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RKKY signals characterizing the topological phase transitions in Floquet Dirac semimetals
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Recently, the Floquet Na3Bi-type material has been proposed as an ideal platform for realizing various phases,
i.e., the spin-degenerate Dirac semimetal (DSM) can be turned into the Weyl semimetal (WSM), and even to
the Weyl half-metal (WHM). Instead of the conventional electrical methods, we use the RKKY interaction to
characterize the topological phase transitions in this paper. It is found that detecting the Ising term JI is feasible
for distinguishing the phase transition of DSM/WSM, since the emergence of JI is induced by the broken spin
degeneracy. For the case with impurities deposited on z axis (the line connecting the Weyl points), the Heisenberg
term JH coexists with JI in the WSM, while JH is filtered out and only JI survives in the WHM. This magnetic
filtering effect is a reflection of the fully spin-polarized property (one spin band is in the WSM phase while
the other is gapped) of the WHM, and it can act a signal to capture the phase transition of WSM/WHM. This
signal can not be disturbed unless the direction of the impurities greatly deviates from z axis. Interestingly,
as the impurities are moved into the x-y plane, there arises another signal (a dip structure for JH at the phase
boundary), which can also identify the phase transition of WSM/WHM. Furthermore, we have verified that all
magnetic signals are robust to the term that breaks the electron-hole symmetry. Besides characterizing the phase
transitions, our results also suggest that the Floquet DSMs are power platforms for controlling the magnetic
interaction.
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I. INTRODUCTION

The study of the topological states has become a hot topic
in condensed matter and it recently excited a great interest
in realizing various topological phases, including topological
insulators and topological semimetals. One powerful method
to generate topological states is to apply electromagnetic ra-
diation, which can rearrange the band structure and change
material properties by photon dressing [1–10]. For example,
topological Weyl semimetals (WSMs) can be obtained by ap-
plying a beam of circularly polarized light (CPL) in nodal-line
semimetals [7] or Dirac semimetals (DSMs) [8,9]. Usually,
these so-called Floquet topological states can be controlled
by the light intensity (or frequency), and the optical tunability
offers the related materials a great potential for applications in
spintronics. Remarkably, the Floquet topological states have
been experimentally realized in artificial photonic lattices
[11], as well as in the solid [12].

Recently, the Na3Bi-type DSM has attracted us due to the
various topological phases induced by the off-resonant CPL
[13]. As stated in Ref. [13], the original DSM is changed to be
a WSM once the light is turned on. More interestingly, besides
the WSM, the Weyl half-metal (WHM) can be obtained if the
light intensity exceeds a critical value. Compared to the WSM,
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the WHM possesses greater potential for the development
of spintronic devices since it acts as a perfect spin filter in
the Dirac-Weyl semimetal junction. This transport property is
resulting from the fully spin-polarized property of the WHM,
i.e., one spin band is in the WSM phase while the other is
in the insulator phase. The discovery of the various phases
in Floquet DSMs raises an interesting topic: how to detect
these topological phases? To solve this problem, a conven-
tional method is to measure the spin-resolved quantum Hall
conductivity or probe the surface states directly. However, the
accuracy of these methods is highly dependent on the purity
of the materials, since impurities or defects are unavoidable
in real materials. Moreover, the surface states are susceptible
to the disturbance from bulk states in topological semimet-
als. Thus, new methods for probing the phase transitions are
necessary.

The RKKY interaction between magnetic impurities of-
fers the possibility for detecting the phase transitions, since
it is sensitive to the deformation of the band structure of
the materials. Typically, magnetic signals can be extracted
from the amplitude, the oscillation, and the decaying laws
of the RKKY interaction for characterizing the properties
of the materials. For example, the amplitude of the RKKY
interaction contributed by the edge states is about 20 times
greater than the bulk contribution in the silicene nanoribbon
[14], the tilting effect of the bands are characterized by the
RKKY components in Dirac [15] and Weyl materials [16],
the interfacial chiral bound states can be identified by the
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nondecaying amplitude of the RKKY interaction in Dirac and
Weyl systems [17], the significant difference in the amplitude
of the RKKY interaction can act as a signal to distinguish
between the topological Fermi surface and the trivial Fermi
surface in nodal-line semimetal [18], the anisotropic decaying
laws of the RKKY interaction can be used as the evidence that
the semi-DSMs (S-DSMs) are distinct from other isotropic
systems [19], the splitting of the Weyl points in WSMs can be
captured by the oscillation of the RKKY interaction [20–22].
Besides the static systems, the RKKY interaction has also
recently been explored in irradiated systems [23–25], where
the RKKY interaction can be controlled via a Floquet drive
due to the sensitivity of the interaction to the photon-dressed
band.

Correlating the RKKY interaction with the topological
phase transitions is a novel topic since there is very few
literature in this area. As far as we know, the only successful
example is Ref. [14], which has succeeded in identifying
the phase transitions in silicene by using the edge-states-
mediated RKKY interaction. Even so, almost no literature
has succeeded in establishing a relationship between the bulk-
states-mediated RKKY interaction and the topological phase
transitions. In this paper, by doping magnetic impurities in
the bulk of the Floquet Na3Bi-type DSM, it is expected that
signals can be extracted from the RKKY interaction to char-
acterize the various phase transitions. Since we mainly focus
on the long-range (i.e., relatively large impurity distance) con-
figurations, one can assume that the external impurities do not
affect the low-energy band structure, as discussed in Ref. [26].
By further considering the off-resonant condition of the CPL
and following the treatment (i.e., the direct interaction be-
tween the impurities and the itinerant electrons is assumed to
be constant even in the light field) employed in Refs. [24,25],
the RKKY interaction can be calculated by the standard per-
turbation theory with the aid of the static (time-independent)
Green’s function. It is found that the RKKY components
have completely different responses to the light parameters
in different phases. By checking the Ising term, the phase
transition of DSM/WSM can be identified. Depending on
the impurity configuration, different signals in the Heisenberg
term can be used to ascertain the phase boundary between the
WSM and the WHM. Furthermore, the fully spin-polarized
property of the WHM can also be reflected on the RKKY
interaction. In addition, we have discussed the effect of the
broken electron-hole symmetry on the magnetic signals. From
these discussions, we have proved that the RKKY interaction
can be used as an effective method for probing the phase
transitions in Na3Bi-type DSMs. Also, we have revealed that
the Floquet DSMs are great platforms for controlling the
magnetic interaction.

Our paper is organized as follows. In Sec. II, the low-
energy model of the Floquet Na3Bi-type DSM is introduced,
and various phase transitions are exhibited. In addition,
the method for calculating the RKKY interaction is raised.
In Sec. III, the RKKY interaction in different phases are
discussed with impurities placed in different directions. In
Sec. IV, the term breaking the electron-hole symmetry is
added and its effects on the magnetic signals are discussed.
Finally, a summary is drawn in Sec. V.

II. MODEL AND METHOD

We start with a Floquet DSM model introduced in
Refs. [27,28], where Na3Bi and Cd3As2 act as the prototypes
of the DSMs. The corresponding low-energy Hamiltonian in
orbital and spin basis of (|S, 1

2 〉, |P, 3
2 〉, |S,− 1

2 〉, |P,− 3
2 〉) can

be written as

H (k) =
(

ε0(k) + h+(k) · τ 0
0 ε0(k) + h−(k) · τ

)
(1)

with

ε0(k) =C′
0 + C1k2

z + C2k2
‖ ,

hs(k) = (svskx, −vsky, M ′
0 − M1k2

z − M2k2
‖ − sλ

)
, (2)

where k2
‖ = k2

x + k2
y , C′

0 = C0 + C2k2
A, M ′

0 = M0 − M2k2
A, λ =

v2
0k2

A/(h̄�), and vs = v0 − svA with vA = 2v0M2k2
A/(h̄�).

Here, kA and � refer to the light intensity and frequency,
respectively, τ = (τx, τy, τz ) is the vector of Pauli matrix in
orbital space, and the subscript s = + (−) for spin up (down).
Noting that all terms in Eq. (2) related to kA are induced
by applying a beam of off-resonant light to the DSMs (a
detailed derivation is given in Appendix A). The diagonal term
ε0(k) in H (k) of Eq. (1) breaks the electron-hole symmetry
and M ′

0 in hs(k) acts as the Dirac mass. By diagonalizing
the Hamiltonian of Eq. (1), the energy dispersion can be
solved as

Es,s′ (k) = ε0(k) + s′
√(

M ′
0 − M1k2

z − M2k2
‖ − sλ

)2 + v2
s k2

‖ ,

(3)

where s′ = + (−) refers to the conduction (valence) band.
From Eqs. (2)–(3), one can see that there are two main effects
induced by the light. One is that the parameters C0 and M0

are modified by the new terms C2k2
A and −M2k2

A, respectively.
The former would shift all the bands downward in the energy
direction and the latter would change the positions of the
Dirac points. Even so, the spin degeneracy of the system is
still undisturbed. Another effect is that new spin-dependent
terms −sλτz − vA(kxτx − skyτy) are generated to break the
time-reversal symmetry (TRS). In this scenario, the spin-up
band E+,s′ and the spin-down band E−,s′ would exhibit dif-
ferent responses to kA. Naturally, the spin degeneracy of the
Dirac points can be destroyed.

Interestingly, along with the broken spin degeneracy come
various topological phases for different kA, as stated in
Ref. [13]. To observe the phase transitions intuitively, we
plot the energy dispersions of kz axis in Fig. 2, where ε0

is temporarily dropped (i.e., ε0 = 0). For kA = 0, the bands
are spin degenerated and the system stays in the DSM phase
[Fig. 2(a)]. Due to M0/1 < 0, there exists two Dirac points
with positions (0, 0, ±k0) (k0 = √

M0/M1), each of which
contains two spin-resolved Weyl points with opposite chirali-
ties, as shown in Fig. 1. Different from the paired Weyl points
at the same Dirac point in conventional DSMs, the overlapped
Weyl points here are nonpaired and protected from mixing by
the Z2 symmetry [13]. Considering the block-diagonal form
of the Hamiltonian H (k) [Eq. (1)] in spin space, one can find
that only the Weyl points with opposite chiralities and the
same spin can form a pair, i.e., Weyl partners are locked with
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FIG. 1. Schematic of Na3Bi-type DSMs with two Dirac points
located on kz axis with positions (0, 0, ±k0) (k0 = √

M0/M1), each
of which contains two spin-resolved Weyl points with opposite chi-
ralities. Along z axis, a beam of off-resonant CPL is assumed to be
irradiated.

(a)

(c)

(e)

(d)

(b)

FIG. 2. Evolution of the kz-axis dispersion with different val-
ues of kA, which change the material from (a) DSM to (b) WSM,
and then to (d) WHM. The solid (dashed) lines denote the spin-
up (spin-down) bands. (c) The kz-axis dispersion for the phase
boundary (kA = kc) between the WSM and the WHM. The related
low-energy dispersion is shown in (e), where the spin-up band around
the Weyl point k0,+ is linear in all directions while the spin-down
band exhibits a semi-Dirac shape around the � point (i.e., lin-
ear in kx axis but disperses quadratically in kz axis). Here, k0,+ =√

(M0 − M2k2
A − λ)/M1, kc = √M0/(M2 − v2

0/h̄�) with h̄� = 2 eV
and ε0 is temporarily dropped (i.e., ε0 = 0). Parameters M0 =
−0.08686 eV, M1 = −10.6424 eV Å2, M2 = −10.3610 eV Å2,
v0 = 2.4598 eV Å are extracted from Na3Bi [27] material.

spin. Once a small kA is considered, i.e., 0 < kA < kc with
kc =

√
M0/(M2 − v2

0/h̄�), the two pairs of Weyl partners are
separated due to the different responses of the spin-up and
spin-down bands to kA [Fig. 2(b)]. Consequently, the original
DSM is transformed to be a WSM, whose Weyl points are
located at (0, 0, ±k0,s) with k0,s =

√
(M0 − M2k2

A − sλ)/M1.
As kA > kc is satisfied, the system enters into the WHM phase.
Compared to the WSM, the key characteristic of the WHM
is the fully spin-polarized property, i.e., one spin band is in
the WSM phase while the other is in the insulator phase, as
shown in Fig. 2(d). Due to the peculiar band structure, only
the electrons of one spin band are allowed to participate in
the transport when the Fermi energy uF is inserted in the gap
of the other spin band. Based on this property, the WHM
has been proposed as a perfect spin filter [13]. If a large kA

with kA >
√

M0/(M2 + v2
0/h̄�) is considered, the material is

changed to be a normal insulator, where all bands are gapped.
In this paper, we only focus on the topological phases (DSM,
WSM, and WHM) since all the RKKY components vanish in
the insulator phase if uF is inserted in the energy gap. Similar
vanished RKKY interaction has already been discussed in the
phosphorene [29].

In addition to the various phases mentioned above, the
phase boundary (kA = kc) between the WSM and the WHM
attracts us due to its peculiar dispersion, whose shape is
highly spin dependent. As shown in Fig. 2(e), the spin-up
band around the Weyl points is linear in all directions. Re-
markably different from this, the spin-down band is linear
in kx (or ky) axis but disperses quadratically in kz axis, i.e.,
exhibiting a S-DSM-type dispersion. Since the RKKY inter-
action is sensitive to the shape of the band structure, thus
the magnetic signals characterizing the phase boundary are
expected.

To verify the phase transitions shown in Fig. 2, one can
calculate the spin-dependent Hall conductivity ζ s

xy. Follow-
ing the calculation processes in Refs. [9,30], one can obtain
ζ s

xy = sk0,se2/πh. In this way, one can find a net zero Hall
conductivity in the DSM due to ζ+

xy = −ζ−
xy . Differently, a

finite Hall conductivity is obtained in the WSM since ζ+
xy

and ζ−
xy are opposite in sign and unequal in amplitude. More

interestingly, a pure spin current can be induced in the WHM
due to the vanished ζ−

xy and survived ζ+
xy . As a result, different

phases can be distinguished.
Unlike traditional electrical methods in characterizing dif-

ferent phases, we attempt to build the relationship between
the magnetic signals and the phase transitions in this work.
To construct a model for the indirect magnetic interaction
(i.e., the RKKY interaction), two impurities are assumed to be
embedded in the bulk of the material. One impurity is located
at r1 and the other is at r2. Each impurity would interact
with the electrons of host material in a contact interaction
Hint = JSi · σδ(r − ri ), where Si (i = 1 or 2) denotes the spin
of impurity. The two impurities would couple indirectly with
each other by the itinerant electrons, thus an effective indirect
exchange interaction is generated between two impurities.
Using the standard perturbation theory [31–34] by keeping J
to the second-order term, the effective exchange interaction
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between impurities is given by

HR = − J2

π
Im
∫ uF

−∞
Tr[(S1 · σ )G(ω, R)(S2 · σ )

× G(ω,−R)]dω, (4)

where zero temperature is considered and G(ω, R) is the re-
tarded Green’s function with R = r1 − r2.

Before evaluating the RKKY interaction, the retarded
Green’s functions of real space have to be derived. Using
the system Hamiltonian H (k), the retarded Green’s function
G(ω, R) can be constructed in Lehmann’s representation and
it reads as

G(ω, R) = 1

(2π )3

∫
eikR 1

ω + i0+ − H (k)
d3k. (5)

Inserting the Hamiltonian H (k) of Eq. (1) into the above
equation, one can obtain

G(ω,±R) =
(

G+(ω,±R) 0
0 G−(ω,±R)

)
(6)

with

Gs(ω,±R) = 1

(2π )3

∫
d3keikR ω+ − ε0(k) + hs(k) · τ

[ω+ − ε0(k)]2 − h2
s (k)

,

(7)

where ω+ = ω + i0+ and hs(k) = |hs(k)|. Since the Hamil-
tonian H (k) of Eq. (1) is diagonal in spin space, the retarded
Green’s function can also be expressed as a diagonal form in
Eq. (6). Inserting the expressions of ε0(k) and hs(k) [Eq. (2)]
into the above equation and integrating out the momentum kz

and the angle ϕ [tan(ϕ) = ky/kx], Gs(ω,±R) (s = ±) can be
calculated as

Gs(±R, ω) =
(

rs + ts ±seisϕR qs

±se−isϕR qs rs − ts

)
, (8)

where ϕR = arctan(Ry/Rx ). rs, ts, and qs are given by

rs =
∫ ∞

0

(
ω′ fs + C1

d2 fs

dR2
z

)
k‖J0(k‖R‖)

4π
(
C2

1 − M2
1

)
(gs,+ − gs,−)

dk‖,

ts =
∫ ∞

0

(
Ms fs + M1

d2 fs

dR2
z

)
k‖J0(k‖R‖)

4π
(
C2

1 − M2
1

)
(gs,+ − gs,−)

dk‖,

qs =
∫ ∞

0

ivs fsk2
‖J1(k‖R‖)

4π
(
C2

1 − M2
1

)
(gs,+ − gs,−)

dk‖, (9)

where

fs = e−√
gs,−Rz

√
gs,−

− e−√
gs,+Rz

√
gs,+

,

ω′ = ω+ − C′
0 − C2k2

‖ ,

Ms = M ′
0 − M2k2

‖ − sλ,

gs,± = MsM1 − ω′C1

C2
1 − M2

1

±
√√√√ (ω′M1 − MsC1)2(

C2
1 − M2

1

)2 + v2
s k2

‖
C2

1 − M2
1

.

(10)

In Eq. (9), Jv (x) is the nth-order Bessel function of the first
kind.

Inserting the Eqs. (6) and (8) into the Eq. (4) and canceling
the spin and orbital degrees of freedom, the RKKY interaction
HR can be split into the following components,

HR =
∑
i=x,y

JiiS
1
i S2

i + JzzS
1
z S2

z (11)

with

Jxx,yy = −4J2

π
Im
∫ uF

−∞
[r+r− + t+t− + q−q+ cos (2ϕR)]dω,

Jzz = −2J2

π
Im
∫ uF

−∞
(t2

+ + r2
+ − q2

+ + t2
− + r2

− − q2
−)dω.

(12)

Noting that the subscript s = ± for rs, ts, and qs refers to the
spin of the electrons. Thus, one can find that Jxx is induced
by the interplay between spin-up and spin-down bands while
Jzz stems from the contribution of bands with the same spin.
Due to the protected inversion symmetry of the Hamiltonian
H (k), no DM term arises in Eq. (11), the same result is also
found in Ref. [35]. Since Jxx = Jyy always stands, the RKKY
interaction of Eq. (11) can be expressed in another form,
which is given by

HR = JH S1 · S2 + JI S
1
z S2

z (13)

with

JH = Jxx,

JI = Jzz − Jxx,
(14)

where JH is the Heisenberg term and JI is the Ising term.

III. RKKY SIGNALS CHARACTERIZING THE
TOPOLOGICAL PHASES IN THE ABSENCE OF ε0(k)

In this section, we calculate the RKKY interaction in the
absence of the term ε0(k). The effect of ε0(k) on the RKKY
interaction would be discussed in the next section.

A. Case with impurities deposited on z axis

In this section, we focus on the case with impurities de-
posited on z axis (i.e., the line connecting the Weyl points). In
this impurity configuration, one can find q± = 0 by checking
the Eq. (9), where J1(k‖R‖) = 0 for the case of R‖ = 0. Plug-
ging rs and ts [Eqs. (9)–(10)] into the Eq. (12), the RKKY
interaction of zero Fermi energy (uF = 0) can be calculated
numerically. To carry out the discussion, the RKKY com-
ponents JH and JI versus the light intensity kA are plotted.
According to the Fig. 3, it is found that the RKKY components
exhibit significantly different behaviors in different phases, as
described below:

(1) In the DSM (kA = 0), there only exists the Heisenberg
term JH , which supports an isotropic XXX (Jxx = Jyy = Jzz)
spin model for the impurities. The same result has also been
reported in Refs. [35,36]. For the vanished JI in the DSM,
the related mechanism is attributed to the spin degeneracy
under the protection of the TRS. It can be further understood
by checking the Eqs. (9)–(10) and (12), where r+ = r− and
t+ = t− (the subscripts ± for spin up and down) lead to
Jxx,yy = Jzz;
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(a)

(b)

FIG. 3. The RKKY components (a) JH and (b) JI versus the
light intensity kA with different impurity distances. Impurities are
deposited on the z axis, uF = 0 and C = J2/(2π )3. The vertical
dotted lines denote the phase boundary (kA = kc) between the WSM
and the WHM.

(2) In the WSM (0 < kA < kc), a nonzero Ising term JI

arises (JI = Jzz − Jxx �= 0) due to the broken spin degeneracy.
In this scenario, JI coexists with JH . As a result, an anisotropic
XXZ spin model (Jxx = Jyy �= Jzz) is generated, which is dif-
ferent from the original isotropic spin model in the DSM;

(3) For the WHM (kA > kc), it acts like a filter, i.e., JI still
survives but JH is filtered out once the system is transformed
from the WSM to the WHM. As far as we know, this magnetic
filtering effect is unique to the WHM, which distinguishes
the WHM from the other three-dimensional (3D) materials.
Physically, this effect is a reflection of the fully spin-polarized
property (i.e., one spin band is in the insulator phase while
the other is in the WSM phase). More specifically, the gapped
band leads to the vanished JH while finite JI is mainly con-
tributed by the WSM-type band. Further explanations are
organized as:

(1) To explain the vanished JH in the WHM, one have
to study the decaying law of JH , since the amplitude of the
interaction is mainly determined by the decaying law. We plot
the R-dependent JH with different kA in Fig. 4. In the WHM
[Fig. 4(c)], there arises an exponential decaying law JH ∝
e−κ0

z R (κ0
z =

√
−Eg/2M1), which decays faster than the cases

in the WSM (kA < kc) and at the phase boundary (kA = kc).
To understand this exponential law, one has to notice that JH

is contributed by the terms r+r− and t+t− in Eq. (12). Here,
r− and t− are induced by the spin-down band, whose energy
gap Eg makes the solution of kz to be an imaginary number
(i.e., kz = iκ0

z ). Thus, JH (kA > kc) ∝ e−κ0
z R is obtained since

(a)

(b)

(c)

FIG. 4. Spatial dependence of JH with (a) kA = 0.37kc in the
WSM (0 < kA < kc), (b) kA = kc, and (c) kA = 1.18kc in the WHM.
The hollow circles in (b) denote the analytical result of the Eq. (B10)
in the Appendix B, and the solid lines in (a)–(c) refer to the numerical
results calculated from Eqs. (9)–(10), (12), (14).

kz couples with R in the phase factor eikzR of the Green’s
function [Eq. (5)]. Due to the large value of κ0

z , JH ∝ e−κ0
z R

vanishes if the long-range case (i.e., relatively large R) is
considered. This explains the vanished JH in the WHM shown
in Fig. 3(a).

(2) Different from JH , JI = Jzz − Jxx is mainly contributed
by the terms t2

+ and r2
+ in Eq. (12), since the other terms related

to r− (or t−) can be ignored due to the exponential decaying
law (as stated in previous paragraph). Noting that t2

+ and r2
+ are

completely induced by the spin-up WSM-type band, which
usually generates a decaying law of JI ∝ 1/R5, similar to the
case of Fig. 4(a). Thus, the amplitude of JI is still considerable
in the WHM phase [Fig. 3(a)].

In a brief summary, we obtain JH �= 0, JI = 0 for the DSM,
JH,I �= 0 for the WSM, and JH = 0, JI �= 0 for the WHM.
Thus, one can identify the phase transition of DSM/WSM by
checking the Ising term JI , and the Heisenberg term JH can be
used to distinguish the WSM from the WHM.

B. Case with impurities placed in a direction
deviated from z axis

In practice, due to the limitation in the accuracy of the
doping techniques, impurities can not be precisely placed in
the z axis. One may wonder whether the magnetic signals of
Fig. 3(a) still exist when impurities are placed in a direction
deviated from z axis. The polarization angle θR [tan(θR) =
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(a)

(b)

(c)

FIG. 5. (a)–(c) The Heisenberg term JH versus the light intensity
kA with uF = 0 and ϕR = π/4. Here, the vertical dotted lines denote
the phase boundary (kA = kc) between the WSM and the WHM. (a),
(b) Different polarization angles θR are considered with Rk0 = 14.
(c) Impurities are placed in x-y plane (i.e., θR = π/2) with different
impurity distances R.

R‖/Rz] is used to evaluate the deviation between the direction
of the impurities and the z axis. In the following, we only
focus on the Heisenberg term JH since the signal for the phase
transition of DSM/WSM carried by JI is independent on θR.

For a small angle θR (θR � 0.15π ), it is found that JH

still can be used to distinguish the WHM from the WSM, as
shown in Fig. 5(a), where the results are similar to the case
in Fig. 3(a). In addition, one can also explore the effect of
the changed azimuthal angle ϕR on JH . As shown in Eq. (12),
ϕR enters into JH through a cosine function cos(2ϕR), which
only modifies the amplitude of JH but can not disturb the
magnetic signals that characterizes the phase transitions. It is
reasonable since the signals are contributed by the different
decaying laws of JH in different phases. If a relatively large
θR is considered (except θR = π/2), JH is failed in charac-
terizing the phase transition of WSM/WHM, as indicated by
the dashed lines in Fig. 5(b). The reason is that the original
vanished JH is changed to be a finite one if θR increases

(a) (b)

FIG. 6. (a) θR-dependent JH in the WHM phase (kA = 0.95k0)
with ϕR = 0.25π and Rk0 = 14. (b) The relationship between κz and
κ‖. Here, the coordinate system of real space is consistent with that
of k space. The asterisk denotes the value of κ =

√
κ2

z + κ2
‖ taken in

the direction of θR.

(a)

(b)

(c)

FIG. 7. (a)–(d) Spatial dependence of the Heisenberg term JH

with (a) kA = 0.37kc in the WSM (0 < kA < kc), (b) kA = kc, and
(c) kA = 1.24kc in the WHM. The dashed lines denote the long-range
asymptotic results for JH . Here, c0 = −0.0165R−3.5, κ0

‖ = Eg/2v−,
and ϕR = 0.25π .
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substantially, as shown in Fig. 6(a). The high dependence
of JH on θR is attributed to the anisotropic imaginary wave

number k =
√

k2
z + k2

‖ = i
√

κ2
z + κ2

‖ = iκ , which is induced

by the anisotropic gapped spin-down band E−,s′ . Similar to
the case of Fig. 4(c), an exponential decay JH ∝ e−κR is gen-
erated. Using the equation E−,s′ = uF = 0, the relationship
between κz and κ‖ is plotted in Fig. 6(b), where the coordinate
system of real space is consistent with that of k space. In order
to make an effective contribution to the RKKY interaction, the
value of κ must be taken in the direction of θR, as highlighted
by an asterisk in Fig. 6(b). According to the Fig. 6(b), one can
find κ = √(κ0

z )2 + 02 = κ0
z for θR = 0. In this case, JH (θR =

0) recovers the result of Fig. 4(c), i.e., JH (θR = 0) ∝ e−κ0
z R.

As θR changes from 0 to π/2 (i.e., impurities are moved
from z axis to x-y plane), κ decreases dramatically, which
brings a great enhancement to the amplitude of JH because
of JH ∝ e−κR (R > 0).

Although the signal of JH similar to that of Fig. 3(a) is
destroyed by the large θR, there emerges another signal for
JH to characterize the phase transition of WSM/WHM once
the impurities are moved into the x-y plane (i.e., θR = π/2),
as indicated in Figs. 5(b) and 5(c). In the vicinity of the
critical point kA = kc, JH in the WSM increases with kA, but
it decreases with kA in the WHM. As a consequence, there
emerges a significant dip exactly at kA = kc, which provides
an unambiguous signal to ascertain the phase boundary be-
tween the WSM and the WHM. The signal here can also be
understood by checking the decaying laws of JH . According
to the long-range asymptotic behaviors of JH in Fig. 7, one
can find a slowest decaying law JH ∝ 1/R4.5 at kA = kc as
compared to the cases in the WSM and the WHM. This law
is a result of the interplay between the spin-up Weyl band and
the spin-down S-DSM-type band. Noting that the Weyl band
contributes a decaying law of 1/R5 for the interaction while
the S-DSM-type band induces a slowly decaying law of 1/R4

[19]. As a result, the interlay of these two bands generates
an intermediate decaying law JH ∝ 1/R4.5, which is further
verified by the analytical result of Eq. (B19) in Appendix B.
Due to the slowest decaying law, the largest amplitude of JH

is naturally generated at the phase boundary (kA = kc). This
explains the dip structure shown in Fig. 5(c).

IV. EFFECT OF ε0(k) ON THE RKKY SIGNALS

In this section, the effect of ε0(k) on the RKKY interaction
would be discussed. Our ultimate purpose is to test whether
the magnetic signals characterizing the phase transitions, as
well as the signal for the fully spin-polarized property of the
WHM, are still valid.

Before exploring the magnetic signals, we would briefly
discuss the effect of ε0(k) on the band structure, which is
plotted in Fig. 8. First, we consider the case of DSM with
kA = 0. Due to the broken electron-hole symmetry, ε0(k)
would bring three main effects [Fig. 8(a)], which are orga-
nized as: (i) The low-energy bands around the Dirac points
are slightly tilted. (ii) An asymmetry between the conduction
and valence bands arises, along with the deformed Fermi
surface. (iii) The energy bands are lifted as a whole. Once
the light intensity kA is turned on, the effect of (iii) would

(a) (b)

(c)

(e)

(d)

FIG. 8. (a)–(d) Energy dispersion along the kz axis for different
phases in the presence of ε0(k). Other parameters are the same as
that in Figs. 2(a)– 2(d). uc in (c) refers to the specific Fermi energy at
which the spin-down conduction band touches the valence band. (e)
The energy of the Weyl points of different spins versus kA. Parame-
ters C0 = −0.06382 eV, C1 = 8.7536 eV Å2, C2 = −8.4008 eV Å2

are extracted from Na3Bi [27] material.

be substantially modified. As shown in Figs. 8(b)– 8(d), the
larger kA is, the more pronounced is the movement of all
energy bands in the negative-energy direction. This movement
can also be seen in Fig. 8(e), where the energies of the Weyl
points of different spins versus kA are plotted. Although signif-
icant modifications are induced for the energy bands by ε0(k),
the topological phase transitions are undisturbed. Thus, mag-
netic signals exhibited in previous section are expected to be
preserved.

In order to find the survived magnetic signals, one has to
display the numerical results of JH as a function of the Fermi
energy uF , since the bands are drastically shifted in the energy
direction as kA varies. First, the case with impurities deposited
on z axis is considered. In Fig. 9(a), we plot |JH | as a function
of uF and kA. One can find that the existence of the magnetic
signal at kA = kc is highly dependent on the selection of the
Fermi energy. The signal [the circle in Fig. 9(a)] identifying
the phase boundary between the WSM and the WHM can be
obtained only in the condition of uF = uc, which corresponds
precisely to the energy of the closing point of the spin-down
bands [Fig. 8(c)]. The signal here is similar to that of Fig. 3(a),
as verified by the kA-dependent JH with the Fermi energy
uc in Fig. 9(b). The survival of the magnetic signal can be

205149-7



HOU-JIAN DUAN et al. PHYSICAL REVIEW B 109, 205149 (2024)

(a)

(b)

FIG. 9. (a) The Heisenberg term JH as a function of kA and uF .
(b) kA-dependent RKKY components JH and JI with uF = uc. uc is
the specific Fermi energy as depicted in Fig. 8(c), and the red solid
line (enlarged in the illustration) refers to the Ising term JI for a small
interval of kA in the WHM. All results in (a)–(b) are calculated by
considering the effect of ε0, and impurities are deposited on z axis
with Rk0 = 14.

understood by reviewing the three effects stated in the pre-
vious paragraph. By choosing uF = uc, the amplitude of JH

around kA = kc is only modified by the tilting effect of the
band while the other two effects can be ignored. Noting that
the magnetic signal here is mainly determined by the decaying
laws of the interaction, which can not be changed by the tilting
effect of the band [16]. Thus, the magnetic signal still survives
in the presence of ε0(k). In addition, the signal characterizing
the fully spin-polarized property also survives, as indicated
by the illustration of Fig. 9(b), where JH = 0 and JI �= 0 in the
WHM. Similarly, we plot the kA-dependent JH with impurities
in x-y plane in Fig. 10, where the Fermi energy is also set as
uF = uc. One can find that there still exists a dip structure for
JH at the phase boundary (kA = kc).

V. SUMMARY

We have explored the RKKY interaction in Na3Bi-type
DSMs subject to an off-resonant light, which can change the
original DSM to the WSM and even to the WHM. It is found
that signals can be extracted from the RKKY interaction for
characterizing the topological phase transitions. For the phase
transition of DSM/WSM, it can be identified by the Ising term

FIG. 10. The Heisenberg term JH as a function of kA with uF =
uc and Rk0 = 14. Here, impurities are placed in x-y plane with ϕR =
0.25π . The vertical dotted lines denote the phase boundary (kA = kc)
between the WSM and the WHM.

JI , whose existence depends on whether the spin degeneracy
of the system is preserved or not. By detecting the Heisenberg
term JH with impurities in the z axis, the phase boundary
between the WSM and the WHM can be easily ascertained.
In addition, we find that only the Ising term survives in
the WHM, which is a reflection of the fully spin-polarized
property. For the case with impurities deposited on the x-y
plane, the dip structure of JH can also be used to identify
the phase transition of WSM/WHM. Furthermore, we have
proved that all magnetic signals are robust to the term that
breaks the electron-hole symmetry. Our work has shown that
measurement on the RKKY interaction could provide us an
alternative method to probe the rich topological phases in 3D
Floquet DSMs. Our proposal is feasible with the present tech-
niques, e.g., spin-polarized scanning tunneling spectroscopy
[37], which can measure the magnetization curves of individ-
ual atoms, or the electron-spin-resonance technique coupled
with an optical detection scheme [38,39]. Our results also
suggest that the Floquet DSMs are powerful platforms for
controlling the magnetic interaction.
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APPENDIX A: PHASE TRANSITIONS INDUCED BY THE OFF-RESONANT CPL IN Na3Bi-TYPE MATERIALS

The model employed in Eq. (1) can be realized by considering the effect of a periodic driving to the following model of
DSMs,

H0 = C0 + C1k2
z + C2k2

‖ + (M0 − M1k2
z − M2k2

‖
)
τz + v0(kxσzτx − kyτy), (A1)
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where k2
‖ = k2

x + k2
y , τ = (τx, τy, τz ) is the vector of pauli matrix in orbital space, and the subscript s = + (−) for spin up (down).

The above model is extracted from the Na3Bi-type DSMs [27,28]. For the sake of concreteness, a beam of CPL is assumed to be
injected in the z axis. The corresponding vector potential is described as A(t ) = A0[cos(�t ), sin(�t ), 0] with period T = 2π/�.
By applying the Peierls substitution k → k + eA/h̄, the system Hamiltonian becomes time dependent. Using the Floquet theory
[7] with the off-resonant condition of h̄� 
 BW (BW is the bandwidth), the modified part of the Hamiltonian induced by light
reads as

H = V0 +
∑
n�1

[V+n,V−n]

nh̄�
+ O

(
1

�2

)
, (A2)

where Vn = 1
T

∫ T
0 H0(k + eA/h̄)e−inh̄�t dt . Specifically, V0 can be calculated as

V0 = 1

T

∫ T

0
H0(k + eA/h̄)dt,

= 1

T

∫ T

0

{
C0 + C1k2

z + C2[kx + eA0 cos (�t )/h̄]2 + C2[ky + eA0 sin (�t )/h̄]2
}
dt

+ 1

T

∫ T

0

{
M0 − M1k2

z − M2[kx + eA0 cos (�t )/h̄]2 − M2[ky + eA0 sin (�t )/h̄]2
}
τzdt

+ 1

T

∫ T

0
v0{[kx + eA0 cos (�t )/h̄]σzτx − [ky + eA0 sin (�t )/h̄]τy}dt . (A3)

Noting that
∫ T

0 sin(�t )dt = 0 and
∫ T

0 cos(�t )dt = 0, thus the above equation can be further simplified as

V0 = 1

T

∫ T

0

[
C0 + C1k2

z + C2k2
‖ + (M0 − M1k2

z − M2k2
‖
)
τz + v0(kxσzτx − kyτy)

]
dt

+ 1

T

∫ T

0

{
C2

[
e2A2

0 cos2 (�t )

h̄2 + e2A2
0 sin2 (�t )

h̄2

]
− M2

[
e2A2

0 cos2 (�t )

h̄2 + e2A2
0 sin2(�t )

h̄2

]
τz

}
dt,

= H0 + C2k2
A − M2k2

Aτz, (A4)

where kA = eA0/h̄. As shown above, besides H0, extra terms C2k2
A and −M2k2

Aτz are generated for V0. The same extra terms are
also found in Refs. [9,13]. Similarly, one can obtain other Floquet sidebands as

V±1 = v0(σzτx ∓ iτy) + 2(kx ± iky)(C2 − M2τz )

2
kA, (A5)

and Vn = 0 for |n| � 2. Substituting the Eqs. (A4)–(A5) into the Eq. (A2), one can obtain the following effective Hamiltonian as

H = H0 + C2k2
A − M2k2

Aτz − λσzτz − vA(kxτx − kyσzτy), (A6)

where λ = v2
0k2

A/(h̄�) and vA = 2v0k2
AM2/(h̄�).

In spin space, the effective Hamiltonian of Eq. (A6) can be rewritten as

H =
(

ε0(k) + h+(k) · τ 0
0 ε0(k) + h−(k) · τ

)
, (A7)

with

ε0(k) =C0 + C2k2
A + C1k2

z + C2k2
‖ ,

hs(k) = (svskx, −vsky, M0 − M2k2
A − M1k2

z − M2k2
‖ − sλ

)
, (A8)

where vs = v0 − svA. In the above equations, the terms related to kA describe the effects of the off-resonant light. Specifically,
there are two main effects induced by the off-resonant light. One is that the parameters C0 and M0 are modified by the new
terms C2k2

A and −M2k2
A, respectively. Note that these terms are spin independent and the energy bands of the system are still

spin degenerate. Another effect is that new spin-dependent terms −sλτz − vA(kxτx − skyτy) are generated to destroy the spin
degeneracy. As a result, spin-dependent velocities vs = v0 − svA arise and the positions of Weyl points of different spin exhibit
a different response to the light-field parameter kA.

Here, the driving frequency h̄� and the bandwidth BW are set as h̄� = 2 eV and BW = 0.24 eV. The off-resonant condition
is satisfied since h̄� 
 BW . The setting of the bandwidth, as well as the frequency, is reasonable since we only concern the
low-energy behavior with the energy in the range of |E | < 0.12 eV.
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APPENDIX B: DERIVATION OF THE ANALYTICAL RKKY INTERACTION AT THE PHASE BOUNDARY
BETWEEN THE WSM AND THE WHM

Here, we drop the term ε(k) for facilitating the calculation of the analytical results. For the phase boundary between the
WSM and the WHM, i.e., at the critical point kA = kc =

√
M0/[M2 − v2

0/(h̄�)], the spin-up band is in the WSM phase while
the spin-down one is in the S-DSM phase. For the spin-up band, the bulk conduction and valence bands touch each other at two
Weyl points located at (0, 0,±k0,+) with k0,+ =

√
(M0 − M2k2

A − λ)/M1. In this case, one can linearize the Hamiltonian H+ of
the Eq. (A7) around the Weyl points (0, 0,±k0,+) to the following low-energy model:

H+,η =
(

ηvzk′
z v+(kx + iky)

v+(kx − iky) −ηvzk′
z

)
, (B1)

where vz = −2M1k0,+ and η = ± denote the chirality of the two Weyl points. For the spin-down band, the Hamiltonian H− in
the Eq. (A7) can be further simplified as

H− =
( −M1k2

z −v−(kx − iky)
−v−(kx + iky) M1k2

z

)
. (B2)

1. Case with impurities deposited on the line connecting the Weyl points

For impurities in the z axis [i.e., R = (0, 0, Rz )], according to the Eqs. (5) and (B1), the Green’s function of the spin-up band
can be calculated as

G+(R, ω) =
∑
η=±

1

(2π )3

∫∫∫
dkxdkydk′

ze
i(k′

z+ηk0,+)Rz
1

ω2 − v2+k2
‖ − v2

z k′
z
2

(
ω + ηvzk′

z v+
(
kx + iky

)
v+
(
kx − iky

)
ω − ηvzk′

z

)
,

=
∑
η=±

eiηk0,+Rz
1

(2π )3

∫
k‖dk‖

∫
dk′

ze
ik′

zRz

∫ 2π

0
dθ‖

1

ω2 − v2+k2
‖ − v2

z k′
z
2

(
ω + ηvzk′

z v+k‖eiθ‖

v+k‖e−iθ‖ ω − ηvzk′
z

)
,

=
∑
η=±

eiηk0,+Rz
2

(2π )2

∫ ∞

0
dk‖

∫ ∞

0
dk′

zk‖
1

ω2 − v2+k2
‖ − v2

z k′
z
2

×
(

ω cos(k′
zRz ) + iηvzk′

z sin(k′
zRz ) 0

0 ω cos(k′
zRz ) − iηvzk′

z(k′
zRz )

)
, (B3)

Applying a parameter transformation v+k‖ = vzk′
‖, the above Green’s function can be further simplified as

G+(R, ω) =
∑
η=±

eiηk0,+Rz
2

(2π )2

v2
z

v2+

∫ ∞

0
dk′

‖

∫ ∞

0
dk′

zk
′
‖

(
ω cos(k′

zRz ) + iηvzk′
z sin(k′

zRz ) 0
0 ω cos(k′

zRz ) − iηvzk′
z(k′

zRz )

)
ω2 − v2

z k′2
‖ − v2

z k′
z
2 ,

=
∑
η=±

eiηk0,+Rz
2v2

z

(2π )2v2+

∫ ∞

0
k2dk

(
ω

sin(kRz )
kRz

+ iηvzk
sin(kRz )−kRz cos(kRz )

k2R2
z

0

0 ω
sin(kRz )

kRz
− iηvzk

sin(kRz )−kRz cos(kRz )
k2R2

z

)

ω2 − v2
z k2

,

=
(

r+ + t+ 0
0 r+ − t+

)
, (B4)

with

r+ = −ω

2πv2+

cos (k0,+Rz )

Rz
ei Rzω

vz ,

t+ = − vz sin (k0,+Rz )

2πv2+R2
z

(
iωRz

vz
− 1

)
ei Rzω

vz . (B5)

Similarly, one can calculate G+(−R, ω), which satisfies G+(−R, ω) = G+(R, ω).
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According to the Eqs. (5) and (B2), the Green’s function of the spin-down band can be calculated as

G−(R, ω) = 1

(2π )3

∫∫∫
dkxdkydkze

ikzRz

(
ω − M1k2

z −v−(kx − iky)
−v−(kx + iky) ω + M1k2

z

)
ω2 − v2−k2

‖ − M2
1 k4

z

,

= 1

(2π )3

∫ ∞

0
k‖dk‖

∫
dkze

ikzRz

∫ 2π

0
dθ‖

(
ω − M1k2

z −v−k‖e−iθ‖

−v−k‖eiθ‖ ω + M1k2
z

)
ω2 − v2−k2

‖ − M2
1 k4

z

,

= 2

(2π )2

∫ ∞

0
k‖dk‖

∫ ∞

0
dkz cos(kzRz )

(
ω − M1k2

z 0
0 ω + M1k2

z

)
ω2 − v2−k2

‖ − M2
1 k4

z

,

= 1

4π2

∫ ∞

0
dk‖

∫ ∞

0
dk′

z

k‖ cos(
√

k′
zRz )√

k′
z

(
ω − M1k′

z 0
0 ω + M1k′

z

)
ω2 − v2−k2

‖ − M2
1 k′2

z

,

= M2
1

4π2v2−

∫ ∞

0
dk′

‖

∫ ∞

0
dk′

z

k′
‖ cos(

√
k′

zRz )√
k′

z

(
ω − M1k′

z 0
0 ω + M1k′

z

)
ω2 − M2

1 k′2
‖ − M2

1 k′2
z

,

= M2
1

4π2v2−

∫ ∞

0

k3/2

ω2 − M2
1 k2

dk
∫ π

2

0
dθ

cos (θ ) cos[
√

k sin(θ )Rz]√
sin (θ )

(
ω − M1k sin (θ ) 0

0 ω + M1k sin (θ )

)
,

= M2
1ω

2π2v2−Rz

∫ ∞

0

k sin(
√

kRz )

ω2 − M2
1 k2

dk

(
1 0
0 1

)

+ M3
1

2π2v2−R3
z

∫ ∞

0

k sin(
√

kRz )
(
2 − kR2

z

)− 2Rzk3/2 cos(
√

kRz )

ω2 − M2
1 k2

dk

(
1 0
0 −1

)
,

=
(

r− + t− 0
0 r− − t−

)
, (B6)

where

r− = − ω

4πRzv
2−

(
eiRz

√
ω

−M1 + e−Rz
√

ω
−M1
)
,

t− = eiRz
√

ω
−M1

−2iRz
√−M1ω − R2

z ω − 2M1

4πv2−R3
z

+ e−Rz
√

ω
−M1

2Rz
√−M1ω + R2

z ω − 2M1

4πv2−R3
z

. (B7)

Similarly, one can calculate G−(−R, ω), which satisfies G−(−R, ω) = G−(R, ω).
Plugging the Green’s functions of Eqs. (B4) and (B6) into the Eq. (4) of the main text and summing over the spin and orbital

degrees of freedom, the RKKY components can be written in the form of

HR = Jxx
(
Sx

1Sx
2 + Sy

1Sy
2

)+ JzzS
z
1Sz

2, (B8)

with

Jxx = −4λ2

π
Im
∫ 0

−∞
(r+r− + t+t−)dω,

Jzz = −2λ2

π
Im
∫ 0

−∞
(r2

+ + r2
− + t2

+ + t2
−)dω. (B9)

Plugging the Eqs. (B5) and (B7) into the above equation, Jxx can be calculated as

Jxx = −Im
∫ 0

−∞
dω

e
iRzω
vz
(
eiRz

√
ω

−M1 + e−Rz
√

ω
−M1
)
ω2

2π 3R2
z v

2−v2+/[λ2 cos (k0,+Rz )]
− Im

∫ 0

−∞
dω

eRz ( iω
vz

−√
ω

−M1
)(vz − iRzω)[Rz(Rzω + 2

√−M1ω) − 2M1]

2π 3R5
z v

2−v2+/[λ2 sin (k0Rz )]

+ Im
∫ 0

−∞
dω

eiRz ( ω
vz

+√
ω

−M1
)(vz − iRzω)[Rz(Rzω + i2

√−M1ω) + 2M1]

2π 3R5
z v

2−v2+/[λ2 sin (k0Rz )]
,

=
(
R3

z v
3
z − 32M2

1 Rzvz

)
cot (k0Rz ) + 2M1

(
9v2

z R2
z − 32M2

1

)
16π 3M2

1 R6
z v

2−v2+/
[
v2

z sin (k0Rz )
]
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+ Im

⎧⎪⎨
⎪⎩

(1 + i)e− iRzvz
4M1
(
v2

z R2
z − 60M2

1 + i20M1Rzvz

)
erfc
[

(−1)1/4√
Rzvz

2
√−M1

]
64

√
2M5/2

1 π 5/2R9/2
z v2−v2+/

[
v

7/2
z cos (k0Rz )

]
⎫⎪⎬
⎪⎭

+ Im

⎧⎪⎨
⎪⎩

(1 − i)e− iRzvz
4M1
(
v2

z R2
z − 28M2

1 + i20M1Rzvz

)
erfc
[

(−1)1/4√
Rzvz

2
√−M1

]
+ (1 + i)e

iRzvz
4M1
(
v2

z R2
z − 28M2

1 − i20M1Rzvz

)
erfc
[

(−1)3/4√
Rzvz

−2
√−M1

]
64

√
2M5/2

1 π 5/2R9/2
z v2−v2+/

[
v

7/2
z sin (k0Rz )

]
⎫⎪⎬
⎪⎭

− Im

⎧⎪⎨
⎪⎩

(1 − i)e
iRzvz
4M1
(
60M2

1 + i20M1Rzvz − v2
z R2

z

)
erfc
[

(−1)3/4√
Rzvz

−2
√−M1

]
64

√
2M5/2

1 π 5/2R9/2
z v2−v2+/

[
v

7/2
z cos (k0Rz )

]
⎫⎪⎬
⎪⎭, (B10)

where erfc(t ) is the complementary error function. Similarly, Jzz can be calculated as

Jzz = Im
∫ 0

−∞
e

i2Rzω

vz
[vz − (1 + i)Rzω][vz + (1 − i)Rzω] cos (2k0,+Rz ) − vz(vz − i2Rzω)

4π3R4
z v

4+
dω

− Im
∫ 0

−∞

(
eiRz

√
ω

−M1 + e−Rz
√

ω
−M1
)2

ω2

8π3R2
z v

4−
dω

− Im
∫ 0

−∞

[
e−Rz

√
ω

−M1
(
2Rz

√−M1ω + R2
z ω − 2M1

)− eiRz
√

ω
−M1
(
2iRz

√−M1ω + R2
z ω + 2M1

)]2
8π3R6

z v
4−

dω,

= v3
z [2 − 3 cos (2k0,+Rz )]

8π3R5
z v

4+
− 12M3

1

π3R8
z v

4−
. (B11)

2. Case with impurities deposited on the plane perpendicular to the line connecting the Weyl points

For impurities deposited on the x-y plane [i.e., R = (Rx, Ry, 0)], according to the Eqs. (5) and (B1), the Green’s function of
the spin-up band can be calculated as

G+(R, ω) =
∑
η=±

1

(2π )3

∫∫∫
dkxdkydk′

ze
i(kxRx+kyRy ) 1

ω2 − v2+k2
‖ − v2

z k′
z
2

(
ω + ηvzk′

z v+(kx + iky)

v+(kx − iky) ω − ηvzk′
z

)
,

= 1

2π3

∫ ∞

0
k‖dk‖

∫ ∞

0
dk′

z

∫ 2π

0
dϕeik‖R‖ cos (ϕ−ϕR ) 1

ω2 − v2+k2
‖ − v2

z k′
z
2

(
ω v+k‖eiϕ

v+k‖e−iϕ ω

)
,

= 1

π2

∫ ∞

0
k‖dk‖

∫ ∞

0
dk′

z

1

ω2 − v2+k2
‖ − v2

z k′
z
2

(
ωJ0(k‖R‖) v+ieiϕR k‖J1(k‖R‖)

v+ie−iϕR k‖J1(k‖R‖) ωJ0(k‖R‖)

)
, (B12)

where ϕR = arctan(Ry/Rx ). Applying a parameter transformation vzk′
z = v+kz, the above Green’s function can be further

simplified as

G+(R, ω) = v+
π2vz

∫ ∞

0
k‖dk‖

∫ ∞

0
dkz

1

ω2 − v2+k2
‖ − v2+k2

z

(
ωJ0(k‖R‖) v+ieiϕR k‖J1(k‖R‖)

v+ie−iϕR k‖J1(k‖R‖) ωJ0(k‖R‖)

)
,

= v+
π2vz

∫ ∞

0

k2

ω2 − v2+k2
dk
∫ π

2

0
dθ cos (θ )

(
ωJ0[kR‖ cos (θ )] v+ieiϕR k cos (θ )J1[kR‖ cos (θ )]

v+ie−iϕR k cos (θ )J1[kR‖ cos (θ )] ωJ0[kR‖ cos (θ )]

)
,

= v+
π2vzR‖

∫ ∞

0

k

ω2 − v2+k2
dk

(
ω sin(kR‖) v+ieiϕR [sin(kR‖)/R‖ − k cos(kR‖)]

v+ie−iϕR [sin(kR‖)/R‖ − k cos(kR‖)] ω sin(kR‖)

)
,

=
(

r+ eiϕ‖q+
e−iϕ‖q+ r+

)
, (B13)

where

r+ = − ω

2πv+vzR‖
ei

ωR‖
v+ , q+ = − iv+ + ωR‖

2πv+vzR2
‖

ei
ωR‖
v+ . (B14)

Similarly, one can calculate G+(−R, ω), which satisfies G+(−R, ω) = G+(R, ω)|q+→−q+ .
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According to the Eqs. (5) and (B2), the Green’s function of the spin-down band can be calculated as

G−(R, ω) = 1

(2π )3

∫∫
dkxdky

∫
dkze

i(kxRx+kyRy )

(
ω − M1k2

z −v−(kx − iky)

−v−(kx + iky) ω + M1k2
z

)

ω2 − v2−k2
‖ − M2

1 k4
z

,

= 1

(2π )3

∫ ∞

0
k‖dk‖

∫
dkz

∫ 2π

0
dϕeik‖R‖ cos (ϕ−ϕR )

(
ω − M1k2

z −v−k‖e−iϕ

−v−k‖eiϕ ω + M1k2
z

)

ω2 − v2−k2
‖ − M2

1 k4
z

,

= 2

(2π )2

∫ ∞

0
k‖dk‖

∫ ∞

0
dkz

((
ω − M1k2

z

)
J0(k‖R‖) −v−ie−iϕR k‖J1(k‖R‖)

−v−ieiϕR k‖J1(k‖R‖)
(
ω + M1k2

z

)
J0(k‖R‖)

)

ω2 − v2−k2
‖ − M2

1 k4
z

. (B15)

Applying a parameter transformation −M1k2
z = v−k′

z, the above Green’s function can be further simplified as

G−(R, ω) =
√

v−
(2π )2√−M1

∫ ∞

0
k‖dk‖

∫ ∞

0
dk′

z

1√
k′

z

(
(ω + v−k′

z )J0(k‖R‖) −v−ie−iϕR k‖J1(k‖R‖)

−v−ieiϕR k‖J1(k‖R‖) (ω − v−k′
z )J0(k‖R‖)

)

ω2 − v2−k2
‖ − v2−k′2

z

,

=
√

v−
(2π )2√−M1

∫ ∞

0
k3/2dk

∫ π
2

0
dθ

cos(θ )√
sin(θ )

(
[ω + v−k sin (θ )]J0[k cos (θ )R‖] −v−ie−iϕR k cos (θ )J1[k cos (θ )R‖]

−v−ieiϕR k cos (θ )J1[k cos (θ )R‖] [ω − v−k sin (θ )]J0[k cos (θ )R‖]

)

ω2 − v2−k2
,

=
√

v−
2π2

√−M1

∫ ∞

0

k3/2

ω2 − v2−k2

⎛
⎜⎜⎝0F1

(
; 5

4 ; − k2R2
‖

4

)
ω + 0F1

(
; 7

4 ;− k2R2‖
4

)
v−k

3 −2v−ie−iϕR R‖
0F1

(
; 9

4 ;− k2R2‖
4

)
k2

5

−2v−ieiϕR R‖
0F1

(
; 9

4 ;− k2R2‖
4

)
k2

5 0F1
(
; 5

4 ; − k2R2
‖

4

)
ω − 0F1

(
; 7

4 ;− k2R2‖
4

)
v−k

3

⎞
⎟⎟⎠dk,

=
(

r− + t− −e−iϕR q−
−eiϕR q− r− − t−

)
. (B16)

In the above equation, 0F1(; b; t ) is the confluent hypergeometric function, and r−, t−, q− read as

r− = (−1)7/8√−v−/M1ω
5/4K1/4(−iR‖ω/v−)�(5/4)

23/4π2v
9/4
− R1/4

‖
,

t− = (−1)5/8ω3/4K3/4(−iR‖ω/v−)�(7/4)

3 × 21/4
√−M1π2v

5/4
− R3/4

‖
,

q− = − ω5/4K5/4(−iR‖ω/v−)�(5/4)

(1 − i)3/2M1/2
1 π2v

7/4
− R1/4

‖
, (B17)

where Kv (t ) is the modified Bessel function of the second kind and �(t ) is the Gamma function. Similarly, one can calculate
G−(−R, ω), which satisfies G−(−R, ω) = G−(R, ω)|q−→−q− .

Plugging the Green’s function of Eqs. (B13) and (B16) into the Eq. (4) of the main text and summing over the spin and orbital
degrees of freedom, the RKKY components can be written as HR = Jxx(Sx

1Sx
2 + Sy

1Sy
2) + JzzS

z
1Sz

2, where Jxx and Jzz read as

Jxx = −4λ2

π
Im
∫ uF

−∞
[r+r− + q−q+ cos (2ϕR)]dω,

Jzz = −2λ2

π
Im
∫ uF

−∞
(r2

+ − q2
+ + t2

− + r2
− − q2

−)dω. (B18)
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Plugging the Eqs. (B14) and (B17) to the RKKY component Jxx of the above equation, Jxx can be solved as

Jxx = −Im
∫ 0

−∞
e

iR‖ω

v+
λ2�(5/4)ω5/4

√
1 − i

π4R5/4
‖ v

7/4
− v+vz

√−M1

[
ωK1/4(−iR‖ω/v−) + (iv+ + R‖ω)K5/4(−iR‖ω/v−) cos (2ϕR)

R‖

]
dω,

= 1

R4.5
‖

1024
√

πv
7/2
+ (v2

+ − v2
−)1/4(5v2

− + 2v2
+)�(2.75) + 1575(v2

− − v2
+)3�(−3.75)

[
2F1
(
3, 3.5; 3.75; v++v−

2v+

)]
896

√
2π4M1v+(v2+ − v2−)3vz/[λ2

√−M1v
3/2
− �(1.25)]

+ 1

R4.5
‖

1024
√

πv
9/2
+ (v2

+ − v2
−)1/4(2v2

+ − 9v2
−)�(1.75) + 225(v2

− − v2
+)3�(−3.75)

512
√

2π4
√−M1(v2− − v2+)3v+vz/[

√
v−�(1.25)]

cos(2ϕR)

+ 1

R4.5
‖

11v+
[

2F1
(
1, 3.5; 2.75; v−+v+

2v+

)]− 7v−
[

2F1
(
2, 4.5; 3.75; v−+v+

2v+

)]
512

√
2π4

√−M1(v2− − v2+)3v+vz/[
√

v−�(1.25)]
cos(2ϕR), (B19)

where 2F1(a, b; c; t ) is the Gauss hypergeometric function. Similarly, Jzz can be solved as

Jzz = Im
∫ 0

−∞

{
K2

1/4(−iR‖ω/v−) − K2
5/4(−iR‖ω/v−)

2M1π5R1/2
‖ v

7/2
+ /

[
λ2(1 − i)ω5/2�2

(
5
4

)] − λ2(1 + i)ω3/2K2
3/4(−iR‖ω/v−)�2

(
7
4

)
9M1π5R3/2

‖ v
5/2
+

+ λ2(i2R‖ω − v+)ei2R‖ω/v+

2π3R4
‖v+v2

z

}
dω,

= − λ2

15M1π3

1

R4
‖

+ v+λ2

2π3v2
z

1

R5
‖
. (B20)
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