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Collective excitations in competing phases in two and three dimensions
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We investigate the superconducting (SC), charge-density wave (CDW), and antiferromagnetic (AFM) phases
in the extended Hubbard model at zero temperature and half filling. We employ the iterated equations of
motion approach to compute the two-particle Green’s functions and their spectral densities. This renders a
comprehensive analysis of the behavior of collective excitations possible as the model’s parameters are tuned
across phase transitions. We identify the well-known amplitude (Higgs) and phase (Anderson-Bogoliubov)
modes within the superconducting phase and observe a similar excitation (cooperon) in the CDW phase which
shifts towards zero energy as the system approaches the phase transition to the SC phase. In the CDW phase,
close to the phase transition to the AFM phase, we find a collective mode, an exciton, that does not change
significantly and another mode, a longitudinal magnon, that emerges from the two-particle continuum as the
system approaches the phase transition to the AFM phase. It becomes identical with the former at the transition.
In the AFM phase, their roles are reversed. Additionally, we find a transversal Goldstone magnon located at zero
energy.
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I. INTRODUCTION

The study of collective excitations is of great interest
because it sheds light on the intricate dynamics of corre-
lated electron systems, providing crucial insight into emergent
material properties. We are, in particular, interested in the
behavior of the collective excitations in the vicinity of phase
transitions. Do they signal these transitions, for instance, by
softening? How does the competition of different phases man-
ifest in the energies and weights of the collective excitations?
These questions set the context of the present article.

On the theoretical side, we choose a paradigmatic but
simple model which displays competing phases. The Hub-
bard model has been employed in a plethora of previous
studies and competing phases are established in its exten-
sions. Early studies proved the existence of eigenstates of
the Hubbard Hamiltonian that exhibit off-diagonal long-range
order, encouraging the model’s usage for the description of
high-temperature superconductivity [1]. Shortly afterward,
an exact SO(4) symmetry was discovered, which induces a
degeneracy of superconductivity (SC) and a charge-density
wave (CDW) governed by an attractive on-site interaction [2].
This coexistence stems from the existence of a particle-hole
transformation on bipartite lattices, which maps the attractive
Hubbard model rigorously onto the repulsive one, exhibiting
antiferromagnetism (AFM) [3]. The order parameters of the
SC and CDW phases in the attractive model map to different
spin expectation values in the repulsive one [4,5].

Numerous studies investigated the phases and various
quantities of the Hubbard model in equilibrium systems,
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including additional interactions with and without doping
[6–18]. Recent studies on the dynamics of the superconduct-
ing gap parameter examined quenches, yielding oscillations
[19–23], and driven systems motivated by the goal to induce
superconductivity [24–30].

In this paper, we restrict ourselves to the half-filled Hub-
bard model including an additional nearest neighbor, intersite
interaction on the square and the simple cubic lattice at zero
temperature. Specifically, we investigate competing phases,
i.e., the behavior of various collective modes close to phase
transitions between these phases. To this end, the case in two
dimensions (2D) already displays a wide range of possible
phases including CDW, AFM, s- and dx2−y2 -wave supercon-
ductivity as well as phase-separated states [7,31–37]. We
extend the corresponding established phase diagrams to the
simple cubic lattice in three dimensions (3D) where we find
a qualitatively similar phase diagram for CDW, AFM, s-wave
SC phases, and indications of phase separation.

First, we employ a mean-field approximation to the interac-
tion terms to determine the phases. Second, we use the iterated
equations of motion approach (iEoM) which has already seen
success in the handling of interaction quenches [38–41] to
compute the collective excitations. The basic idea is to start
in the Heisenberg picture from a suitable operator basis which
is extended upon commuting its operators with the Hamilto-
nian and including the appearing additional operators to the
basis. Of course, a truncation is necessary for most practical
applications, however, the approximation becomes better as
more terms are included within the basis. The applicability of
this method was compared successfully to the results of the
density-matrix formalism [42].

Moreover, we demonstrate an explicit way to compute
various Green’s functions by this approach. By extension, the
corresponding spectral functions of the investigated systems
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can be computed and we discuss the signatures of collec-
tive excitations in the spectral functions. The most prominent
examples in the SC phase are the well-known phase mode
(Anderson-Bogoliubov) and the amplitude (Higgs) modes.
The former occurs in neutral superfluids at zero energy and
was found in a large number of studies [43–51] which we can-
not list exhaustively here. We obtain this mode based on a mi-
croscopic description without long-range electromagnetic in-
teractions. The inclusion of this kind of interaction would shift
this mode towards the plasma frequency [44,48,52] which is,
however, beyond the scope of the present paper. The ampli-
tude mode, on the other hand, is located at the lower edge
of the quasiparticle continuum. The corresponding energy is
the energy required to break up a Cooper pair [46,53–59].
This Higgs mode is not charged so that it does not couple to
the electromagnetic fields.

This paper is organized as follows: In Sec. II we introduce
the model and its Hamiltonian as well as the employed mean-
field theory for the ground state. We give a brief overview
of the iterated equations of motion approach and derive a
rigorous relation to Green’s functions in Sec. III. Next, we
show and discuss results in Sec. IV. Lastly, in Sec. V, we
summarize the results, draw the conclusions, and provide an
outlook.

II. MODEL AND MEAN-FIELD THEORY

A. Model

In our study, we employ the extended Hubbard model at
half filling because it hosts the relevant phases and thereby
provides direct access to the rich excitation spectra therein. Its
Hamiltonian is given by

H = − t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + μ
∑
i,σ

niσ

+ U
∑

i

ni↑ni↓ + V

2

∑
〈i, j〉,σ

niσ n jσ , (1)

where c(†)
iσ annihilates (creates) an electron with spin σ on

lattice site i and 〈i, j〉 denotes the summation over nearest-
neighbor sites. The parameters are the hopping amplitude t ,
the onsite interaction U , the intersite interaction V , and the
chemical potential μ. Applying a Fourier transform passing
to k space yields the single-particle dispersion

ε0(�k) = −2t
D∑

α=1

cos (kα ), kα ∈ [−π, π ), (2)

with the system’s dimension D and the dimensionless wave
vector �k where we set the lattice constant to unity.

We investigate this model for various sets of parameters
allowing us access to a variety of phases. The model exhibits
antiferromagnetism for positive U and moderate values of V .
At larger V , the intersite repulsion takes over and favors a
charge-ordered phase, i.e., a CDW. In the U < 0 region, the
CDW occurs for any V > 0. Choosing V = 0 leads to a coex-
istence of s-wave superconductivity and said CDW [2], while
moderate values of V < 0 yield an s-wave superconducting
phase [7]. In this article, we explore the AFM-CDW as well

as the CDW-SC phase transitions. For U < 0 and V < 0, signs
of phase separation occur as one would expect.

B. Static mean-field theory

Next, we decouple the interaction terms according to
Wick’s theorem. We define a short hand for the operators:

nkσ := c†
�kσ

c�kσ
, fk := c−�k↓c�k↑, (3a)

gkσ := c†
�kσ

c�k+ �Qσ
, ηk := c−�k− �Q↓c�k↑, (3b)

where �Q := (π, π ) in 2D and �Q := (π, π, π ) in 3D defines
the nesting vector for the CDW and AFM phases. We use the
following abbreviations to write down the mean-field param-
eters:

�CDW =
(

U

2N
− zV

N

) ∑
�kσ

〈g�kσ
〉, (4a)

�AFM = U

2N

∑
�k

(〈gk↑〉 − 〈g�k↓〉), (4b)

�SC = U

N

∑
�k

〈 f�k〉, (4c)

�η = U

N

∑
�k

〈η�k〉, (4d)

�n = V

N

∑
�k,σ

D∑
α=1

cos kα〈n�kσ
〉, (4e)

where z denotes the coordination number of the lattice. The
last parameter �n renormalizes the hopping term according to

ε(�k) := −(2 + �n)
D∑

α=1

cos (kα ). (5)

In total, we obtain the mean-field Hamiltonian in spinor rep-
resentation as

HMF =
∑

�k
�†(�k)h(�k)�(�k), (6)

with the spinors

�†(�k) := (c†
�k↑, c†

�k+ �Q↑, c−�k↓, c−�k− �Q↓), (7)

and the matrix

h(�k) :=

⎛⎜⎜⎜⎝
ε(�k) �∗

− �SC �η

�− ε(�k + �Q) �η �SC

�∗
SC �∗

η −ε(−�k) −�+
�∗

η �∗
SC −�∗

+ −ε(−�k − �Q)

⎞⎟⎟⎟⎠,

(8)

where we defined �± := �CDW ± �AFM.
We observe that the entire Hamiltonian and all expectation

values in the considered phases only depend on

γ̂ (�k) := 1

D

D∑
α=1

cos (kα ), (9)
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i.e., for any operator Ô the following relation holds

〈Ô�k〉 = 〈Ô�k′ 〉 =: 〈Ô(γ )〉, (10)

if γ = γ̂ (�k) = γ̂ (�k′). While 2D systems of about 100 × 100
lattice sites can still be solved by evaluating sums over wave
vectors, computing solutions for large three-dimensional sys-
tems becomes impossible due to the N = L3 scaling. This
issue can be resolved by using the aforementioned fact and
replacing the wave-vector sums by energy integrals using the
density of states (DOS) for γ defined by

ρ(γ ) := 1

N

∑
�k

δ(γ − γ̂ (�k)). (11)

As an example, we consider

�SC = U

N

∫ 1

−1
dγ ρ(γ )〈 f (γ )〉. (12)

Henceforth, we use the exact DOS for the square and the
simple cubic lattice provided in Ref. [60]. This allows us to
access both 2D and 3D models on equal footing. We can
compute any phase as long as it does not introduce another
kind of wave-vector dependence.

We solve the mean-field equations self-consistently. The
γ integrals are approximated numerically using a tanh − sinh
quadrature [61] terminating once |1 − ∫

dγ ρ(γ )| < 10−13

is achieved and reusing the computed sampling points and
weights. This method excels at dealing with the singularities
in the DOS requiring merely a few hundred function evalua-
tions to achieve the desired accuracy.

This procedure yields the ground-state phase diagram at
T = 0 shown in Fig. 1. The CDW-AFM boundary is located
at U = zV , where z is the coordination number. This holds
for both the square lattice (z = 4) and the simple cubic lat-
tice (z = 6) and can be seen by comparing the prefactors in
Eqs. (4a) and (4b): Crossing U = zV changes which prefactor
of the two order parameters is larger.

Note, that the dx2−y2 -superconducting state, which has been
confirmed for the square lattice [7,35], cannot be described by
our method because it would require to deal with expectations
values which do not depend only on γ̂ (�k).

III. ITERATED EQUATIONS OF MOTION
AND GREEN’S FUNCTIONS

So far we discussed the static mean-field equations that
describe the ground state. These results are used to compute
the quantities, namely, the expectation values, necessary for
the iterated equations of motion approach [38–41]. On this
basis, we can describe two-particle quantities such as the
various collective excitations of the system.

We start with an operator set B that ideally is complete
with respect to commutation with the Hamiltonian H , i.e.,
any commutator [H, A] for any A ∈ B can be represented by
linear combinations of operators in B. Then, we can express
any time-dependent operator in this set by

A(t ) =
∑

n

an(t )An, (13)

FIG. 1. The phase diagram obtained for the extended Hubbard
model (1) on (a) a square lattice and (b) a simple cubic lattice using
a mean-field approximation at T = 0. The CDW-AFM boundary lies
at U = zV , where z is the coordination number. For U < 0 and V =
0, CDW and s-wave SC coexist. The boundary for the dx2−y2 -wave
SC (dashed line) for the square lattice is taken from Ref. [7] since
it is not accessible within our formalism, see below. However, the
red shading indicates the region in which the dynamical matrix M
in Eq. (14c) has negative eigenvalues indicating the instability of the
assumed phase. In view of the attractive interactions, we expect a
separation of phases [37]. Lastly, the striped area shows the region
that we cannot access numerically because the gap values are too
small for any tractable discretization. Yet an SC phase is expected.

where the coefficients an(t ) capture the entire time depen-
dence. Inserting this into the Heisenberg equation of motion
and applying a sort of operator scalar product (Ai|·) on both
sides of the equation yields

d

dt
A(t ) =

∑
n

d

dt
an(t )An = i

∑
n

an(t )[H, An] (14a)

⇒
∑

n

(Ai|An)︸ ︷︷ ︸
:=Nin

d

dt
an(t ) = i

∑
n

(Ai|[H, An])︸ ︷︷ ︸
:=Min

an(t )

(14b)

⇒ N d

dt
�a(t ) = iM�a(t ). (14c)

where �a := (a1, a2, a3, . . .)�. The matrices N and M contain
all the energetic and dynamic properties of the system. The
former is referred to as norm matrix while the latter is called
the dynamic matrix. The advantage is that one can now handle
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simple matrices rather than operators acting on an enormous
Hilbert space. The dimension of these matrices depends on the
number of operators in the set B.

In practice, however, generic Hamiltonians do not allow for
a complete operator set B to exist because the commutations
usually introduce terms which are not yet in B, e.g., because
they are of higher order. For instance, commuting a bilinear
term with a quartic Hamiltonian yields quartic terms. Iterating
the commutation yields hexatic ones and so on. One can
include such additional terms and generically the results will
improve the more terms are considered in B. In practice, one
has to restrict the operators to a suitable class of terms, thereby
truncating certain terms. Here, we restrict ourselves to bilinear
operators to capture the leading effects of collective behavior.

Furthermore, we use the symplectic product as operator
product

(A|B) := 〈[A†, B]〉, (15)

where the expectation values are taken with respect to the
assumed phase of the mean-field Hamiltonian (6). Note that
this is not a proper scalar product since it is not positive
semidefinite. For example, let us assume that for some op-
erator A

(A|A) = 〈[A†, A]〉 > 0, (16a)

then

(A†|A†) = 〈[A, A†]〉 = −(A|A) < 0. (16b)

This does not pose a serious issue in our calculations
but must be kept in mind. In particular, it implies that the
norm matrix is not positive as one might have expected. We
emphasize, that the dynamical matrix M is computed by
commuting with the full Hubbard Hamiltonian (1) enabling
us to capture collective behavior rather than using only the
mean-field Hamiltonian (6) which captures the one-particle
dynamics, but misses the two-body dynamics.

The dynamical matrix M is positive semidefinite if the
system is in thermal equilibrium. We derive this statement
in Appendix A. We use this fact to further enhance our
ground-state phase diagram. If M has even a single negative
eigenvalue for a combination of parameters, we know that the
assumed phase does not represent a true ground state. Phys-
ically, this means that there are “excitations” which in fact
lower the energy. Thus, the assumed ground state is not the
lowest state and therefore unstable. This happens for certain
values U < 0 and V < 0, see the red shading in Fig. 1. For
finite temperatures on the square lattice, a phase-separated
state as well as the coexistence of a phase-separated state with
s-wave superconductivity has been found in this region [37].
The phase boundary that we propose here agrees qualitatively
well with the one found in the aforementioned reference. We
expect a similar set of phases to be present on the simple cubic
lattice.

While the existence of a negative eigenvalue of M proves
that the assumed phase is not in thermal equilibrium, the
absence of negative eigenvalues does not imply absolute sta-
bility, but only local stability with respect to the considered
operators. For example, we do not find any negative eigenval-
ues of M in the U > 0, V < 0 region despite previous studies
indicating dx2−y2 -wave superconductivity [7,35].

To treat the square and the simple cubic lattice on equal
footing, we exploit (10) to define the operator set in γ space

Aγ := 1√
N

∑
�k

δ(γ − γ̂ (�k))A�k, (17)

where A�k represents each type of operator defined in Eq. (3a)
or their Hermitian conjugates if the operators are not Hermi-
tian themselves. Operators with different indices are treated
separately, e.g., nγ↑ and nγ↓ are distinct operators in the stud-
ied set B. Additionally, we consider an analogous expression
for the operator

τk := c†
�k↑c�k+ �Q↓ (18)

and its Hermitian conjugate. This will allow us to describe
transversal magnons, i.e., perpendicular deviations from the
staggered magnetization in the AFM phase.

For the numerical treatment, we have to discretize γ .
Still, this allows us to obtain accurate results with drastically
smaller matrices compared with an operator set based on a
discretization of wave vectors. This is crucial for dealing with
three-dimensional lattices. Practically, we choose Nγ = 6000
equally spaced sampling points. A detailed explanation of the
numerics is provided in the Appendix C. Computationally, our
method is limited by the number of terms included in our
operator set as well as by the value of Nγ . If the gap �tot is
of the same order of magnitude as the discretization t�γ the
numerics become inaccurate. This manifests specifically if a
spectral function has strong features at minute energies, e.g.,
the phase mode in the superconducting phase. In this case, the
dynamical matrix M spuriously displays negative eigenvalues
that vanish if Nγ is increased so that �γ is sufficiently smaller
than �tot. This happens if the parameters are chosen from the
striped region in Fig. 1. We observe that this issue only arises
in the SC phase; nevertheless, we expect similar inaccuracies
in the AFM region for small values of U .

In the next step, we rearrange these operators in a way
reminiscent of the x and p operators of a harmonic oscillator,

Xi := Ai + A†
i , Pi := Ai − A†

i . (19)

Then, the studied operator set is given by BXP :=
{Xi, . . . , Pi, . . .}. If some operators would be 0, e.g., Pi for any
Hermitian Ai, or duplicate, e.g., certain Xi for g-type terms
where gkσ = g†

k+Qσ
, we omit these redundant operators.

Due to this particular choice of operators, the matrices
occurring in (14c) acquire a block structure

M =
(
K+ κ

κ† K−

)
, N =

(
�+ L
L† �−

)
, (20)

where the upper block refers to all Xi operators and the
lower block to all Pi operators. Furthermore, due to symmetry,
the relations Im[K±] = Re[κ] = 0 and Re[�±] = Im[L] = 0
hold. Since the mean-field Hamiltonian is real, all ensuing
expectation values are real and we can conclude both matri-
ces have large empty blocks with zero elements: κ = 0 and
�± = 0. This condition is fulfilled for all cases investigated
in this article because the model displays inversion symmetry
and time-reversal symmetry or at least the combination of
both in the AFM phase.
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To study the collective excitations quantitatively, we inves-
tigate various retarded Green’s functions

Gret
AB(t ) = −i〈[A(t ), B]〉�(t ), (21a)

where �(t ) is the Heaviside function and their Fourier trans-
forms

GAB(z = ω + i0+) = −i
∫ ∞

0
eizt 〈[A(t ), B]〉dt . (21b)

The choice of the symplectic operator product enables us
to write down the matrix-valued Green’s functions in terms of
the introduced norm and dynamical matrix

G(z = ω + i0+) = N 1

−zN − MN (22a)

:= −NR(z)N , (22b)

where we introduced the resolvent

R(z) := 1

zN + M . (22c)

The entries of this matrix G(z) are the Fourier-transformed
Green’s functions given in (21b) with respect to the studied
operators. For simplicity, we formulate the relation between
the Green’s functions and the matrices for the operators Aj .
Eventually, we use the block representation resulting for the
operators Xi and Pi. The matrix element ( j, i) refers to

G ji(z = ω + i0+) = GAj A
†
i
(z) (23a)

= −i
∫ ∞

0
〈[Aj (t ), A†

i (0)]〉eizt dt .

(23b)

Performing the Fourier transformation yields

GAj A
†
i
(z) = i

∫ ∞

0
eizt 〈[A†

i (0), Aj (t )]〉dt (24a)

= i
∫ ∞

0
eizt

〈[∑
m

a∗
i,m(0)A†

m,
∑

n

a j,n(t )An

]〉
dt

(24b)

= i
∫ ∞

0

∑
mn

eizt a∗
i,m(0) 〈[A†

m, An]〉︸ ︷︷ ︸
≡Nmn

a j,n(t )dt (24c)

= i
∫ ∞

0
eizt �a†

i (0)N �a j (t )dt, (24d)

where �a j (0) and �a†
i (0) embody the initial conditions Aj =∑

n a j,nAn and A†
i = ∑

n a∗
i,nA†

n. Assuming that N is invertible
we solve the differential equation (14c)

�a j (t ) = exp(iN−1Mt )�a j (0). (25)

Then, the final result reads

GAj A
†
i
(z) = i

∫ ∞

0
�a†

i (0)N exp[i(N−1M + z)t]�a j (0)dt

(26a)

= −�a†
i (0)

[
N 1

N−1M + z

]
�a j (0) (26b)

= −�a†
i (0)[NR(z)N ]�a j (0), (26c)

with the resolvent R(z) from (22c). Obviously, the key task is
computing the resolvent R efficiently.

To this end, we exploit the matrix structure in (20) and
assume that all matrix entries are real so that κi j = �±,i j = 0
holds. Then, with rX (z) := R|XX denoting the upper-left block
of a matrix R which refers to the X operators, we can calculate

rX (z) = 1

M + zN

∣∣∣∣
XX

(27a)

=
[

1

M − 1

M zN 1

M + 1

M zN 1

M zN 1

M − · · ·
]

XX

(27b)

= 1

M

∞∑
j=0

(
−zN 1

M

) j∣∣∣∣
XX

. (27c)

We can safely omit every second term of the sum since we
want to obtain the upper left block of the matrix only and N
always swaps between the upper-left and lower-right block.
Thus, we obtain

rX (z) = 1

M

∞∑
j=0

z2 j

(
N 1

M

)2 j∣∣∣∣
XX

(28a)

= 1

M − z2NM−1N

∣∣∣∣
XX

(28b)

= 1

K+ − z2LK−1
− L†

. (28c)

For brevity, we define ŇX := LK−1
− L†. Since M is positive

semidefinite and block diagonal, its blocks K± are positive
semidefinite as well. Therefore, ŇX is also positive semidefi-
nite and Hermitian so that its square root can be defined. Then,
the resolvent rX (z) can be expressed by

rX (z) = −Ň−1/2
X

1

z2 − Ň−1/2
X K+Ň−1/2

X

Ň−1/2
X , (29)

where the matrix M̌X := Ň−1/2
X K+Ň−1/2

X is used; it is positive
semidefinite and Hermitian by the previous arguments.

If ŇX has a singular part, for instance, due to numerical
inaccuracies or for particular operators, the inverse can be
replaced by the Moore-Penrose pseudo-inverse. A possible
way to compute this inverse is to diagonalize ŇX = VDV†

yielding a diagonal matrix D and a unitary transformation
matrix V . Then, the pseudo-inverse can be defined by

ŇMP := VDMPV†, (30)

with

(DMP)i j =
{

1/Di j Di j �= 0
0 otherwise. (31)

Note that this definition recovers the standard inverse for
invertible matrices.

The same calculation can be repeated by exchanging X
with P, yielding the relation for the lower right block. The
relevant matrices turn out to be

ŇP := L†K−1
+ L, (32a)

M̌P := Ň−1/2
P K−Ň−1/2

P . (32b)
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Summarizing, the Green’s function is given by

GXj ,Xi (z) = −�x †
j (0)L†rX (z)L�xi(0), (33a)

GPj ,Pi (z) = −�p†
j (0)LrP(z)L† �pi(0), (33b)

where the vectors x j (0) and xi(0) describe the initial con-
ditions for the operators Xj and Xi, respectively, and p j (0)
and pi(0) correspondingly for the operators Pj and Pi. The
resolvent rX (z) is given in (29) and

rP(z) = −Ň−1/2
P

1

z2 − M̌P
Ň−1/2

P . (34)

The remaining task consists of finding the inverse 1/(z2 −
M̌ ) for all z. This, however, can be achieved efficiently using a
Lanczos tridiagonalization and a continued fraction expansion
in terms of the Lanczos coefficients ai and bi [62,63]. In the
single-band case, the coefficients approach the limit

a∞ = ω+ + ω−
2

and b∞ = ω+ − ω−
4

, (35)

where ω± represents the upper and lower band edge, respec-
tively [62]. The continued fraction is truncated at some depth
when the coefficients ai and bi are sufficiently close to the
limits (35). Then, the truncated continued fraction can be
terminated by the square root terminator

T (ω) = 1

2b2∞
(ω − a∞ ∓

√
(ω − a∞)2 − 4b2∞), (36)

where the negative sign is to be chosen for ω − a∞ >

2b∞ and the positive sign for ω − a∞ < −2b∞. For
|ω − a∞| < 2b∞, the square root in (36) is replaced by
+i[4b2

∞ − (ω − a∞)2]1/2.
Note that the coefficients start to deviate from the limits

(35) as more and more Lanczos iterations are performed [63].
Therefore, we terminate the continued fraction with the afore-
mentioned terminator when the pair of coefficients occurs in
the fraction which deviates the least from a∞ and b∞.

IV. RESULTS

We investigate four different diagonal Green’s functions
GAA† (ω + i0+) with

AHiggs = 1√
N

∑
�k

( f�k + f †
�k ) =

∫ 1

−1
dγ ( fγ + f †

γ ), (37a)

APhase = i√
N

∑
�k

( f�k − f †
�k ) =

∫ 1

−1
dγ ( fγ − f †

γ ), (37b)

ACDW = 1√
N

∑
�k

(g�k↑ + g�k↓) =
∫ 1

−1
dγ (gγ↑ + gγ↓), (37c)

Al.AFM = 1√
N

∑
�k

(g�k↑ − g�k↓) =
∫ 1

−1
dγ (gγ↑ − gγ↓), (37d)

At.AFM = 1√
N

∑
�k

(τ�k + τ
†
�k ) =

∫ 1

−1
dγ (τγ↑ + τγ↓), (37e)

where N is the number of lattice sites in the system. Each
of these operators generates a different kind of collective

mode. The first operator excites the amplitude mode of
the s-wave superconducting state while the second one ex-
cites the phase mode [51]. The remaining two operators
induce the collective behavior of the CDW and AFM or-
der, respectively. This means these Green’s functions are the
susceptibilities towards alternating local potential (CDW) or
alternating magnetic field (AFM). Below, we refer to the
Green’s functions of these operators by Gα (ω) = GAαA†

α
(ω)

with α ∈ {Higgs, Phase, CDW, l.AFM, t.AFM}. Furthermore,
we use SC when the Higgs and phase mode yield the same
spectral function and AFM when longitudinal and transversal
magnons yield the same spectral function.

The operators in (37) are Hermitian and of bosonic charac-
ter. This means that all spectral functions are antisymmetric
[64]. For this reason, we only show the part ω � 0 in our
plots. Additionally, we add a small positive imaginary part of
10−5t to ω in order to plot the δ peaks as Lorentzians. We
analyze the effect of different numbers of sampling points Nγ

in Appendix D.

A. Classification of the spectral functions

Let us describe the spectral functions Aα (ω) =
−(1/π )Im[Gα (ω + i0+)] of the operators above in the
various phases. Figure 2 shows them at U = −2.5t in the
SC (V = −0.1t) and in the CDW (V = 0.1t and V = 0.5t)
phase.

There are a variety of different features. The results for the
lattices in 2D and 3D are very similar and differ only quanti-
tatively. In the SC phase, see Fig. 2(a), there is a sharp peak
located at ω = 0 in APhase(ω) and a singularity in AHiggs(ω)
located at ω = 2�SC. We identify them with the well-known
Anderson-Bogoliubov mode and Higgs mode, respectively,
in superconductors [43–59]. The former must not have any
weight because of the antisymmetry of the spectral function.
The peak itself is located at zero energy because the model (1)
describes a neutral superfluid without coupling of the phase of
the order parameter to the electromagnetic fields. Therefore,
this phase may be chosen arbitrarily, and changing it requires
no energy which ultimately induces a Goldstone mode to exist
[65,66].

To characterize the occurring peaks that lie outside the
two-particle continuum, we inspect the real part of the Green’s
function. We plot it in the vicinity of the peaks with a double-
logarithmic scale and fit the result linearly y = ax + b to
obtain its power-law behavior. The real part is related to the
imaginary part via the Kramers-Kronig relations. Specifically,
if the imaginary part is a δ distribution, the real part will
be proportional to 1/ω, i.e., a = −1, and the peak has the
weight W0 = exp(b). Furthermore, an exponent of a = −2
corresponds to the derivative of the δ distribution, i.e., δ′(ω).
The fits themselves are given in Appendix B.

This analysis yields that the real part of GPhase(ω) near
ω = 0 behaves like 1/ω2 showing that the peak in APhase(ω)
is the derivative of a δ distribution. The weight of such a peak
is given by the integral

∫
δ′(ω)dω = 0 and thus vanishes in

accordance with expectations.
The singularity in AHiggs(ω) behaves like 1/

√
ω − 2�SC.

Previous studies on the dynamics of the order parameter found
dephasing oscillations after a quench. These oscillations have
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FIG. 2. Spectral functions of the operators listed in Eq. (37). The left column shows the results for the square lattice and the right column
for the simple cubic lattice. The left edge of each plot is at −0.05t in order to improve the visibility of the phase peak at zero frequency (h̄ is set
to unity). The gray area marks the two-particle continuum. The parameters are set to U = −2.5t and Nγ = 6000, while V is varied according
to the legends. The panels show the spectral functions in the (a) SC phase and in the (b), (c) CDW phase.

the frequency � = 2�SC and falloff like 1/
√

t [19,21,52]. An
inverse Fourier transform of AHiggs(ω) yields precisely this
behavior, thereby corroborating our results.

In the CDW phase, see Figs. 2(b) and 2(c), both spec-
tral functions AHiggs(ω) and APhase(ω) become identical and
display a δ peak below the two-particle continuum. In this
case, both modes describe a cooperon, i.e., a bound state of
two electrons or two holes. Following the Landau theory for
continuous phase transitions, it is to be expected that both
excitations show the same spectral behavior. If the free energy
is expanded in powers of the order parameter

f (�SC) ≈ r|�SC|2 + u

2
|�SC|4, (38)

with u > 0. For r < 0, the system is in the SC phase and �SC

is finite. Then it makes a difference if one excites along �SC in
the complex plane (Higgs mode) or perpendicular to it (phase
mode). For r > 0, however, the order vanishes, �SC = 0, and
no distinction between Higgs and phase mode can be made
[67]. Both possible excitation processes have to overcome the
same energy.

In the SC phase, ACDW(ω) features a δ peak below the
continuum corresponding to the finite energy necessary to
excite the electronic density modulation of CDW type. This
mode corresponds to the creation of an exciton since it

results from a bilinear operator with creation and annihilation
fermionic operator so that it represents a bound electron-hole
pair. For moderate values of V > 0, i.e., in the CDW phase,
see Fig. 2(b) at V = 0.1t , the CDW spectral function shows a
singularity at ω = 2�CDW. This mode moves out of the two-
particle continuum upon increasing V and becomes a proper δ

peak, see Fig. 2(c) at V = 0.5t .
The spectral functions At.AFM(ω) and Al.AFM(ω) are iden-

tical and restricted to the continuum for both phases and both
lattices. This can be understood by the same argument used
for the identity of APhase(ω) and AHiggs(ω) outside of the SC
phase: If no AFM order is present, there is no distinction
between a longitudinal and a transversal excitation. The same
amount of energy is required to create any such excitation
which is a magnon or paramagnon if there is no long-range
AFM order. For the square lattice, there is a singularity located
at the upper edge of the two-particle continuum. But this does
not occur in the 3D case. Including lifetime effects, sharp
features at the upper edge of the continuum are expected to
be smeared out anyway.

At V = 0, the SC and the CDW order can coexist due to the
SO(4) symmetry. In this phase, the mean-field single-particle
energies are given by

E± = ±
√

ε2 + |�CDW|2 + |�SC|2. (39)
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FIG. 3. Same as Fig. 2 except that V = 0, i.e., SC and CDW order can coexist due to the SO(4) symmetry. Since the ratio of �SC to �CDW

can be chosen arbitrarily, we show in panel (a) the spectral functions for �CDW = 0 and in panel (b) for �SC = 0 while we distribute the gap
equally in panel (c).

This means that the proper order parameter is �tot :=
(|�CDW|2 + |�SC|2)1/2. Here, �CDW and �SC can change ar-
bitrarily without affecting the system’s energy as long as �tot

remains constant. This degeneracy of both phases is rigor-
ously exact due to the SO(4) symmetry [2].

In Fig. 3, we show the spectral functions for U = −2.5t
and V = 0. The different panels correspond to different
choices for �CDW and �SC. First, in Fig. 3(a), we set �CDW =
0. This results in a purely superconducting phase with the
same features as in Fig. 2(a). The peak in ACDW(ω) moves
to ω = 0 because it does not cost energy to enhance the CDW
order parameter if it is compensated by a reduction of the SC
order parameter. In fact, ACDW(ω) and APhase(ω) are identical
since they are linked by the SO(4) symmetry.

Second, Fig. 3(b) shows the spectral functions for
�SC = 0, i.e., in a purely charge-ordered phase. Similar to
before, there is not much change compared with Fig. 2(b). The
spectral functions AHiggs(ω) and APhase(ω) are still identical
since no SC order is present. Both exhibit a sharp peak at
ω = 0 proportional to δ′(ω) which reflects that an SC order
can be introduced without energy cost if compensated by a
reduction of the CDW order.

Last, we choose �CDW = �SC in Fig. 3(c). For this spe-
cific ratio of �CDW and �SC, AHiggs(ω), and ACDW(ω) are
identical. Choosing a different ratio yields qualitatively the
same results, but the peaks differ in magnitude. Both spectral
functions have a peak at ω = 0 proportional to δ′(ω) and a
singularity at the lower edge of the two-particle continuum

ω = 2�tot. These singularities behave like 1/
√

ω − 2�tot.
Varying the ratio of the two gap parameters allows one to
switch between AHiggs(ω) and ACDW(ω) continuously.

We attribute the peak in the amplitude spectral functions
at ω = 0 to the freedom to vary the order parameters, i.e.,
diminishing one and increasing the other while keeping �tot

constant so that the system stays in its ground states. In the
pure SC phase, we find this peak only in ACDW(ω). This
can be understood as follows: The operator ACDW in (37)
creates an exciton and thereby increases |�CDW|. This can
be achieved without increasing the energy by lowering �SC.
However, the reversed argument is not true: Since �CDW is
already 0, creating another Cooper pair by virtue of AHiggs

always increases �tot and thus requires a minimum energy of
2�tot. The analogous argument holds for the pure CDW phase.
If, however, both orders are present, the system can shift
between them arbitrarily by creating either kind of excitation.
Hence, in this case, we find a peak at ω = 0 in both spectral
functions.

The spectral function APhase(ω) behaves as it does in the
pure SC phase. It has only a peak at ω = 0 that is associated
with the freedom of choice of the phase of �SC.

Finally, we investigate the same spectral functions close
to the AFM-CDW phase transition as depicted in Fig. 4. We
choose V = 1.2t for the square lattice and V = 0.8t for the
simple cubic lattice so that the phase transition is located at
U = 4.8t in both cases. Figures 4(a) and 4(b) show the system
close to the phase transition at U = 4.8t ± 0.05t . Again, the
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FIG. 4. Same as Fig. 2 except that we are focusing on the AFM-CDW phase transition. For the square lattice, we set V = 1.2t , and for
the simple cubic lattice, V = 0.8t . This choice yields the phase transition at U = 4.8t for both lattices. Panels (a) and (c) show the spectral
functions in the AFM phase and panels (b) and (d) in the CDW phase.

SC-related spectral functions are identical in the CDW and the
AFM phases due to the absence of a finite SC order. Within the
continuum, their weight is shifted towards the upper edge. On
the square lattice only, there is a peak above the continuum.
It is likely to be smeared out if lifetime effects were included.
In the AFM phase, both Al.AFM(ω) and ACDW(ω) have a peak
close to, but yet below, the two-particle continuum. The peak
of the former is at a lower energy than the peak of the latter.
In the CDW phase, this behavior is reversed, i.e., the peak
of ACDW(ω) lies lower than the one in Al.AFM(ω). Analyzing
the power-law behavior of the real part described above, see
also Appendix B, we confirm that these peaks are δ peaks.
Moving further away from the phase transition, here U = 6.2t
in Fig. 4(c) and U = 3.4t in Fig. 4(d), the upper peak merges
with the two-particle continuum while the lower one persists.
We emphasize that the spectral function of the transverse
magnon At.AFM(ω) always displays a δ′ peak at ω = 0, inde-
pendent of how far away the parameters are chosen from the
phase transition. This is the expected behavior of a Goldstone
boson.

B. SC-CDW transition

Having discussed the dominant peaks, we address their
behavior when the system approaches the phase transition
between the SC and CDW phase at V = 0 for U = −2.5t .
First, we investigate the identical peak in APhase(ω) and
AHiggs(ω), respectively, in the CDW phase. The evolution
of its position ω0 and its weight W0 as a function of V is
depicted double logarithmically in Fig. 5. For V � t , the
position increases with the square root of V . This behavior
crosses over to a purely linear growth for large V . The gap
position ω0 relative to the gap �CDW shows a plateau for
large V while leaving the square root behavior for small
values of V hardly altered. The peak’s weight W0 decreases
like 1/

√
V for V � t , reaching a shallow minimum for inter-

mediate values of V , and eventually saturating at a constant
value.

Summarizing, we see that for V � t the peak position
follows ω0 = α

√
V and its weight W0 = β/

√
V , where α and

β are some constants. Thus, we conclude W0 = β/(αω0).
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FIG. 5. The upper panels (a) show double-logarithmic plots of the positions ω0 of the peak in ASC(ω) in the CDW phase while the lower
panels (b) show their respective weights W0. In the upper panels, the pink markers additionally show the peak position divided by the gap
ω0/�CDW. The left column shows the results for the square lattice and the right column for the simple cubic lattice at U = −2.5t . The fits are
linear in the double-logarithmic plot, i.e., y(V ) = edV c, and the parameters are indicated in the panels.

Furthermore, we know that the spectral functions are antisym-
metric, i.e., we find

APhase(ω � t ) = W0[δ(ω − ω0) − δ(ω + ω0)] (40a)

= −2β

α

δ(ω + ω0) − δ(ω − ω0)

2ω0
. (40b)

Taking the limit V → 0 corresponds to the limit ω0 → 0,
i.e., leading to a ratio tending to the derivative

lim
h→0

f (x + h) − f (x − h)

2h
= f ′(x). (41)

Applying this to the spectral peak yields

lim
ω0→0

APhase(ω � t ) = −2β

α
δ′(ω), (42)

confirming our previous analysis of the phase peak being
proportional to δ′(ω).

Next, we analyze the peak in ACDW(ω) occurring if the
system is in the SC phase for V < 0. A plot of its position ω0

and weight W0 is given in Fig. 6. The upper panels [Figs. 6(a)
and 6(b)] depict the peak position and weight, respectively.
For |V | � t , the behavior of both of them is the same as for
the previously discussed peak in ASC(ω) in the CDW phase.
Increasing |V |, the increase of the peak position slows down
while the weights start to drop rapidly. We cannot compute
the Green’s functions for even larger |V | with V < 0 because

the dynamical matrix M acquires negative eigenvalues below
V ≈ −0.28t (square lattice) or V ≈ −0.34t (simple cubic lat-
tice). We recall that this indicates that the assumed phase, i.e.,
the SC phase is not stable. Therefore, we conclude that for
sufficiently negative values of V , the superconducting phase
is not the true ground state as indicated by the red shading in
Fig. 1. Specifically, the region of the SC phase on the square
lattice appears to be even smaller than shown by the dx2−y2

data from Ref. [7]. Recently, there has been evidence for phase
separation for negative values of V on the square lattice, at
least at finite temperature [37]. Thus, we interpret the negative
eigenvalues in the dynamical matrix as indicators of phase
separation. Physically, a strong attractive interaction clearly
favors phase separation since the particles prefer to stay close
together so it is highly plausible that they gather in one region
of the sample while leaving the remainder essentially empty.
In 3D, we observe negative eigenvalues in M for strongly
negative interactions as well. Thus, we expect that phase sep-
aration also occurs on this lattice.

C. AFM-CDW transition

Last, we investigate how the modes behave as the system
passes from the CDW to the AFM phase. As in the previ-
ous section, we plot the occurring peaks in ACDW(ω) and
Al.AFM(ω) in the respective phases in Fig. 7. On the right-hand
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FIG. 6. Same as in Fig. 5, but for the peak in ACDW(ω) in the SC phase, i.e., for V < 0.

FIG. 7. The upper panels (a) show plots of the positions ω0 of the peak in ACDW(ω) (orange lines) and Al.AFM(ω) (green lines) close to the
corresponding phase transition at U = 4.8t . Again, we choose V = 1.2t for the square lattice (left column) and V = 0.8t for the simple cubic
lattice (right column), respectively. The middle panels (b) depict the peak positions relative to the lower edge of the two-particle continuum
ω−, while the bottom panels (c) show the peak weights. The shadings indicate the phase of the system. Green represents AFM while orange
represents CDW. Note the difference in the scales for the two lattices.
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FIG. 8. The upper panels (a) show double-logarithmic plots of the positions ω0 of the peak in Al.AFM(ω) relative to the lower edge of
the two-particle continuum ω−. The lower panels (b) depict the respective weights W0. Again, we choose V = 1.2t for the square lattice (left
column) and V = 0.8t for the simple cubic lattice (right column), respectively. The interaction U0 denotes the highest value of U for which
there is no peak below the two-particle continuum, i.e., for U > U0 a peak occurs. For the square lattice, we find U0 ≈ 3.372t and for the
simple cubic lattice U0 ≈ 4.479t . The parameter range depicted here places the system within the CDW phase. The fits are of the same kind as
in Fig. 5.

side of each panel, i.e., for U > zV , the system is in the AFM
phase (green shading); on the left-hand side, it is in the CDW
phase (orange shading). Qualitatively, the peak in Al.AFM(ω)
behaves exactly like the peak in ACDW(ω) if the phases are
swapped. We attribute this behavior to the simplicity of our
model and do not expect this behavior quantitatively generic.

Figure 7(a) shows the peak positions which shift essentially
linearly upon varying U . It is noteworthy, that in the AFM
phase the peak in Al.AFM(ω) lies energetically lower than the
one in ACDW(ω). This is reversed if the system is in the CDW
phase. We conclude that it is energetically more favorable to
create an AFM excitation (magnon) than a CDW exciton if the
system is in the AFM phase. In the CDW phase, the creation
of the CDW exciton is energetically cheaper than the creation
of a magnon.

Additionally, we plot the peak positions in Fig. 7(b) relative
to the lower edge of the two-particle continuum. We see that
the lower-lying peak, i.e., the peak corresponding to the phase
in which the system is, shifts further away from the continuum
as the system moves away from the phase boundary. The
other peak, however, shifts closer to the continuum until it
dives into it. At this point, the weight of the merging peak
vanishes, see Fig. 7(c). This occurs around U ≈ 4.8t + 1.428t
[ACDW(ω)] and U ≈ 4.8t − 1.428t [Al.AFM(ω)] for the square
lattice and around U ≈ 4.8t + 0.321t [ACDW(ω)] and U ≈
4.8t − 0.321t [Al.AFM(ω)] for the simple cubic lattice.

The weights of the peaks in Al.AFM(ω) in the AFM phase
[the same applies to ACDW(ω) in the CDW phase] grow as
the system moves away from the phase transition. The same
applies to the peaks in ACDW(ω) in the CDW phase.

In Fig. 8, we revisit the data of Figs. 7(b) and 7(c)
on a double-logarithmic scale. We restrict the analysis to
Al.AFM(ω) in the CDW phase as the swapped case of
ACDW(ω) in the AFM phase shows the same behavior. We
consider U relative to the value U0 at which the peak in

Al.AFM(ω) ceases to exist. This occurs at U0 = 3.372t on
the square lattice and at U0 = 4.479t on the simple cubic
lattice. The peak positions ω0 in panels (a) behave quadrat-
ically as they merge with the two-particle continuum, i.e.,
ω0 ∝ (U − U0)2 while the weights W0 in Fig. 8(b) decrease
linearly, i.e., W0 ∝ (U − U0). This behavior is generic for the
peaks of bound states merging with their continua at vanishing
binding energy [68–70].

V. CONCLUSION

The objective of this article was to study collective exci-
tations in competing phases. We wanted to understand how
collective excitations behave in the vicinity of phase tran-
sitions and how they signal these transitions, for example
by softening or by losing spectral weight. To this end, we
developed a general and versatile formalism based on iterated
equations of motion. We could show that the formalism repro-
duces all rigorously known properties such as the existence of
Goldstone bosons in case of broken continuous symmetries
and the absence thereof if the broken symmetry is discrete.

We conducted an analysis of the mean-field phase diagram
of the extended Hubbard model in two (2D) and three dimen-
sions (3D). The results in both dimensions are qualitatively
very similar. Specifically, we studied the competing phases of
s-wave superconducting order (SC), alternating charge den-
sity wave order (CDW), and Néel antiferromagnetism (AFM).
Furthermore, we were able to identify regions in which our
analysis is incomplete in the sense that the assumed phases
turn out to be unstable, but it is not obvious which phases
are the stable ones. Since we observed this phenomenon for
strongly attractive interactions we conjecture that the instabil-
ity indicates the occurrence of phase separation in 2D and 3D.
For the square lattice, recent findings at finite temperature also
pointed in this direction [37].
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We developed a method to obtain Fourier-transformed
Green’s functions based on iterated equations of motion and
analyzed the most relevant of them. We identified the sig-
natures of collective excitations in the spectral functions
AHiggs(ω), APhase(ω), ACDW(ω), Al.AFM(ω), and At.AFM(ω)
which are designed to excite the Higgs mode, the phase mode,
a staggered density mode, a longitudinal, and a transversal
magnon, respectively. The focus was the analysis of their
behavior as the system approaches and crosses phase transi-
tions. In particular, we identified the peak and the singularity
occurring in the first two spectral functions related to super-
conductivity to be the well-known amplitude and phase modes
in neutral superconductors and thereby provided a technique
to obtain them starting from a microscopic description. Out-
side an SC phase, both spectral functions are identical while
in an SC phase, the phase mode is massless while the Higgs
mode is at the lower edge of the continuum. So, the phase
mode manifests as the derivative of the δ function at zero en-
ergy complying with the asymmetry of the spectral function.

We observed the behavior of the peak in the SC-related
spectral functions corresponding to a cooperon in various
phases. It shifts towards zero energy and acquires more and
more weight as the system moves from the CDW phase toward
the SC phase. The peak’s relative position to the two-particle
continuum and its weight saturate as the system moves away
from the phase transition. In the SC phase close to the CDW
phase, the peak in ACDW(ω) is located at a finite energy and
has finite weight. It must represent a bound state because
it is located below the two-particle continuum. This state is
induced by the application of an electron creation and an
electron annihilation without effect of its spin content so that
we interpret it as an S = 0 exciton. It behaves similarly to the
SC-related peak in non-SC phases.

In the vicinity of the AFM-CDW phase transition, the
spectral densities ACDW(ω) and Al.AFM(ω) feature a peak.
The former is the aforementioned exciton while the latter is
a longitudinal magnon. Of course, this can also be seen as
an exciton being a bound state of an electron and a hole, yet
with spin content S = 1 and Sz = 0. The longitudinal magnon
lies at lower energy in the AFM phase than the CDW exciton.
In the CDW phases, the two peaks swap their relative energy
positions. Moving away from the phase transition, the higher-
lying peak merges with the two-particle continuum. The peak
position relative to the two-particle continuum approaches
zero quadratically in �U while its weight approaches zero
linearly with �U where �U measures the distance to the
interaction where the merging takes place.

Furthermore, we found the exciton peak in ACDW(ω) also
at large values of V in the CDW phase, evolving smoothly
from the CDW-AFM phase transition. We assume that this
peak is always located outside of the two-particle continuum,
even for small values of V . In this case, however, it can lie
very close to the continuum, so that we cannot resolve it due
to the limited accuracy of our numerics. So it seems to appear
as a singularity at 2� for small values of V .

In the AFM phase, the spectral functions Al.AFM(ω) and
At.AFM(ω) are distinct. While the longitudinal magnon con-
tinues to manifest as a peak at relatively high energies the
transversal magnon appears as a peak at zero energy within
our numerical accuracy. Due to the asymmetry of the spectral,

its peak is the derivative of a δ function. It is an advantageous
feature of the adopted approach that the Goldstone theorem
is automatically fulfilled. Both, phase mode and transver-
sal magnon are located at zero energy if the corresponding
symmetry is broken, i.e., the U(1) symmetry and the O(3)
symmetry, respectively.

Future directions of research comprise incorporating the
investigation of possible phase-separated states. This would
enable us to delve deeper into the negative V regime of the
phase diagrams and to analyze its collective excitations. An-
ticipating the occurrence of regions of high and low density
of electrons, a necessary prerequisite is to investigate doped
systems.

Another intriguing extension is to extend the study from
the � point to the full Brillouin zone. This implies studying the
same phases with operators at finite wave vectors beyond the
nesting vector. Conceptually, this extension is straightforward.
But it spoils the efficient approach to discretize the γ space
since the dependence on two wave vectors will no longer
allow us to reduce all wave-vector dependence to a single
dependence on γ .

Additionally, one can fathom including a coupling of the
electronic system to the electromagnetic fields so that we no
longer study a neutral, but a charged superconducting system.
One would expect to capture the important shift of the phase
mode to finite energies close to the plasma frequency as ex-
plained by the Anderson-Higgs mechanism.

Lastly, one could deal with multiband systems with
even richer phase diagrams and corresponding collective
excitations.
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APPENDIX A: SEMIPOSITIVITY
OF THE DYNAMICAL MATRIX

We argue that M is positive semidefinite if the system is in
thermal equilibrium. For any �x ∈ CN , we consider

�x†M�x =
∑

i j

x∗
i x jMi j (A1a)

=
〈[ ∑

i

x∗
i A†

i ,

[
H,

∑
j

x jA j

]]〉
(A1b)

= 〈[B†, [H, B]]〉, B :=
∑

j

x jA j . (A1c)

For M to be positive semidefinite the expression above
must not be negative. Exactly this property has been already
proven in Refs. [71,72] as the non-negativity of the double
commutator.
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FIG. 9. The upper panel shows a log-log plot of the real part of APhase(ω) in the SC phase at U = −2.5t and V = −0.1t as well as a linear
fit to it. The lower panel shows the same plot for AHiggs(ω) in the coexistence phase at V = 0. The columns show the results for the square
and the simple cubic lattice, respectively. The functions behave as 1/ω2 indicating that the peaks in the spectral functions are derivatives of a
δ distribution.

APPENDIX B: FITS TO THE GREEN’S FUNCTIONS

Here, we discuss fits to the real parts of various Green’s
functions in the different phases. All fits are linear of the
type y = ax + b in double-logarithmic plots, i.e., a describes
the exponent of the power-law behavior of the functions. An
exemplary plot of the real part of GPhase(ω) in the SC phase
is shown in Fig. 9(a). It behaves like 1/ω2 indicating that
the peak at ω = 0 is the derivative of a δ distribution. The
same kind of result is obtained for the transversal magnon
in At.AFM(ω) in the AFM phase, as well as in AHiggs(ω) and
ACDW(ω) in the coexistence phase.

The analogous analysis of the divergence at ω = 2� found
in AHiggs(ω) and ACDW(ω) at V = 0 reveals the power law
1/

√
ω.

Lastly, all other peaks below the two-particle continuum
behave identically. The real part of them behaves like 1/ω

in close vicinity to the peak position. This indicates that
the peaks are δ distributions. The peaks of Al.AFM(ω) and
ACDW(ω) close to the phase transition are identical when
swapped, i.e., Al.AFM(ω) in the CDW phase is the same as
ACDW(ω) in the AFM phase. However, we do not believe that
this identity is quantitatively generic.

APPENDIX C: NUMERICAL TREATMENT
OF THE MATRIX ELEMENTS IN γ SPACE

We want to use operators such as (17) to span the consid-
ered operator set. Numerically, however, it is impossible to
deal with matrices of infinite dimensions so a discretization is
necessary. Additionally, we cannot use δ distributions as ma-
trix elements. Therefore, we also discretize the δ distribution
as follows. A mesh of equidistant sampling points is chosen
for γ ∈ [−1, 1]. They are midpoints of intervals of length �γ .

Then, we define an approximate δ function by

h(γ ) :=
{ 1

�γ
|γ | <

�γ

2
0 otherwise.

(C1)

Numerical integration amounts up to the finite sum over the
sampling points and for the approximate δ function in partic-
ular reads∫ 1

−1
f (γ̃ )h(γ̃ − γ j )d γ̃ ≈

∑
i

f (γi )h(γi − γ j )�γ = f (γ j ),

(C2)

showing that h(γ ) mimics the continuous δ distribution on
the discrete mesh. Note that the limit �γ → 0 reproduces the
continuous case with the δ distribution.

We compute the matrix elements as

(Ai|Aj ) = 1

N

∑
�k�l

h(γi − γ̂ (�k))h(γ j − γ̂ (�l ))(A�k|A�l ). (C3)

Here, all expressions represent finite numbers so that they are
suitable for numerical treatment. This procedure can also be
applied to the matrix elements (Ai|[H, Aj]) of the dynamical
matrix.

Additionally, we stress that expressions such as (A�k|A�l ) or
(A�k|[H, A�l ]) can be reduced to sums proportional to γi or γ j ,
respectively. Therefore, it is not necessary to implement any
sort of computation in reciprocal space. As an example, let us
consider A�k = f †

�k and

( f †
�k | f †

�l ) = δ�k,�l 〈1 − n�k↑ − n−�k↓〉 = α(�k)δ�k,�l , (C4)
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FIG. 10. Effect of the number of sampling points Nγ on the
absolute position of the peak in APhase(ω) for U = −2.5t and V =
−0.1t . On the simple cubic lattice, the peak already is located at
ω = 0 within numerical accuracy. On the square lattice, its position
approaches zero following

√
1/Nγ .

with α(�k) := 1 − 〈n�k↑ + n−�k↓〉. Inserting this into Eq. (C3)
yields

(Ai|Aj ) = 1

N

∑
�k

α(�k)h(γi − γ̂ (�k))h(γ j − γ̂ (�k)). (C5)

As stated in the main text, see Eq. (10), α(�k) depends only on
γ̂ (�k), hence we can pass from the wave-vector integration to
a γ integration and eventually to a γ sum

(Ai|Aj ) =
∫

ρ(γ )h(γi − γ )h(γ j − γ )α(γ )dγ (C6a)

≈ ρ(γi )h(γ j − γi)α(γi ) (C6b)

= δi j

�γ
ρ(γi )α(γi ). (C6c)

Since �γ is a positive constant factor, it does not impact
any of our matrix operations, i.e., we can shift it to the front
of the expressions M → m̃(�γ )2 and N → ñ(�γ )2. This
allows us to rewrite (26a) as

GAB† (z) = −(�γ )2�b†(0)

[
ñ

1

m̃ + zñ
ñ

]
�a(0) (C7)

for the general operators A and B and the initial conditions
A = ∑

aiAi and B = ∑
biAi.

To provide an explicit example, let us compute GHiggs(ω)
from (37). We order our operator set such that the operators
fγ + f †

γ are the first ones in the set. Then, the initial conditions
read

ai = bi =
{

1 1 � i � Nγ

0 otherwise, (C8)

where Nγ is the number of sampling points. For the Green’s
function, this implies

GHiggs(z) = −(�γ )2
Nγ∑
i=1

Nγ∑
j=1

[
ñ

1

m̃ + zñ
ñ

]
i j

(C9a)

≈ −
∫

dγ

∫
dγ ′

[
ñ

1

m̃ + zñ
ñ

]
(γ , γ ′). (C9b)

The first line is an approximation of the integral in the
second line, as each matrix element corresponds to a specific
value for γ .

APPENDIX D: INFLUENCE OF THE DISCRETIZATION

Most of the computed data barely depend on the number
of sampling points Nγ . However, specific features at very
small energies can be difficult to resolve properly, e.g., the
peak in APhase(ω) in the SC phase. We illustrate this effect
in Fig. 10. Neglecting minor numerical scattering, the phase
peak is properly located at ω = 0 for the simple cubic lattice.
On the square lattice, however, it follows a

√
1/Nγ behavior,

i.e., also approaching 0, but only in the limit Nγ → ∞. This
behavior can be observed for the other peaks at ω = 0 as well.
How strong this effect is, i.e., how large the deviation is from
zero depends on the spectral function as well as on the other
parameters of the system, in particular its dimension.
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