrit the transition for s and p states from
a regime where � is fixed by the pump size to a soliton-like
regime dominated by the interactions within the condensate.
We observe the constant ratio [equal to 3; see Eq. (29)] for the
decay rates between the s and p states. The transition occurs at
N = Ncrit . All decay rates � depend on the size of the confin-
ing potential σ . This is shown in Fig. 3(b), which also includes
a comparison with the band that does not contain a BIC (lossy
branch) but instead is characterized by a nonradiative decay
rate 〈�other〉 (for instance, due to the excitonic resonance when
considering exciton-polaritons) and a radiative decay rate 〈�r〉
which does not depend on k (for instance, the losses of a usual
mode above the light cone), so that

〈�〉 = 〈�r〉 + 〈�other〉 . (36)

We observe that for a small reservoir size, the condensate
is considerably wider in k space with respect to the range
where BIC modifies the decay rate. This situation corresponds
approximately to the observation of Ref. [41], where the pump

size is approximately σ ≈ 5 µm. On the contrary, when the
pump size increases, the condensate wave function expands
in real space and localizes in k space, overlapping better and
better with the BIC resonance. In that case, a band with a
BIC shows a much smaller decay rate. This is the regime that
was demonstrated in Ref. [21], where the pumping spot has a
width σ ≈ 80 µm. To summarize, using a small pumping spot
prevents benefiting from the high lifetime of a BIC.

IV. INFLUENCE OF THE INTERACTIONS
ON THE CONDENSATION THRESHOLD

In the previous section, we found analytical formulas for
the losses of the soliton and s and p states. We show that the
losses depend on the number of particles N . In this section,
we use the previously found density-dependent losses to solve
the semiclassical Boltzmann equations [58], which describe
the evolution of the population of the condensate and reservoir
states with time. In the previous sections, the system was
assumed to be 1D and uniform in the transverse direction.
Here, we need to take into account a normalization surface in
order to operate with the populations and scattering rates. Ex-
perimentally, operating with a finite-size pump simply leads
to additional nonradiative losses due to the repulsion of the
particles from the excitation spot due to the interactions. The
simplified 2-state model used in this section does not allow
us to take into account the details of the relaxation processes
that depend on the dispersion relation. Its goal is to focus on
the effects of the density-dependent lifetime in the conden-
sate, which is due to the soliton formation. The two coupled
equations read

Ṅc = WLONx(1 + Nc) − Nc�c(Nc), (37)

Ṅx = −WLONx(1 + Nc) − Nx�x + P, (38)

where Nc,x are, respectively, the numbers of particles in
the condensate/reservoir, �c,x are the condensate/reservoir
losses, and P denotes the pumping strength. WLO describes
the relaxation of excitons through LO phonons, which we
assume to be the dominant relaxation mechanism. Indeed,
the design of the structure was optimized in order to have a
resonant enhancement for the LO-phonon assisted relaxation:
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EBIC
0 = EX + 3

2 kBT − ELO at T = 300 K. WLO is estimated
from Ref. [58] to WLO = 6 × 109 s−1 for the surface we con-
sider. We neglect the dependence of the scattering rate on
the spatial shape of the condensate. We solve the Boltzmann
equations over time until a stationary configuration is ob-
tained. These simulations are repeated for different values of
pumping P. This allows us to obtain the stationary population
of the condensate for each pumping.

We consider three different cases, which we plot in Fig. 4.
In the first case, we consider a configuration where the con-
densate is not a BIC. The losses for this state (both radiative
and nonradiative) are assumed to be k-independent �c =
〈�nr〉 + 〈�r,0〉. When increasing the pumping strength, we see
that the blue curve exhibits a threshold around P ≈ 1013 s−1,
but the slopes before and after the threshold are the same,
Nc ∼ P. For large Nc, the stationary solution can be found
analytically as

Nc ≈ h̄P

�c
− �x

WLO
. (39)

The two other curves show the solutions when the system
hosts a BIC. The golden curve represents the solution without
confining potential, where the condensate wave function is the
one of a soliton. We see that using a BIC instead of an ordinary
lossy state reduces the threshold required for condensation
by approximately two orders of magnitude (the threshold is
estimated to be reached for Nc ≈ 3). Before and just after
the threshold, the condensate population evolves linearly ver-
sus P, as in the case without the BIC. However, far above
threshold, when Nc ≈ 104, the dependence changes due to the
formation of the soliton, whose losses scale as N2

c , as shown
in Eq. (17). In that regime, keeping only leading terms in Nc

one can find the asymptotic dependence of Nc versus P as

Nc ≈
(

h̄P

β

)1/3

, (40)

which corresponds to the 1/3 slope we observe in the numer-
ical results at large Nc.

Finally, the green curve is obtained when considering a
BIC with both confinement by an exciton reservoir and self-
interactions. In this case, the losses are given by Eq. (29),
and the width is taken from the solution of Eq. (31) (the
analytical exact solution, not the approximate solutions). We
take the losses of state 1 (the p state) in order to reproduce
the situation studied experimentally in Ref. [41]. The solution
for state 0 (s state) is not plotted because it is very similar
to the one we found considering only the soliton without
confinement. Indeed, for large Nc, the losses of state 0 are
close to the soliton losses, and for small Nc, the solutions
of Boltzmann equations are less influenced by N-dependent
losses. We see that the green curve is an intermediate case
between the soliton located at a BIC and a usual configuration
with a BIC: the threshold is higher than with the BIC and
without confinement, but the interactions limit the growth
of Nc at large values with the same power law. Modifying
the width of the confinement potential allows changing the
threshold value: the narrower the potential, the higher the
threshold.

To conclude, in this section we have shown that the
BIC can be beneficial to reduce the threshold. However, the
interactions deeply modify the behavior at large pumping
strengths/number of particles because the dependence be-
tween the two parameters becomes sublinear. Finally, the size
of the reservoir can reduce the effects of the BIC.

V. NUMERICAL SIMULATIONS OF POLARITON
CONDENSATION WITH GROSS-PITAEVSKII EQUATION

In this section, we solve numerically the Gross-Pitaevskii
equation to verify qualitatively the validity of the hypothe-
ses used and results obtained in the previous sections. The
studies performed in the previous sections were based on the
hypothesis that the shape of the condensate wave function
is a solution to the conservative GP equation. The role of
the pumping and lifetime is to set the number of particles
in the condensate, which is a wave function parameter. We
did not consider that the k-dependent lifetime itself could
deeply affect the shape of the condensate wave function.
In order to take into account on an equal footing interac-
tion and lifetime effects, we solve numerically the hybrid
Boltzmann–Gross-Pitaevskii equation, including the scatter-
ing from a localized excitonic reservoir and k-dependent
lifetime, similar to what is usually done to describe energy
relaxation [43,59]. The goal here is to check the validity of
the analytical predictions for the shape of the condensate
and simulate the emission pattern observed in experiments,
and not to obtain a quantitative estimate of the threshold,
which is why we eliminate the equation for the reservoir. The
equation reads

ih̄
∂

∂t
ψ (x, t ) =

(
(i� − 1)

h̄2

2m

∂2

∂x2
+ α(|ψ (x, t )|2 + 2nx(x))

+ ih̄[WLOnx(x)e−Nx/Nsat − �0]

)
ψ (x, t )

+ χ (x, t ), (41)
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FIG. 5. Polariton Bose-Einstein condensate in a BIC. (a), (b) Numerical results of the simulation of the Gross-Pitaevskii equation (41)
for the BIC LPB (containing a BIC at k = 0). (a) Population in the reciprocal space. Note the unique intensity peak at the maximum of the
dispersion (at the BIC). (b) Numerically calculated emission in the reciprocal space. Note the two peaks surrounding k = 0. In both panels,
the dispersion is indicated as a cyan dashed line, and a white arrow shows the position of the BIC (state) in reciprocal space. (c) Numerically
obtained distribution of particles in real space (blue points) after the stationary regime is reached and fitted by a bright soliton wave function
(red line). Note the excellent agreement.

where m = −(1.5 ± 0.1)10−6m0, � = −(0.27 ± 0.03) as ob-
tained in the first section. nx(x) is the reservoir density, which
we assume to keep the spatial profile of the pumping laser
and to be constant in time. The reservoir depletion is taken
into account via the saturated gain term. We add a noise term
χ (x, t ) to simulate the spontaneous scattering into the polari-
tonic modes from the reservoir. The filling of the condensate
from an excitonic reservoir generated by a nonresonant op-
tical pumping is assumed to be assisted by the LO phonons
through the term containing the LO phonon scattering ma-
trix element WLO. The saturation is controlled by the total
number of particles in the reservoir Nx = ∫

n(x)dx and its
saturation value Nsat, which in the Boltzmann equations is
controlled by the pumping P via the second equation (38) that
we eliminate adiabatically here. The interaction constant α

describes polariton-polariton interaction. A twice larger value
for the reservoir excitons is taken in the hypothesis of zero
detuning operation. Here, the normalization area for both α

and WLO is taken equal to the spatial grid size 2 µm times
the transverse pump size 20 µm. The main difference between
our design and the one presented in Ref. [60] is that our
BIC is a polaritonic BIC and not just a photonic BIC, which
enlarges the potential applications of our proposal compared
to this previous realization. The goal of these simulations is

to demonstrate that the interactions lead to the formation of a
soliton, that its reciprocal-space image corresponds to the one
observed experimentally, and that its shape is very close to the
one considered analytically.

We show the results of numerical simulations based on
Eq. (41) in Fig. 5 using a homogeneous reservoir profile. The
time-dependent simulation is run until a stationary solution
is achieved. Above threshold (which in our simulations oc-
curs well below the Mott density), a condensate forms in the
ground state of the system, but the interactions lead to its
localization in real space and spreading in reciprocal space,
as expected. Panel (a) shows the condensate distribution in
reciprocal space |ψ (k)|2. We can see that the population is
maximal at the top of the dispersion (the dispersion is indi-
cated by a cyan dashed line), which is precisely the position
of the BIC. Indeed, the BIC has fewer losses than any other
mode, so the condensation occurs there.

In most of the systems exhibiting polariton condensation,
a higher population corresponds to a higher intensity of emit-
ted light (but even for usual polaritons, one has to take into
account the photonic fraction to determine the polariton pop-
ulation from the emission intensity [61]). In the case of BICs,
the population is very different from the emission. Indeed, the
light emitted by the structure is proportional to the losses: the
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light that is collected is the light that escaped the waveguide
and impinges onto the detector. The emission �r (k)|ψ (k)|2
is plotted in panel (b). We can see two peaks close to the
maximum of the dispersion, corresponding to the experimen-
tal observation of the polariton condensation at the BICs [21].
The population is huge in the BIC, but the emission is very
low precisely because the lifetime is very high, larger than for
the modes close in reciprocal space, which still have a very
high population. In the end, we only see two peaks of emission
close to the BIC, but not the BIC itself.

Our numerical simulations using the Gross-Pitaevskii
equation confirm the formation of bright solitons due to the
interactions. We plot in Fig. 5(c) the distribution of particles in
real space calculated numerically after condensation and after
the system has stabilized (the condensation occurs after 20 ps
and the picture is taken after 15 ns). We see that there is one
peak (blue numerical points) that is well fitted by the wave
function of a bright soliton (red line), as given by Eq. (13).
The shape corresponds very well to the profile found in the
conservative approximation in the previous sections, which
confirms the validity of our analytical considerations. Note
that the formation of solitons and their interplay with BICs
in a different (resonant) pumping configuration have been
theoretically discussed in Refs. [62,63]. However, we observe
numerically an additional effect. When the number of parti-
cles exceeds a critical value, the system becomes unstable and
does not converge to a stationary solution. This may lead to the
formation of several solitons that exhibit periodic oscillations,
without merging into a single soliton. According to our anal-
ysis, this is not due to the Kibble-Zurek mechanism [64,65],
which has already been proposed to explain different effects
in polaritonic structures [66–68]. The effect is rather due to an
analog of modulational instability, but in a driven-dissipative
system. A detailed study of this phenomenon exceeds the
scope of the present article and requires further investigations.

VI. CONCLUSIONS

To conclude, we design a structure for polariton Bose-
Einstein condensation (polariton lasing) based on a 1D BIC
in a TiO2-GaN waveguide. We predict a possible realization
of room-temperature polariton Bose-Einstein condensation in
the BIC state. This could be implemented using state-of-
the-art experimental techniques. It would allow obtaining an
electrically injected room-temperature polariton laser with
a low lasing threshold. We also investigate how to benefit
from the high lifetime of the BIC in photonic structures
with interacting particles (for instance, structures based on
wide-band-gap semiconductors and TMDs, where interac-
tions between polaritons are strong). It requires working with
the largest structure possible to access the smallest wave vec-
tor and the highest lifetimes, and the pumping spot needs to
be sufficiently large as well, to prevent confinement effects
from reducing the lifetime of the BIC. Soliton formation due
to the interactions can increase the losses above threshold.
An interesting perspective is to consider the condensation of
interacting particles in 2D BICs.
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