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Magnetochiral anisotropy induced nonlinear planar Hall effect in topological insulator surface states
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In an intriguing recent experiment, it has been found that the two-dimensional (2D) surface states of a
three-dimensional (3D) strong topological insulator (TI) support a nonzero Hall voltage transverse to an applied
electric field even when the external magnetic field is in the plane (i.e., the in-plane Lorentz force vanishes).
This so-called planar Hall effect (PHE) of TI surface states is found to be nonlinear, i.e., the Hall voltage
scales quadratically with the applied electric field and linearly with the in-plane magnetic field. In this paper, we
calculate the nonlinear PHE for strong topological insulator surface states with broken particle-hole symmetry
and warping and provide results that interpolate continuously between the Dirac and normal fermion regimes,
which can be compared with future experiments.
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I. INTRODUCTION

In the conventional Hall effect [1,2], an electric voltage is
generated in a conductor transverse to an applied current in
the presence of an out-of-plane magnetic field that deflects
the charge carriers in the 2D plane by Lorentz force. In the
anomalous Hall effect the role of the external out-of-plane
magnetic field is played by an intrinsic magnetization or non-
trivial geometric properties of the band structure such as a
nonzero Berry curvature perpendicular to the 2D plane [3–6].
Such first-order current response to an applied electric field
can be written as jα = σαβEβ (α, β = x, y) where σαβ is the
conductivity tensor. The conductivity tensor σαβ can always
be decomposed into components that are symmetric and anti-
symmetric in the indices α and β, σαβ = 1

2 (σ s
αβ + σ a

αβ ). The
antisymmetric part of the conductivity tensor σ a

αβ = −σ a
βα can

be written as σ a
αβ = γ Bzεαβ , where γ is a constant, εαβ is the

2D Levi-Civita tensor (εαβ = −εβα), and �B = Bzẑ is an exter-
nal magnetic field. This leads to jα = σ s

αβEβ + γ εαβBzEβ =
σ s

αβEβ − γ ( �E × (Bzẑ))α , where the magnetic field �B is as-
sumed to point in the ẑ direction and σ s

αβ = σ s
βα is the

symmetric part of the conductivity tensor. Since the Joule
heating is proportional to �j · �E , it is clear that the symmetric
part σ s leads to nonzero Joule heating, while the antisymmet-
ric part σ a leads to zero Joule heating [i.e., �E · ( �E × (Bzẑ)) =
0] and is thus nondissipative. Since the current density jα is
odd under time-reversal symmetry (TRS) while the electric
field is even, and they are related in the first order of the
electric field by the formula jα = σαβEβ , the conductivity
σαβ must break the time-reversal symmetry. The dissipative
part of the conductivity tensor σ s

αβ breaks TRS because it
leads to Joule heating, which is irreversible in time. But, the
antisymmetric part of the conductivity tensor σ a

αβ is nondissi-
pative, implying that the time-reversal breaking in the systems
with a nonzero σ a must be intrinsic. The Hall effect in the
linear order of the electric field, defined as the nondissipa-
tive, antisymmetric component of the conductivity tensor, thus
necessarily requires broken time-reversal symmetry [7–9].
Theoretical and experimental studies of the Hall effect in the

linear response regime (linear order in the external electric
field) have led to important advances in condensed-matter
physics leading to the search for topological phases of matter
[10–14].

In the nonlinear response regime ( jα = χαβγ EβEγ ), a
nonzero Hall-like transverse voltage quadratically dependent
on the applied electric field can result with or without broken
TRS [15,16]. In time-reversal symmetric systems with broken
space inversion (SI) symmetry, the nondissipative nonlinear
Hall current can result from a nonzero first-order moment
of the Berry curvature, the so-called Berry curvature dipole
(BCD), over the occupied bands [16]. Such BCD-induced
nonlinear Hall effect in TR symmetric systems has recently
attracted immense attention in the literature [17,18]. But when
TRS and SI are simultaneously broken, a second class of non-
linear Hall-like response is allowed by symmetry, arising from
magnetochiral anisotropy effect also known as nonreciprocal
magnetotransport [19–21]. Nonreciprocal magnetotransport
implies that in systems with broken SI symmetry subjected
to a magnetic field, the resistivity parallel and perpendicular
to the applied current is different for the current flowing to the
right (+I) and left (−I) directions.

The nonreciprocal longitudinal magnetoresistance appears
when the electric and in-plane magnetic fields are perpendic-
ular to each other and the change in conductivity due to the
magnetic field is measured parallel to the applied electric field
as shown in Fig. 1 (top panel). Thus, for a magnetic field
along the x̂ axis Bx, and an electric field along the ŷ axis
Ey, the resistance associated with the nonreciprocal effect is
R = R0(1 + γyLBxIy) (R0 is the longitudinal linear resistance
of the system) with γyL, the longitudinal coupling parameter,
given by

γyL = − 1

ABx

σ2yy

(σ1)2
, (1)

for a system with cross-section area A. Equation (1) is ob-
tained from Ohm’s law written for a current density jy =
σ1Ey + σ2yyE2

y , where σ2yy and σ1 and the second-order and
the linear conductivities, respectively.
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FIG. 1. The experimental setup for determining the longitudinal
magnetoresistance, when the electric and magnetic fields are per-
pendicular to each other (top) and the planar Hall effect, when the
electric and magnetic fields are parallel (bottom).

A similar formula can be written down for the Hall resis-
tance, when the electric and magnetic fields are parallel, as
in Fig. 1 (bottom panel), and the resistance is measured per-
pendicular to the applied electric field. Then, RH = R0

H (1 +
γyH BxIx ), which follows from a nonlinear Hall voltage Vy =
R0

H Ix + R(2)
H I2

x , where R0
H could be a possible linear-order pla-

nar Hall resistance and the nonlinear planar Hall resistance
R(2)

H depends linearly on the in-plane magnetic field Bx. In this
case, the planar-Hall coupling parameter is

γyH = − 1

ABx

σ2xy

(σ1)2
. (2)

The magnetochiral anisotropy-induced nonlinear magne-
toresistance effect parallel to the applied electric field when
the applied E and B fields are perpendicular was first pre-
dicted in Rashba semiconductors and was experimentally
observed [22–26]. The analogous magnetochiral anisotropy-
induced nonlinear Hall effect transverse to the applied electric
field and in the presence of an in-plane parallel magnetic
field, the so-called nonlinear planar Hall effect, was found
to be nonzero in Weyl semimetals [20], topological insula-
tor surface states [21,27], and in theoretical calculations in
Rashba systems [28] and systems with cubic Dresselhaus
interactions [29].

The physics behind the nonlinear magnetochiral effects,
including the planar Hall, in all these materials, is based on the
interplay between the linear spin-orbit (SOI) and the Zeeman
interactions acting simultaneously on the same electron spin.
Thus, for a SOI coupling α, an in-plane magnetic field that
is Zeeman coupled with the electron spin induces a constant
momentum shift along a direction perpendicular on the mag-
netic field proportional with B/α. The macroscopic evidence
of this shift as an electric current is visible only when the
out of equilibrium electron distribution function is considered
in second order in the applied electric field, so that the even
symmetry is preserved in the momentum space.

In this paper, we derive and analyze the nonlinear PHE
for the surface states of strong TI and show that the
derivations contained in the previous literature are at best
incomplete, which can lead to quantitative or even in some
cases qualitative errors while estimating the expected val-
ues of the nonlinear planar Hall resistance. We derive
expressions for the nonlinear planar Hall currents for TI

surface states with broken particle-hole symmetry and provide
complete results for different regimes of the surface state
Hamiltonian by using a second-order distribution function
derived in a local energy approximation, in contrast with
previous studies [27,30,31] that employed an iterative solu-
tion to the Boltzmann transport equation. The latter diverges
at the origin in the momentum space in systems with SOI,
a mathematical difficulty that leads to discontinuities in the
calculated currents as functions of the Fermi energy [23,29].
Our theory allows a smooth incorporation of all the interac-
tions that can determine the current contributions, such as
particle-hole asymmetry, i.e., finite effective mass corrections,
or warping, and permits a complete determination of the
current magnitude as a function of the Fermi energy for all
possible regimes of the surface states, from Dirac to normal
fermions. Our results can be compared with future experi-
ments on the nonlinear planar Hall effect in TI surface states
in different regimes of the surface state Hamiltonian, which
can be accessed by tuning the chemical potential.

In the remainder of this paper, in Sec. II we introduce
the Hamiltonian of TI surface states including the hexagonal
warping interaction and a Zeeman energy term, and obtain its
energy spectrum. We discuss in detail the different regimes
of this Hamiltonian defined by the presence of Dirac or nor-
mal fermions, in terms of an interpolation parameter t . In
Sec. III, we present the nonlinear transport formalism used
to derive the second-order Hall-like conductivities quadratic
in the applied electric field Ex. In Sec. IV, we showcase the
main results of this paper, namely, the second-order transverse
current j (2)

xy , for a general value of the interpolation parameter
t , and use it to calculate the second-order Hall-like conductivi-
ties in the various regimes of the Hamiltonian given in Eq. (5).
In Sec. V, for the sake of completeness, we calculate the mag-
netochiral anisotropy-induced nonlinear magnetoresistance in
TI surface states in a geometry in which the electric and the
in-plane magnetic fields are perpendicular to each other. In
this geometry, the change in resistance is measured parallel to
the electric field, while in the nonlinear planar Hall effect the
resistance is measured in a direction transverse to the electric
field. We end with a summary and conclusions in Sec. VI.

II. HAMILTONIAN OF TI SURFACE STATES
AND THE ENERGY SPECTRUM

The generic Hamiltonian of an electron of momentum
p = {px, py}, spin σ = {σx, σy, σz}, and effective mass m∗ on
the 2D surface states of 3D time-reversal symmetric strong
topological insulators is given by [32–35]

HT I = p2
x + p2

y

2m∗ + α(σx py − σy px ). (3)

Here, α is the coupling constant representing the effective
velocity of the Dirac fermion part of the Hamiltonian. We
will use εF for the Fermi energy (chemical potential) in the
TI surface measured from the band crossing point. The first
term in HT I quadratic in the momentum and proportional
to the inverse effective mass breaks particle-hole and sub-
lattice symmetries [36]. This term is always present in the
surface states of real topological insulators. HT I describes
pure Dirac fermions for m∗ → ∞ and a normal 2D fermionic
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system for α = 0. The transition between the two limits of the
Hamiltonian can be described by an interpolation parameter t
given by

t = m∗α√
(m∗α)2 + 2m∗εF

. (4)

For 2m∗εF � (m∗α)2 (i.e., εF � m∗α2/2), the interpolation
parameter t approaches zero, t ∼ m∗α√

2m∗εF
→ 0. In this limit,

the Hamiltonian in Eq. (3) is that of a two-dimensional
electron gas (2DEG) with a spin-orbit interaction (SOI) of
coupling constant given by the Dirac velocity α. In contrast, if
m∗ → ∞, 2m∗εF 	 (m∗α)2 (i.e., εF 	 m∗α2/2) and t → 1,
so the interpolation parameter t = 1 describes pure Dirac
fermions.

Note also that the Hamiltonian in Eq. (3) produces a pair of
distinct Fermi surfaces for all band fillings. However, in real
materials, HT I is only an effective low-energy Hamiltonian
valid near the zone center and away from the first Brillouin
zone boundary, and consequently the outer Fermi surface may
not actually exist. When both bands and both Fermi surfaces
are considered, Eq. (3) formally corresponds to the Hamilto-
nian of a 2DEG with Rashba spin-orbit coupling equal to the
Dirac velocity.

In the presence of a magnetic field aligned along the x̂ axis
Bx, and a hexagonal warping effect λ̃ [33], Eq. (3) becomes

H2D = p2
x + p2

y

2m∗ + α(pyσx − pxσy) + Bxσx + λ̃σz. (5)

For simplicity, in Eq. (5), Bx designates the Zeeman splitting
associated with the projections of the magnetic field along the
x̂ direction gμBBxσx/2 with μB the Bohr magneton and g the
effective gyromagnetic factor. We have included the magnetic
field in the x direction in anticipation of our calculation below
of a nonzero transverse Hall-like current in the y direction
proportional to the first power of Bx and second power of
an applied electric field Ex [see Eq. (36)]. In Eq. (5) the
warping interaction λ̃ is cubic in the magnitude of the electron
momentum, p =

√
p2

x + p2
y , and is given by

λ̃ = λp3 cos 3ϕ = λ
(
p3

x − 3px p2
y

)
, (6)

where tan ϕ = py/px and λ is the coupling constant.
The eigenvalues of the Hamiltonian, designated by the

chiral index ξ = ±1, are

Eξ = p2

2m∗ + ξ

√√√√α2

[
p2

x +
(

py + Bx

α

)2
]

+ λ̃2. (7)

The energy spectrum in the absence of a magnetic field and
warping is presented in Fig. 2. The following considerations
assume that the magnetic term Bx and the warping term λ̃ are
much smaller than the Dirac energy αp for a momentum p
close to its Fermi value that determines the transport prop-
erties. It is clear from Eq. (7) that the effect of the applied
magnetic field is to shift the py momentum by a constant value
−Bx/α, while the warping is present in this problem only as
λ̃2. Thus, the lowest-order effects that reflect these changes
in the electron energy are linear in the magnetic field and
quadratic in λ.

E

p

+ −

π
−
π

FIG. 2. The energy spectrum of a topological insulator with
finite mass m∗ in (b). + and − designate the two chiral eigenval-
ues. The dashed-vertical lines represent the Brillouin zone limits.
The second Fermi surface is excluded from the calculation since the
corresponding Fermi momentum is assumed to be larger than the
limit of the Brillouin zone. The Fermi energy is the horizontal line.
In this regime, the surface state of a 3D topological insulator is a
single-band system.

With this insight, we write

p2
x +

(
py + Bx

α

)2

=
(

p + Bx sin ϕ

α

)2

+ B2
x cos2 ϕ

α2
, (8)

and approximate

Eξ = p2

2m∗ + ξα

(
p + Bx sin ϕ

α

)⎡
⎣1 + λ̃2 + B2

x cos2 ϕ

α2

2α2
(
p + Bx sin ϕ

α

)2

⎤
⎦.

(9)

Henceforth, in Eq. (9), terms quadratic in Bx will be neglected.
By introducing function W ,

W = λ̃2

2α
(
p + Bx

α
sin ϕ

) , (10)

we arrive at an expression of the eigenvalues that depends only
on Bx and W ,

Eξ = p2

2m∗ + αp + ξ (Bx sin ϕ + W )

= (p + ξm∗α)2

2m∗ + ξ (Bx sin ϕ + W ) − (m∗α)2

2m∗ .

(11)

In the following discussions, we assume that the Fermi
energy is positive [as measured from the band crossing point,
see Fig. (2)], εF > 0. The condition εF = Eξ generates the
Fermi momenta associated with this system,

pξ =
√

2m∗[εF − ξ (Bx sin ϕ + W )] + (m∗α)2 − ξm∗α.

(12)

As is the case for a Rashba system, there are two Fermi
surfaces corresponding to the two chiral bands ξ = ±1 and
two associated Fermi momenta p+ and p−. However, for topo-
logical insulators, we will assume that the outer Fermi surface
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does not exist because the corresponding Fermi momentum
is larger than a momentum cutoff, which we take to be the
first Brillouin zone boundary, below which the Hamiltonian
in Eq. (5) is supposed to hold.

Since the warping contribution W depends explicitly on the
momentum [see Eqs. (6) and (10)] we evaluate it at the Fermi
momentum for W = 0 given by

(pξ )W =0 =
√

2m∗(εF − ξBx sin ϕ) + (m∗α)2 − ξm∗α. (13)

Thus, the value of W depends on ξ and Bx.
The analysis of the Fermi momenta in the absence of warp-

ing and magnetic field provides the physical justification of
the interpolation parameter t . We first write

(pξ )Bx=0,W =0 =
√

2m∗εF + (m∗α)2 − ξm∗α. (14)

In the Dirac fermion limit (εF 	 m∗α2/2, i.e., t → 1) we
obtain the Fermi momentum for ξ = +1,

p1 =
√

2m∗εF + (m∗α)2 − m∗α = m∗α
1 − t

t
. (15)

Since in this limit t approaches 1 as t = 1 − εF
m∗α2 , Eq. (15)

gives the dispersion relation of a topological insulator surface
state, p1 → εF /α. At the same time, in this limit for ξ = −1,
we find

p−1 =
√

2m∗εF + (m∗α)2 + m∗α = m∗α
1 + t

t
, (16)

so, for t → 1, p−1 = 2m∗α + εF
α


 2m∗α.
Therefore, in the Dirac fermion limit (t → 1), p−1 


2m∗α becomes larger than the Brillouin zone boundary when
2m∗α � π

a , leading to a constraint on the effective mass that
eliminates the outer Fermi surface. More generally, the condi-
tion on the effective mass m∗ � �

2α
, where � is a wavenumber

cutoff depending on the microscopic parameters of the system
[below which the Hamiltonian in Eq. (5) is valid] and α is the
Dirac velocity in Eq. (5), effectively eliminates the ξ = −1
chiral band from transport considerations. We will assume
this condition naturally holds for topological insulators with
values of the interpolation parameter t ∼ 1. To preserve this
regime of single-band transport for a general value of the
interpolation parameter 0 < t < 1, one needs to use Eq. (16)
to establish the relationship between εF and m∗α that allows
it for a given �, while still satisfying the constraint that
εF < m∗α2/2 so that the dispersion relation for a topological
insulator is recovered for p1.

In the limit t → 1, Eq. (14) generates, in a second-order
expansion,

pξ = m∗α

[
1 + 2m∗εF

2(m∗α)2
− 1

8

(
2m∗εF

(m∗α)2

)2
]

− ξm∗α. (17)

For ξ = 1, we obtain

p1 = εF

α

[
1 − εF

2m∗α2

]
, (18)

which is the Fermi momentum of a topological insulator cor-
rected for the finite mass m∗. We note that this approximation
is valid only for εF 	 m∗α2/2.

In the other limit of the interpolation parameter t → 0,
Eq. (14) generates pξ 
 √

2m∗εF (1 − ξ t ). This corresponds
to m∗α2/2 	 εF , a regime where the two momenta are almost

equal to
√

2m∗εF , which is the Fermi momentum of a 2DEG.
Therefore, for t → 0, when the Hamiltonian in Eq. (3) resem-
bles that of a 2DEG with an effective Rashba-like spin-orbit
coupling, both chiral bands with ξ = ±1 should contribute to
transport.

To summarize this section, using the Hamiltonian H2D in
Eq. (5), one can obtain both the Dirac fermion regime and
single-band transport assuming that for a given α the effective
mass and the Fermi energy satisfy certain conditions, and the
normal fermion regime with an effective spin-orbit coupling
given by the Dirac velocity α. In transport, the difference
between the two situations is reflected in how many chiral
bands are included: only one (ξ = 1) for the Dirac fermion
regime and both ξ = ±1 for a normal fermion regime with
effective spin-orbit interaction equal to the Dirac velocity.

III. BOLTZMANN TRANSPORT FORMALISM
IN NONLINEAR REGIME

In the presence of an electric field, the electron distribu-
tion function fp is written as fp = f 0

p + δ f (1)
p + δ f (2)

p , where
f 0(εp) = [e(εp−εF )/kBT + 1]−1 is the equilibrium Fermi func-
tion, while δ f (1)

p and δ f (2)
p are the nonequilibrium corrections

proportional to Ex and E2
x respectively. δ f (1)

p is the solution to
the Boltzmann transport equation (BTE) in the relaxation time
approximation [2],

δ f (1)
p = eτvp · E

df 0

dε
, (19)

where vp = ∇pεp is the electron velocity and τ is the relax-
ation time.

To obtain the second-order distribution function, we use a
semiclassical approximation of the local perturbation induced
by the external fields on the distribution function [37]. Thus,
the addition of an electrostatic potential V (r) = −E · r, mod-
ifies locally the electron energy to ε̃p = εp + eE · r, a change
considered weak with respect to the Fermi energy and valid
within a region r = vpτ . By performing a Taylor expansion
in (eτE · vp), the second-order correction to the distribution
function is obtained to be

δ f (2)
p = 1

2kBT
(eτE · vp)2 tanh

εp − εF

2kBT

(
−∂ f 0

p

∂εp

)
. (20)

As the shift of the electron momentum along the ŷ induced
by the in-plane magnetic field is proportional with Bx/α, an
even function in phase space, a charge current that responds to
this perturbation as well as to an electric field is generated only
by an even distribution function, namely δ f (2)

p in Eq. (20),
leading to

j (2)
xy = −e

∑
p,ξ

vyξ δ f (2)
p . (21)

Because δ f (2)
p in Eq. (20) is proportional to tanh[(εp −

εF )/2kBT ], which cancels at εF , the summation algorithm for
the current [Eq. (21)] uses the Sommerfeld expansion [2],

j (2)
xy = −e3E2

x

48h̄2

∑
ξ

τ 2
ξ

∫ 2π

0

d

dε

[
pξ

d pξ

dε
vyξv

2
xξ

]
εF

dϕ. (22)
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Although in Eq. (22) we sum over the chiral band index
ξ , as discussed in the last section, in the case of TI surface
states, the sum is reduced to ξ = 1. We also note that when
conduction involves both bands, the SOI-induced corrections
on the relaxation times evaluated at the Fermi energy have to
be considered [37–39]. Thus, for εF > 0,

h̄

τξ

= h̄

τ

(
1 + ξ

m∗α
2p0

)
, (23)

where p0 is

p0 =
√

(m∗α)2 + 2m∗εF . (24)

The electron velocities at the Fermi level, needed in the
current calculations, are evaluated in a linear approximation
in Bx and W ,

vxξ =
(

∂Eξ

∂ px

)
εF

=
(

pξ + ξm∗α
m∗ − ξ

W

pξ

)
cos ϕ

− ξ
Bx sin ϕ cos ϕ

pξ

+ ξ
W Bx

αp2
ξ

sin 2ϕ, (25)

vyξ =
(

∂Eξ

∂ px

)
εF

=
(

pξ + ξm∗α
m∗ − ξ

W

pξ

)
sin ϕ

+ ξ
Bx cos2 ϕ

pξ

− ξ
W Bx

αp2
ξ

cos 2ϕ. (26)

There is no direct contribution from warping in the expression
of the velocities since the derivatives of the warping interac-
tion are proportional to cos 3ϕ and would disappear under the
angular integration that is involved in the current calculation.

IV. SECOND-ORDER TRANSVERSE CURRENTS

To simplify the calculation of the current kernel, we denote
by K̄ the angular integral of the current expression in Eq. (22),

K̄ξ =
∫ 2π

0
vyξv

2
xξ pξ

d pξ

dε
dϕ, (27)

where as functions of the energy the velocities are given by
Eq. (25) and the momenta by Eq. (12) written for εF = ε.
Since the warping interaction W present in these expressions
is momentum dependent, we make its spatial anisotropy ex-
plicit by writing W = (W0 + Bx sin ϕW1) cos2 3ϕ, where as
before we keep only the term linear in Bx. Thus, from Eq. (10),
W0 and W1 are calculated as

W0 = λ2

2α
p5

ξ , (28)

W1 = − λ2

2α2
p4

ξ

(
1 + 5ξ

m∗α
p0

)
. (29)

pξ and p0 are given in Eqs. (14) and (24) respectively written
for an energy ε instead of εF , such that W0 and W1 remain
functions of the energy, as well as of the chiral index ξ .

In evaluating the density of states (pξ
d pξ

dε
) from Eq. (12),

we also have to consider the derivative of W with respect to
the energy, W ′ = (W ′

0 + Bx sin ϕW ′
1 ) cos2 3ϕ. When the kernel

in Eq. (27) is linearized in Bx, i.e., only linear terms in Bx are

considered, and the angular integral is performed, we obtain

K̄ξ = π

2
Bx

[
−ξ

( p0

m∗
)

− ξ
1

4
p
( p0

m∗
)2

W ′
1 + 1

2

( p

m∗
)
W ′

0

+ 1

2

(
α − 3ξ

p0

m∗
)
W1 + W0

2p0
+ ξ

W0

2m∗α

]
, (30)

with pξ from Eq. (12) reduced to its value in the absence of a
magnetic field and warping, pξ =

√
2m∗ε + (m∗α)2 − ξm∗α.

With input from Eqs. (30), (28), and (22), we obtain the
second-order transverse current response j (2)

xy proportional to
two powers of the applied electric field Ex and linearly depen-
dent on Bx as the derivative of K̄ξ in respect with the energy
evaluated at εF as

j (2)
xy = πe3E2

x Bx

96h̄2 p0

∑
ξ

ξτ 2
ξ

{
1 − 1

8

(
λp2

ξ

α

)2(
p0

pξ

)

×
{

40 + 192ξ

(
m∗α
p0

)
− 40

(
m∗α
p0

)2

+
(

pξ

p0

)[
20 + 35ξ

(
m∗α
p0

)
+ 20

(
m∗α
p0

)2
]

− 7ξ

(
pξ

p0

)2(m∗α
p0

)}}
. (31)

In terms of the interpolation parameter t , from Eq. (4),
we can rewrite the second-order transverse current given in
Eq. (31) as

j (2)
xy = πe3E2

x Bx

96h̄2(m∗α)

∑
ξ=±1

ξτ 2
ξ

{
t − 1

8

[
λ(m∗α)2

α

]2

(1 − ξ t )3

×{40 + 192ξ t − 40t2 + (1 − ξ t )

× [20 + 35ξ t + 20t2] − 7ξ (1 − ξ t )2t}
}

. (32)

Equation (32) is a general expression for the second-order
planar Hall current in a 2D system with Hamiltonian given in
Eq. (5). Here τξ are the relaxation times for the chiral bands
denoted by the chiral index ξ = ±1 and are given in Eq. (23).

Below, we discuss its application to the 2D TI surface
states in the Dirac fermion limit where we assume that the
outer band is excluded from transport. As pointed out before,
the exclusion of the outer Fermi surface is most naturally
realized in the limit of the interpolation parameter t → 1 [see
Fig. (2), Eq. (4), and the discussion below Eq. (13)], but
we will provide the results for the second-order transverse
Hall-like current for 2D topological insulator surface states for
a general value of the interpolation parameter 0 < t < 1. For
completeness, we will also discuss the second-order planar
Hall current for the 2D electron gas regime with an effective
Rashba interaction given by the Dirac velocity α. In this case,
both Fermi surfaces need to be included in the result. As
pointed out before [see discussion below Eq. (13)], this situa-
tion is most naturally realized for the interpolation parameter
t → 0. In both cases, it is easy to see that the warping effect
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FIG. 3. The dependence of σ2xy on t , in arbitrary units, for

different values of the coupling parameter [ λ(m∗α)2

α
]2. In order,

from 1 to 3, m∗α = {(0.07me, 5 × 105 m/s) [27], (0.25me, 5 ×
105 m/s), (.32me, 4.6 × 105 m/s) [35]} for the same value of h̄3λ =
100 eV Å3 (me is the electron mass).

enters the second-order current expression through its ratio to
the square of the Dirac velocity α.

A. 2D surface state Hamiltonian in the Dirac fermion regime

In the case of a topological insulator surface state Hamilto-
nian in the Dirac fermion regime [2m∗εF 	 (m∗α)2, i.e., t →
1 see Eq. (4)], the current is produced only by states with ξ =
+1 whose relaxation time is taken as τ . Thus, from Eq. (32)
we extract the second-order conductivity σ2xy = j (2)

xy /E2
x ,

σ2xy = πe3τ 2Bx

96h̄2(m∗α)

{
t − 1

8

[
λ(m∗α)2

α

]2

(1 − t )3

×{40 + 192t − 40t2 + (1 − t )

× [20 + 35t + 20t2] − 7(1 − t )2t}
}

. (33)

Note that this expression is valid for all values of the interpola-
tion parameter t ∈ [0, 1], in the one-conduction band regime,
as is the case for the surface state of a TI.

In Fig. 3 we present the variation of σ2xy with t for different
values of the effective mass m∗ and velocity α for a warping
parameter h̄3λ = 100 eV Å3. This variation is independent
of the values of the Fermi energy. These results indicate
that the particle-hole asymmetry term, proportional with 1/m∗
has the dominant contribution to the current, over the whole
range of values of t , especially in the end limit t → 1, which
corresponds to the TI regime.

The nonlinear planar Hall current, Eq. (33), exists even in
the absence of hexagonal warping λ, as long as the effective
mass remains finite ( 1

m∗α > 0). For λ = 0, we obtain

σ2xy = πe3τ 2Bx

96h̄2(m∗α)
t = πe3τ 2E2

x Bx

96h̄2

1√
(m∗α)2 + 2m∗εF

.

(34)

This is different however than the effective mass contribution
to the nonlinear transconductivity derived in Ref. [31].

The Dirac limit of the topological insulator (TI) is re-
alized when m∗α2 � 2εF , or equivalently t 
 1 − εF

(m∗α2 ) .

Therefore,

σ2xy = πe3τ 2Bx

96h̄2

{
1

m∗α
− 24

λ2

α2

(εF

α

)3

×
[

1 + 25

64

εF

m∗α
− 7

192

( εF

m∗α2

)2
]}

. (35)

For finite values of the effective mass, the magnitude of this
expression is determined by the first term, which dominates
the warping contribution for all values of the Fermi energy.
This is a consequence of the behavior illustrated in Fig. 3.
When m∗ → ∞, the transverse current becomes

σ2xy = −πe3τ 2Bx

4h̄2

λ2

α2

(εF

α

)3
, (36)

a result that up to a multiplicative factor is same as that of
Ref. [27,30]. For any value of the interpolation parameter t ,
which depends on the experimental system being investigated,
the current can be evaluated from the complete expression for
the one-band nonlinear Hall current given as a function of t in
Eq. (33).

With σ1 = e2τεF /4π h̄2 [27] the linear conductivity of the
TI system, one can calculate γyH from Eq. (2), or alternatively,
the second harmonic resistivity

ρxy = AγyH ExBx = − σ2xy

(σ1)2
Ex = (χ ′ − χ ′′)ExBx, (37)

where, from Eq. (35)

χ ′ = 4π3h̄4

e

λ2

α5
εF

[
1 + 25

64

εF

m∗α
− 7

192

( εF

m∗α2

)2
]

(38)

is the contribution of the warping interaction, while

χ ′′ = π3h̄4

6e

1

m∗αε2
F

(39)

is the independent contribution of the effective spin-orbit cou-
pling. If the effective mass remains finite, such that 1/m∗ �= 0,
χ ′′ is the dominant contribution regardless of the value of
the Fermi energy. This conclusion is based on the general
behavior illustrated in Fig. (3).

In contrast to the result of Ref. [27], we find that the
second-order planar Hall resistivity is determined by the dif-
ference (χ ′ − χ ′′), rather than by their sum.

B. 2D surface state Hamiltonian in the normal fermion limit

For the interpolation parameter t → 0 [2m∗εF � (m∗α)2,
see Eq. (4)] the system is in the 2DEG regime with an effective
spin-orbit coupling given by the Dirac velocity α. In this case,
as discussed below Eq. (13), both bands need to be considered
in the calculation, along with their corresponding relaxation
rates τ 2

ξ = τ 2(1 − ξm∗α/p0) = τ 2(1 − ξ t ) from Eq. (23). In
terms of the interpolation parameter t the nonlinear Hall cur-
rent can be written as

σ2xy = πe3τ 2Bx

96h̄2(m∗α)

∑
ξ=±1

ξ (1 − ξ t )

{
t − 1

8

[
λ(m∗α)2

α

]2

× (1 − ξ t )3{40 + 192ξ t − 40t2 + (1 − ξ t )

× [20 + 35ξ t + 20t2] − 7ξ (1 − ξ t )2t}
}
. (40)
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First, we note that in the absence of the warping interaction,

σ2xy = −πe3τ 2E2
x Bx

48h̄2

m∗α
(m∗α)2 + 2m∗εF

. (41)

This is the same result one obtains for a 2D Rashba system
with a Fermi energy above the band crossing point [28].

In the normal fermion limit, when t → 0, the current ex-
pression becomes, from Eq. (40),

σ2xy = −πe3τ 2E2
x Bx

48h̄2m∗α

[
t2 + 50t

[
λ(m∗α)2

α

]2
]

= − πe3τ 2E2
x Bx

48h̄2
√

(m∗α)2 + 2m∗εF

×
{

m∗α√
(m∗α)2 + 2m∗εF

+ 50

[
λ(m∗α)2

α

]2
}

. (42)

Using the linear conductivity of a 2DEG, σ1 = e2τεF /π h̄2,
the second harmonic resistivity in Eq. (37) can be written as

ρxy = (χ ′ + χ ′′), (43)

with

χ ′ = 25π3h̄4

24eε2
F

1√
(m∗α)2 + 2m∗εF

[
λ(m∗α)2

α

]2

, (44)

and

χ ′′ = π3h̄4

48eε2
F

m∗α
(m∗α)2 + 2m∗εF

. (45)

V. SECOND-ORDER LONGITUDINAL
MAGNETORESISTANCE

To complete this analysis, we calculate the second-order
magnetochiral anisotropy-induced magnetoresistance along
the ŷ direction. In this case, while the direction of the magnetic
field remains fixed along x̂, the electric field is applied along ŷ
and the change in resistance is measured parallel to the applied
electric field. For this problem, the second-order distribution
function is given by Eq. (20) written for a velocity vy and
an electric field Ey. Correspondingly, the longitudinal current
is obtained from Eq. (21) written for the new distribution
function, leading to

j (2)
yy = −e3E2

y

48h̄2

∑
ξ

τ 2
ξ

∫ 2π

0

d

dε

[
v3

yξ pξ

d pξ

dε

]
εF

dϕ. (46)

In contrast to Eq. (27), the angular kernel of the current inte-
gral is now of the form

K̄ξ =
∫ 2π

0
v3

yξ pξ

d pξ

dε
dϕ. (47)

When linearized in Bx, after a long, but otherwise straightfor-
ward calculation, we obtain

K̄ξ = 3π

2
Bx

[
−ξ

( p0

m∗
)

− ξ
1

4
p
( p0

m∗
)2

W ′
1 + 1

2

( p

m∗
)
W ′

0

+ 1

2

(
α − 3ξ

p0

m∗
)
W1 + W0

2p0
+ ξ

W0

2m∗α

]
. (48)

The exact proportionality between K̄ξ in Eq. (30) and K̄ξ given
above, the latter being three times as big as the former, is
due to the fact that the Taylor expansion in Bx of the velocity
driving the current, in this case vy, has a coefficient 3 in K̄ξ and
1 in K̄ξ . This proportionality is carried over in the current cal-
culation, as well as in the expression of the second-harmonic
resistivity ρyy. The dependence of the longitudinal current and
ρyy on the interpolation parameter remains unchanged. Thus,
ρyy = 3ρxy for all values of t .

VI. SUMMARY AND CONCLUSIONS

We calculate the nonlinear planar Hall effect in topological
insulator surface states with a finite mass m∗ described by the
Hamiltonian in Eq. (5). The first term in HT I proportional to
the inverse effective mass breaks particle-hole and sublattice
symmetries [36] and is always present in the surface states
of topological insulators [32–35]. We define a parameter t ∈
[0, 1] in Eq. (4) that interpolates the Hamiltonian in Eq. (5)
between the Dirac fermion limit [large m∗, (m∗α)2 � 2m∗εF ,
t → 1] and the limit of a normal fermion system with an effec-
tive spin-orbit coupling given by the Dirac velocity α [small α,
(m∗α)2 	 2m∗εF , t → 0]. For an intermediate value of 0 <

t < 1 the Hamiltonian describes a 2D electron gas with an
effective spin-orbit coupling α. Generically, for this system,
the Hamiltonian in Eq. (5) allows a pair of Fermi surfaces with
opposite chirality index ξ = ±1. However, the condition on
the effective mass m∗ � �

2α
, where � is a system-dependent

wavenumber cutoff above which the Hamiltonian in Eq. (5) is
no longer valid, effectively eliminates the ξ = −1 chiral band
from transport considerations. As we have discussed in this
paper, this condition can be naturally satisfied for topological
insulators with values of the interpolation parameter t ∼ 1. To
preserve this condition of single-band transport for a general
value of the interpolation parameter 0 < t < 1, one needs to
use the constraint that εF 	 (m∗α2)/2 for the same values
of the effective mass and α. For the interpolation parameter
t ∼ 0, the Fermi momenta are close to each other and the
system will generically exhibit transport arising from both
Fermi surfaces.

With the above caveats on the Hamiltonian in Eq. (5), we
show using Boltzmann transport formalism in the nonlinear
regime, that in the presence of a parallel configuration of mag-
netic field Bx and an electric field Ex, a current proportional
with E2

x Bx is obtained in the transverse in-plane direction
(along the y axis) for all values of t even in the absence of
the warping interaction. This is the magnetochiral anisotropy-
induced nonlinear planar Hall effect for topological insulator
surface states observed in Ref. [27]. Our principal result is
given in Eq. (32), which is a general expression for the second-
order planar Hall current in a 2D system with Hamiltonian
given in Eq. (5) for an arbitrary value of the interpolation pa-
rameter t . In contrast to the previous literature [27,30] where
only the Dirac fermion limit (t → 1) is discussed this is a sig-
nificant theoretical improvement whence the nonlinear PHE
can be read-off for any value of the interpolation parameter
t , larger than the term determined by the spin-orbit interac-
tion alone, for as long as the effective electron mass remains
finite. We apply our general result for the nonlinear PHE for
arbitrary values of t to the two limiting cases: Dirac fermion
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limit with linear dispersion relation and single band transport
(t → 1) and the normal fermion limit with an effective SOC α

and two-band transport (t → 0). We find that, for t → 1, the
second-order nonlinear planar Hall resistivity is obtained as
the difference of two contributions: one induced by the spin-
orbit interaction and the other induced by the warping term,
as given in Eq. (37). Note that, even though the resistivity
ρxy is linear in Ex and Bx, the nonlinear planar Hall current
is proportional to E2

x and Bx [see Eq. (32)]. In the normal
fermion limit (t → 0), both chiral bands need to be included
in the calculation of the nonlinear planar Hall effect. This
regime of the surface state Hamiltonian has not been discussed
before, except in the context of simple Rashba systems [27]
where the nonlinear planar Hall effect was found to vanish
due to the cancellation between the two chiral bands. In this
paper, we confirm that the nonlinear PHE is nonzero even in
this limit (t → 0) and the corresponding expression for the
resistivity is given in Eq. (43) where the two currents add.
In addition, we also calculate the second-order magnetochiral
anisotropy-induced magnetoresistance in a geometry in which
the electric and the in-plane magnetic fields are perpendicular
to each other and the change in resistance is measured parallel
to the electric field. In this geometry, we show that a nonlinear
magnetoresistance is possible in TI surface states in which the
additional longitudinal current is proportional to the magnetic
field and two powers of the electric field and is three times in

magnitude of the nonlinear planar Hall current discussed in
this paper.

For the sample characteristics given in Ref. [27],
carrier concentration n ∼ 7 × 1013 cm−2, Fermi energy
εF ∼ 400 meV, α = 5 × 105 m/s, and m∗ = 0.07, we note
that m∗α2/2 ∼ 50 meV, leading to a parameter t = 0.33. For
this value, the TI insulator approximation, whereby only a
single band is considered in transport is not valid, as the Fermi
momentum does not satisfy the linear dispersion pF = εF /α.
Therefore, the observed second Hall harmonic resistivity can-
not be generated by Eq. (37) since the warping contribution
cannot be of the type predicated by Eq. (38) whose Fermi
energy dependence is obtained from the linear dependence of
the momentum. Based on our theory, the current that was mea-
sured in the experiment discussed in Ref. [27] is associated
with the two-band transport regime, in which the spin-orbit
and warping contributions add as in Eq. (43). Our results given
in Eq. (32) are more generally valid, however, and experi-
ments of nonlinear PHE for arbitrary values of t can be com-
pared with Eqs. (32), (37), and (43) depending on the values of
the sample-specific interpolation parameter given in Eq. (4).
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