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Exponential observables, formulated as ln〈eX̂ 〉 where X̂ is an extensive quantity, play a critical role in the
study of quantum many-body systems, examples of which include the free energy and entanglement entropy.
Given that eX becomes exponentially large (or small) in the thermodynamic limit, the accurate computation of
the expectation value of this exponential quantity presents a significant challenge. In this paper, we propose a
comprehensive algorithm to quantify these observables in interacting fermion systems, utilizing the determinant
quantum Monte Carlo method. We have applied this algorithm to the two-dimensional square-lattice half-filled
Hubbard model and π -flux t-V model. In the Hubbard model case at the strong-coupling limit, our method
showcases a significant accuracy improvement on free energy compared to conventional methods that are derived
from the internal energy, and in the t-V model, we indicate that the free energy offers a precise determination
of the second-order phase transition. We also illustrate that this approach delivers highly efficient and precise
measurements of the nth Rényi entanglement entropy. Even more noteworthy is that this improvement comes
without incurring increases in computational complexity. This algorithm effectively suppresses exponential
fluctuations and can be easily generalized to other models.
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I. INTRODUCTION

Exponential observables such as the entanglement met-
rics and free energy hold a crucial role in unveiling the
fundamental organizing principles of strongly correlated sys-
tems, as they offer full access to the partition function and
universal conformal field theory (CFT) data of (quantum)
many-body systems, which are otherwise hard to obtain.
Such understandings have been extensively put forward in
previous works [1–35]. Among these witnesses, entangle-
ment entropy (EE) stands out as a vital metric for probing
the behavior of interacting fermion systems in spatial di-
mension D � 2 [7–15,20,22–24]. In the case of free Fermi
surfaces, the scaling form of EE is well established through
the Widom-Sobolev formula, expressed as LD−1 ln L, where
L represents the linear system size [8–10]. However, for in-
teracting fermion systems, the precise scaling form remains
elusive and it is widely held that uncovering this scaling
behavior could offer valuable insights into the fundamental
CFT data associated with fermionic quantum critical points,
low-energy collective modes, and topological information
[5–12,20,24–26,31,36,37].

As another example of an exponential observable, the
free energy is a key physics quantity that directly dictates
the finite-temperature phase diagram of a many-body sys-
tem [34,35]. For quantum Monte Carlo (QMC) simulations,
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the free energy also plays an important role in the sign
problem, especially in sign bound theory [38–45]. Since the
lower bound of the average sign amounts to a function of
the free-energy difference between the original system and
the reference system [40], calculating the free energy of the
system helps one to understand how the average sign is af-
fected by the free energy of the two systems, for example, to
determine the relationship between the average sign and the
phase transition [42–46].

However, the computation of EE and free energy in
two-dimensional (2D) interacting fermion systems poses a
formidable challenge. The computation hinges on access-
ing the observables exponentially proportional to L in the
many-body partition functions, as detailed in prior studies
[4,12–15,20,22–24]. To controllably compute these exponen-
tial observables within polynomial computational complexity,
the determinant quantum Monte Carlo (DQMC) method has
emerged as a promising solution [7,12,20,22,24,47,48]. Fol-
lowing Grover’s pioneering work [7] where the many-body
reduced density matrix is expanded according to the auxiliary
field configuration subjected to the fermion Green’s function,
the algorithmic development of fermion EE has taken a long
detour through the years.

Early attempts did not carry out the proper important
sampling and therefore suffered from the poorly controlled
data quality and less optimized computational complexity of
O(βN4), where β = 1/T is the inverse temperature and N =
LD is the system size [12–15]. In Refs. [47,48], the integral
idea has been proposed, while the computational complex-
ity is still O(βN4). Recent developments, in particular the

2469-9950/2024/109(20)/205147(7) 205147-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8614-0519
https://orcid.org/0000-0003-3332-4557
https://orcid.org/0000-0001-9771-7494
https://ror.org/02zhqgq86
https://ror.org/00jmfr291
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.205147&domain=pdf&date_stamp=2024-05-21
https://doi.org/10.1103/PhysRevB.109.205147


ZHANG, PAN, CHEN, SUN, AND MENG PHYSICAL REVIEW B 109, 205147 (2024)

incremental algorithm of EE computation [20], have managed
to reduce the complexity to O(βN3) (the same as the general
DQMC update), but add the extra procedure of sampling
the entanglement area [22,24]. In Ref. [23], sampling of the
entanglement area is replaced by incrementally raising the
power of Grover’s matrix, which makes the operation much
easier (a similar development recently appeared in quantum
spin systems [32]), and such polynomial form suppresses
the exponential fluctuation of the observable. But no generic
guidance appears on how often the entanglement area should
be sampled or how small this polynomial power should be
to suppress the exponential variance before actual computing.
Therefore, the protocol still appears as ad hoc.

In this paper, we provide an elegant solution to this chal-
lenge of computing exponential observables combining the
integral idea and the fast update routine. The integral idea
[48] is that via simply introducing an auxiliary integral, mea-
surement of exponential observables can be converted to a
conventional observable without involving the expectation of
any exponentially large (or small) quantities,

ln〈eX̂ 〉 =
∫ 1

0
dt〈X̂ 〉t . (1)

Here, 〈·〉t represents a modified average where the distribution
probability is determined by an extra t with the factor of etX̂ .
By applying this formula, all complications and challenges
in measuring exponential observables have been fully elim-
inated, and the computational complexity becomes identical
to the measurement of regular physics observables. Depart-
ing from this formula, we introduce a fast update integral
algorithm in DQMC and use the 2D square-lattice half-filled
Hubbard model and π -flux t-V model to illustrate the supe-
rior performance and reduced computational complexity of
our algorithm. In the Hubbard model case, for free energy,
the second and third Rényi EE are measured stably at fi-
nite temperature and their values at the low-temperature limit
match well with the results from density matrix renormaliza-
tion group (DMRG). In the t-V model case, our free-energy
computation is precise for indicating the second-order phase
transition.

We foresee that this method contributes to advancement in
various directions, including discovering the unknown scal-
ing form of EE for an interacting Fermi surface [27,36,37],
the CFT information for various fermion deconfined quan-
tum critical points (DQCPs), and symmetric mass generation
(SMG), helping to identify fermion phase transitions beyond
the Landau-Ginzburg-Wilson paradigm [28,31], indicating a
first-order or second-order phase transition directly from free
energy, computing domain-wall free energy in spin glass sys-
tems, [49,50], etc.

II. FORMULA FOR EXPONENTIAL OBSERVABLES

We review the formula for computing the second Rényi
EE first, and then give a similar formula for computing the
nth Rényi EE and free energy. The details of the fast update
integral algorithm are given in the next section. From Ref. [7],
we know the second Rényi EE S(2)

A ≡ − ln[Tr(ρ2
A)] (here, A

labels the set of sites whose degree of freedom is not traced
in reduced density matrix ρA) can be expressed according to

auxiliary field configuration {s1, s2} as

S(2)
A = − ln

(∑
s1,s2

Ps1 Ps2 Tr
(
ρA;s1ρA;s2

)
∑

s1,s2
Ps1 Ps2

)
, (2)

where Psi is the importance sampling Monte Carlo

weight for configuration si, ρA;si = det(GA;si )e
c† ln(G−1

A;si
−I )c is

the reduced density matrix, and Tr(ρA;s1ρA;s2 ) = det[(I −
GA;s1 )(I − GA;s2 ) + GA;s1 GA;s2 ] is the determinant of the
Grover matrix [7,20,22,23]. Here and below, we define the
fermion Green’s function as Gi j ≡ 〈cic

†
j 〉, where 〈·〉 without

the subscript always indicates the grand-canonical ensemble
average which is used in the DQMC simulation. Since the EE
is generally an extensive quantity dominated by the area law,
a direct simulation by using Ps1 Ps2 as the sampling weight and
Tr(ρA;s1ρA;s2 ) as the observable according to Eq. (2) will cer-
tainly give exponentially small values as e−S(2)

A ∼ e−alA , where
lA is the boundary length of the entanglement region defined
by the A set. This is why the direct simulation according
to Eq. (2) is found to be unstable [12–15,22], i.e., one is
sampling an exponentially small observable which can have
exponentially large relative variances/fluctuations.

We notice Eq. (2) can be rewritten in an integral form,

S(2)
A = − ln[ f (1)] + ln[ f (0)]

= −
∫ 1

0
dt

∑
Ps1 Ps2 Tr

(
ρA;s1ρA;s2

)t
ln

[
Tr

(
ρA;s1ρA;s2

)]
∑

Ps1 Ps2 Tr
(
ρA;s1ρA;s2

)t ,

(3)

with f (t ) ≡ ∑
Ps1 Ps2 Tr(ρA;s1ρA;s2 )t the entanglement parti-

tion function. Here and below, we omit auxiliary field labels
in

∑
for notational simplicity. One can see that at each t , the

original observable Tr(ρA;s1ρA;s2 ) becomes logarithmic so that
exponential fluctuations disappear naturally. In fact, one can
choose other f (t ) satisfying a general integral formula,

S(2)
A = −

∫ 1

0
dt

∂ ln[ f (t )]

∂t
, (4)

where the only requirements for f (t ) are f (1) = ∑
Ps1 Ps2 ×

Tr(ρA;s1ρA;s2 ) and f (0) = ∑
Ps1 Ps2 [when taking f (t ) = 〈etX̂ 〉,

we recover Eq. (1)].
Equation (3) can also be derived from taking the small

polynomial power limit of the incremental algorithm [22–24]
(see Appendix B for details). Besides the second Rényi EE,
any exponentially small (or large) observable for interacting
fermion systems in DQMC can be computed in a similar way.
As examples, we introduce the formulas for the nth Rényi EE
S(n)

A ,

S(n)
A ≡ − 1

n − 1
ln

[
Tr

(
ρn

A

)]

= 1

1 − n

∫ 1

0
dt

∑
Pn

s Tr
(
ρn

A;s

)t
ln

[
Tr

(
ρn

A;s

)]
∑

Pn
s Tr

(
ρn

A;s

)t

≡ 1

1 − n

〈
ln

[
Tr

(
ρn

A;s

)]〉
s1,s2,...,sn;t , (5)
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and free energy F ,

F ≡ − 1

β
ln(Z )

= − 1

β

∫ 1

0
dt

∑
WsPt

s ln(Ps)∑
WsPt

s

≡ − 1

β
〈ln(Ps)〉s,t . (6)

Here, Pn
s ≡ ∏n

i=1 Psi , ρn
A;s ≡ ∏n

i=1 ρA;si , Ws is the decouple
coefficient independent of the Hamiltonian, and Ps

is the determinant contribution from the Hamiltonian
(e.g., if we decouple the Hubbard U term, such as
eαÔ2 = 1

4

∑
l=±1,±2 γ (l )e

√
αη(l )ô + O(α4), where γ (±1) =

1 +
√

6
3 , γ (±2) = 1 −

√
6

3 , η(±1) = ±
√

2(3 − √
6), and

η(±2) = ±
√

2(3 + √
6), then the part of γ (l )

4 is the Ws term
and, after tracing out the fermion degree of freedom, the
determinant part is the Ps term [51]).

III. DQMC INTEGRAL ALGORITHM

Next we describe how to implement our integral algorithm
in the DQMC simulation. To compute the nth Rényi EE, one
still needs a generic fast update scheme to guarantee the over-
all O(βN3) computational complexity [20]. First, let us review
the fast update formulas for Green’s functions G → G′,

G′(τ, τ ) ≡ G(τ, τ ) − 1

R0
G(τ, τ )
(i, τ )[I − G(τ, τ )],

G′(τ, 0) ≡ G(τ, 0) + 1

R0
G(τ, τ )
(i, τ )G(τ, 0),

G′(0, τ ) ≡ G(0, τ ) − 1

R0
G(0, τ )
(i, τ )[I − G(τ, τ )],

G′(0, 0) ≡ G(0, 0) + 1

R0
G(0, τ )
(i, τ )G(τ, 0),

where R0 ≡ det{I + B(β, τ )[I + 
(i, τ )]B(τ, 0)}
det[I + B(β, 0)]

= 1 + 
i,i(i, τ )[I − G(τ, τ )]i,i. (7)

Here we define 
(i, τ ) = eV [s′(i,τ )]e−V [s(i,τ )] − I to update
auxiliary field s(i, τ ) and B(τ, τ ′) = ∏τ ′

ν=τ eHs (ν) to represent
the product of the decoupled partition function from imag-
inary time slices τ, τ − 1, . . . , τ ′. In comparison, the nth
Grover matrix can be written as

gA;s1,s2,...,sn ≡
∏

i

(
GA;si

)[
I +

∏
j

(
G−1

A;s j
− I

)]
. (8)

To simplify the notation, we further ignore the imaginary-
time label for Green’s function G(0, 0) at zero imaginary
time, where reduced density matrices are defined accord-
ingly. It is easy to generalize to a zero-temperature version,
where we just need to replace G(τ, 0), G(0, τ ), G(0, 0) with
G(τ, θ ), G(θ, τ ), G(θ, θ ), where θ is the projection length
towards the ground state and all the formulas and conclusions
still hold [24]. Update within s j will not affect GA;si for any
i 	= j. Assuming we want to update within s1, we define an
auxiliary matrix,

CA;s1 ≡ GA;s1

[
I +

∏
j

(
G−1

A;s j
− I

)]

= I + GA;s1

[
I −

∏
j>1

(
G−1

A;s j
− I

)]

≡ I + GA;s1 MA;s1 , (9)

where MA;s1 ≡ I − ∏
j>1(G−1

A;s j
− I ) for notational conve-

nience and remember GA;s′
1
= GA;s1 + GA;s1 (0, τ )
(i, τ )GA;s1

(τ, 0)/R0. One will see that CA;s1 serves as the Grover matrix
in Ref. [20] and has a better stability when n is increasing.
We then use the Sherman-Morrison formula to compute the
updated C−1

A;s′
1

and determinant ratio between two nth Grover
matrices,

C−1
A;s′

1
= C−1

A;s1

(
I + GA;s1 (0, τ )
(i, τ )GA;s1 (τ, 0)MA;s1C

−1
A;s1

R0Rn

)
,

Rn ≡ det
(
gA;s′

1,s2,...,sn

)
det

(
gA;s1,s2,...,sn

) = det(C−1
A;s1

)

det(C−1
A;s′

1
)

= 1 − 1

R0

i,i(i, τ )Gi,A;s1 (τ, 0)MA;s1

(
CA;s1

)−1
GA,i;s1 (0, τ ). (10)

In this formula, R0, GA;s1 (τ, 0), GA;s1 (0, τ ),
(i, τ ) come
from the Green’s function update routine and MA;s1 remains
the same when updating s1, so that computing Rn,C−1

A;s′
1

from C−1
A;s1

has the same complexity [O(N2)] as the updat-
ing Green’s function. In addition, one also needs formulas
to update si other than the i = 1 case and carry on numer-
ical stabilization. Similar to the B(τ, τ ′) matrix, we define
D(i, j) ≡ ∏ j

k=i(G
−1
A;sk

− I ). Then we can write C−1
A;si

and MA;si

in a simple form,

C−1
A;si

= [I + D(i, n)D(1, i − 1)]−1G−1
A;si

,

MA;si = I − D(i + 1, n)D(1, i − 1). (11)

One can check that the determinant of CA;si

∏
j 	=i(GA;s j ) is the

same as gA;s1,s2,...,sn . And we use the formula above to carry
on numerical stabilization. To stably derive the logarithm
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FIG. 1. (a) Internal energy density E , free-energy density F2 de-
rived by solving E (β ) = − ∂[ln(Z )]

∂β
= ∂ (βF2 )

∂β
, and free-energy density

F1 according to Eq. (6). (b),(d),(f) 〈ln(Ps )〉, 〈ln[Tr(ρA;s1ρA;s2 )]〉 and
〈ln[Tr(ρA;s1ρA;s2ρA;s3 )]〉 for different β points used in (a),(c),(e) from
small to large, corresponding to circles from bottom to top. Black
lines show the fitting where the small slopes indicate a small fluctu-
ation for 〈ln(Ps )〉 at each t point. (c) The second EE S(2)

A converging
with β to 0.89, which is consistent with DMRG at zero temperature.
(e) The third EE S(2)

A converging with β to 0.7, which is consistent
with DMRG at zero temperature.

determinant of the nth Grover matrix, one should separate the
singular-value matrix, trace the logarithm of it, and add the
logarithm determinant of other matrices.

IV. APPLICATION TO FERMION HUBBARD MODEL

In this section, we present the simulation results of free
energy, the second and third Rényi EE for a 2D square-lattice
fermion Hubbard model at half filling,

H = −t
∑
〈i j〉;s

c†
i;sc j;s + U

∑
i

(ni;↑ + ni;↓ − 1)2. (12)

A few implementational considerations and the proof of ab-
sence of the sign problem are listed in Appendix C; here we
only focus on the results. In Figs. 1(a) and 1(b), we show the
results for free energy for L = 4,U/t = 8, β ∈ [1, 10] with
cylinder geometry. One can see that free energy F1 derived
from Eq. (6) has a smaller fluctuation than internal energy.
And free energy F2 derived from integrating internal energy
data according to E (β ) = − ∂[ln(Z )]

∂β
= ∂ (βF2 )

∂β
even has a much

larger error bar coming from E .
In Figs. 1(c) and 1(d), we show the results of the second

Rényi EE at the same parameter setting with entanglement

(a) (b)

(c) (d)

FIG. 2. (a) Schematic phase diagram of a spinless fermion π -flux
half-filled square-lattice t-V model. The orange point indicates a N
= 2 chiral-Ising transition in (2++1)D separating Dirac semimetal
(SM) and charge density wave (CDW) phases. The blue line indicates
a 2D Ising transition and our simulation goes along the dashed red
line at V = 4 where a finite-temperature phase transition occurs.
(b) Directly measured internal energy density E and free-energy den-
sity F measured by integral algorithm vs temperature T for system
size L × 2L with L = 6 (L = 8, 10 have a similar internal energy and
free-energy density). (c) First-order (∂T F ) and second-order (∂2

T F )
derivative of free energy for system size L = 6, where the sharp dip
at the green arrow at Tc ≈ 2.1 in ∂2

T F indicates the second-order
phase transition temperature. (d) Finite-temperature phase transition
shown by the green arrow at Tc ≈ 2.1 determined by 2D Ising finite-
size scaling [M2 ≡ ∑

i, j
αiα j

L4 〈(ni − 1
2 )(nj − 1

2 )〉, where αi = ±1 for
i ∈ A, B sublattice and η = 1

4 for 2D Ising university class].

area of L × L/2 bipartitioning a cylinder geometry to com-
pare with the DMRG result at zero temperature. The third
Rényi EE with the same parameter and the comparison with
DMRG are shown in Figs. 1(e) and 1(f). Our results show a
very small sampling error for both free energy and EE. The
low-temperature limit also matches well with DMRG.

V. APPLICATION TO t-V MODEL

In this section, we present the simulation results of free
energy for a 2D square-lattice spinless fermion π -flux t-V
model at half filling,

H = −
∑
〈i j〉

teiφi j c†
i c j + V

∑
〈i j〉

(
ni − 1

2

)(
n j − 1

2

)
. (13)

Here we set t = 1 and take the gauge choice eiφi j = 1 for
the x-direction i j bonds and eiφi j = ±1 for even (odd) col-
umn y-direction i j bonds. The sign problem is proved to be
free [52–54] and the ground-state transition from the Dirac
semimetal to the charge density wave (CDW) insulator is
found to belong to the Gross-Neveu chiral-Ising universality
[55,56]. We focus on the large V (V = 4) case to detect the
finite-temperature 2D Ising phase transition from the disorder
phase to the CDW phase from free energy. The result is shown
in Fig. 2. One can see that the free-energy measurement is
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even better than the internal energy, as shown in Fig. 2(b),
and the phase transition point indicated by the second-order
derivative of the free energy for a single size [Fig. 2(c)]
matches well with the canonical finite-size scaling result, as
shown in Fig. 2(d).

VI. DISCUSSIONS

In this paper, we develop a fast update integral algorithm
in DQMC, which converts measurements of exponential ob-
servables into conventional observables. This offers an elegant
solution to the challenging problem of calculating exponential
observables by fully suppressing the exponential fluctuations.
Considering the current strong interest in entanglement en-
tropy and determining the rich phase diagram of strongly
correlated spin/electronic systems, this highly efficient ap-
proach of computing Rényi entropy and free energy has
potentially broad applications to a wide range of physical
systems. In our illustration of the 2D Hubbard model, the
computed free energy has a smaller error than the internal
energy at large Hubbard U. In the example of the t-V model,
the derivative of free energy offers precise determinations of
the phase transition. For systems with sophisticated interac-
tion, such as twisted bilayer graphene and quantum Moiré
systems [57–60], our approach also offers a much simpler
way to access the free energy only from the Green’s func-
tion without invoking the Wick decomposition for the four
fermion interactions. In addition, our method offers generic
and easy access to the nth Rényi EE, negativity [61,62], and
entanglement spectrum [63,64] without incurring increases in
computational complexity. Finally, our algorithm can also be
generalized directly to the zero-temperature version projector
QMC.
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APPENDIX A: IMPLEMENTATIONAL CONSIDERATIONS
FOR THE INTEGRAL ALGORITHM

We list a few technical considerations when per-
forming a practical calculation. The first one is that
when we discretize the integral over t naively (e.g., use
− 1

Nk

∑Nk
i=1〈ln[Tr(ρA;s1ρA;s2 )]〉i to compute the 2nd Rényi en-

tropy), the results must be larger than their true values. This
indicates that the function ∂ ln[ f (t )]

∂t = 〈ln[Tr(ρA;s1ρA;s2 )]〉t is
an increasing function. We notice the second-order deriva-
tive ∂2 ln[ f (t )]

∂t2 = 〈ln[Tr(ρA;s1ρA;s2 )]2〉t − 〈ln[Tr(ρA;s1ρA;s2 )]〉2
t �

0 indicates the fluctuation for 〈ln[Tr(ρA;s1ρA;s2 )]〉t . As long as
the slope is not sharp (i.e., indicating mild fluctuation), we can
compute 〈ln[Tr(ρA;s1ρA;s2 )]〉t accurately at a given sequence
of t points and numerically integrate within [0,1] to derive the
second Rényi entropy. The corresponding results are shown in
Figs. 1(c) and 1(d).

The second point is that one may observe that the sampling
may not be “importance sampling” for a small t when comput-
ing the free energy. One can check the formula for free energy
at t → 0 limit, where the weight becomes independent with
determinant Ps as well as the Hamiltonian so that one actually
updates the auxiliary fields randomly. This can also be seen
with the increasing acceptance ratio as t → 0. One way to
avoid this inefficient sampling is to update by the propose-
accept/reject method for small t . Assuming n ≈ 1/t , we can
propose n auxiliary fields update and then determine whether
or not to accept. This will recover the normal acceptance ratio
as t = 1.

The third point is about the computation of
ln[Tr(ρA;s1ρA;s2 )] or ln(Ps) for each configuration. Directly
computing the determinant will derive an exponentially
small (or large) number and the exponent is hard to compute
accurately using the logarithm. A more efficient way is to
utilize the numerical stabilization step for computing, say,
logarithm determinant of the Green’s function,

G(τ, τ ) ≡ [I + B(τ, 0)B(β, τ )]−1

≡ (I + URD>
R D<

R VRVLD<
L D>

L UL )−1

= U −1
L (D>

L )−1[(D>
R )−1(ULUR)−1(D>

L )−1 + D<
R VRVLD<

L ]−1(D>
R )−1U −1

R ,

ln{det[G(τ, τ )]} = − ln{det[(D>
R )−1(ULUR)−1(D>

L )−1 + D<
R VRVLD<

L ]}
− ln[det(UL )] − ln[det(UR)] − Tr[ln(D>

L )] − Tr[ln(D>
R )]. (A1)

Here, for diagonal positive matrix D, we decompose it ac-
cording to the diagonal element larger (D>) or smaller (D<)

than 1, i.e., D ≡ D>D<. In this way, one can compute
ln{det[G(τ, τ )]} stably for each configuration sample.
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APPENDIX B: DERIVE INTEGRAL FORMULA BY
TAKING LIMIT OF THE INCREMENTAL ALGORITHM

The same formula (2) can also be derived by taking a small
polynomial power limit of the incremental algorithm [22–24].
Below, we will illustrate those steps. In the incremental algo-
rithm, S(2)

A is computed as

S(2)
A = −

Nk∑
i=1

ln

(
λi

λi−1

)
,

λi

λi−1
=

∑
Ps1 Ps2 Tr

(
ρA;s1ρA;s2

)(i−1)/Nk Tr
(
ρA;s1ρA;s2

)1/Nk∑
Ps1 Ps2 Tr

(
ρA;s1ρA;s2

)(i−1)/Nk

≡ 〈Tr
(
ρA;s1ρA;s2

)1/Nk 〉i. (B1)

The computation for each piece, − ln[〈Tr(ρA;s1ρA;s2 )1/Nk 〉i],
can be computed in parallel and adding them together will
derive the final result in Ref. [23]. We notice that the distribu-
tion x1/Nk for random variable x > 0 will approach a uniform
distribution when taking Nk → ∞. Using Jensen’s inequality,
we take the equality case when we set the Nk → ∞ limit as

S(2)
A = −

Nk∑
i=1

ln
[〈

Tr
(
ρA;s1ρA;s2

)1/Nk
〉
i

]

� − 1

Nk

Nk∑
i=1

〈ln [
Tr

(
ρA;s1ρA;s2

)]〉i

→ −
∫ 1

0
dt

∑
Ps1 Ps2 Tr

(
ρA;s1ρA;s2

)t
ln

[
Tr

(
ρA;s1ρA;s2

)]
∑

Ps1 Ps2 Tr
(
ρA;s1ρA;s2

)t

≡ −〈
ln

[
Tr

(
ρA;s1ρA;s2

)]〉
s1,s2;t . (B2)

Since we take the Nk → ∞ limit for the integral, S(2)
A =

−〈ln[Tr(ρA;s1ρA;s2 )]〉s1,s2;t is exact. Here, our observable be-
comes ln[Tr(ρA;s1ρA;s2 )], which is not exponentially small and
the integral over continuous field t ∈ [0, 1] can be realized by
numerical integral. This just gives the same formula as Eq. (3)

APPENDIX C: PROVE HUBBARD MODEL IS SIGN
PROBLEM FREE

We would like to prove there is no sign problem when
computing the exponential observables in the Hubbard model.
Because of the well-known particle-hole transformation in

the density decoupling channel for bipartite lattices, we de-
fine c̃†

i;↓ ≡ (−1)ici;↓ and have (I + B̃↓)−1
i, j = (I + B∗

↑)−1
i, j so

that the weight Ps ≡ det(I + B↑) det(I + B↓) is always non-
negative. This directly indicates that the simulation for free
energy should be sign problem free, since the weight there
is just Pt

s . As for the proof for the nth Rényi EE, we need
to prove that the determinant of the Grover matrix is non-
negative for any auxiliary field configuration. First we need
a relation (−1)i+ j (I − Gj,i;↓) = G̃i, j;↓ ≡ (I + B̃↓)−1

i, j = (I +
B∗

↑)−1
i, j = G∗

i, j;↑ = G∗
i, j;↓, so that U −1

c (I − G↓)Uc = G†
↓, where

Uc is the constant unitary transformation giving (−1)i coeffi-
cient according to the sublattice label. Then we have

U −1
c DsiUc = U −1

c

(
G−1

A;si
− I

)
Uc = (D†

si
)−1,

U −1
c

( ∏
i

Dsi

)
Uc =

[(∏
i

Dsi

)†]−1

. (C1)

For convenience, we denote e�α as the eigenvalue for
∏

i Dsi

and eλα;si as the eigenvalue for Dsi . According to Eq. (C1), we
have e−�∗

α = e�β and e−λ∗
α;si = eλβ;si where α and β can label

the same or different eigenvalues and form an injective func-
tion. In addition, we have det(

∏
i Dsi ) = e

∑
α �α = e

∑
i,αi

λαi ;si .
Now we are ready to compute the determinant of the Grover
matrix, which is det(gA,s1,...,sn ) = ∏

i det[(I + Dsi )
−1] det(I +∏

i Dsi ), according to Eq. (C2),

gA;s1,s2,...,sn ≡
∏

i

(
GA;si

)[
I +

∏
j

(
G−1

A;s j
− I

)]
. (C2)

There aremany summation terms after writing in the∏
i Dsi and Dsi diagonal basis (i.e., det(gA,s1,...,sn ) =∑
M

e
∑

α∈M �α∑
mi

e
∑

i,αi∈mi
λαi ;si

, where M and mi label all the

possible choices of choosing eigenvalue sets from {�}
and {λsi}). For any term written as e

∑
α∈M �α∑

mi
e
∑

i,αi∈mi
λαi ;si

, the

complex conjugate of it is also in this summation, i.e.,

( e
∑

α∈M �α∑
mi

e
∑

i,αi∈mi
λαi ;si

)∗ = e
∑

α/∈M′ �α∑
mi

e
∑

i,αi /∈m′
i
λαi ;si

, where M ′, m′
i are the

mapped eigenvalue set from M, mi. Since the maps from
M, mi to M ′, m′

i are injective, for any given M and term in the
summation, one can always find one and only one which is
the complex conjugate of it so that det(gA,s1,...,sn ) is always
real for one spin sector and non-negative after the square.
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