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In this work, we propose a many-body model for cooperative Jahn-Teller/orbital ordering in crystals con-
taining unpaired electrons in locally degenerate e-shells (KCuF3, CuO, CuCl2, . . . ) that moves away from
the usual Heisenberg-like expressions for solids and that is closely related to the usual local Jahn-Teller
formulation for molecules and impurities. In particular, we show that the crystal problem can be expressed
as a [Eg(�) + Eg(R)] ⊗ [est

g (�) + eph
g (R)] combined Jahn-Teller and pseudo-Jahn-Teller problem where the

involved distortion modes est
g (�) and eph

g (R) are, respectively, a ferrodistortive strain mode and a phonon (ferro-
or antiferrodistortive) mode that are strongly coupled among themselves. This model, fully consistent with
experimental data, allows us to predict new phases that are separated by only a few meV from the ground state,
and to propose ways to observe them. First-principles simulations fully support these findings. Comparison of our
model with previous orbital ordering models shows subtle yet significant differences in the way orbital degrees
of freedom work. We finally show that many orbital ordering models and density functional theory simulations
yield solutions that are not consistent with Bloch’s theorem and should be regarded with caution.
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I. INTRODUCTION

In its inception, the Jahn-Teller effect [1] was intended
to explain the distorted, low-symmetry geometrical config-
uration of molecules. However, as time passed, it started a
field, associated with electron-vibration (vibronic) coupling,
that first included other, nonmolecular localized systems like
impurity sites in solids, and later evolved to cover many phys-
ical and chemical phenomena [2,3], including periodic solids
[3–6]. The importance of vibronic coupling today can hardly
be underestimated as it is the necessary tool to understand the
shape of many molecules, as well as playing an important role
in many phenomena ranging from spectroscopy [2] to colossal
magnetoresistance [7] as well as having been the inspiration
for the discovery of high-Tc superconductivity [8].

Nevertheless, the formulations of molecular and solid-state
vibronic problems are currently quite different as the models
for periodic systems, most notably the cooperative Jahn-Teller
effect [3,6,9] and orbital ordering models [10–14], deviate
from the original formulation and focus on describing inter-
actions across the cells of a crystal, expressing them in a
similar way to Heisenberg Hamiltonians. This seems justified
since, for example, all static molecular Jahn-Teller problems
associated with Eg degenerate states in octahedral config-
uration, like the one appearing when Cu2+ is placed in a
perfect Oh complex as in the impurity centers CaO:Ag2+ or
KZnF3:Cu2+, lead to a tetragonally (D4h) distorted AgO6

10−
or CuF6

4− complex. On the other hand, the distortion of a
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system that we could imagine as formed of a periodic array
of perfectly octahedral CuF6

4− complexes connected by the
vertices, the KCuF3 crystal, leads to orthorhombic distortions
that alternate in an antiferrodistortive pattern. In this work,
we try to formulate the problem of having such a lattice
of active Jahn-Teller centers in a periodic solid as closely
to the molecular Eg ⊗ eg problem as possible. During this
process, we will need to clearly differentiate between the
consequences of the presence of various vibronic effects in
crystals (Jahn-Teller effect versus pseudo-Jahn-Teller effect)
as they lead to different physical outcomes and, on occasion,
they are mixed up in the literature. On the practical side, we
will verify our model using density functional theory (DFT)
calculations, concentrating on a variety of crystals containing
Cu2+ ions, that present various high-symmetry, parent [15]
phases (perovskite, rocksalt, and hexagonal bidimensional)
and where we will find that the models reveal similar pat-
terns in all of them. We will demonstrate that this point of
view brings to light oversights in previous models and allows
predicting close-in-energy phases that could be stabilized, for
example through strain engineering. Particular attention will
be paid to the usual assumption in solid-state models where
the bands formed by the degenerate orbitals are expected to
be relatively narrow. This condition can be applied in the
sense that local orbitals are relatively free to rotate at the cubic
configuration, independently of what other nearby orbitals are
doing. However, observing the eg-bands calculated for KCuF3

using DFT in Fig. 1, we can see that they span a range of
almost 3 eV, which is clearly not negligible. It thus seems im-
portant to take into account, somehow, that the bands formed
by the locally degenerate eg orbitals are quite dispersive and
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FIG. 1. Bands with strong Cu(3d ) character when KCuF3 is sim-
ulated using DFT forcing cubic symmetry. The lower three bands
have dxy, dxz, and dyz local character and correspond to the t2g

manifold. The upper two bands have dz2 , dx2−y2 local character and
correspond with the eg manifold. Note the much higher dispersion of
the σ -bonding eg bands when compared with the π -bonding t2g ones.

the way this influences the cooperative Jahn-Teller effect and
orbital ordering. This will be a main goal of our work, where
we will study in detail the wave function of the solid and
reinterpreting orbital ordering, both based on superexchange
[10–14] or electron-phonon coupling [14,16], in view of the
complementary requirements of translational symmetry and
band dispersion.

While magnetic interactions are often linked to the Jahn-
Teller distortions in part of the literature [10–14], our
simulations show that their influence on the final geometry
and orbital state of the system is minor, in agreement with
other recent calculations [17,18]. Thus, our present model
focuses solely on the vibronic interactions. In a second stage,
magnetic interactions and their coupling with vibrational ones
could easily be introduced, following a similar recipe to the
one used to describe K2CuF4 and similar layered lattices,
where it was shown [17] that passing from antiferromag-
netic to ferrocoupling slightly softened an antiferrodistortive
phonon mode.

The manuscript is structured in three main sections. In
the first one (Sec. II), we will describe the need to create a
multielectron (many-body) model to describe vibronic effects
in pure crystals. There, we will start by defining in some
detail the degenerate state that gives rise to the Jahn-Teller
effect in crystals, and we will continue by explaining the
distortions that couple to this degenerate state and introduc-
ing the electron-nuclear coupling that leads to the vibronic
coupling in these systems. We will show that the same
Hamiltonian can be used to describe orbital ordering on the
same footing. In the second part (Sec. III) we will provide
the computational details for the DFT simulations that we
have carried out to check that the predictions of our model
are fully general and applicable to a large variety of situations.
In the third section (Sec. IV) we perform DFT simulations for
three different systems: (i) Tetragonal KCuF3 that displays
an antiferrotype orbital ordering and whose high-symmetry,
parent structure is the Pm-3m cubic perovskite KZnF3, where
Cu2+ complexes are connected by the vertices of the CuF6

FIG. 2. Illustration of the main quantities involved in the Jahn-
Teller effect on a d7 or d9 impurity in an octahedral environment.
Parts (a) and (b) illustrate the tetragonal Qθ and orthorhombic Qε

components of the eg mode of the complex. Part (c) illustrates the
splitting of the eg orbital with the distortion. The up/down arrows
indicate the electrons that populate the eg shell in both d7 and d9

cases. The red arrows denote the active Jahn-Teller electrons, while
those in green denote the inactive ones. Finally, part (d) shows the
energy surface (warped Mexican hat) in (Qθ , Qε)-space. The red
squares denote the three equivalent tetragonal minima, while the
green circles denote the three equivalent tetragonal transition states.
The orbital plots show the change of the χ− wave function of the
active electron with the polar angle ϕ.

octahedra. (ii) CuO, whose orbital ordering is antiferrodis-
tortive, like KCuF3 but in contrast with the previous lattice
displays monoclinic symmetry. In this case, the parent geom-
etry is that of ZnO, a face-centered Fm-3m cubic lattice. (iii)
CuCl2, a layered, van der Waals crystal where the distortions
are ferrodistortive. In this case, we have simply simulated
a single, almost bidimensional CuCl2 layer whose parent
structure, that of ZnCl2, belongs to the hexagonal slab group
Pm-31. Even though our DFT simulations are limited to sys-
tems containing Cu2+, the model is perfectly applicable to
other systems where the distortions can be attributed to the
eg-shell electronic structure like KCrF3. Finally, in Sec. V we
present our final conclusions.

II. MANY-BODY THEORY OF THE COOPERATIVE
JAHN-TELLER EFFECT

The most usual formulation of the Jahn-Teller effect deals
with localized systems like molecules and impurities in in-
sulators, where typically the degenerate state is the result of
the presence of an unpaired electron or hole inside a degener-
ate orbital. This is illustrated in Fig. 2 for the paradigmatic
Eg ⊗ eg problem, which is realized in, for example, d7 or
d9 impurities in cubic lattices for systems like NaCl:Rh2+,
CaO:Cu2+, or KZnF3:Cu2+, where one unpaired electron (or
hole) occupies the eg molecular orbital mainly associated
with the d-shell of the metal [19–21]. When the octahedral
complex centered around the metal distorts, following any
combination of the vibrational modes that conform the eg

vibrational mode, the adiabatic energy is reduced and the
resulting potential for the nuclei motion is the well-known
warped Mexican hat [see Fig. 2(d)] [2,19]. The eg mode is usu-
ally [2] described by the tetragonal Qθ and the orthorhombic
Qε coordinates that, in Van Vleck’s notation [22], are denoted
Q3 and Q2, respectively. In every single known low-spin d7
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or d9 impurity, this energy surface presents three tetragonal
equivalent minima and three tetragonal equivalent transition
states that involve the elongation/compression of the complex
along the x, y, or z directions, respectively. In these cases, the
Jahn-Teller stabilization energy can be almost exclusively at-
tributed to the orbital energy gained by the active electron, i.e.,
the electron that produces an occupation imbalance between
the two degenerate orbitals (Fig. 2). In a perfect crystal, a
coherent tunneling [23,24] among the three equivalent minima
takes place. However, this situation is observed only in a
few cases, such as Cu2+-doped MgO or CaO, while usually
coherence is destroyed by the unavoidable random strains
leading to a local tetragonal symmetry and the so-called static
Jahn-Teller effect [25,26]. Using polar coordinates to describe
the eg mode,

Qθ = ρ cos ϕ, (1)

Qε = ρ sin ϕ, (2)

the wave functions for the active electron (−) and hole (+)
are, respectively,

|χ−(ϕ)〉 = cos
ϕ

2
|dz2〉 − sin

ϕ

2
|dx2−y2〉, (3)

|χ+(ϕ)〉 = sin
ϕ

2
|dz2〉 + cos

ϕ

2
|dx2−y2〉. (4)

A graphical depiction of the χ− wave function with varying
polar angle, ϕ, is shown in Fig. 2. While a large part of the
literature on Cu2+ discusses the role of the unpaired hole in the
eg shell, here we will focus on the active Jahn-Teller electron
(marked in red in Fig. 2), although it is important to note that
both approaches are completely equivalent.

When moving from the localized Jahn-Teller problem to
the crystal Jahn-Teller problem, the number of active electrons
grows from 1 to one per site in the crystal, which is a very
large number. In the same way, when considering the vibra-
tions that can couple to an Eg state, in an impurity center these
are usually limited to the local eg mode of its ligands, but in a
fully periodic solid there are many vibrational modes that cou-
ple to a degenerate state. In the Jahn-Teller bibliography [2]
there are rigorous methods to deal with both multicenter and
multimode Jahn-Teller problems, although these are not really
practical with a crystal with an infinite number of centers and
vibrational modes. To move beyond these approaches, some
works, like those of Polinger [9,27], stress the importance of
developing a deeper understanding of the effect of the band
structure over the distortions occurring in solids. Our main
goal in this work is to create a many-body model that allows
us to describe the effect of the degeneracy in a solid with many
active electrons that takes into account the band structure.

A first important observation is that the energy surface
coming from first-principles methods on KCuF3 or LaMnO3

close to the cubic geometry shows a conical intersection
where two many-body electronic states become degenerate
(see, e.g., Refs. [15,28,29]), in full analogy to what happens
in localized Jahn-Teller problems. This is a clear indication
that in solids, as in impurities or molecules, there exists a
ground degenerate E state. This is one of the main conclusions
of orbital ordering models based on superexchange [10–14],
as originally proposed by Kugel and Khomskii [11,12]. These

authors initially proposed [12] in 1973 that in the cubic phase
KCuF3 there are two many-body states where the hole wave
function corresponds to alternating x2 − z2/y2 − z2 orbitals.
This pattern has also been observed in DFT simulations in
similar systems (see, e.g., Fig. 2 in Ref. [29]). However,
as discussed in detail in Sec. IV A 1, we believe that this
interpretation is not correct and is, in fact, due to a symmetry-
broken solution resulting from limitations in the Kohn-Sham
approach to DFT.

To establish the nature of the electronic ground state in a
solid like KCuF3, which includes a lattice of locally degener-
ate d9 centers, we note that these systems (KCuF3, CuO, . . . )
are insulators in their undoped ground state. This means that
the wave function of the ground state can be written in terms
of localized functions [30], i.e., Wannier orbitals. In particular,
we can represent the wave function as a Slater determinant
of the (infinite) Wannier functions, χ �R, that contain the active
Jahn-Teller electron on each site. We will denote such a many-
body wave function as


 = | . . . , χ �R, . . . |, (5)

where the vertical bars represent the Slater determinant, and
inside we consider the local wave functions associated with
each of the electrons at the centers that are repeated peri-
odically, as denoted by the ellipses (· · · ). In the considered
problem, each of these Wannier functions will take the form
of the χ−(ϕ) orbital for each center [Eq. (3)], which we denote
by χ−(ϕ �R). So far this wave function is perfectly consistent
with those obtained in orbital-ordering models [10–14,16]
since the orbital angle can vary from center to center. How-
ever, according to the many-body Bloch theorem [31] (where
�K is the total momentum of all the electrons),


 j �K (�r1 + �R, �r2 + �R, . . . ) = ei �K �R
 j �K (�r1, �r2, . . . ) (6)

in a cubic lattice like the Pm-3m structure of a perovskite,
the parent phase of KCuF3, the Fm-3m structure of a rocksalt
crystal, or like the high-symmetry configuration of CuO, all
transition-metal sites should display the same density, i.e.,
the Wannier function associated with each site should be the
same, with the exception of a phase factor. This means that, in
cubic symmetry, one of the two states that become degenerate
in the ground state of a solid is characterized by the orbital
function χ− in all its sites, while the other is characterized by
having the χ+ orbital function in all its sites. If we choose
ϕ �R = 0, that means that the dz2 function becomes occupied
in one many-body state while in the other the occupied or-
bital is dx2−y2 . Thus, using the generalized Bloch theorem,
we can characterize the two many-body states that form the
degenerate ground state in a lattice that contains many local
Jahn-Teller active sites. As a result of the application of this
theorem, we can state that the orbital ordering in the cubic
geometry of a solid is not antiferrodistortive, as expected
from models like Kugel-Khomskii, since those solutions show
broken symmetry. This result does not rule out the possible
importance of superexchange in the stabilization energy of
the final, low-symmetry configuration, but it clearly shows
that magnetism only plays a role after the geometry of the
system has been distorted away from the cubic configuration.
For more information, check Sec. IV A 1.
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FIG. 3. Phonon dispersion diagram for KZnF3 illustrative of
crystals with perovskite parent structure like KCuF3. The little group
of reciprocal space points with inversion is indicated in blue. The
intensity of the contribution of the Zn-F stretching to the vibration is
marked in red. The antiferrodistortive eg-phonon mode at R and the
ferrodistortive strain eg modes are shown at the top of the figure. The
potassium, zinc, and fluorine ions are represented, respectively, by
yellow, blue, and green spheres.

A. Vibrational and strain modes

After we have defined the degenerate ground electronic
state in a crystal containing a lattice of active eg-type Jahn-
Teller sites, we need to find the vibrational states that couple
to them. In cubic symmetry, Eg states can couple through
eg vibrational modes, giving rise to the Eg ⊗ eg Jahn-Teller
problem [2]. Here we will argue that these are the main
modes through which the Jahn-Teller effect manifests in a
solid. However, in solids there are vibrations, associated with
points in reciprocal space whose little group is not cubic
(different from Oh, see Fig. 3), that couple to the degener-
ate state, although their coupling strength will typically be
smaller than those vibrations in points with cubic symmetry.
The strength of the vibronic coupling between the Eg state
with vibrations will depend on two main factors: (i) In systems
with inversion symmetry, the Jahn-Teller effect can only occur
through vibrations that have even symmetry. In a solid with
cubic symmetry, phonons will only have well-defined parity
on particular points of reciprocal space. This does not mean
that Jahn-Teller coupling will only take place with vibrations
at those points, but that the electron-vibration interaction in-
tegrals will be largest in absolute value for even modes (or
exactly zero for odd ones) at them. (ii) We expect the impor-
tant vibrational modes to contain a large contribution from the
ligands that are the first neighbors of the active transition met-
als, as typically in the Eg ⊗ eg Jahn-Teller effect in impurities

in octahedral sites these atoms are the main ones involved in
the distortion. In the same way, we would expect these modes
to involve the stretching of the metal-ligand bonds.

Let us first focus on crystals that come from the per-
ovskite structure, like KCuF3, although later we will discuss
the cases of rocksalt (CuO) or hexagonal (CuCl2) lattices in
Secs. IV B and IV C, respectively. To discuss the symmetry of
phonon modes, we will study KZnF3, a cubic lattice that is
the parent structure of KCuF3 (the ionic radius [32] of Cu2+,
rCu = 0.73 Å, is analogous to that of Zn2+, rZn = 0.74 Å),
where the electronic degeneracy has been suppressed due to
the closed-shell nature of the Zn2+ ions. Figure 3 shows the
DFT-calculated phonon dispersion diagram for KZnF3 show-
ing the contribution of the metal-ligand stretch to each band
in red. We can observe that the top three bands clearly show
the largest stretching contribution. We can see that vibrations
at �, X , M, and R show inversion symmetry, although only
the little groups at � and R display full cubic (Oh) symmetry.
The zone-center vibrations in � are all ferrodistortive and
odd (ungerade) so they present no coupling. As we move to
the border-zone along the different directions in reciprocal
space, the modes become antiferrodistortive and even (ger-
ade) so they begin coupling with the Eg electronic state in one
dimension (X ), two dimensions (M), and three dimensions
(R). In this last point, we find the only Oh eg-mode in the
whole diagram, which is antiferrodistortive. The components
of this mode, that we denote as QRθ and QRε, are very im-
portant in the vibronic problems of this crystal. As shown in
Fig. 3, both of them are antiferrodistortive, although QRθ , re-
lated to the tetragonal mode Qθ (Q3), produces an alternating
elongation/compression in neighboring transition-metal com-
plexes while QRε, related to the orthorhombic mode Qε (Q2),
produces an alternating orthorhombic distortion along the x/y
directions. Most cooperative Jahn-Teller [3,9]/orbital order-
ing models [14,16] based on electron-phonon interactions
involve QRε as the main distortion in perovskite-type crystals.
As we will show in Sec. IV A, there are many interesting
features of the energy surface of these systems associated with
QRθ that have been overlooked by most of the literature.

Besides the antiferrodistortive modes, Kanamori [4]
stressed the existence of Jahn-Teller active ferrodistortive
modes associated with homogeneous strain modes. Many
early works on the Jahn-Teller effect in solids [4–6,33] high-
lighted the importance of homogeneous strain too, although
later electron-phonon models [9,16] tend to neglect their
effect. There are two symmetrized strain modes (see, e.g.,
Ref. [26]) that transform as eg (see Fig. 3). Given that these
strain modes alter all sites in the lattice in the same way, they
are associated with the � point in reciprocal space. Similarly
to the phonon modes (see Fig. 3), these strain components
can be written as a tetragonal, η�θ , and an orthorhombic, η�ε,
mode.

As in the case of the local eg-coordinates, Eqs. (1) and (2),
it will be useful to express the crystal distortions in terms of
polar coordinates:

η�θ = η� cos ϕ�, η�ε = η� sin ϕ�; (7)

QRθ = QR cos ϕR, Q�ε = QR sin ϕR. (8)

205150-4



MANY-BODY MODEL FOR THE COOPERATIVE … PHYSICAL REVIEW B 109, 205150 (2024)

To finish this section, we would like to remark that the ex-
istence [34] of A- (most common) and D-type (less common)
polytypes of KCuF3 can be directly traced to the stabilization
of the system along QRε or QMb1g modes. The b1g mode (see
Fig. 3) is closely related to QRε and is associated with the
splitting of the eg mode. However, since it is not a cubic mode,
its total coupling to Eg is somewhat weaker than the mode at
R leading to a less stable structure.

B. The model Hamiltonian

Now that we have selected the vibrations that can par-
ticipate in the vibronic problem, we will follow the usual
procedure [2,19] and expand the Hamiltonian operator with
the distortions. In this approach, we will retain linear vibronic
operators (Ĥvib) and also include elastic harmonic (Ĥharm) and
third-order anharmonic terms (Ĥanharm),

Ĥ = Ĥ0 + Ĥvib + Ĥharm + Ĥanharm, (9)

as first-principles calculations for impurities and molecules
[19] showed these interactions were the most important in
Jahn-Teller problems. In the above expression, Ĥ0 is the elec-
tronic Hamiltonian for the cubic phase, and the vibronic and
harmonic terms take their usual expressions,

Ĥvib = ∂Ĥ

∂η�θ

η�θ + ∂Ĥ

∂η�ε

η�ε + ∂Ĥ

∂QRθ

QRθ + ∂Ĥ

∂QRε

QRε (10)

and

Ĥharm = 1
2Cη

(
η2

�θ + η2
�ε

) + 1
2 KR

(
Q2

Rθ + Q2
Rε

)
, (11)

where Cη and KR are, respectively, the elastic coefficient for
the tetragonal strains and the force constant for the eg-mode
at R. To obtain the anharmonic cubic elastic interactions,
obtained as a triple-product of coordinates that transforms
like the totally symmetric representation [19] (that in periodic
solids is the combined a1g associated with the point-group
operations and � with respect to translations), we notice some
important differences between the antiferrodistortive phonon
modes (QRε) and the ferrodistortive strain modes. While the
strain modes can be directly combined to form a cubic term
that is equivalent to the one proposed by Öpik and Pryce
[35] to explain why most octahedral Jahn-Teller complexes
are elongated (C3η < 0),

Ĥ3η = C3η

(
η3

�θ − 3η2
�εη�θ

)
, (12)

it is not possible to do the same for the phonon modes at R.
The reason behind this is that the product of three coordinates
involving the R-point of the reciprocal lattice transforms as
a quantity in R and thus it is not totally symmetric (that
transforms as �). Thus, we see that the antiferrodistortive eg-
mode at R behaves quite differently from a usual Jahn-Teller
coordinate. However, using Clebsch-Gordan coefficients [36],
it is possible to obtain an Öpik and Pryce [35] -like term that
involves a cross-product of quadratic QR phonon-modes and
linear η� strain-modes,

Ĥ3Qη = V3Qη

1√
2

[
η�θ

(
Q2

Rε − Q2
Rθ

) + η�ε2QRθ QRε

]
. (13)

As η�θ > 0 decreases (increases) the in-plane (axial) dis-
tances, which should soften the axial QRθ mode and harden
the in-plane QRε one, V3Qη has to be positive.

We can now build the Jahn-Teller Hamiltonian matrix us-
ing the low-energy eigenstates of H0,

Hi j = 〈
i|Ĥ
∣∣
 j

〉
, (14)

although we immediately notice that the antiferrodistortive
phonon-mode coordinates yield null vibronic constants,

〈
i| ∂Ĥ

∂QRθ

|
 j〉 = 〈
i| ∂Ĥ

∂QRε

|
 j〉 = 0. (15)

The underlying cause is the fact that, as we defined them
above, the functions 
i and 
 j belong to the same point in
reciprocal space [37]. Thus, the expected value of an operator
that transforms as R is zero, as the integral does not fulfill
Bragg’s law [38] (�ki − �k j + �qR = �G), so the difference be-
tween the wave vectors of the i and j wave functions plus
the wave vector of the vibration must be a reciprocal-lattice
vector, �G. However the experimental geometry of KCuF3

clearly shows that the QR phonon modes are important in
these systems. This means that in the model for these systems,
we need to involve many-body wave functions transforming
like E but separated from each other by a vector ( 1

2 , 1
2 , 1

2 ) of
the reciprocal lattice. Given that the only points of reciprocal
space where cubic symmetry (Oh little group) exists are �

and R, we will evaluate the vibronic Hamiltonian with E�

(
�θ ,
�ε) and ER (
Rθ , 
Rε) wave functions. As these two
states are at different points of reciprocal space, they will have
different energies (see Fig. 1 for one-electron bands),

〈
�θ |Ĥ0|
�θ 〉 = 〈
�ε|Ĥ0|
�ε〉 = −/2, (16)

〈
Rθ |Ĥ0|
Rθ 〉 = 〈
Rε|Ĥ0|
Rε〉 = /2 (17)

showing that the Jahn-Teller problem in solids is a com-
bination of Jahn-Teller and pseudo-Jahn-Teller effects. This
distinction is important, as in the Jahn-Teller effect the
adiabatic energy surface always presents low-symmetry equi-
librium points, while in the pseudo-Jahn-Teller effect the
instability condition [2], K0 + Kv < 0, needs to be fulfilled,
i.e., the vibronic coupling constant F , participating in the
vibronic contribution (Kv = −F 2/), needs to be larger than
the positive [2] primary force constant, K0, to produce a dis-
tortion. This means that the strain distortion always produces a
distortion (it represents a force that distorts the system) while
the antiferrodistortive QR phonon may not (depending on the
instability condition). Thus, the strain mode is necessary and
should always be considered. The linear vibronic constants are

F��,� = −〈
�θ | ∂Ĥ

∂η�θ

|
�θ 〉 = 〈
�ε| ∂Ĥ

∂η�θ

|
�ε〉

= 〈
�θ | ∂Ĥ

∂η�ε

|
�ε〉 = 〈
�ε| ∂Ĥ

∂η�ε

|
�θ 〉, (18)

FRR,� = −〈
Rθ | ∂Ĥ

∂η�θ

|
Rθ 〉 = 〈
Rε| ∂Ĥ

∂η�θ

|
Rε〉

= 〈
Rθ | ∂Ĥ

∂η�ε

|
Rε〉 = 〈
Rε| ∂Ĥ

∂η�ε

|
Rθ 〉, (19)
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F�R,R = −〈
�θ | ∂Ĥ

∂QRθ

|
Rθ 〉 = 〈
�ε| ∂Ĥ

∂QRθ

|
Rε〉

= 〈
�θ | ∂Ĥ

∂QRε

|
Rε〉 = 〈
�ε| ∂Ĥ

∂QRε

|
Rθ 〉. (20)

Considering that the main part of the vibronic constants will
come from the local coupling between the eg orbitals in each

of the centers and the eg distortion of the complex of the metal
and its first neighbors, we can approximate

F = F��,� ≈ −FRR,� ≈ −F�R,R, (21)

where the change of sign comes from the phase change of
going from one center to the next one in R wave func-
tions. Within this approximation, the Jahn-Teller Hamiltonian
matrix is

Ĥeff =

⎛
⎜⎜⎜⎜⎝

−/2 − Fη�θ Fη�ε FQRθ −FQRε

Fη�ε −/2 + Fη�θ −FQRθ −FQRε

FQRε −FQRθ /2 + Fη�θ −Fη�ε

−FQRθ −FQRε −Fη�ε /2 − Fη�θ

⎞
⎟⎟⎟⎟⎠

+ 1

2
Cη

(
η2

�θ + η2
�ε

) + 1

2
KR

(
Q2

Rθ + Q2
Rε

)

+ C3η

(
η3

�θ − 3η2
�εη�θ

) + V3Qη

1√
2

[
η�θ

(
Q2

Rε − Q2
Rθ

) + η�ε2QRθ QRε

]
. (22)

Let us now discuss the shape of the adiabatic potential
energy surface (APES) described by Eq. (22). We will start by
studying what happens for the η� and QR modes individually.
In the first case (making QR = 0) we can plot the APES
cross-section with η�θ , which describes the energy of the
system under a (ferroelastic) simultaneous elongation (η�θ >

0)/compression (η�θ < 0) of all CuF6
4− octahedra in the

KCuF3 lattice [see Fig. 4(a)]. We can observe that the energy
surface corresponds with the typical plot for a Jahn-Teller ef-
fect in a molecule both for the lower E-state (red and blue lines
around ηθ = 0) and the higher E-state (green and yellow lines
around ηθ = 0) where the two lower minima corresponding
to elongated and compressed octahedra appear at different
energies due to the action of the Öpik and Pryce [35] cubic
term [Eq. (12)]. When we study the energy surface on the
full η�θ/η�ε space [Fig. 4(b)], we observe the usual warped
Mexican hat where the minima/saddle points correspond to
tetragonal symmetry, which in the case of KCuF3 belongs to
the P4/mmm (D4h) space group without the presence of the
orthorhombic minima characteristic of the cooperative Jahn-
Teller effect and orbital ordering models.

In the second case, making η� = 0, we can plot the
APES cross-section with QRθ [see Fig. 4(c)], which de-
scribes the antiferroelastic distortion where the octahedra
compress/elongate alternatively along the 3-Cartesian axes
(as illustrated in Fig. 3). This distortion mixes the many-
electron wave functions at � and R that have different energies
[the (E + E ′) ⊗ e pseudo-Jahn-Teller problem [2]] and so the
degeneracy is maintained but the lower sheet displays a nega-
tive curvature, in contrast with the conical intersection shown
for the η� coordinate. Calculation of the lower-energy surface
in the QRθ /QRε space is fully consistent with the (E + E ) ⊗ e
pseudo-Jahn-Teller problem in molecules, where, using as a
first approximation just linear coupling, we obtain a circular
trough [Fig. 4(d)].

After observing the energy surfaces of the η� and QR dis-
tortion modes individually, let us now discuss their interplay.
In a first approximation, we will neglect the cubic coupling
term between these modes [Eq. (13)]. The ground energy sur-
face in the η�θ/QRθ and η�θ/QRε cross-sections is represented

in Figs. 5(a) and 5(b). In the first one, we can observe that the
deepest energy wells correspond with the pure Jahn-Teller (η�

coordinate, QR = 0) minima, and no significant interaction
occurs between the modes. However, when the surface is
represented in the ηθ/QRε coordinates, four equivalent global
minima appear (these are represented for the tetragonal strain
along z but there are eight more minima following the strains
along x and y, as corresponds with cubic symmetry). Each
of these minima involves a combination of a global elonga-
tion (η�θ > 0) or compression (η�θ < 0) of all the octahedral
complexes of the crystal along the z-axis with an antiferrodis-
tortive checkerboard patterned orthorhombic distortion where
neighboring octahedra have elongated/shortened bonds with
their ligands in the x and y directions.

The experimental (and first-principles calculated) geome-
try of KCuF3 involves a simultaneous ferroelastic compres-
sion of all octahedra, which is often neglected in models, with
the antiferrodistortive orthorhombic distortion in the xy-plane
represented by the lower two minima in Fig. 5(b). This asym-
metry in the energy surface can be described by the elastic
coupling of Eq. (13). When this term is considered, the energy
surfaces of Figs. 5(c) and 5(d) emerge. Under this term, the
compression of all the octahedral complexes of the solid due
to η�θ < 0 has the physical effect of reducing the hardness
of the orthorhombic in-plane distortion QRε as the distance
between the metal and its in-plane ligands is increased. We
would like to remark here that compressed complexes are
relatively common in layered systems [17,39]. This, in turn,
favors a stronger pseudo-Jahn-Teller effect as the effective
elastic force constant (KR) is reduced. On the other hand,
for the elongated minima the in-plane metal-ligand distance
is reduced and the KR force constant increases hindering the
effect of the pseudo-Jahn-Teller effect and making the energy
associated with those minima increase. It is important to note
that while in Fig. 5(d) this effect is moderate, as the chosen
V3Qη is relatively small (0.1) with regard to the chosen F and
K values (1 in arbitrary units), in first-principles simulations
the effect of this coupling is very large and is one of the
dominant effects on the shape of the energy surface. Another
very important note is that, contrary to Kanamori’s model for
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FIG. 4. Adiabatic potential energy surfaces associated with the vibronic Hamiltonian for the individual η� and QR distortions. In (a) we
show the energy cross-section along the ferroelastic tetragonal distortion of the whole solid, η�θ , showing the conical intersection for the
degenerate states at � and R. In (b) we show the energy of the ground state in the (η�θ , η�ε) coordinates as a contour plot showing the usual
Mexican hat-shape of a Jahn-Teller effect. In (c) the energy cross-section is shown for the QRθ mode and in (d) the contour plot is shown for
the ground state in the (QRθ , QRε) coordinates. The parameters used to obtain these plots are, in arbitrary units,  = 0.5, F = 1.0, KR = 1.0,
Cη = 1.0, C3η = 0.1, V3Qη = −0.03.

the cooperative Jahn-Teller effect [4], the ferrodistortive and
antiferrodistortive distortions in a solid are not competitive but
cooperative with each other.

The effect described above is not the only consequence of
considering the cubic term of Eq. (13). In Fig. 5(c) we can see
that it also increases the depth of the ηθ/QRθ top well, creat-
ing, in fact, two minima that combine ηθ > 0 and QRθ 	= 0.
This geometry involves a global elongation of the complexes
combined with an alternative further elongation/compression
of neighboring Jahn-Teller complexes, a solution that comes
out in some orbital-ordering models [16]. The physical phe-
nomenon is similar to the one in play for the η�θ/QRε

cooperation. The η�θ mode increases the distance in the axis,
which, in turn, softens the KR force constant along the QRθ

distortion, favoring the realization of this pseudo-Jahn-Teller
distortion. This phase, to our knowledge, has never been ob-
served but both our model and our first-principles simulations
(Sec. IV A) point towards its existence.

In the following section, we discuss the consequences that
our model has with respect to the ordering of the orbitals
inside the crystal.

C. Orbital ordering

To calculate the orbital ordering, we will employ the vi-
bronic Hamiltonian of Eq. (9) and a variational trial function.
As indicated above, crystals with the cooperative Jahn-Teller
effect like KCuF3, CuO, etc. are insulators, and so their wave
function can be approximated with the use of a Slater de-
terminant for the active electrons whose wave functions are
described by Eq. (3), the local (Wannier) functions χ−(ϕ �R). To
create the degrees of freedom necessary to allow for orbitals
coupled in a ferro or antiferro manner, we will take a supercell
that contains two Jahn-Teller centers that we will name 1 and
2, i.e., in KCuF3 we would take a supercell that contains two
Cu ions. The local orbital in center 1 will be described by
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(d) With strain-phonon coupling

FIG. 5. Contour plots of the ground state associated with the vibronic Hamiltonian illustrating the coupling of η� and QR distortions. In
panels (a) and (c) the energy along the tetragonal strain mode, η�θ , and the alternating elongated/compressed mode, QRθ , is shown. A similar
representation is done in panels (b) and (d) using the η�θ and the orthorhombic antiferrodistortive mode, QRε , instead. In the top (a) and
(b) panels, the intermode coupling is not considered while in (c) and (d) it takes a non-null value, otherwise all parameters are the same as in
Fig. 4.

the orbital angle ϕ1, and with the respective angle (ϕ2) for the
second center. Under these approximations, the ground-state
wave function can be written as


− = |. . . , χ−(ϕ1), χ−(ϕ2), . . . , |, (23)

where we followed the notation used in Eq. (5) using a two-
center supercell as a basic repetition unit to create the crystal.
The orbital ordering can be obtained by evaluating the Hamil-
tonian, Eq. (9), and then minimizing its energy with respect to
ϕ1 and ϕ2.

To simplify the solution, we will write the orbital angles as
a combination of an angle that will account for ferrotype or-
bital ordering, ϕ f , and another that will describe antiferrotype
orbital ordering, ϕa,

ϕ1 = ϕ f + ϕa, (24)

ϕ2 = ϕ f − ϕa. (25)

Moreover, due to the coupling of the electronic states through
the R-point eg-phonon mode, when the coordinates QRθ or
QRε are not null, the orbitals will display a superposition of
two components that transform like functions at � and R,
respectively. Rendering this admixture in real space requires
doubling the cell used to represent the wave function, as
laid down in Eq. (23). This clearly shows the connection of
the pseudo-Jahn-Teller effect through vibrations at the bor-
der of the Brillouin zone with the Peierls effect [40], where
a symmetry-lowering dimerization occurs in a linear chain
when wave functions at � and X are allowed to mix. The
� component (χ�) must be common to both the χ−(ϕ1) and
χ−(ϕ2) orbitals, and it needs to be related to its sum,

χ−(ϕ1) + χ−(ϕ2)

2
= cos

ϕa

2
χ−(ϕ f ) = cos

ϕa

2
χ� (26)

while their difference must contain the R contribution (χR),

χ−(ϕ1) − χ−(ϕ2)

2
= − sin

ϕa

2
χ+(ϕ f ) = − sin

ϕa

2
χR. (27)
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Thus,

χ−(ϕ1) = cos
ϕa

2
χ� − sin

ϕa

2
χR, (28)

χ−(ϕ2) = cos
ϕa

2
χ� + sin

ϕa

2
χR. (29)

These wave functions change sign when ϕa or ϕ f changes
by 2π , showing a more complex pattern for the Berry phase
[41] than the one commonly found in localized Jahn-Teller
problems [42].

The application of the cubic Hamiltonian, Ĥ0, over the
wave function at � and R, Eqs. (16) and (17), yields a gap
. Hence we can now use Eqs. (28) and (29) to evaluate the
energy of the Slater determinant, Eq. (23), with the vibronic
Hamiltonian, Eq. (9). The result, obtained taking into account
that the local distortion in each of the centers is the same for
η� and the opposite for QR [Eqs. (7) and (8)], is

E = − 

2
cos ϕa + Hharm + Hanharm

− Fη� cos ϕa(cos ϕ f cos ϕ� + sin ϕ f sin ϕ� )

− FQR sin ϕa(− sin ϕ f cos ϕR + cos ϕ f sin ϕR). (30)

To obtain the ground-state energy using this expression, we
need to input the geometry, given by the η� and QR modes, and
then use the variational principle (∂E/∂ϕ f = 0, ∂E/∂ϕa = 0)
to obtain the value of the orbital angles. In other words, the
orbital angles are given by the expressions

tan ϕ f = −η� cos ϕa sin ϕ� + QR sin ϕa cos ϕR

η� cos ϕa cos ϕ� + QR sin ϕa sin ϕR
, (31)

tan ϕa = FQR(− sin ϕ f cos ϕR + cos ϕ f sin ϕR)

/2 + 2Fη� (cos ϕ f cos ϕ� + sin ϕ f sin ϕ� )
, (32)

where we see that the solutions for ϕ f and ϕa ordering are
closely entangled, leading to nontrivial orbital orderings.

Using Eqs. (31) and (32), it is easy to show that if QR = 0,
the minimum implies ϕa = 0, i.e., under a tetragonal strain
the orbital ordering is of ferrotype and the energy surface
corresponds with a Mexican hat. On the other hand, if η� = 0,
the antiferro-ordering angle is

tan ϕa = 2F


QR, (33)

which, when QR is small, involves a linear mixing between
� and R wave functions, typical of a pseudo-Jahn-Teller ef-
fect, as confirmed inspecting the resulting quadratic energy
surface.

The main physical ingredient that establishes a difference
between our model and other orbital ordering descriptions
[10–14,16] is the existence of a gap due to the mixing of E
wave functions at � and R. This gap enforces Bloch’s theorem
and prevents broken symmetry solutions. In Fig. 6 we show
the difference between a gapless model [16] (dashed lines)
and our pseudo-Jahn-Teller model when the orthorhombic
distortion QRε increases. We can see that in the gapless model
and close to cubic symmetry [the central point in the polar plot
Fig. 6(b)], ϕ1 and ϕ2 angles display a 180◦ difference, while
according to Bloch’s theorem, they should approach the center
from the same direction. This is precisely what is observed
in our gapped pseudo-Jahn-Teller model (solid lines), whose

φ2

φ1

(a) QRε APES cross-section (b) QRε vs orbital angle (φ)

FIG. 6. Comparison of our combined Jahn-Teller–pseudo-Jahn-
Teller model (solid lines) with a gapless electron-vibration orbital
ordering model (dashed lines). In (a) we show the energy cross-
section of both models with the QRε coordinate, where the gap at
QRε = 0 can be clearly seen. In (b) we represent the orbital angles at
center 1 (blue) and 2 (red) in a polar plot as we increase QRε (radial
coordinate).

prediction of orbital angles differs from gapless models for all
values of QRε. Moreover, current orbital ordering models do
not take into account the strain mode η� whose energy contri-
bution increases the gap and further hinders the antiferrotype
ordering of the orbitals.

As a final remark in this section, we would like to stress
that the model above neglects magnetism, a major factor in
many orbital-ordering models [10–13]. Our DFT simulations
in Sec. IV A, in agreement with other calculations carried
out by us [17,39] and other groups [18], show that, while
superexchange influences the quantitative value of the orbital
angles, its real effect is much smaller than that of the structure
distortions considered in the previous model. Moreover, tra-
ditional orbital ordering models rely on expressing the energy
through orbital-orbital interactions in the form of Heisenberg-
like Hamiltonians that favor either ferro- or antiferrotype
orderings. In contrast, the model presented here contains two-
types of interactions (ferro and antiferro) that have similar
strength, cooperate, and cannot be expressed through effective
close-neighbor relations, since the presence of each kind of
interconnection is associated with independent distortions.

III. COMPUTATIONAL DETAILS

First-principles DFT calculations were used to support
our many-body model in crystals containing unpaired elec-
trons in locally degenerate states. The calculations of the
periodic structure were performed using the CRYSTAL17 and
VASP codes. The Vienna Ab initio Simulation Package (VASP)
[43,44] employs a set of plane waves to express the Bloch
orbitals. To scrutinize the interplay between electronic and
vibrational degrees of freedom and its impact on the magnetic
state of the system, the electron correlation requires treatment
beyond the conventional DFT level. Liechtenstein’s LDA + U
description [45] (we also used [45] U = 7.5 eV and J =
0.9 eV for KCuF3), and the HSE06 functional [46], incor-
porating 25% Hartree-Fock (HF) exchange, were employed
over the standard Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA). This approach enhances the
depiction of these systems as insulators by rectifying the self-
interaction error.
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To accommodate all the geometry distortions and magnetic
states, the simulations of the cubic Pm-3m and tetragonal
P4/mmm of KCuF3 are carried out in a

√
2 × √

2 × 2 su-
percell that is compatible with the one used to describe the
fully distorted ground state with I4/mcm symmetry. On the
other hand, the CuO calculations are carried out in a 2 × 1 × 2
monoclinic C2/c supercell, while for the CuCl2 calculations a√

2 × √
2 × 1 rectangular C2/m supercell is used.

The convergence criterion for the electronic self-consistent
loop was established at 1 × 10−6 eV, and atomic positions
underwent relaxation, employing the conjugate gradient algo-
rithm, until forces per atom converged to less than 0.03 eV/Å.
Initial orbital occupancies were determined by a Gaussian
smearing with σ = 0.05. The Brillouin zone was sampled
through a 2 × 2 × 2 k-point mesh for KCuF3 while a 4 × 4 ×
2 was used for CuO and 4 × 4 × 1 for CuCl2. All of them are
centered at the � point. Valence electrons were represented
by a plane-wave basis set with a 520 eV energy cutoff, while
core electrons were described using the projector augmented
wave method (PAW) [47] along with pseudopotentials [48].
The valence electrons for the PAW potentials are 17, 12, and
9 for the Cu, Zn, and K cations, respectively, 7 for F and Cl,
and 6 for O.

To study the vibrational properties of the system while
quenching vibronic coupling, the Cu2+ cation was replaced
by the closed-shell Zn2+ cation. Phonon bands and informa-
tion regarding frequencies and displacements associated with
normal modes, required for obtaining projections over specific
atomic movements, were computed using the PYTHON tool
PHONOPY [49,50], with VASP as a calculator at the PBE level
of theory. To account for LO-TO splitting near the �-point,
the nonanalytical term described in Refs. [51,52] was incor-
porated into the dynamical matrix. The supercells employed
to compute the forces used to build the dynamical matrix
are 4 × 4 × 4 for KZnF3, 5 × 5 × 5 for ZnO, and 4 × 4 × 1
for ZnCl2. The 3D representation of the spin density, derived
from VASP calculations, was extracted from the CHGCAR file
using the Python tool VASPKIT [53] and visualized using the
graphical tool VESTA [54].

For the sake of comparison, all calculations were per-
formed simultaneously using the CRYSTAL17 package [55,56].
In this code, crystalline orbitals are expanded as a linear
combination of Bloch functions, expressed in terms of local
functions. These local functions are defined using atom-
centered Gaussian-type functions, directly taken from the
CRYSTAL website [57].

Various hybrid functionals were employed in these cal-
culations, including B1WC [58] (containing 16% of exact
Hartree-Fock exchange), PW1PW [59] (20% of HF ex-
change), HSE06 [46] (25% of HF exchange), and PBE0 [60]
(25% of HF exchange). We verified the consistency of the
results with the increasing percentages of HF exchange. High-
quality triple-ζ polarized basis sets, developed by Peintinger
et al. [57,61], were used in the calculations.

For the integration over the first Brillouin zone, a dense
8 × 8 × 8 grid was employed. TOLINTEG parameters for
real-space integrals of the electronic density were fixed to 9, 9,
9, 9, and 18. The convergence criterion for the energy was set
to 10−8 Hartree. To analyze the orbital ordering in KCuF3,
the charge and spin densities were calculated by means of

Mulliken population analysis. Our results with hybrid func-
tionals match all available geometry data (lattice parameters,
atom-atom distances) within 1% of the experimental values.

IV. RESULTS OF DFT SIMULATIONS

In this section, we will discuss our main DFT results and
compare them with the predictions of the model presented
in Sec. II. We will first focus on KCuF3 discussing both the
energy surface and the orbital ordering for different magnetic
states. At the end of this section, we will briefly present
systematical errors that appear in the simulations of peri-
odic systems with lattices of active Jahn-Teller sites due to
the limitations of one-electron Kohn-Sham DFT (or Hartree-
Fock). We will then show how CuO and bidimensional CuCl2,
two systems that display important structural differences with
KCuF3, behave in a completely similar way to this system
when observed through the prism of the model.

A. Perovskite lattice: KCuF3

The most common phase of KCuF3, usually called A-
type, displays [62] a three-dimensional alternating pattern of
in-plane long (Rl = 2.296 Å)/short (Rs = 1.848 Å) fluorine-
copper bonds in the x/y directions (the axial bond lengths
in the z-direction are Rax = 1.963 Å) where the measured
magnetic state is antiferromagnetic-A (AF-A) (ferromagnetic
in the xy-plane and antiferromagnetic between planes). In the
literature [4,28,63], this antiferrodistortive pattern has been
understood as the main distortion of the system and coming
from the condensation of the QRε mode. However, little at-
tention (there are a few exceptions, like the interesting work
by Kataoka [64], Marianetti [65], and recent calculations by
Pascale et al. [66]) has been paid to the global compression
that the whole lattice displays and that can be measured, for
example, by comparing the in-plane (xy) Cu-Cu distance, d =
4.144 Å, with the out-of-plane one, d = 3.926 Å, that corre-
sponds with a negative η�θ . DFT simulations, using different
codes, basis, and methods, correctly predict the magnetic
state and the geometry, with typical errors in distances below
1% for hybrid functionals. Thus, we can conclude that DFT
methods are reliable to predict the low-symmetry equilibrium
phase and its associated properties as fully supported by many
computational works in the literature [18,28,63].

Performing calculations close to the cubic high-symmetry
configuration, however, is not so simple. Due to the closeness
of the partially filled eg-bands, calculations often predict a
metallic state that is quite high in energy with respect to the
insulating state. This has been reported by other authors like
Varignon [63], and its avoidance often requires the use of
special initial states/shifting of levels [66] before the SCF
cycles. Moreover, in a Jahn-Teller system the cubic symmetry
is not a critical point of the energy surface, due to the presence
of the conical intersection, i.e., there exist a nonzero force,
which makes optimizing the geometry while retaining cubic
symmetry difficult. Here we have used, as a cubic starting
point, the geometry of the parent system of KCuF3, the rigor-
ously cubic lattice KZnF3. From that cubic configuration we
have followed the individual η�θ and QRε modes to determine
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FIG. 7. DFT-calculated energy surface of KCuF3 as the system
distorts from cubic (Pm-3m) symmetry to tetragonal P4/mmm com-
pressed (C) and elongated (E) geometries using the η�θ mode and
along the orthorhombic, QRε , towards tetragonal I4/mcm symmetry.
The different paths are sketched in the inset and are indicated at the
bottom of the figure by colored arrows. Red, green, yellow, and blue
lines denote the energy surface for antiferromagnetic G, C, A, and
ferromagnetic, respectively.

the energy surface and the shape of the wave function that
characterizes the orbital ordering.

We start by looking at the effect of following the
compression/elongation of the whole lattice, the η�θ strain
mode, shown in Fig. 7, a geometry that is described by the
P4/mmm space group. We observe that this energy surface
reflects the usual characteristics of an Eg ⊗ eg Jahn-Teller
effect: (i) At the cubic phase we observe a conical intersection
of the two branches of an Eg state. Analysis of the wave
function in each of these branches shows ferrotype orbital
ordering, as shown in Fig. 9(b), which is fully consistent with
Bloch’s theorem as we get closer to the cubic geometry. (ii)
The energies of elongated and compressed phases (C and
E in Fig. 7) are different, and this difference quantifies the
warping of the Mexican hat [2,19] described by Eq. (12).
The elongated geometry is slightly favored as it occurred in
the KZnF3:Cu2+ impurity center [21]. (iii) Even though the
critical points shown are found by distorting the lattice along
the z-axis, fully equivalent distortions can be found distorting
the lattice along x- or y-axes, which is consistent with the
initial cubic symmetry. (iv) The Jahn-Teller energy is a sizable
part of the global stabilization energy, 140–160 meV, de-
pending on the magnetic state and the direction of distortion.
Quite importantly, we observe that this energy is quite similar
among all different magnetic states [ferromagnetic (FM), an-
tiferromagnetic A (AF-A), antiferromagnetic C (AF-C), and
antiferromagnetic G (AF-G)] that appear as almost parallel
lines in Fig. 7.

After reaching the elongated and compressed configura-
tions, our model predicts that the system can further distort
along the R-modes. The global minimum can be found by
following QRε. However, we observe two very different be-
haviors depending on whether we start from the compressed
(C) or the elongated (E) geometries. On the one hand, starting
on the elongated geometry, we observe that this configuration
is, in fact, a transition state with a negative force constant

FIG. 8. DFT-calculated energy surface of KCuF3 following the
QRθ starting off the elongated (E) geometry. A state crossing can be
seen at QRθ ≈ 0.3 Å where the spin-density for the unpaired holes
(see the insets) goes from dx2−y2 to an alternating dx2−y2/dz2 in a deep
minimum where the lowest magnetic state is AF-C. The color of the
lines is the same as that in Fig. 7, and the blue/yellow color of the
electron density indicates spin-up/spin-down, respectively.

(instead of a linear stabilization energy associated with a Jahn-
Teller effect; compare with the case of CuCl2 later). However,
the distortion and stabilization energy (≈ 20 meV) associated
with this instability are quite modest (yellow path in Fig. 7).
On the other hand, starting from the compressed geometry, we
find a large stabilization energy (≈ 210 meV) and distortion.
The contrast of starting from either the E or C transition states
reflects the ease of deforming the Cu-F-Cu bond in the plane
when the Cu-Cu distance is large (C) or its difficulty when it
is small (E). This change in the force constant is a key charac-
teristic of the pseudo-Jahn-Teller effect [2] that describes the
changes in bonding occurring when a distortion is introduced
in the system. In this model, the force constant contains two
contributions: a primary force constant K0 that reflects the
electronic density optimized for the initial geometry and that
opposes distortion, and the vibronic force constant Kv that

FIG. 9. DFT diagram showing the orbital ordering in KCuF3 for
the various magnetic orders. In (a) we show the change in ϕ1 and
ϕ2 following QRε for nonzero η� (segment C-M in 7). Compare with
the model in Fig. 6. In (b) we show the equivalent change following
η�θ (cubic-E segment in Fig. 7 with ferro-ordering) compared to the
symmetry broken solutions (dashed lines) (QRε mode) (see Fig. 10).
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describes the effect of the change of the wave function to adapt
to the new geometry. In this case, the main difference in the
wave function between the ground and excited states is the
phase in different neighboring centers, and the orthorhombic
motion is associated with cooperation between sites [67]. In
our model, the anharmonic strain-phonon coupling, Eq. (13),
increases or reduces the elastic pseudo-Jahn-Teller primary
force constant to account for the larger or smaller Cu-ligand
distances. Meanwhile Kv is associated with the vibronic con-
stant F associated with the local Jahn-Teller in each of the
centers and the separation between many-body states .

Another prediction of our model, associated with the cou-
pling between strain and phonon modes, is the existence of
minima on the elongated side of the energy surface (η�θ > 0),
but instead of distorting along QRε, the distortion is along QRθ .
Some orbital-ordering models based on electron-phonon cou-
pling [16] show orbital patterns that are consistent with this
kind of distortion. The energy surface obtained with hybrid
functionals and starting from the elongated transition state is
shown in Fig. 8. There we can see how the ground state of
the system crosses from the wave function associated with a
ferrotype state at E to an antiferrotype (dz2/dx−y2 ) orbital or-
der associated with alternating elongated/compressed CuF6

4−
complexes along the z-axis. A full geometry optimization on
this kind of geometry leads to an AF-C magnetic configuration
that is only 25.5 meV above the AF-A global minimum. Thus,
we have seen that the system presents two kinds of min-
ima, one that has been extensively reported in the literature
[4,18,28,63] and is associated with the antiferrodistortive QRε

mode, and here we show another that is associated with the
QRθ mode. The key distinction between both is that the one
associated with QRε is compressed in the plane (η�θ < 0)
while the one associated with QRθ is elongated in the plane
[d (Cu-Cu)(x/y) = 4.04 Å, d (Cu-Cu)(z) = 4.16 Å]. Experi-
mentally, stabilization of the second phase could be achieved
by growing KCuF3 (or another similar lattice like KCrF3) on
a substrate with a relatively small in-plane lattice parameter.

In Figs. 9(a) and 9(b) we show polar plots where the
phase represents the orbital angles, ϕ1 and ϕ2, while the radial
coordinates represent some of the distortions presented in
Fig. 7. Let us first discuss [Fig. 9(a)] the orbital ordering when
following the antiferrodistortive mode in the C → M segment
of Fig. 7. This leads to alternating x2 − z2/y2 − z2 functions
typical [10–14] of orbital-ordering models in KCuF3. The
first thing that we can observe is that the plotted line for
ϕ1 and ϕ2 matches nicely the one in our model (solid lines
in Fig. 6). Second, we should note that the orbitals are not
pure x2 − z2 or y2 − z2, which are characteristic of tetragonal
symmetry. This is a reasonable result since the local symmetry
at the CuF6 centers following this mode is orthorhombic.
Third, we note that while ϕ1 and ϕ2 display antiferrodistortive
orbital-ordering as they diverge for finite values of QRε, they
merge and approach the high-symmetry configuration (the
center of the polar plot) from the same direction, i.e., the order
becomes ferrodistortive, ϕ1 = ϕ2, as demanded by Bloch’s
theorem. Another important feature of our result is that the
orbital angles ϕ1 and ϕ2 change with QRε, something that does
not happen in Jahn-Teller problems [2,19]. The angle change
represents a variation of the wave function, the mixture of the
wave functions at � and R, a modification in covalency that

is a fingerprint of the pseudo-Jahn-Teller effect [2], which is
not present in the pure Jahn-Teller effect [see Eqs. (1)–(4)].
We can observe now in Fig. 9(b) what happens when we
move from the cubic to the elongated geometries (η�θ coor-
dinate), cubic → E segment of Fig. 7, that we associated in
Sec. II with a pure Jahn-Teller effect. As the η�θ coordinate
is followed, we see that both ϕ1 and ϕ2 match each other
and come out radially from the center without changing their
values, which confirms that this distortion mode corresponds,
as expected, with a plain Jahn-Teller effect. Finally, we note
that our results (Fig. 9) are, except for small numerical dif-
ferences, independent of the magnetic state studied. Our DFT
results show that magnetism plays a minimal role in the orbital
ordering that is determined by the geometry, a result that has
been stressed before by several authors [17,18,39].

1. Symmetry-breaking

We would like to discuss now what happens in DFT calcu-
lations when the cubic geometry is approached using either
the mode η�θ or QRε. The energy surfaces are shown in
Fig. 10 and the orbital angles in Fig. 9(b). In these plots
the solid/dashed lines correspond, respectively, with η�θ and
QRε. The curves for the strain mode are the same as those in
the segments cubic → C and cubic → E in Fig. 7 and they
become degenerate at η�θ = 0 to form an E -state. Similarly,
the curves for the phonon mode meet in the cubic geometry
to produce an E -state. However, the energies for these two
E states are not the same. We have checked that this result
appears consistently through a large variety of methods, in-
cluding localized basis sets (CRYSTAL [55] and SIESTA [68]
codes), plane waves (VASP code [43,44]), hybrid or LDA + U
functionals, and several ways of generating the initial guess
for the density matrix.

Analysis of the wave function and spin polarization of
each of these solutions (see the insets in Fig. 10) shows that
the orbital ordering when following the strain mode is of
ferrotype while that corresponding with the R-phonon mode is
of antiferrotype. Observing the variation of the orbital angles
in Fig. 9(b), we see that the angles of both configurations
come out radially, i.e., without the orbital angles changing,
as characteristic of a Jahn-Teller situation. However, as dis-
cussed in the theory section (Sec. II), an antiferrotype orbital
ordering is not possible for the cubic geometry as it violates
Bloch’s theorem. This computational problem comes from
using a supercell and the relatively simple wave function
typical of the Kohn-Sham DFT that can only account for sin-
gle configurations (in the quantum chemistry sense; see, e.g.,
[69,70]). In simpler terms, the Kohn-Sham solution following
the QRε mode close to cubic symmetry is symmetry-broken
[70–72], i.e., it cannot fulfill symmetry requirements like
Bloch’s theorem, and it provides solutions, as illustrated by
the spin densities in Fig. 10 that mix the translational character
of � and R wave functions that is forbidden at the cubic
symmetry. Thus, although the solutions for DFT are correct
for fully relaxed low-symmetry configurations, as stressed
by Varignon et al. [73], as we get closer to high symmetry,
supercell solutions may not be adequate and symmetry-broken
solutions may appear. These may be difficult to detect and
appear to be present in much of the literature [28,29] of
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FIG. 10. DFT-calculated energy surface of KCuF3 following the
QRε phonon-mode (dashed lines, lower axis) and the η�θ strain-mode
(solid lines, upper axis) starting off the elongated (E) geometry.
It can be seen that these lines do not meet at cubic symmetry, as
expected. The reason is that the calculations following QRε converge
to a symmetry-broken state (see spin-densities in the inset) where
the wave function changes from site to site, something forbidden at
cubic geometries by Bloch’s theorem while the calculations for η�θ

are compliant with symmetry (see the inset). The color of the lines is
the same as that in Fig. 7.

DFT/Hartree-Fock calculations of these systems, and they
may hamper the correct interpretation of the vibronic energy
of the observed phenomena or calculating high-symmetry
transition states between low-symmetry minima. However, we
would like to stress that these computational problems do
not affect the low-symmetry, observable parts of the energy
surface, and so much of the predictions carried out earlier are
still valid, just not those involving the origin of the vibronic
problem.

Going back to Fig. 10, we can now further observe that
the curve for QRε is symmetrical with respect to QRε = 0,
something that is not present in usual Jahn-Teller problems
where the elongated/compressed minima appear for different
energies, giving rise to the warping of the Mexican hat and the
barrier for the pseudorotation [2,19,20]. These facts further
stress that the dashed lines in Fig. 10 do not represent proper
physical behavior and, in fact, reflect the pseudo-Jahn-Teller

ηΓθ ηΓε

FIG. 11. DFT phonon bands projected on O. Reciprocal space
points with inversion are indicated in blue while those without are
labeled in yellow. The distortions of the eg-symmetry modes (both
strain and phonon) are represented at the top of the figure. Cu and O
ions are represented, respectively, by blue and magenta spheres.

(gapped) vibronic coupling behind QRε, as discussed in our
model of Sec. II.

Up to now we have confined our calculations to KCuF3 in
order to show the different aspects (multiple minima, coupling
to strains, new aspects of orbital ordering) of vibronic cou-
pling in crystals presented in our model. Over the next two
sections, we will discuss how the same model is applicable
to systems with quite different parent structures (rocksalt and
a trigonal bidimensional lattices) instead of perovskite, as
discussed so far.

B. Rocksalt lattice: CuO

Another interesting problem where interconnected octa-
hedral Cu2+ complexes appear is the CuO lattice, which,
experimentally, belongs to the monoclinic C2/c space group.
We take the high-symmetry phase of CuO as that of ZnO,
a rocksalt structure (Fm-3m group) where, contrary to the
previous perovskite example, the octahedra are joined along
the edges instead of the vertexes. Obviously, the phonon
modes of ZnO, shown in Fig. 11, are quite different from
those of KZnF3. However, our criterion for looking for active
vibronic modes is the same as for KZnF3, as we need them
to couple to an Eg electronic state. From the point of view
of the strain modes of this crystal, we have the η�θ and η�ε

modes represented in Fig. 11, which behave in a completely
equivalent manner to those in KCuF3. However, looking at
phonon modes, the only point in the reciprocal space of a
rocksalt crystal that displays cubic symmetry (Oh) is �. At
this point, the mainly oxygen modes are odd (a2u, eu) and
cannot couple to the even Eg electronic state. Of all the other
points with inversion symmetry, the only point with an eg
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FIG. 12. DFT-calculated energy surface of CuO as the system
distorts from cubic (Fm-3m) symmetry to I4/mmm tetragonal com-
pressed (C) and elongated (E) geometries using the η�θ mode and,
afterwards, along the QLε mode towards monoclinic C2/c symmetry.
The different paths are sketched in the inset and are indicated at the
bottom of the figure by colored arrows. Red and blue lines denote
the energy surface for antiferromagnetic and ferromagnetic states,
respectively.

mode is L ( 1
2 , 1

2 , 1
2 ), where we find antiferrodistortive modes

QLθ and QLε that fulfill the role of QRθ and QRε in KCuF3. It is
important to note that these modes at L do not display a pure
stretching character like those at R for KZnF3, and they distort
the structure towards lower symmetry (monoclinic instead of
tetragonal). Similar conclusions were reached by Grochala
et al. [74] although with a symmetry-broken solution. With
respect to the magnetic states, we consider the ferromagnetic
and the antiferromagnetic state present in the experimental
structure [75].

Let us now discuss the energy surface analyzing, as we
did for KCuF3 in Fig. 7, the distortion along η�θ followed
by QLε. This is shown in Fig. 12, where we can see the
strong qualitative resemblance with Fig. 7. We can observe
that the curves leading to the elongated (E) and (C) transition
states are asymmetric, as characteristic of a warped Mexican
hat, and lead to tetragonal geometry (I4/mmm space group).
The stabilization energy and distortions in the CuO lattice,
involving Jahn-Teller energies close to 250 meV, and local
distortions involving changes of the Cu-O distance of 0.175
Å, are much larger than those in KCuF3, involving energies
of 150 meV and displacements of 0.08 Å, probably because
distortions do not have a fully stretching character in the CuO
case. From those tetragonally distorted reference points, we
introduce the QLε distortion that further reduces the space
group of the system to C2/c. As in the case of KCuF3, we see
that starting from the compressed and elongated geometries
leads to very different results, but in this case the effect is
further exaggerated due to the large distortions along η�θ . On
the one hand, we see that following QLε from the elongated
configuration (E) leads to a quadratic increase of energy.
This means that the elongation of the complexes is so strong
that the pseudo-Jahn-Teller effect is not strong enough to
gain energy when moving the oxygen atom asymmetrically

between two copper ones following QLε. In technical terms,
this means that the anharmonic coupling term, Eq. (13), has
increased the elastic force constant, K0, above the vibronic
contribution to the force constant, Kv [2]. On the other hand,
we see that following QLε from the compressed configuration
(C) reduces the energy quadratically, as is characteristic of a
pseudo-Jahn-Teller effect. In this case, the QLε stabilization
energy is ≈ 250 meV, slightly less than that gained through
the Jahn-Teller effect along η�θ . This increased stabilization
energy with respect to the elongated configuration is due to the
enlarged Cu-O in-plane distance introduced by the tetragonal
distortion, showing the importance of the coupling between
these two modes.

In summary, we have seen that the treatment of the co-
operative vibronic problem in CuO is completely analogous
to the one in KCuF3 where accounting for the interplay
between strain ferrodistortive and phonon-based antiferrodis-
tortive distortions is necessary to understand the complex
energy surface.

C. 2D hexagonal: CuCl2

Let us now move to trigonal CuCl2 where, contrary to the
previous cases, the experimental geometry indicates ferrodis-
tortive ordering [76]. Here the high-symmetry configuration
is not cubic as it belongs to the P-3m1 space group. This can
be checked if all the Cu2+ ions are replaced by Zn2+ and
a full optimization of the resulting ZnCl2 crystal is carried
out. While in nature the CuCl2 crystal is formed by van der
Waals bonded layers [76], here we have decided to center
our attention on a single CuCl2 layer, which is where the
main vibronic interactions take place. This layer is formed
by a middle plane containing Cu2+ ions creating a perfectly
bidimensional, hexagonal lattice surrounded above and be-
low by two hexagonal planes of Cl− ions. The Cu2+ ion is
situated inside a six-coordinates CuCl6 complex that does
not have octahedral (Oh) symmetry but a trigonal one (D3d ),
resembling a flattened octahedron. This trigonal deformation
does not break the degeneracy of the eg shell of an octahedral
complex, and the local electronic configuration is still e3

g, just
like in the previous cases of KCuF3 and CuO. Again, we
consider two magnetic states: the ferromagnetic one and an
antiferromagnetic one. In the high-symmetry configuration,
all antiferromagnetic states are frustrated, but this effect is
quenched as the system distorts. We have chosen the anti-
ferromagnetic state to be consistent with this reduction of
symmetry.

Let us analyze the phonon diagram for the Pm-31 phase
of ZnCl2 shown in Fig. 13. We can observe that, among the
high-symmetry points of the first Brillouin zone of ZnCl2,
we have points, � and M, that display inversion symmetry
while K , whose little group is D3, does not. The little group
for M, C2h, does not allow the presence of degenerate e-type
irreps, while on �, whose little group is D3d , we find an
active eg phonon mode. It is important to note that, contrary
to the cases of KCuF3 and CuO where the eg phonon modes
were located at the edge of the first Brillouin zone and gave
rise to antiferrodistortive deformations of the lattice, in CuCl2

the mode is centered at � and is ferrodistortive (all cells of
the lattice will distort in the same way). Moreover, when
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FIG. 13. DFT phonon bands projected on Cl. Reciprocal space
points with inversion are indicated in blue, while those without are
labeled in yellow. The distortions of the eg-symmetry modes (both
strain and phonon) are represented at the top of the figure.

we consider the strain deformations, we find, as in previous
cases, that there exist two distortion modes that transform
according to the eg-symmetry in D3d . Note that while these
modes elongate/compress the CuCl6 somewhat, their main
effect on the lattice is to transform equilateral Cl3 triangles
on the top/bottom Cl−-layers into obtuse (Cl-Cl-Cl angle
66.9◦)/acute (Cl-Cl-Cl angle 54.4◦) triangles, in a similar way
to the Jahn-Teller deformation of triangular (H3, Cu3, . . . )
molecules [2,19].

From the electron-phonon point of view, it is important to
note that, since the vibrational mode is located at �, there is
no need for a second electronic state at another point of the
first Brillouin zone. That means that in CuCl2 the pseudo-
Jahn-Teller effect, responsible for the negative curvature in
the energy surface along QR and QL modes in KCuF3 and
CuO, respectively, should be negligible and we expect to find
a linear stabilization (proper Jahn-Teller effect) along both the
strain and phonon modes. This is exactly what we observe in
Fig. 14, which shows the results of our DFT simulations. Just
as in Figs. 7 and 12, the distortion along η� shows the presence
of a conical intersection (linear descent of energy), how-
ever, instead of the quadratic curve when QR (or QL) modes
are followed here, the Q� mode leads to another linear
decrease of the energy, consistent with the behavior of a
multimode [2] Jahn-Teller problem. Given that all centers of
the lattice distort in the same way, the orbital ordering in this
lattice, independently of the magnetism, is of ferrotype and
is fully consistent with the many-body model presented in
Sec. II.

E

C

FIG. 14. DFT-calculated energy surface of CuCl2 as the system
distorts from trigonal (P-3m1) symmetry to rectangular C2/c com-
pressed (C) (obtuse triangles) and elongated (E) (acute triangles)
geometries using the η�θ mode and, afterwards, along the Q�θ mode
towards C2/c symmetry. The different paths are sketched in the inset
and are indicated at the bottom of the figure by colored arrows. Red
and blue lines denote the energy surface for antiferromagnetic and
ferromagnetic states, respectively.

V. CONCLUSIONS

The presence of electronic degeneracy in solids is a
very rich field of research that has been linked to many
important phenomena in condensed-matter physics. How-
ever, the models usually employed to describe it, namely
the cooperative Jahn-Teller effect and orbital-ordering, dif-
fered substantially from the well-known vibronic treatment of
molecules and other localized systems like impurity centers.
In this manuscript, we have shown that the usual formalism for
the E ⊗ e Jahn-Teller problem can be used in solids. The main
difference with molecules is the multielectronic/multimode
nature of the the problem in solids. In contrast with previous
approaches, we write the basic wave function for the vibronic
Hamiltonian stressing the role played by the basic symmetry
of crystals, i.e., translations and Bloch’s theorem. Using this
theorem, we can characterize the wave functions that lead to a
many-body degenerate Eg state in a solid and show the corre-
spondence of molecular and crystal problems. To deal with the
distortions that couple to the degenerate state, we follow two
paths: (i) we look for eg vibrations in the phonon diagram, and
(ii) we look for symmetrized strain distortions that transform
like eg. Our results show that, depending on where these
vibrations are located in reciprocal space, the resulting distor-
tion and orbital-ordering will be ferro- or antiferro-ordered.
Moreover, our model shows that if the vibrations involved in
the distortion of the system are at the edge of the first Brillouin
zone, it is important to implicate a second Eg electronic state
whose characteristic wave vector is different from the ground
Eg state. The pseudo-Jahn-Teller mixing of these two states,
that are separated by a gap, leads to antiferrotype orbital mix-
ing. Our prediction differs qualitatively from previous orbital
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ordering models because orbitals are not free to rotate due to
the band structure of the cubic system, where electronic states
at different points of reciprocal space have different energies.
Another significant feature of our model is the importance
of taking into account the coupling between the phonon and
strain modes, that to our knowledge has only be previously
discussed by Kataoka [64]. The main novelty is that our
calculations show it to be, contrary to previous assumptions
[4], cooperative and strongly influencing the energies of the
system. In fact, our prediction is that the usual alternating
x2 − z2/y2 − z2 antiferrotype orbital ordering associated with
KCuF3 and other similar crystals is the result of a compression
on the xy plane of the lattice. We have found a close-by
phase, associated with a similar vibronic problem where the
lattice becomes elongated instead of compressed, where the
orbital ordering alternates between 3z2 − r2 and x2 − y2 lo-
calized functions. These phases could become the ground
state of the system, for example, under the application of an
in-plane compressive stress on the system, changing signifi-
cantly the various properties of the crystal, like its magnetism.
While in this work we have not dedicated much attention to
the details of the magnetic structure, our calculations clearly
show that the energy surfaces associated with the various
magnetic states (FM, AF-A, AF-C, AF-G) are almost parallel,
i.e., the energy scale of the electron-phonon coupling is much

larger and dominates over the magnetic one. Also, detailed
quantification of the wave function and orbital ordering shows
that neither is greatly influenced by the magnetic state.

To finish, we would like to stress that the model here was
applied to three quite different systems to show its generality,
but each of these crystals displays very interesting character-
istics and deserves particular attention in order to study in
detail, for example, the interplay of the predicted new phases
and the magnetic coupling. We hope that our work serves to
clarify some of the fundamental aspects of the physics of these
complex but very interesting materials.
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