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Superconducting triangular islands as a platform for manipulating Majorana zero modes
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Current proposals for topological quantum computation (TQC) based on Majorana zero modes (MZMs) have
mostly been focused on coupled-wire architecture which can be challenging to implement experimentally. To
explore alternative building blocks of TQC, in this paper we study the possibility of obtaining robust MZMs
at the corners of triangular superconducting islands, which often appear spontaneously in epitaxial growth. We
first show that a minimal three-site triangle model of spinless p-wave superconductor allows MZMs to appear
at different pairs of vertices controlled by a staggered vector potential, which may be realized using coupled
quantum dots and can already demonstrate braiding. For systems with less fine-tuned parameters, we suggest an
alternative structure of a “hollow” triangle subject to uniform supercurrents or vector potentials, in which MZMs
generally appear when two of the edges are in a different topological phase from the third. We also discuss the
feasibility of constructing the triangles using existing candidate MZM systems and of braiding more MZMs in
networks of such triangles.
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I. INTRODUCTION

For more than 20 years, Majorana zero modes (MZMs)
in condensed matter systems have been highly sought af-
ter due to their potential for serving as building blocks of
topological quantum computation, owing to their inherent
robustness against decoherence and non-Abelian exchange
statistics [1–5]. MZMs were originally proposed to be found
in half-quantum vortices of two-dimensional (2D) topologi-
cal p-wave superconductors and at the ends of 1D spinless
p-wave superconductors [6,7]. Whether a pristine p-wave
superconductor [8] has been found is still under debate.
However, innovative heterostructures proximate to ordinary
s-wave superconductors have been proposed to behave as
effective topological superconductors in both 1D and 2D.
These include, for example, semiconductor nanowires subject
to magnetic fields [9–11], ferromagnetic atomic spin chains
[12–17], 3D topological insulators [18–21], quantum anoma-
lous Hall insulators [22–24], quasi-2D spin-orbit-coupled
superconductors with a perpendicular Zeeman field [25–30],
and planar Josephson junctions [31–37], etc. It has been a
challenging task to decisively confirm the existence of MZMs
in the various experimental systems due to other competing
mechanisms that can potentially result in similar features
as MZMs do in different probes [34,35,38–43]. Other pro-
posals for constructing Kitaev chains through a bottom-up
approach, based on, e.g., magnetic tunnel junctions proximate
to spin-orbit-coupled superconductors [44], and quantum dots
coupled through superconducting links [45–47] are there-
fore promising. In particular, the recent experiment [47] of
a designer minimal Kitaev chain based on two quantum dots
coupled through tunable crossed Andreev reflections (CARs)
offers a compelling route towards MZM platforms based on
exactly solvable building blocks.

In parallel with the above efforts of realizing MZMs in
different materials systems, scalable architectures for quan-
tum logic circuits based on MZMs have also been intensely
studied over the past decades. A major proposal among these
studies is to build networks of T-junctions, which are minimal
units for swapping a pair of MZMs hosted at different ends
of a junction, that allow braiding-based topological quan-
tum computation (TQC) [5]. Alternatively, networks based
on coupled wires forming the so-called tetrons and hexons,
aiming at measurement-based logic gate operations [48], have
also been extensively investigated. To counter the technical
challenges of engineering networks with physical wires or
atomic chains, various ideas based on effective Kitaev chains,
such as quasi-1D systems in thin films [49], cross Josephson
junctions [37], scissor cuts on a quantum anomalous Hall in-
sulator [24], and rings of magnetic atoms [50], etc., have been
proposed. However, due to the same difficulty of obtaining
or identifying genuine MZMs in quasi-1D systems mentioned
above, it remains unclear how practical these strategies are
in the near future. These challenges, along with the advance-
ments in building designer minimal Kitaev chains, motivate
us to explore new MZM platforms that are not based on
bulk-boundary correspondence: In small systems with only a
few fermion degrees of freedom, discussing the emergence of
MZM due to bulk-boundary correspondence is less meaning-
ful. Instead, it is easier to fine-tune system parameters based
on exactly solvable models to realize well-behaved MZMs.

Additionally, in this paper we highlight triangular su-
perconducting islands as a promising structural unit for
manipulating MZMs. Unique geometries combined with sim-
ple protocols of control parameters can greatly facilitate MZM
creation and operations [50–53]. We also note that triangles
naturally break 2D inversion symmetry and do not present
a straightforward strategy for morphing into either 1D or
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FIG. 1. Schematics of two triangle structures proposed in this
paper. (a) Three-site Kitaev triangle with bond-dependent Peierls
phases. (b) Hollow triangular island with a uniform vector potential.

2D structures with periodic boundary conditions, implying
different bulk-boundary physics from other quasi-2D struc-
tures. Finally, it is worth mentioning that triangular islands
routinely appear spontaneously in epitaxial growth [54] on
close-packed atomic surfaces.

In this paper we propose two triangular geometry designs
that are pertinent to different experimental platforms. The
first is an exactly solvable “Kitaev triangle” model consisting
of three fermion sites. The Kitaev triangle hosts MZMs at
different pairs of vertices controlled by Peierls phases on the
three edges [Fig. 1(a)], that is not due to topological bulk-
boundary correspondence, and can realize the braiding of
two MZMs. The second is finite-size triangles with a hollow
interior [Fig. 1(b)] under a uniform vector potential, which
tunes its individual edges into different topological phases.
Compared to existing proposals based on vector potentials or
supercurrents [55–58], our design explores the utility of ge-
ometry rather than the individual control of superconducting
nanowires. We also discuss scaled-up networks of triangles
for implementing braiding operations of MZMs.

II. KITAEV TRIANGLE

In this section we present an exactly solvable minimal
model with three sites forming a “Kitaev triangle” that can
host MZMs at different pairs of vertices controlled by Peierls
phases on the edges. The Bogoliubov–de Gennes (BdG)
Hamiltonian includes complex hopping and p-wave pairing
between three spinless fermions forming an equilateral trian-
gle [Fig. 1(a)],

H =
∑

〈 jl〉
(−teiφ jl c†

j cl + �eiθ jl c jcl + H.c.) −
∑

j

μc†
j c j, (1)

where t is the hopping amplitude, � is the amplitude of the
(2D) p-wave pairing, μ is the chemical potential, and θ jl is
the azimuthal angle of r jl = rl − r j (the x axis is chosen to
be along r12), consistent with {c†

l , c†
j } = 0. φ jl is the Peierls

phase due to a bond-dependent vector potential A to be speci-
fied below (the nearest-neighbor distance a is chosen to be the
length unit and e = h̄ = 1 hereinbelow): φ jl = ∫ rl

r j
A · dl =

−φl j . We have chosen a gauge so that the vector potential
only appears in the normal part of the Hamiltonian [59], and
the p-wave gap � is assumed to be an effective one induced
by proximity to a neighboring superconductor, on which the
vector potential has a negligible influence. The minimal model
may be realized as an effective low-energy model of carefully

engineered mesoscopic superconductor devices, such as that
made by quantum dots connected by superconducting islands
[47]. Rewriting H in the Majorana fermion basis a j = c j +
c†

j , b j = 1
i (c j − c†

j ) and specializing to the Kitaev limit t = �,
μ = 0, we can obtain explicit conditions for getting MZMs at
different sites [60]. For example, first let φ12 = 0 so that sites
1 and 2 alone form a minimal Kitaev chain with H12 = itb1a2

and hosting MZMs a1 and b2. Then one can set φ23 and φ31

so that all terms involving the above two Majorana operators
cancel out. Solving the corresponding equations gives φ23 =
−π/3 and φ31 = −φ13 = −π/3. The three Peierls phases can
be realized by the following staggered vector potential,

A = [1 − 2�(x)]
2π

3
√

3
ŷ, (2)

where �(x) is the Heaviside step function. The above con-
dition for MZMs localized at the triangle corners can be
generalized to Kitaev chains forming a triangular loop, as
well as to finite-size triangles of 2D spinless p-wave super-
conductors in the Kitaev limit, as the existence of a1 and b2

are only dictated by the vector potential near the correspond-
ing corners. It should be noted that in the latter case, 1D
edge states will arise when the triangle becomes larger, and
effectively diminish the gap that protects the corner MZMs.
In this sense, the gap that protects the MZMs in the Kitaev
triangle model, defined by the energies of the first excited
states ±(1 −

√
2

2 )t ≈ ±0.29t [60], is due to finite-size effects.
On the other hand, for the longer Kitaev chain, another pair
of MZMs will appear near the two bottom vertices which can
be understood using a topological argument given in the next
section. In this sense, the MZMs in the Kitaev triangle here
are not due to a topological bulk-boundary correspondence
[the point of A = 2π

3
√

3
and μ = 0 sits in the trivial phase in

Fig. 3(b)].
We next show that the minimal Kitaev triangle suffices

to demonstrate braiding of MZMs. To this end we consider
a closed parameter path linearly interpolating between the
following sets of values of φ jl ,

(φ12, φ23, φ31) : φ1 → φ2 → φ3 → φ1, (3)

with φ1 = (0,−π
3 ,−π

3 ), φ2 = (−π
3 ,−π

3 , 0), φ3 =
(−π

3 , 0,−π
3 ). It is straightforward to show that at φ2 and

φ3 there are MZMs located at sites 1,3 and 2,3, respectively.
Therefore the two original MZMs at sites 1,2 should switch
their positions at the end of the adiabatic evolution.

Figure 2 shows that the MZMs stay at zero energy through-
out the parameter path that interchanges their positions. In the
Supplemental Material [60] we proved the exact degeneracy
of the MZMs along the path [61]. To show that such an
operation indeed realizes braiding, we explicitly calculated
the many-body Berry phase of the evolution [4,50,60] and
found the two degenerate many-body ground states acquire a
π
2 difference in their Berry phases as expected [4]. Compared
to the minimum T-junction model with four sites [4,62], our
Kitaev triangle model only requires three sites to achieve
braiding between two MZMs, and is potentially easier to
engineer experimentally.
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(a)

(b)

FIG. 2. (a) Evolution of the eigenvalues of the three-site Ki-
taev triangle along the closed parameter path for φ on the three
edges. (b) MZM wave functions at different points of the parameter
path. Clockwise from the upper left panel: φ1 → 1

2 (φ1 + φ2) →
φ2 → φ3.

III. HOLLOW TRIANGLES

For systems with less fine-tuned Hamiltonians than the
minimal model in the previous section, it is more instructive
to search for MZMs based on topological bulk-boundary cor-
respondence. In this section we show that MZMs generally
appear at the corners of a hollow triangle, which can be
approximated by joining three finite-width chains or ribbons
whose bulk topology is individually tuned by the same uni-
form vector potential.

To this end, we first show that topological phase transitions
can be induced by a vector potential in a spinless p-wave
superconductor ribbon as illustrated in Fig. 3(a). In compar-
ison with similar previous proposals that mostly focused on
vector potentials or supercurrents flowing along the chain
[55,56], we consider in particular the tunability by varying the
direction of the vector potential relative to the length direction
of the ribbon, which will become instrumental in a triangular
structure.

Consider Eq. (1) on a triangular lattice defined by unit-
length lattice vectors (a1, a2) = (x̂, 1

2 x̂ +
√

3
2 ŷ) with W unit

cells along a2 but infinite unit cells along a1, and assume
the Peierls phases are due to a uniform vector potential A so
that φ jl = A · r jl . The Hamiltonian is periodic along x and

(a)

A

ϕ

x

y

n = 1 n = L
a

(b)

(c)

FIG. 3. (a) Schematic illustration of a finite-width (W = 3 here)
ribbon based on the triangular lattice in the presence of a vector
potential A = A(− sin ϕx̂ + cos ϕŷ). (b) Topological phase dia-
gram for a W = 1 triangular chain obtained by superimposing the
Mb,t (A, μ) (b bottom edge, t top edges) plots of 1D chains with
A = Aŷ (bottom edge) and A = A(

√
3

2 x̂ + 1
2 ŷ) (top edges). Color

scheme: black—[Mb,Mt ] = [1, 1]; yellow—[−1, −1]; purple—
[−1, 1]; orange—[1, −1] (not present in this case). (c) Near-gap BdG
eigenenergies vs A for a finite triangle with edge length L = 50,
W = 1, and μ = 1.6. t = � = 1 in all calculations.

can be Fourier transformed through c†
m,n = 1√

N

∑
k c†

k,ne−ikm,
where m, n label the lattice sites as rm,n = ma1 + na2. The
resulting momentum space Hamiltonian [60] can then be used
to calculate the Majorana number [7,63] M of the 1D ribbon.
When M = −1, the 1D system is in a nontrivial topological
phase with MZMs appearing at open ends of semi-infinite
ribbons, and otherwise for M = 1. In Fig. 3(b) we show
the topological phase diagrams for a 1D ribbon with width
W = 1, A = Aŷ, and A = A(

√
3

2 x̂ + 1
2 ŷ) superimposed. We

found that the vector potential component normal to the rib-
bon length direction has no effect on the Majorana number,
nor does the sign of its component along the ribbon length
direction. However, topological phase transitions can be in-
duced by varying the size of the vector potential component
along the ribbon, consistent with previous results [55,56].
These properties motivate us to consider the structure of a
hollow triangle formed by three finite-width ribbons subject to
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(c) (d) (e) (f)

(a) (b)

FIG. 4. (a) Topological phase diagram for a W = 1 triangle by superimposing the Mb,r,l (A, ϕ) plots of 1D chains (b bottom, r right, l left,
μ = 1.1). ϕr,l are equal to ϕb + π/3 and ϕb − π/3, respectively. The colors are coded by which edges have nontrivial topology. For example,
black, [Mb,Mr,Ml ] = [1, 1, 1], means all edges are trivial. The behavior depicted in (b)–(f) is representative of that when A is in the range
of (2.25,2.5), for which the M = −1 phase “crawls” through the three edges counterclockwise as ϕ increases. (b) Spectral flow of a triangle
with W = 1, L = 50, μ = 1.1, and A = 2.35 with increasing ϕ. (c)–(f) BdG eigenfunction |�|2 summed over the two zero modes at ϕ = 0,
π

12 , π

6 , and π

3 , respectively. The bottom edge is parallel with x̂ in the coordinates illustrated in Fig. 3(a).

a uniform vector potential A = Aŷ as illustrated in Fig. 1(b),
in which the bottom edge is aligned with x̂. The purple regions
on the phase diagram in Fig. 3(b) mean the bottom edge and
the two upper edges of the hollow triangle have different
M, which should give rise to MZMs localized at the two
bottom corners if the triangle is large enough so that bulk-edge
correspondence holds, and gap closing does not occur at other
places along its edges.

To support the above arguments, we directly diagonal-
ize the BdG Hamiltonian of a finite hollow triangle with
edge length L = 50 and width W = 1. Figure 3(c) shows the
spectral flow (BdG eigenenergies evolving with increasing
vector potential A) close to zero energy at chemical potential
μ = 1.6. Indeed, zero-energy modes appear in the regions of
μ and A consistent with the phase diagram. Hollow trian-
gles with larger W also have qualitatively similar behavior,
although the phase diagrams are more complex [60]. The
eigenfunctions for the zero-energy modes at A = 2.35 and
μ = 1.1 in Fig. 4(c) also confirm their spatial localization at
the bottom corners of the triangle.

We next show that rotating the uniform vector potential
in plane, guided by the phase diagram of the three edges
overlapped together [Fig. 4(a)], can manipulate the positions
of the MZMs. Specifically, a desired path on the (A, ϕ) plane,
ϕ being the in-plane azimuthal angle of A [Fig. 3(a)], of the
phase diagram should make the nontrivial M = −1 phase
cycle through the three edges but without entering any trivial
regions, when all edges have the same M.

Figure 4(b) plots the spectral flow versus ϕ for a path
determined in the above manner, which clearly shows that

the zero-energy modes persist throughout the rotation and the
bulk gap never closes. At a critical point when individual
edges change their topology, e.g., near the middle of the
ϕ ∈ [0, π/6) region, gap closing is avoided due to finite-size
effects, as discussed in Ref. [4]. Figures 4(c)–4(f) plot the
BdG wave functions of the MZMs at special values of ϕ.
One can see that the two MZMs appear to cycle through
the three vertices by following the rotation of A. We note in
passing that if the vector potentials on the three edges can be
controlled independently similar to the Kitaev triangle case, a
swapping of the two MZMs can in principle be achieved as
well.

In the Supplemental Material [60] we also gave an example
of a W = 3 triangle, for which one has to additionally consider
the nontrivial dependence of the bulk gap of the three edges
on A. In general, optimization of the parameter path can be
done by examining the (suitably designed) topological phase
diagram together with the bulk gap diagram, and choosing
triangles of appropriate sizes.

Before ending this section, we present a tentative design for
braiding more than two MZMs based on our hollow triangles.
The structure, illustrated in Fig. 5, consists of four triangles
sharing corners with their neighbors. The critical step of
transporting γ2 to the left vertex of the rightmost triangle, cor-
responding to Figs. 5(b) and 5(c), can be achieved by rotating
the vector potential of the bottom-middle triangle counter-
clockwisely from ϕ = π

6 to π
3 , which swaps the topological

phases of the two side edges as shown in Fig. 4. In the Supple-
mental Material [60] we show this operation does not involve
gap closing when the parameter path is chosen judiciously.
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(a) (b)

(c) (d)

γ1 γ2 γ3 γ4 γ1 γ2

γ3

γ4

γ1

γ3

γ2 γ4 γ1 γ3 γ2 γ4

c) (d)

γ1 γ2 γ3 γ4 γ1 γ2 γ

γ3

FIG. 5. Representative steps for braiding four MZMs in four tri-
angles sharing corners. (a) Initialization of four MZMs γ1, γ2, γ3, γ4.
All three edges of the bottom-middle and the top triangles are in the
trivial phase by, e.g., controlling the chemical potential. The bottom-
left and bottom-right triangles have ϕ = 0 so that their bottom edges
are nontrivial. (b) Moving γ3 by “switching on” the middle triangle
by changing the chemical potential under a fixed vector potential at
ϕ = π

6 , and then turning on the top triangle with similar means ex-
cept ϕ = 0. (c) Transporting γ2 to the right triangle through rotating
the vector potential in the middle triangle counterclockwise by π/6.
(d) Moving γ3 to the left triangle by “switching off” the top triangle
followed by the middle triangle.

IV. DISCUSSION

The hollow interior of the triangles considered in this paper
is needed for two reasons: (1) W � L is required for bulk-
edge correspondence based on 1D topology to hold. (2) A
finite W is needed to gap out the chiral edge states of a 2D
spinless p-wave superconductor. The latter is not essential if
one does not start with a spinless p-wave supercondutor but
a more realistic model such as the Rashba+Zeeman+s-wave
pairing model. On the other hand, the former constraint may
also be removed if one uses the Kitaev triangle. Nonethe-
less, an effective three-site Kitaev triangle may emerge as an
effective theory of triangular structures if a three-orbital low-
energy Wannier basis can be isolated, similar to the continuum
theory of moiré structures. We also note that the corner MZMs

in our triangles appear due to different reasons from that in
higher-order topological superconductors [41,51–53].

For possible physical realizations of our triangles, immedi-
ate choices are quantum dots forming a Kitaev triangle [47],
planar Josephson junctions or cuts on quantum anomalous
Hall insulator/superconductor heterostructures [24] that form
a hollow triangle, and triangular atomic chains assembled
by a scanning tunneling microscope (STM) tip [17] on a
close-packed surface. The quantum-dot platform may be ad-
vantageous in the convenience of implementing parity readout
by turning the third vertex temporarily into a normal quantum
dot [64–66]. Looking into the future, it is more intriguing to
utilize the spontaneously formed triangular islands in epitaxial
growth [54] with the center region removed either physi-
cally by lithography/ablation, or electrically by gating. To
create a staggered vector potential or supercurrent profile for
the Kitaev triangle, one can use a uniform magnetic field,
corresponding to a constant vector potential gradient, plus a
uniform supercurrent that controls the position of the zero. It
is also possible to use two parallel superconducting wires with
counterpropagating supercurrents proximate to the triangle.

Although we only discussed braiding two MZMs in the
three-site Kitaev triangle, a generalization of the idea for
braiding more MZMs in a minimal network formed by quan-
tum dots sitting at triangle vertices similar to that in Fig. 5
is also possible. Moreover, a distinct feature of the minimal
quantum-dot network is that it can be exactly solved due
to the small Hilbert space. As such, nontrivial parameter
paths defined by bond-dependent vector potentials for braid-
ing MZMs, not limited by bulk-edge correspondence, can be
obtained by solving an optimization problem, which can make
such systems more advantageous than mesoscopic wire-based
networks. Our work provides a versatile platform for manip-
ulating MZMs based on currently available candidate MZM
systems and for potentially demonstrating the non-Abelian
nature of MZMs in near-term devices.
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