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Antiferromagnetic order enhanced by local dissipation
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We study an XXZ spin chain at zero magnetization coupled to a collection of local harmonic baths at zero
temperature. We map this system on a (1 + 1)D effective field theory using bosonization, where the effect of
the bath is taken care of in an exact manner. We provide analytical and numerical evidence of the existence of
two phases at zero temperature: a Luttinger liquid (LL) and an antiferromagnetic phase (AFM), separated by a
phase transition akin to the Berezinsky–Kosterlitz–Thouless type. While the bath is responsible for the LL-AFM
transition for subohmic baths, the LL-AFM transition for superohmic baths is due to the interactions within the
spin chain.
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I. INTRODUCTION

The problem of a quantum-mechanical system interacting
with an environment is ubiquitous in physics. These inter-
actions can originate from a surrounding bath, an external
driving force, an optical or solid lattice, or something else.
Regardless, the resulting behavior of the system coupled to
its environment can drastically differ from that of the iso-
lated system. At one end of the spectrum, if the environment
evolves on timescales much larger than that of the system,
it is said to be frozen. In the case where the environment
settles in a random frozen state, it can be accurately modeled
by quenched disorder. This is the case of the celebrated An-
derson model [1], where a particle gets localized due to the
presence of a random potential, leading to vanishing trans-
port properties. The other end of the spectrum corresponds
to environments with very rapid dynamics that can safely
be considered Markovian and for which the Lindblad mas-
ter equation has proven very useful [2]. In between these
two timescales are slowly varying baths for which a suc-
cessful quantum formulation was established by Caldeira and
Leggett [3,4]. They studied a single degree of freedom (spin or
particle) coupled to a bath, such as the spin-boson model [5]
or a quantum Brownian particle in a periodic potential [6,7].
In these models, the system is coupled to a bath of phonons
that is simple enough to be traced over and recover effective
dynamics for the system of interest.

More recently, interest has started shifting towards many-
body versions of these models. Going from one particle to
many opens the door to another zoology of phenomena, but
some single-particle effects can also persist. For instance,
adding interactions to the Anderson model is conjectured to
preserve localization at finite temperature through the so-
called many-body localization (MBL) [8–10], i.e., the fact that
some isolated many-body systems can fail to reach equilib-
rium and retain a memory of their initial conditions.

In this paper, we study the well-known XXZ spin chain
coupled to local baths of harmonic oscillators (see Fig. 1). To
a certain extent, this model can be viewed as a many-body

extension in (1 + 1)D of the spin-boson model in
(0+1)D [5,11], or an extension of the most studied many-body
localization setup, an XXZ spin chain in a random magnetic
field [8], where the fields are now replaced by local baths. The
effect of the bath on its corresponding spin can be captured by
an exponent s (see the next section for a more formal defini-
tion) which allows us to model a large variety of baths. For a
spin chain at finite magnetization and any s, it has been shown
that the bath induces fractional excitations that create a dissi-
pative phase presenting signatures of localization [12–15]. At
zero magnetization, the only known results are for s = 1, i.e.,
an ohmic bath, for which a superfluid to insulator transition
has been proposed in Refs. [15,16]. In this paper, we broaden
the scope of these studies by focusing on the zero magnetiza-
tion case and allowing for a generic exponent s. Our results
show the existence of a Berezinsky–Kosterlitz–Thouless
(BKT) phase transition between a Luttinger liquid (LL) and
an antiferromagnetic (AFM) phase. The exact location of the
transition point depends on the bath exponent s and is shifted
compared to the non-dissipative spin chain for s < 1.

The paper is organized as follows: Section II introduces
the model and maps it to a bosonic effective field theory.
Section III then presents a clear overview of the main re-
sults in terms of this effective field-theoretic description.
These results were derived using thorough numerical and
analytical approaches. On the analytical side, a perturbative
renormalization group study is presented in Sec. IV and is
complemented by a variational approach in Sec. V. These
analytical predictions are then tested for several observables
against an exact numerical simulation of the field theory in
Sec. VI. Finally, a brief discussion of the results and conclud-
ing remarks are made in Sec. VII. Unless specified otherwise
(as in Sec. V), the zero temperature (β → ∞) and thermody-
namic (L → ∞) limits will always be understood.

II. MODEL

The XXZ spin chain is a 1D periodic chain of N spins,
total length L, and lattice spacing a = L

N . It evolves according
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FIG. 1. Schematic representation of the model. An XXZ spin
chain with parameters Jz, Jxy has its spins coupled to independent
and identical collections of harmonic oscillators. The spin-bath in-
teraction is assumed to be fully described by the parameters α and
s.

to the Hamiltonian

HS =
N∑

j=1

JzSz
jS

z
j+1 − Jxy

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
, (1)

where Sμ
i are the spin-1/2 operators. Each spin is then coupled

to a set of quantum harmonic oscillators by

HSB =
N∑

j=1

Sz
j

∑
k

λkXk, j, (2)

and the oscillators’ Hamiltonian is

HB =
N∑

j=1

∑
k

P2
k, j

2mk
+ 1

2
mk�

2
kX 2

k, j . (3)

Hence the total Hamiltonian of the dissipative system H =
HS + HSB + HB. Note that the baths are local, i.e., each bath
has its independent spin that it acts upon and the baths are
not spatially correlated. Thus, its effect can be thought of as
an instance of annealed disorder hj (t ) = ∑

k λkXk, j , acting lo-
cally through HSB = ∑N

j=1 h j (t )Sz
j . The quenched limit of this

problem h j (t ) = h j has already been studied in Refs. [17–19],
where a zero-temperature delocalization-localization transi-
tion was found. Other bath-spin couplings are also possible
and have been studied in, for example, Refs. [20,21].

A common tool to study such many-body systems is the
Lindblad master equation [2], which makes use of a Marko-
vian approximation of the bath’s dynamics. Nevertheless, in
this paper, we will not use it and resort to an approach similar
to that of Leggett et al. [5], which takes the bath into account
in an exact manner. Following the idea of Ref. [5], the bath
characteristics are completely encoded in the spectral function

J (�) = π

2

∑
k

λ2
k

�kmk
δ(� − �k ), (4)

which we assume to have the low-energy behavior

J (�) = α
π�1−s

D

�(1 + s)
�s for � ∈ [0,�D], (5)

where s is the bath exponent and α measures the strength
of the coupling to the bath. Following the classification from
Leggett et al., we call s = 1 an ohmic bath, while 0 < s < 1
is a subohmic bath and s > 1 is a superohmic bath. The rest

of this section will be dedicated to deriving an effective action
for our system using the bosonization technique.

A. Bosonization

To implement the bosonization procedure described in
Refs. [12,22,23], one must first map the spin chain to a
one-dimensional spinless fermionic system using the Jordan–
Wigner transformation. With the usual notations c j, c†

j for the

ladder operators and n j = c†
j c j , the XXZ spin chain Hamilto-

nian becomes HS = Hxy + Hz, where

Hxy = −Jxy

2

N∑
j=1

(c†
j+1c j + c†

j c j+1), (6)

Hz =
N∑

j=1

Jz

(
n j − 1

2

)(
n j+1 − 1

2

)
. (7)

The hopping Hamiltonian Hxy can be diagonalized in Fourier
space as Hxy = ∑

k εkc†
kck with εk = −Jxy cos(ka). In the rest

of the paper, we will consider the spin chain to be at zero
magnetization, which corresponds to a half-filled fermionic
chain and a Fermi momentum kF = π

2a that is commensurate
with the lattice spacing a. The application of the bosonization
technique then requires linearizing the spectrum εk around kF ,
which leads to a field-theoretic description of the Hamiltonian
HS with the action SS = SLL + Sg, given by

SLL =
∫

dxdτ

2πK

[
u(∂xφ(x, τ ))2 + 1

u
(∂τφ(x, τ ))2

]
, (8)

Sg = − gu

2π2a2

∫
dxdτ cos[4φ(x, τ )], (9)

where x ∈ [0, L] denotes the spatial coordinate, τ ∈ [0, β] is
the imaginary time coordinate with β the inverse temperature
of the system, and SLL describes a LL. The parameters u, K
are the so-called Luttinger parameters and, with g, are re-
lated to the microscopic parameters. The Bethe ansatz gives
their exact expressions for the spin chain without dissipa-
tion [e.g., K−1

Bethe = 2
π

arccos(−Jz/Jxy)] while the bosonization
yields approximate expressions valid in the Jz � Jxy limit

(e.g., K−1
bosonization =

√
1 + 4Jz

πJxy
) (see Appendix A for more de-

tails). On top of this description of the isolated spin chain, one
needs to add the effect of the bath captured by HSB + HB. This
requires the bosonized expression of Sz

j :

Sz
j = − a

π
∇φ(x j ) + (−1) j

π
cos[2φ(x j )], x j = ja. (10)

Using this expression to write a path integral representation
of HB + HSB, one realizes that the bath degrees of freedom
are quadratic and can therefore be integrated out. This leads
to the following additional term in the action:

Sα = − a

2π2

∫
dxdτdτ ′

×
[
∂xφ(x, τ ) − (−1)x/a

a
cos[2φ(x, τ )]

]
D(τ, τ ′)

×
[
∂xφ(x, τ ′) − (−1)x/a

a
cos[2φ(x, τ ′)]

]
, (11)
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where one has to keep in mind the underlying lattice coor-
dinates x j = ja to make sense of the term (−1)x/a which
arises from the commensurability of the excitation wave-
length with the lattice spacing. One can show using the
spectral function J (�) that the dissipative kernel is D(τ, τ ′) ∼
ατ s−1

c |τ − τ ′|−1−s for τ > τc = 1/�D (see Appendix B for
the detailed computation). For the sake of simplicity, we re-
late the imaginary-time and space cutoffs as a = uτc which
doesn’t change the underlying physics. Equation (11) can be
further simplified by dropping the rapidly fluctuating terms
(−1)x/a∂xφ(x, τ ) cos[2φ(x, τ ′)], and the cross gradient term
∂xφ(x, τ )∂xφ(x, τ ′), which is irrelevant by power counting.
The total bosonized action S = SLL + Sg + Sα is thus

S =
∫

dxdτ

2πK

[
u(∂xφ(x, τ ))2 + 1

u
(∂τφ(x, τ ))2

]

− g

2π2

∫
dxdτ

aτc
cos[4φ(x, τ )]

− α

2π2

∫
dxdτdτ ′

aτ 1−s
c

|τ−τ ′|>τc

cos[2φ(x, τ )] cos[2φ(x, τ ′)]
|τ − τ ′|1+s

. (12)

This effective action is that of a LL with two types of in-
teractions: a local sine-Gordon interaction controlled by g
and a long-range interaction controlled by α, which is com-
monly encountered in generalized XY models [24,25] or
dissipative quantum systems [26–28]. Note that the long-
range interaction involving cos[2φ(x, τ )] cos[2φ(x, τ ′)] can
be rewritten as the sum of cos[2(φ(x, τ ) + φ(x, τ ′))] and
cos[2(φ(x, τ ) − φ(x, τ ′))]. In the case of an incommensurate
XXZ spin chain [12–14], only the latter term remains and the
sine-Gordon term vanishes. It has been shown that this term
gives rise to fractional excitations |ωn|s in the spectrum of the
incommensurate spin chain. However, from our variational
analysis in Sec. V, we will demonstrate that this fractional
term is absent from our commensurate model and is replaced
by a gap.

III. MAIN RESULTS

From the bosonized action in Eq. (12), the analytical and
numerical tools used in the following sections infer the zero
temperature (β → ∞) and thermodynamic (L → ∞) phase
diagram depicted in Fig. 2. A LL and an AFM are separated
by a transition that depends on the bath exponent s.

(1) For a superohmic bath (s > 1), a standard BKT tran-
sition [29] occurs at Kc = 1/2 (in the limit of infinitesimal
α, g) and is driven by the coupling g which comes from the
internal interactions of the spin chain. The spin chain is an LL
for K � Kc while it becomes an AFM at K < Kc.

(2) For an ohmic bath (s = 1), the system undergoes a
BKT-like transition at Kc = 1/2 (in the limit of infinitesimal
α, g) driven by both the coupling g, and the system-bath cou-
pling denoted by the α.

(3) For a subohmic bath (s < 1), the coupling α, shifts the
BKT-like transition to Kc = 1 − s/2 (in the limit of infinites-
imal α, g). This increased value of Kc extends the area of the
AFM.
In all cases, the critical point Kc increases with α and g.
The two phases are characterized as follows. On the one

K
1

0 1 2
s0

Luttinger liquid 
Antiferromagnet

FIG. 2. Phase diagram in the (K, s) plane as described by the
RG analysis in Sec. IV and the variational method in Sec. V for
infinitesimal value of α and g. The golden-colored phase is a gapless
LL, and the blue-colored phase is a gapped AFM phase. Along the
dashed line, the phase transition is controlled by the coupling α to the
bath, while along the dotted line it is governed by g, which describes
the internal interactions of the spin chain.

hand, the LL is a critical phase exhibiting quasi-long range
order as seen by the power-law decay of spin-spin correlation
functions [22]. On the other hand, the AFM is a gapped (or
massive) phase exhibiting long-range order. Although sug-
gested by Ref. [16], we do not find any fractional excitations
in the AFM phase, neither from the analytical study nor from
the exact numerical simulations. This AFM is of the same
nature as the AFM in the sine-Gordon model. The transition
admits the (infinite order) order parameter 〈cos(2φ)〉 which is
related to the antiferromagnetic spin density wave as 〈Sz

j〉 =
(−1) j

π
〈cos(2φ)〉. We show that 〈cos(2φ)〉 vanishes with the gap

of the AFM phase, thus making it an order parameter of the
AFM-LL transition.

IV. PERTURBATIVE RENORMALIZATION GROUP
APPROACH

Looking at the bosonized action in Eq. (12), we expect
that, at large distances and times, the model presents at least
two phases: a LL phase where both couplings α and g are
irrelevant, and a strongly interacting one where the couplings
are relevant. To capture the precise location of the departure
from the LL, we implement a perturbative renormalization
group (RG) analysis. It turns out it is enough to compute
the RG equations up to O(α, g2, αg) to grasp the interesting
physics at play. The perturbative RG analysis was done using
the operator product expansion (OPE) formalism [16,30] to
respect the real-space sharp cutoff a appearing in the action.
The detailed computation can be found in Appendix C and
leads to the following RG equations, where the dependence
on the renormalization time l has been made explicit:

d

dl

u(l )

K (l )
= g(l )2u(l )

π2
, (13)

d

dl

1

u(l )K (l )
= 2α(l )

πu(l )
+ g(l )2

π2u(l )
, (14)
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FIG. 3. Left: Superohmic transition: RG flow of the couplings g and K according to Eqs. (18) and (19). We distinguish two phases: a
Luttinger liquid (LL) depicted in gold and an antiferromagnetic (AFM) phase in blue. The critical point is at Kc = 1/2. Right: Subohmic
transition (here s = 0.5): RG flow of the couplings α and K according to Eqs. (23) and (24). We distinguish two phases: a LL in gold, and an
AFM phase in blue. The critical point is at Kc = 1 − s/2 = 0.75.

d

dl
g(l ) = (2 − 4K (l ))g(l ) + α(l ), (15)

d

dl
α(l ) = (2 − s − 2K (l ))α(l ) + g(l )α(l )

π
, (16)

which agree with and extend [12,16] to generic s. Note how
the presence of α in the RG equation for g implies that the
bath will generate the coupling g even if its microscopic
(bare) value is 0. The symmetric process, i.e., g generates
α, is not possible as g can only enhance a nonzero α as
seen in Eq. (16). When considering the effect of the bath
(i.e., α 
= 0), this means that there are not two distinct phase
transitions at Kc = 1/2 and Kc = 1 − s/2 as seen from the
scaling dimensions of α and g, but rather a unique transition at
Kc = max(1 − s/2, 1/2). The corresponding phase diagram is
depicted in Fig. 2 and shows the existence of a LL for K > Kc,
with Kc = 1 − s/2 for a subohmic bath (s < 1) and Kc = 1/2
for a superohmic bath (s > 1). Note that the long-range cosine
potential is irrelevant by power counting for s > 2. In this
paper, we are interested in understanding the effect of the bath
on the system, thus we constrain the value of s ∈ [0, 2] in
Fig. 2.

A. Superohmic bath (s > 1)

For a superohmic bath (s > 1), near the transition point
Kc = 1/2, the coupling α has a scaling dimension 2 − s −
2Kc = 1 − s < 0 which is strongly irrelevant. It can therefore
be safely ignored and the RG equations become

d

dl
u = 0, (17)

d

dl

1

K
= g2

π2
, (18)

d

dl
g = (2 − 4K )g, (19)

which are the one-loop RG equations of the sine-Gordon
model [22,31]. The associated RG flow is shown in Fig. 3 and
is known to belong to the BKT universality class. According

to the standard BKT phenomenology, we expect a gap � to
appear for K > Kc. A well-known result derived from the
RG equations is that � ∼ exp(−C(g − gc)−p) near the the
transition, with p = 1/2 [22].

B. Ohmic bath (s = 1)

The ohmic bath (s = 1) is the most studied type of bath
in the literature [12,15,16]. In this setting, the scaling dimen-
sions of α and g both vanish at Kc = 1/2, which means the
transition is driven by both couplings simultaneously. The RG
Eqs. (13)–(16) cannot be simplified any further (as is the case
for superohmic or subohmic baths). This leads to an RG flow
similar to that of the BKT transition, the main difference being
that it is governed by two couplings (α and g) instead of one.

We have shown in Appendix D that this BKT-like transi-
tion is characterized by a gap closing as � ∼ exp(−C(α −
αc)−p) [or, equivalently, exp(−C′(g − gc)−p) if one tunes the
coupling g instead α] near the transition with p =

√
79+3
35 �

0.3396. BKT-like transitions with a parameter p 
= 1/2 have
been previously found, for example, in the case of 2D melt-
ing [32] and long-range Ising models [33]. However, to the
best of our knowledge, this particular value of p has not yet
been reported in the literature.

C. Subohmic bath (s < 1)

For a subohmic bath (s < 1), the coupling g is strongly
irrelevant near the transition point Kc = 1 − s/2 since its
scaling dimension is 2 − 4Kc = 2s − 2 < 0. The RG equa-
tions can therefore be simplified by discarding g to give

d

dl

u

K
= 0, (20)

d

dl

1

uK
= 2α

πu
, (21)

d

dl
α = (2 − s − 2K )α. (22)

The LL action appears to be renormalized along the
imaginary-time direction ( d

dl
1

uK 
= 0) but not along the space
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direction ( d
dl

u
K = 0) [34]. This anisotropy is due to the

long-range interaction in Eq. (12) which only spans the
imaginary-time direction. Since the ratio u

K is constant,
Eqs. (21) and (22) can be written in terms of K and

√
α only,

d

dl

1

K
=

√
α

2

π
, (23)

d

dl

√
α = (1 − s/2 − K )

√
α, (24)

which are exactly the same type of equations as Eqs. (18)
and (19), describing the sine-Gordon model. This shows that
this phase transition is also BKT-like and doesn’t belong to
another universality class, as suggested by Ref. [35]. The
RG flow associated to these equations is depicted in Fig. 3.
Because of the identification with the subohmic RG equations,
the gap closes as � ∼ exp ( − C(α − αc)−p) near the the tran-
sition with p = 1/2.

V. VARIATIONAL METHOD

While the perturbative RG is tailored to capture the end
of the LL, it fails at describing correctly the physics of the
AFM phase. This is why we resort to a variational method à la
Feynman [22,36] to capture the essential properties of the bulk

of the phases. This technique aims at finding an approximate
action Svar that is very similar to S while being simple enough
to allow for analytical computations. We consider a quadratic
ansatz

Svar = 1

2

∫
dq

2π

dωn

2π
φ�(q, ωn)G−1

var (q, ωn)φ(q, ωn), (25)

where G−1
var (q, ωn) = 1/Gvar (q, ωn) is to be determined,

φ(q, ωn) is the Fourier transform of φ(x, τ ) given by
φ(x, τ ) = ∫ dq

2π
dωn
2π

φ(q, ωn)ei(qx−ωnτ ), with ωn = 2πn
β

and q =
2πn

L the bosonic Matsubara frequencies and the momenta of
the system, respectively. The distance from the original action
to the variational action is then defined through the variational
free energy Fvar = −T ln Zvar + T 〈S − Svar〉var (〈. . .〉var stands
for the average with respect to Svar). Indeed, the true free
energy of the original field theory F = −T ln Z = T ln Zvar −
T ln〈e−(S−Svar )〉var, is always upper bounded by Fvar due to the
convexity of the exponential. This defines the best variational
action as that which minimizes Fvar. The goal is thus to solve
the vanishing gradient condition δFvar

δG−1
var (q,ωn )

= 0. It is possible
to give an explicit expression for Fvar, which in turn yields the
vanishing gradient equation:

G−1
var (q, ωn) = 1

πK

[
uq2 + ω2

n

u

]
+ 8g

π2aτc
exp

[
− 2

π2

∫
dq′dω′

nGvar (q
′, ω′

n)

]

+ 2α

π2aτ 1−s
c

∫ ∞

τc

dτ

τ 1+s

∑
ε=±1

(1 + ε cos ωnτ ) exp

[
− 1

π2

∫
dq′dω′

n(1 + ε cos ω′
nτ )Gvar (q

′, ω′
n)

]
. (26)

A. Phase diagram at infinitesimal coupling

In the absence of interactions, i.e., α = g = 0, Eq. (26)

reduces to G−1
LL (q, ωn) = 1

πK [ω2
n

u + uq2] which is just the
propagator of the Luttinger liquid. When reintroducing the
interaction terms, we expect a gap to appear, like in the sine-
Gordon model [22], and maybe some fractional excitations,
as in Ref, [16], so we postulate the following ansatz for the
propagator in the AFM:

G−1
AFM(q, ωn) = 1

πK

[
uq2 + ω2

n

u
+ ν|ωn|s + �2

u

]
, (27)

where the parameters � and ν are to be determined. This
ansatz is expected to be valid in the α, g → 0 limit, where one
can neglect the renormalization of the Luttinger parameters
u, K into ur, Kr (more on this in the next subsection). The first
observation we make is that ν = 0. This can be understood
from the fact that the |ωn|s excitations can only come from the
bath-dependent α term in Eq. (27), and the ε = 1 contribution
exactly cancels out that of ε = −1. It is worth noticing that
unlike Ref. [16], where a similar action with an ohmic bath
was studied, this means that we do not find any fractional
excitation |ωn|s in our system for any s. We now move on
to the determination of the gap �. Setting q = 0, ωn = 0 in
Eq. (26) yields an equation for � that can be written as (see

Appendix E for the detailed computation)

(�τc)2−4K

K
=g

8

π
+ α

4e2KγE

π

(�τc)s−2K − 1

2K − s
, (28)

where τc is the imaginary-time UV cutoff, and γE is Euler’s
gamma constant. As usual with this variational approach,
Eq. (28) is valid deep in the AFM phase where g, α � Kc −
K [22] and in the limit of small �τc. To arrive at the phase
diagram shown in Fig. 2, we write Eq. (28) as �2−4K =
a1 + a2

�s−2K

2K−s with a1, a2 two constants independent of �. As
we approach the transition K → K−

c , the gap � is expected to
vanish, so we retain only the leading terms in the previous gap
equation. This suggests distinguishing three cases depending
on the sign of 2Kc − s:

(1) s − 2Kc > 0: The gap equation reduces to � = a
1

2−4K

1 ,
which tells us that the critical point is Kc = 1/2 with K < Kc

corresponding to the gapped phase, while K > Kc is gapless.
We also understand that this gapped phase solution is valid
only if s > 2Kc = 1, i.e., the bath is superohmic (s > 1).

(2) s − 2Kc < 0: Retaining only the leading terms yields

� ∼ a
1

2−s−2K

2 , signifying that Kc = 1 − s
2 and the gapped phase

is for K < Kc. In this regime, s < 2Kc = 2 − s, which means
the bath is subohmic (s < 1).

(3) s − 2Kc = 0: For K close to Kc, one expands a2K−s =
1 + (2K − s) ln a since 2K − s � 1, which shows that to
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leading order �2−4K ∝ − ln(�τc). This yields Kc = 1/2 and
thus s = 1 which is an ohmic bath. This matches with the two
previous cases but the gap is now discontinuous at the transi-
tion. This is a known artifact of the variational method [16,22].

In the spin chain picture, this gapped phase turns out to
be an AFM. Indeed, by averaging Eq. (10) over all field
configurations, one arrives at

〈
Sz

j

〉 = (−1)
x j
a

π
〈cos[2φ(x j )]〉, (29)

which denotes the existence of an AFM phase with ampli-
tude 1

π
〈cos(2φ)〉. Using the variational propagator G−1

AFM for
the gapped phase, one then proves that 〈cos(2φ)〉 = (�τc)K ,
which can be obtained from the �τc � 1 limit of Eq. (H4).
This implies that 〈cos(2φ)〉 can be used as an order param-
eter for this transition as this quantity vanishes in the LL
and is finite in the AFM. Moreover, looking back at the gap
expressions derived from the RG near the transition [� ∼
exp(−C(g − gc)p) or � ∼ exp(−C(α − αc)p)], it appears that
all derivatives of the order parameter vanish at the transition.
This corroborates the scenario of a BKT-like phase transition
which is known to be of infinite order. Physically, this or-
der parameter is associated with the spontaneous symmetry
breaking of the discrete shift symmetry φ(x, τ ) → φ(x, τ ) +
nπ
2 of the bosonized field. Indeed, we expect 〈cos(2φ)〉 =

〈cos(2φ + π )〉 = 0 when the symmetry holds, which shows
that the AFM is the symmetry-broken phase.

The fact this order parameter is associated with an AFM
phase is not surprising as, in the case of a dissipative in-
commensurate spin chain, the ordered phase is a spin-density
wave of wavelength π/kF [13]. Putting kF = π

2a , one recovers
an AFM spin density wave with a 2a wavelength. All these
results confirm the phase diagram obtained from the RG (see
Fig. 2). There are two phases separated by Kc = max(1 −
s/2, 1/2); for K > Kc, the system remains an LL, while for
K < Kc it becomes an AFM.

B. Phase diagram at finite coupling

In the previous subsection, we showed how the sim-

ple ansatz G−1
AFM(q, ωn) = 1

πK [uq2 + ω2
n

u + �2

u ] was enough
to capture the correct location of the phase transition when
α, g → 0. However, from the RG results, we expect that start-
ing at any value of K > Kc and with g fixed, the system
remains in the LL phase for 0 < α < αc and switches to an
AFM for α > αc. At α = αc, the system should be a LL with
renormalized Luttinger parameter Kr = Kc. The same analysis
is, of course, valid if tuning g while keeping α constant. One
could therefore wonder if a more general ansatz G−1

var (q, ωn) =
1

πKr
[urq2 + ω2

n
ur

+ �2
r

ur
], where ur , Kr , �r are fitting parameters

to be determined, could capture the renormalization of the
Luttinger parameters as predicted by the RG. It appears that
this ansatz works well deep in the phase for finite α. How-
ever, it fails to recover the lowest order RG equations close
to the transition (see Appendix F). In the next section, we
will nonetheless use the respective renormalized quantities,
denoted with a subscript r (e.g., the renormalized value of K is
Kr and so on), as fitting parameters for our numerical analysis
done at finite g, α.

VI. NUMERICAL RESULTS

In this section, we calculate different observables, both
analytically and numerically, to observe the signature of
the phase transition and physically characterize the ordered
phase (AFM). For our numerical analysis, we simulate the
Langevin dynamical equation for the field φ associated with
the equilibrium probability distribution Peq.[φ] = e−S[φ]. The

Langevin equation is dφi j (t )
dt = − δS[φi j (t )]

δφi j (t ) + ηi j (t ), where i, j
are the discretized indices for imaginary-time τ and space
x, respectively, t denotes the Langevin time (alternatively,
the simulation time) and η(t ) is Gaussian white noise with
〈ηi j (t )〉 = 0 and 〈ηi j (t )ηi′ j′ (t ′)〉 = 2δi,i′δ j, j′δ(t − t ′). Note that
the noise η is used only for thermalizing the Langevin equa-
tion and is not to be confused with the noise coming from the
dissipative bath, which has already been taken into account in
the action S[φ]. Using this numerical technique, we simulate
configurations for fixed values of s, K and for different values
of α. For each set of parameters, we extract field configura-
tions of different sizes L × β. We scale L as β, keeping the
BKT dynamic scaling z = 1 in mind; and on these configu-
rations, we calculate several observables to characterize the
two phases. In the following, we show the results for s = 0.5
(subohmic bath), K = 1, g = 0, and u = 1. Results for s = 1
(ohmic bath) and s = 1.5 (superohmic bath) can be found in
Appendix I.

A. Relevant observables

The first quantity that we calculate is the static suscep-
tibility of the spin chain χ = limq→0(q/π )2G(q, ωn = 0),
also known as the compressibility of the field. Using the

LL propagator GLL = πKr[urq2 + ω2
n

ur
]−1 derived in Sec. V,

it appears that the static susceptibility is finite in the LL
phase and is given by χLL = Kr/(urπ ). On the other hand,

using GAFM = πKr[urq2 + ω2
n

ur
+ �2

r
ur

]−1 shows that χAFM van-

ishes as Kr ur
�2

r
q2 in the gapped phase and for q → 0. These

analytical predictions are then compared to the data from
the Langevin simulation. Numerically, the Green’s function
G(q, ωn) is obtained by computing the correlation function
〈φ(q, ωn)φ(−q,−ωn)〉 = 〈|φ(q, ωn)|2〉, as the fields are real
and bosonic. The associated numerical results are depicted on
the left of Fig. 4 and support our analytical predictions. In the
LL (α = 1), the quantity limq→0(q2/π )G(q, ωn = 0) = πχ is
equal to Kr/ur = 1 (top row). On the other hand, in the AFM
(α = 5), the q → 0 limit vanishes (bottom row).

The next quantity that we calculate is given by C(ωn) =
1

πL

∑∞
q=−∞ G(q, ωn). In the thermodynamic limit, the sum

over q can be replaced with the integral 1
2π

∫ ∞
−∞ dq. In this

limit, using our variational action from Sec. V, we expect that
for a small-ωn limit,

C(ωn → 0) =
{ Kr

2ωn
LL

Kr
2�r

[
1 − 1

2

(
ωn
�r

)2]
AFM.

(30)

Comparing this to the numerical results in the middle of
Fig. 4, we see that indeed for small α (LL phase), ωnC(ωn)
goes to a constant for ωn → 0; whereas C(ωn) itself satu-
rates to a constant for a higher value of α (AFM phase), as
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FIG. 4. Numerical evaluation of observables for the commensurate dissipative spin chain. The values of the parameters are taken to be s =
0.5, K = 1, g = 0, u = 1, and β is scaled as L. For the left and middle column, red and blue colors denote L = 128 and L = 320 respectively.
All the quantities have been averaged over 10000-20000 configurations and the value of time-step dt is 0.5. (top) and (bottom) rows correspond
to α = 1 (LL) and α = 5 (AFM), respectively. (left) Susceptibility χ as a function q. For α = 1, it stays finite and constant whereas for α = 5,
it vanishes at small q. (middle) The behavior of C(ωn) (Eq. 30) as a function of ωn. For α = 1, ωnC(ωn) saturates to a constant Kr/2 = 0.477;
for α = 5, C(ωn) becomes a constant Kr/(2�r ) = 0.155. (right) Behavior of the order parameter 〈cos[2(φ − φCoM)]〉 as a function of system
size L. For α = 1, the order parameter decays as L−Kr with Kr = 0.933, whereas for α = 5, it increases and saturates to a constant as c1 − c2/L
with c1 = 0.679 and c2 = 0.894.

analytically predicted. This confirms the existence of a gap in
the low-energy spectrum of the dissipative phase. One can also
check the subleading ωn dependence by numerically calculat-
ing Kr

2�r
− C(ωn). Figure 5 shows that this term varies as ∝ ω2

n,
which backs up our variational prediction of the absence of a
fractional Laplacian term |ωn|s.

Finally, we compute the order parameter 〈cos[2(φ −
φCoM)]〉, where φCoM = 1

βL

∑
x,τ φ(x, τ ) is the center of mass

(CoM) of the configuration. The field has been offset by its

FIG. 5. Kr/(2�r ) − C(ωn) for the dissipative phase (s =
0.5, K = 1, g = 0, α = 5). This quantity fits well with 2.3 × 10−2ω2

n

for small ωn, which is the subleading ωn dependence of the propaga-
tor in the AFM. The red and blue colors denote two different system
sizes L = 128 and L = 320, respectively.

CoM to suppress the contribution G(0, 0) to the order param-
eter which would otherwise diverge in the gapless LL phase.
In Appendix H, we analytically show that in the LL phase
(with β = L), the order parameter vanishes as L−Kr , whereas it
increases and saturates to a constant in the AFM as c1 − c2/L,
where c1 and c2 are both positive constants. Numerical results
on the right of Fig. 4 corroborate this scenario. This confirms
our prediction that the dissipative bath can induce a quantum
phase transition on a 1D XXZ spin chain by spontaneously
breaking the discrete shift symmetry φ → φ + nπ

2 , n ∈ Z ,
and the ordered phase is a gapped AFM phase.

B. Microscopic parameters

One can numerically extract relevant microscopic parame-
ters in both phases from fitting the previous observables. In the
LL phase, the relevant quantity is Kr , which can be extracted
from the calculation of the order parameter by fitting it as a
function of system size L (recall that it should scale as ∼L−Kr ),
and from C(ωn), which saturates to the constant Kr/(2�r ) as
ωn → 0. In the gapped phase, the extraction of the parameters
is slightly more tricky as, at the lowest order, the quantitative
behavior of the phase is regulated by the gap term. By com-
puting limq→0 χ (q)/q2, one can nonetheless extract the value
of the inverse of the gap urKr/�

2
r . The behaviors of these

parameters are given in Fig. 6. From the plots, we see that Kr

starts decreasing as α is increased and approaches Kc = 0.75
at the transition, after which �r becomes finite and increases
as α is increased. This tells us that for K = 1, u = 1, g = 0,
and s = 0.5; the transition happens around αc ∈ (2, 3).
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FIG. 6. Numerical phase diagram obtained for K = 1, u = 1, g = 0, s = 0.5 by varying α. Left: Kr in the LL phase as a function of α,
extracted from the order parameter 〈cos[2(φ − φCoM)]〉 (purple circles) and from C(ωn) (blue triangles). Kr decreases to Kc = 0.75 as α is
increased, signaling a BKT transition. Right: As α is increased, the gap (green dots) first becomes finite for α = 3 and then increases.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we investigated the zero-temperature proper-
ties of an XXZ spin chain at zero magnetization coupled to
local baths of phonons à la Caldeira and Leggett [3]. Using
the bosonization procedure, this system was mapped onto
an effective field theory (with bosonic field φ), which could
thus be tackled using powerful analytical and numerical field-
theoretic tools. We confirmed the existence of a BKT-like
phase transition between a LL exhibiting quasi-long-range or-
der and an AFM phase with long-range order. The variational
method predicts that the AFM does not present any fractional
excitations as suggested by Ref. [16]. The exact location of the
phase transition depends on the type of bath studied through
the bath exponent s. For superohmic baths (s > 1), dissipation
does not affect the transition which remains that of the isolated
spin chain to the leading order. This transition is the standard
BKT one. However, for subohmic baths (s < 1), the transition
is shifted and the AFM eats into the LL. Although akin to
the standard BKT universality class, this transition differs
from the standard one. For subohmic baths, its location is
shifted, while for ohmic baths the scaling of the gap near the
transition is altered (see Sec. IV). It appears that, for all bath
exponent s, the transition is associated with the spontaneous
symmetry breaking of the order parameter 〈cos(2φ)〉. This
quantity identifies with the amplitude of the antiferromagnetic
spin density wave Sz

j ∼ (−1) j〈cos(2φ)〉. As with a standard
BKT transition, all derivatives of this order parameter vanish
at the transition, signaling an infinite order phase transition.

While the variational method used in Sec. V successfully
captured the main properties of both phases, it makes use
of a rather crude approximation amounting to replacing the
system’s highly nonlinear action by a quadratic one. It is a
well-established fact that such an approximate action fails
at capturing topological excitations of the system such as
solitons or instantons [22,37]. For a generic AFM with a
vanishing linear conductivity, such excitations might lead to
the restoring of nonlinear terms [38,39]. For our model, there
are no instantons with finite action in the zero-temperature
limit (see Chap. 3.2 of Ref. [37] for a proof of this statement),
and the system is truly locked in one of the minima of the
potential. Nonetheless, one might worry about the effect of
solitons, for instance, on the transport properties, as for the
pure sine-Gordon model. We leave for further investigation
the understanding of this point. Moreover, the study of the

same model at finite temperature, where instantons connecting
degenerate minima play an important role, seems an interest-
ing path to explore.

Another direction we wish to explore is that of the com-
petition between bath-induced localization, as studied in this
paper and Refs. [12,13], and disorder-induced Anderson lo-
calization. One such example can be found in Ref. [40],
where a quantum phase transition was found between an
Anderson localized phase and a Zeno localized phase in a
one-dimensional noninteracting system. Finally, valuable in-
sights could probably be gained by mapping this system to a
Coulomb-like gas using the general idea of the sine-Gordon
to the 2D Coulomb gas mapping [41,42].
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APPENDIX A: FIELD-THEORETICAL COUPLINGS FROM
BOSONIZATION

The couplings K, u, g appearing in the bosonic field-theory
in Eq. (12) are related to the microscopic parameters Jz, Jxy, a
of the XXZ spin chain. Bosonization predicts the following
correspondence:

K =
√

1 + 4Jz

πJxy

−1

, (A1)

u = aJxy

√
1 + 4Jz

πJxy
, (A2)

g = Jz

Jxy

√
1 + 4Jz

πJxy

−1

, (A3)

which is known to be valid in the regime Jz � Jxy. While
an exact Bethe ansatz solution for the isolated XXZ spin
chain exists [43], such a solution does not (yet) exist for the
dissipative spin chain studied in this paper.
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APPENDIX B: DISSIPATIVE KERNEL

When integrating out the bath degrees of freedom, one gen-
erates the dissipative kernel D(τ, τ ′) = ∑

k
Dk (τ, τ ′), where

D−1
k (τ, τ ′) = mk

λ2
k
δ(τ − τ ′)(�2

k − ∂2
τ ′ ). To recover D(τ, τ ′),

one must therefore invert D−1
k (τ, τ ′), which amounts to find-

ing Dk (τ, τ ′) such that∫
dτ ′Dk (τ, τ ′)D−1

k (τ, τ ′) = δ(τ − τ ′′). (B1)

Using the following Fourier and inverse transform
conventions:

Dk (ω,ω′) =
∫

dτdτ ′eiωτDk (τ, τ ′)e−iω′τ ′
, (B2)

Dk (τ, τ ′) =
∫

dω

2π

dω′

2π
e−iωτDk (ω,ω′)eiω′τ ′

. (B3)

Equation (B1) can be written in Fourier space as∫
dω′Dk (ω,ω′)D−1

k (ω′, ω′′) = 4π2δ(ω − ω′′). (B4)

Let us apply this to the kernel D−1
k (τ, τ ′). According to

Eq. (B2), its Fourier transform is D−1
k (ω,ω′) = mk

λ2
k
2πδ(ω −

ω′)(�2
k + ω′2). From this expression and Eq. (B4), it is

clear that Dk (ω,ω′) = λ2
k

mk

2πδ(ω−ω′ )
�2

k+ω′2 . This implies, along with

Eq. (B3), that

Dk (τ, τ ′) = λ2
k

mk

∫
dω

2π

e−iω(τ−τ ′ )

�2
k + ω2

= λ2
k

2mk�k
e−�k |τ−τ ′|. (B5)

Performing the sum over k then yields

D(τ, τ ′) =
∫

d� e−�|τ−τ ′ | ∑
k

λ2
k

2mk�k
δ(� − �k ), (B6)

where we recognize the spectral function from Eq. (4) as

J (�) = π
2

∑
k

λ2
k

mk�k
δ(� − �k ) = α

π�1−s
D

�(1+s)�
s for � ∈ [0,�D].

This leads to

D(τ, τ ′) = α
�1−s

D

�(1 + s)

∫ �D

0
d��se−�|τ−τ ′|

= α�1−s
D

|τ − τ ′|1+s

∫ �D|τ−τ ′|
0 dx xse−x

�(1 + s)
. (B7)

For |τ − τ ′| � τc = 1/�D, one can approximate the integral
as

∫ ∞
0 dxxse−x = �(1 + s). Thus,

D(τ, τ ′) = ατ s−1
c

|τ − τ ′|1+s
, (B8)

which is the expression given in the main text.

APPENDIX C: PERTURBATIVE RG ANALYSIS

The goal of this Appendix is to compute the RG equa-
tions Eqs. (13)–(16) by means of the OPE.

1. Derivation of the useful OPEs

The OPE is a series expansion of a product of two nearby
fields in terms of local fields. This is done on normal ordered

operators to avoid any divergence not coming from the two
operators being pushed together. For our problem, we will
need the following OPEs:

: e2ipφ(r) :: e2ipφ(r′ ) := a2p2K : e4ipφ(r) :, (C1)

: e2ipφ(r) :: e−2ipφ(r′ ) := : e2ip(φ(r)−φ(r′ )) :

|δr|2p2K

= : 1 + 2ipδr · ∇φ(r) − 2p2(δr · ∇φ(r))2 :

|δr|2p2K
, (C2)

which imply

: cos[2pφ(r)] :: cos[2pφ(r′)] := a2p2K

2
: cos[4pφ(r)] :

− p2 : (δr · ∇φ(r))2) :

|δr|2p2K
+ ..., (C3)

: cos[4φ(r)] : : cos[2φ(r′)] := : cos[2φ(r)] :

2a4K
+ ... (C4)

where r = (x, uτ ), r′ = (x′, uτ ′), δr = r′ − r. These relations
are easily proven using the identity : ei2pφ(r) := ei2pφ(r)

〈ei2pφ(r)〉 =
ei2pφ(r)

ap2K
, where 〈·〉 is the average with respect to the Gaussian

action SLL.

2. Renormalization group using the OPE

The interacting part of the action in Eq. (12) can be rewrit-
ten in terms of normal ordered fields as

Sint =Sg + Sα

= − gu

2π2a2−4K

∫
dxdτ : cos [4φ(x, τ )] :

− αu1−s

2π2a2−s−2K

∫
dxdτdτ ′

|τ−τ ′|>τc

× : cos [2φ(x, τ )] :: cos [2φ(x, τ ′)] :

|τ − τ ′|1+s
. (C5)

One then expands the partition function up to order
O(α, g2, αg) such that

Z =
∫

Dφe−SLL[φ]−Sg[φ]−Sα [φ]

= ZLL

[
1 − 〈Sg〉(a) − 〈Sα〉(a) +

〈
S2

g

〉
(a)

2
+ 〈SαSg〉(a)

]
,

(C6)

where the cutoff dependence has been made explicit. We now
perform a rescaling of the lattice spacing a → a′ = a(1 + dl )
(so τc → τ ′

c = τc(1 + dl )) and ask how the couplings should
vary to preserve the partition function Z . ZLL being an RG
fixed-point, we only need to consider the variations of the
averaged interacting terms. Keeping only the first order in dl ,
〈Sg〉(a′) becomes

〈Sg〉(a′) = 〈Sg〉(a)

[
1 + dg

g
+ (4K − 2)dl

]
. (C7)

The next term 〈Sα〉(a′) requires a bit more work. We start
by splitting the imaginary-time integral as

∫
[...]

|τ−τ ′|>τc

−
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∫
[...]

τ ′
c>|τ−τ ′|>τc

. The first term is simply given by

〈Sα〉(a)

[
1 + dα

α
+ (2K + s − 2)dl

]
, (C8)

while the second term, which involves only fields at very close
positions, can be evaluated using the OPE (C3) and gives

dl

[
α(a)u

2π2a2−4K

∫
dxdτ 〈: cos [4φ(x, τ )] :〉

− α(a)

π2u

∫
dxdτ 〈: (∂τφ(x, τ ))2 :〉

]
. (C9)

The third term, namely, 1
2 〈S2

g〉(a′), reads〈
S2

g

〉
(a′)

2
= g2a′8K−4

8π4

∫
drdr′

|r−r′ |>a′

× 〈: cos 4φ(r) :: cos 4φ(r′) :〉. (C10)

For this term, one again splits the limits of the integral
into

∫
drdr′
|r−r′ |>a

[...] − ∫
drdr′

a′>|r−r′ |>a
[...]. The first part is easily

tractable, while the second requires the use of the OPE (C3).
This yields〈

S2
g

〉
(a′)

2
=

〈
S2

g

〉
(a)

2

[
1 + 2dg

g
+ (8K − 4)dl

]

+ dl
g2

2π3

∫
dr : (∇φ(r))2 : . (C11)

The last term 〈SgSα〉(a′) can be, yet again, separated into a
simple part and a part that requires the OPE (C4) to give

〈SgSα〉(a′) = 〈SgSα〉(a)

[
1 + dg

g
+ dα

α

+ (6K + s − 4)dl

]
+ dl

g

π
〈Sα〉(a). (C12)

Putting everything together, one arrives at

〈Sg〉(a′) + 〈Sα〉(a′) −
〈
S2

g

〉
2

(a′) − 〈SgSα〉(a′)

= 〈Sg〉(a)

[
1 + dg

g
+ (4K − 2)dl − α

g
dl

]

+ 〈Sα〉(a)

[
1 + dα

α
+ (2K + s − 2)dl − g

π
dl

]

−
〈
S2

g

〉
(a)

2

[
1 + 2dg

g
+ (8K − 4)dl

]

− 〈SgSα〉(a)

[
1 + dg

g
+ dα

α
+ (6K + s − 4)dl

]

− dl
α(a)

π2u

∫
dxdτ 〈: (∂τφ(x, τ ))2 :〉

− dl
g2

2π3

∫
dr : (∇φ(r))2 : . (C13)

Upon imposing that the partition function Z remains un-
changed, the RG equations for α and g can be directly read
off. Those for K and u are found by re-exponentiating the
remaining quadratic terms. In the end, one finds

d

dl

u

K
= g2u

π2
, (C14)

d

dl

1

uK
= 2α

πu
+ g2

π2u
, (C15)

d

dl
g = (2 − 4K )g + α, (C16)

d

dl
α = (2 − s − 2K )α + gα

π
. (C17)

APPENDIX D: GAP CLOSURE IN THE OHMIC CASE

This Appendix derives the parameter p of the gap closure
� ∼ exp(−Ct−p) in the ohmic case (s = 1), with t the dis-
tance in coupling space to the separatrix plane. The following
derivation is based on Ref. [32].

1. Analytic derivation

To extract the behavior of the microscopic gap �(0) near
the transition, one notices that the renormalized gap is simply
�(l ) = el�(0) because of its scaling dimension. If one starts
the RG flow in the dissipative phase, the couplings g(l ) and
α(l ) will become of order O(1) after a renormalization time l�.
This corresponds to a renormalized gap �(l�) of order O(1),
so �(0) ∼ e−l� . The goal of the following argument is thus to
extract this time l�.

Let us start from the RG Eqs. (13)–(16). Since Kc = 1/2
at s = 1, one sets K = 1/2 + x to study the vicinity of the
critical point. We also introduce y1 = g/π and y2 = √

α/π .
To leading order in x, y1, y2, the RG equations then read

d

dl
x = −y2

1 + y2
2

4
, (D1)

d

dl
y1 = −4xy1 + y2

2, (D2)

d

dl
y2 = −xy2 + y1y2

2
, (D3)

where we have dropped the equation for u since it does not
feedback into the other equations. Let us consider a trajectory
starting near the separatrix (which is here a 2D manifold,
see Fig. 7) and in the dissipative phase. Such a trajectory
starts by shooting towards the origin (0,0,0), then drasti-
cally slows down near this point, and finally escapes towards
(−∞,∞,∞). This corresponds to a capture time l�

1 , followed
by a transition time l�

2 , and an escape time l�
3 , which add up to

a total dissipative time l� = l�
1 + l�

2 + l�
3 .

From numerical simulations (see Fig. 7), it appears that all
trajectories near the separatrix converge rapidly to a common
line Lcapture. Plugging the ansatz y1 = m1x and y2 = m2x into
Eqs. (D1)–(D3) shows that

Lcapture : y1 = 2

3
x, y2 =

√
20

3
x. (D4)

Since y1 and y2 remain finite throughout this process, the time
it takes to reach Lcapture will be of order O(t0) � l� and the
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y1

y2

x

1.50
1.25
1.00
0.75
0.50
0.25
0.00

0
1
2
3
4 -1.0 -0.5 -0.0 0.5 1.0

capture

escape

FIG. 7. The blue to red lines are trajectories which sit on the
separatrix manifold between both phases. The large x side is the LL,
while the small and negative x side is the AFM. All trajectories start-
ing near the separatrix are quickly attracted to the the line Lcapture.
Once they arrive near the origin, they tend to follow Lescape.

distance t to the separatrix will only be rescaled by a finite
prefactor. We can therefore assume that our trajectory starts
at a point close to Lcapture with a distance t to the separatrix.
Once the trajectory has come close to the origin, it escapes
along the line

Lescape : y1 = −4x, y2 = 0. (D5)

a. Capture time. During the capture phase, the trajectory
stays close to the capture line Lcapture, hence the notation y1 =
2
3 x + D1, y2 =

√
20
3 x + D2, with D1, D2 the deviations from

Lcapture. At leading order in the deviations, Eq. (D1) becomes

d

dl
x = −2

3
x2 ⇒ x(l ) = x0

1 + 2x0l
3

, (D6)

where we have set x(l = 0) = x0. Equations (D2) and (D3)
are then given to leading order by

d

dl

(
D1

D2

)
= x

9

( −34 7
√

20
5
√

20/2 4

)(
D1

D2

)
. (D7)

Diagonalizing the 2 × 2 matrix shows that

d

dl

(
D+
D−

)
= x

(
λ+ 0
0 λ−

)(
D+
D−

)
, (D8)

with λ± = − 5
3 ±

√
79
3 and D± = ± 5

6

√
5
79 D1 + ( 1

2 ± 19
6
√

79
)D2.

Using Eq. (D6), the deviations D± are found to be

D±(l ) = D±(l = 0)

(
1 + x0l

2

)3λ±/2

. (D9)

Intuitively, D− is the deviation from Lcapture within the sep-
aratrix manifold while D+ is the deviation outside of the
manifold. Since, λ− < 0 and λ+ > 0, D− quickly becomes
negligible compared to D+ and is therefore just dropped.
Moreover, D+ being the deviation from the separatrix, its
initial condition is D+(l = 0) ∼ t .

3.5

3.0

2.5
2.0

1.5

1.0

ln
(l⋆
)

ln(α-αc)
-8 -7 -6 -5 -4 -3 -2 -1

FIG. 8. Scaling of the total dissipative time l� for trajectories
starting close to the transition point αc at K = 1 and g = 0.5. The
dots are the numerical data points while the line is a fit using the
ansatz ln(l�) = −0.3396 × ln(α − αc ) + C.

The capture phase stops at a time l�
1 such that D+(l�

1 ) ∼
x(l�

1 ). Using the expressions for D+(l ) and x(l ) derived in
Eqs. (D6) and (D9):

l�
1 ∼ t− 1

3λ+/2+1 . (D10)

From the previous equations, it also follows that x(l�
1 ) ∼

D+(l�
1 ) ∼ 1/l�

1 .
b. Transition time. Starting at l�

1 , the trajectory is stuck
for some time l�

2 around the origin. During this time, y1

and y2 remain rather constant and x goes from +x(l�
1 )

to x(l�
1 + l�

2 ) ∼ −x(l�
1 ). Since dx

dl = −(y2
1 + y2

2 )/4 ∼ −1/l�
1

2

and x(l�
1 ) ∼ 1/l�

1 , this entire process takes a time l�
2 =

2x(l�
1 )/(dx/dl ) ∼ l�

1 .
c. Escape time. For l > l�

12 = l�
1 + l�

2 , the trajectory follows
Lescape. Looking at Eq. (D5), the adapted deviations are de-
fined through y1 = −4x + D1, y2 = 0 + D2. To leading order,
Eq. (D1) reduces to [recall that x(l�

12) < 0]

d

dl
x = −4x2 ⇒ x(l ) = x(l�

12)

1 + 4(l − l�
12)x(l�

12)
. (D11)

The escape time is reached when x(l ) becomes of order O(1),
that is, when l�

3 = l� − l�
12 ∼ 1/x(l�

12), i.e., l�
3 ∼ l�

1 .
Adding up l�

1 , l�
2 , l�

3 shows that l� ∼ t−p with p =
1

3λ+/2+1 =
√

79+3
35 � 0.33966269 . . . .

2. Numerical confirmation

The RG equations for K, g, α can be numerically integrated
for any initial condition. For the initial values K = 1 and
g = 0.5, we vary α to get close to the transition point αc and
measure the associated total dissipative time l�. This time is
defined as the time needed for the simulation to reach the
plane K = 0.1. The results are shown in Fig. 8. It appears that
the data fits quite nicely with our ansatz ln(l�) = −0.3396 ×
ln(α − αc) + C for α − αc � 1.

APPENDIX E: GAP EQUATION FROM THE VARIATIONAL
METHOD

We wish to find a solution to the self-consistent varia-
tional Eq. (26) using the following ansatz: G−1

AFM(q, ωn) =
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1
πK [uq2 + ω2

n
u + �2

u ]. Setting ωn = q = 0 in Eq. (26) yields

�2

πKu
= 8g

π2a2
exp

⎡
⎢⎣−2K

∫
dω′

n√
ω′

n
2 + �2

⎤
⎥⎦

+ 4αu−s

π2a2−s

∫ ∞

τc

dτ

τ 1+s
exp

⎡
⎢⎣−K

∫
dω′

n

1+cos ω′
nτ√

ω′
n

2+�2

⎤
⎥⎦,

(E1)

where we have done both integrals over q in the exponentials.
The remaining integrals over ω′

n are UV divergent and are reg-
ulated by reintroducing the imaginary-time cutoff τc = a/u
(thus, 1/τc in Matsubara frequency space). In the limit of
�τ � 1, one can then find that

∫ 1/τc

0
dω′

n√
ω′

n
2+�2

= − ln(�τc),

and
∫ 1/τc

0 dω′
n

1+cos ω′
nτ√

ω′
n

2+�2
= − ln(�2τcτ ) − γE , with γE Euler’s

gamma constant. Plugging this back into Eq. (E1) gives

�2

πK
= 8g

π2τ 2−4K
c

�4K + 4α

π2τ 2−s−2K
c

∫ 1
�

τc

dτ

τ 1+s−2K
�4K e2KγE ,

(E2)

which, after doing the integral over τ and rearranging the
terms, leads to

(�τc)2−4K

K
=g

8

π
+ α

4e2KγE

π

(�τc)s−2K − 1

2K − s
. (E3)

This is Eq. (28) in the text.

APPENDIX F: VARIATIONAL METHOD VS RG

This section shows how the ansatz G−1
var (q, ωn) =

1
πKr

[urq2 + ω2
n

ur
+ �2

ur
] fails at predicting the correct renormal-

ized coefficients close to the transition. For simplicity and
to compare the result with the perturbative RG, we focus
on the LL phase where �r = 0. Taking the second deriva-
tive with respect to q of Eq. (26) shows that ur

Kr
= u

K so we
can express both Luttinger parameters in terms of η such
that K = Kr

√
1 + η, u = ur

√
1 + η. The ansatz thus becomes

G−1
var (q, ωn) = 1

πK [uq2 + ω2
n

u (1 + η)], where η is the only pa-
rameter to solve for. Taking the second derivative of Eq. (26)
with respect to ωn yields

η = αK

πτ 2−s
c

∫ ∞

τc

dτ

τ−1+s

× exp

⎡
⎣−K

π

∫
dq′dω′

n

1 − cos ω′
nτ

uq′2 + ω′
n

2

u (1 + η)

⎤
⎦. (F1)

We now perform the integral over q and regulate the diverging
integral over ω′

n by adding the imaginary-time UV cutoff τc to
obtain

η = αK

πτ 2−s
c

∫ ∞

τc

dτ

τ−1+s

× exp

[
−2Kr

∫ 1/τc

0
dω′

n

1 − cos ω′
nτ

ω′
n

]
. (F2)

α

K

FIG. 9. RG flow in the LL phase of the couplings α and K
according to the actual RG equations (solid gold lines) and the
linearized equations (dashed red lines). This plot is for s = 0.5.

In the limit of large τ/τc, one proves the following identity:∫ 1/τc

0
dω′

n

1 − cos ω′
nτ

ω′
n

= ln(τ/τc) + γE + O(τc/τ ), (F3)

which implies that

η =αKe−2KrγE

πτ
2−s−2Kr
c

∫ ∞

τc

dτ

τ−1+s+2Kr
. (F4)

Computing this integral and using K = Kr
√

1 + η leads to

η√
1 + η

= αKre−2KrγE

π (2Kr + s − 2)
. (F5)

Now comes the problem. From the argument made in Sec. V,
it is clear that the transition is given in terms of Kr by (Kr )c =
max(1 − s/2, 1/2). This means that for s < 1, Eq. (F5) pre-
dicts a renormalization of K and u that diverges towards the
transition as

√
η � αKre−2KrγE

π (2Kr + s − 2)
, (F6)

which is, of course, highly unphysical. This result can,
however, be recovered from the RG using a very crude ap-
proximation: linearizing the RG flow about α = 0 (see Fig. 9).
To show how this recovers Eq. (F6), let us start by recalling
the important RG equations for s < 1 (see Sec. IV C):

d

dl
K = −αK2

π
, (F7)

d

dl
α = (2 − s − 2K )α. (F8)

In the LL phase, α flows to 0 and K to Kr . This means that
Kr is given by Kr = K + ∫ Kr

K dK ′ = K + ∫ 0
α

dK
dα

(α′)dα′. For
the linearized RG flow shown in Fig. 9, dK

dα
(α′) = dK

dα
(α′ =

0) = K2
r

π (2Kr+s−2) . Plugging this back into Eq. (F8) and using
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FIG. 10. Numerical evaluation of observables for the commensurate dissipative spin chain. The values of the parameters are taken to be
s = 1 (Kc = 0.5), K = 0.65, g = 0.5, u = 1, and β is scaled as L. For the left and middle columns, red, green, and blue colors denote L = 128,
L = 256, and L = 320, respectively. All the quantities have been averaged over 10 000–20 000 configurations and the value of time step
dt is 0.5. (top) and (bottom) rows correspond to α = 0.5 (LL) and α = 6 (AFM), respectively. Left: Susceptibility χ as a function q. For
α = 0.5, it stays finite and constant, whereas for α = 6 it vanishes for small q. Middle: Behavior of C(ωn) as a function of ωn. For α = 0.5,
ωnC(ωn) saturates to a constant Kr/2 = 0.307; for α = 6, C(ωn) becomes a constant Kr/(2�r ) = 0.07. Right: Behavior of order parameter
〈cos[2(φ − φCoM)]〉 as a function of system size L. For α = 0.5, the order parameter decays as L−Kr with Kr = 0.59, whereas for α = 6, it
increases and saturates to a constant as c1 − c2/L with c1 = 0.742 and c2 = 0.0296.

K = Kr
√

1 + η yields

√
1 + η − 1 = αKr

π (2Kr + s − 2)
. (F9)

Near the transition (Kr → (1 − s/2)+), this equation be-
comes exactly Eq. (F6) up to the numerical factor e−2KrγE ,
which is probably an artifact of the approximation made in
Eq. (F3). The main takeaway message is that the variational
method captures the RG flow linearized about α = 0, and thus
breaks down close to the transition.

APPENDIX G: A SIMPLE ARGUMENT

In this Appendix, we show that the previous arguments
allow to correctly capture the phase transition if the renor-
malisation of K is taken into account in a simpler manner,
namely, without resorting to a self-consistent computation.
This approximation should correspond to assuming that all the
way down to Kr = Kc the computation of Kr is perturbative
in α. The computation amounts to replacing, in Eq. (F4), the
value of Kr with K as

η = αKC

2π (K − Kc)
, (G1)

with C = e−2KγE , and then using η’s definition

η =
(

K

Kr

)2

− 1, (G2)

which, for Kr = Kc, recovers

(K − Kc)2 ∝ α, (G3)

which is the parabolic shape of the transition predicted by RG.

APPENDIX H: DERIVATION OF THE ORDER
PARAMETER

In this Appendix, we show the calculation of the order
parameter 〈cos(2(φ − φCoM))〉 using our Gaussian variational
ansatz. The behavior of this quantity in the LL has al-
ready been calculated in Ref. [13] [Appendix A shows that
〈cos(2(φ − φCoM))〉 ∝ L−Kr ] so we concentrate on the AFM
phase defined by the propagator G−1

AFM(q, ωn) = 1
πK (uq2 +

ω2
n

u + �2
r

ur
). Since we work within our Gaussian variational the-

ory, one writes 〈cos 2(φ − φCoM)〉 = exp(−2〈(φ − φCoM)2〉)
where 〈(φ − φCoM)2〉 can be broken up as

〈(φ − φCoM)2〉

= 1

βL

⎡
⎣∑

q 
=0

GAFM(q, 0)

+
∑
ωn 
=0

GAFM(0, ωn) +
∑

ωn 
=0,q 
=0

GAFM(q, ωn)

⎤
⎦. (H1)
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FIG. 11. Numerical evaluation of observables for the commensurate dissipative spin chain. The values of the parameters are taken to be
s = 1.5 (Kc = 0.5), K = 0.75, g = 1, u = 1, and β is scaled as L. For the left and middle columns, red, green, and blue colors denote L = 128,
L = 256, and L = 320, respectively, and β is scaled as L. All the quantities have been averaged over 10 000–20 000 configurations and the
value of time step dt is 0.5. Top and bottom rows correspond to α = 0.65 (LL) and α = 6 (AFM), respectively. Left: Susceptibility χ as a
function q. For α = 0.65, it stays finite and constant whereas for α = 6, it vanishes for small q. Middle: Behavior C(ωn) as a function of
ωn. For α = 0.65, ωnC(ωn) saturates to a constant Kr/2 = 0.345; for α = 6, C(ωn) becomes a constant Kr/(2�r ) = 0.031. Right: Behavior
of order parameter 〈cos[2(φ − φCoM)]〉 as a function of system size L. For α = 0.65, the order parameter decays as L−Kr with Kr = 0.637,
whereas for α = 5 it increases and saturates to a constant as c1 − (c2/L) with c1 = 0.872 and c2 = 0.

The first two terms can be computed for finite β and L using
Matsubara sum techniques. This leads to∑

q 
=0

GAFM(q, 0) =πKrL

2�r
coth

(
�rL

2ur

)
− πKrur

�2
r

(H2)

and∑
ωn 
=0

GAFM(0, ωn) =πKrurβ

2�r
coth

(
�rβ

2

)
− πKrur

�2
r

. (H3)

The third term is then replaced by its continuous limit (L →
∞, β → ∞) as the finite size effects are taken care of in the
first two sums. Thus,

1

βL

∑
ωn 
=0,q 
=0

GAFM(q, ωn)= Kr

4π

∫
dωndq

√
(ur q)2+ω2

n<
1
τc

1

urq2+ ω2
n

ur
+ �2

r
ur

= −Kr

4
ln

(
(τc�)2

1 + (τc�)2

)
, (H4)

where we have introduced the UV cutoff τc. In our simu-
lations, we take L = β and then L → ∞. Taking this same
scaling, a large L expansion of the order parameter reads

〈cos(2(φ − φCoM))〉 � c1 − c2

L
+ c3

L2
, (H5)

where c1 = ( �τc√
1+(�τc )2

)Kr , c2 = c1
πKr
�r

(1 + ur ), and c3 =
c1

πKr
�2

r
[4ur + πKr (1 + ur )2], respectively. We observe that the

order parameter monotonically increases to a constant with a
leading finite size dependence of 1/L. This is a signature of
the gapped phase, as a fractional phase would have finite size
scaling ∝ L

s
2 −1, and a Luttinger liquid would have a ∝ L−Kr

behavior.

APPENDIX I: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we provide additional numerical re-
sults that fortify the analytical claims made in the main text.
As discussed in Sec. VI, we calculate the same correlation
functions [χ , C(ωn), and 〈cos[2(φ − φCoM)]〉] for ohmic and
superohmic baths. The results are provided in Figs. 10 and 11,
where numerical results are given for ohmic (s = 1) and su-
perohmic (s = 1.5) baths, respectively, in a similar fashion as
in Sec. VI. These plots confirm that the phase transition occurs
for any value of s ∈ (0, 2) and that the ordered phase is always
an AFM phase. The values of the relevant simulation param-
eters and numerically extracted parameters are mentioned in
the figure captions.
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