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In this work we introduce an anyon condensation web that interconnects a broad class of two-dimensional
(2D) finite gauge theories with multipolar conservation laws at a microscopic level. We refer to such theories
as spatially modulated since their generators act nonuniformly across the system and have a strong position
dependence. We find that condensation of appropriate set of anyons triggers the emergence of additional spatially
modulated symmetries, which has the general effect of increasing the number of super-selection anyon sectors.
As explicit examples, we start with the rank-2 toric code model and implement various anyon condensation
protocols, resulting in a range of 2D higher-rank theories, each with a distinct gauge structure. We also
expand the scope of anyon condensation by introducing lattice defects into spatially modulated theories and
demonstrate that these geometric defects can be viewed as effective anyon condensations along the branch
cut. Furthermore, we introduce the Multipartite Entanglement Mutual Information measure as a diagnostic
tool to differentiate among various distinct multipole conserving phases. A captivating observation is the
ultraviolet sensitivity of the mutual information sourced from multipartite entanglement in such modulated gauge
theories, which depends on the geometric cut and the system size, and exhibits periodic oscillations at large
distances.
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I. INTRODUCTION

Understanding the nature of entanglement in quantum field
theory has led to important developments in the theoretical
understanding and classification of quantum phases. In the
past decades, the zoology of quantum stabilizer codes [1–4]
has significantly contributed to the understanding of discrete
gauge theories through exactly solvable Hamiltonians [2,5–
7]. Specifically, these stabilizer codes can be interpreted as an
emergent gauge theory whose gauge structure is incorporated
as the higher-form symmetries of the microscopic Hamilto-
nian [8–10]. Recently the concept of fracton topological order
in three spatial dimensions, and higher, had drawn attention
from both the high-energy and condensed matter community
[11–23], achieved as low-energy states of gapped subsystem
charge and/or multipole moment-conserving gauge theories
[24,25]. In two dimensions, gauging discrete multipole sym-
metries lead to rich symmetry-enriched topological orders
(SETs), where both translations and rotations act nontriv-
ially on the anyon content [26–28]. Alternatively, they can
be viewed as twisted copies of usual discrete topological
orders, where anyons change flavors when going through the
periodic boundaries [29,30]. For ZN polynomial gauge the-
ories, the mobility restriction in the quasiparticles content is
only up to O(N ) sites, due to the mod N conservation of
modulated quantities. A richer structure arises when gaug-
ing nonpolynomial symmetries, e.g., exponential symmetries,
where complicated long operators are needed to move excita-

tions around [31,32]. The restricted mobility of quasiparticles
can be naturally interpreted in terms of modulated charge
conservation laws [22,30,33–38], often resulting in ultraviolet
(UV) dependence of the ground-state degeneracy on lattices
with periodic boundary conditions [26–28,32], a characteristic
properties of topological phases enriched by translations [29].

Although proposals have been made regarding the zoology
of fracton stabilizer codes with distinct higher-rank gauge
structures, a significant question still lingers: What is the
interrelation between different modulated gauge theories? In
the context of three-dimensional (3D) theories, the authors
in Ref. [39–43] successfully bridge the gap between various
types of gauge theories. It includes both the conventional 3D
topological quantum field theories (TQFTs) and 3D fracton
gauge theories by adopting a unified defect network perspec-
tive. It suggests that diverse topological field theories and
fracton gauge theories can be related to each other through
defect network approaches, which are achieved by imposing
condensation of anyons on defect lines and planes. Somehow
related to these ideas, in this work our goal is to intricately
intertwine a broad class of two-dimensional (2D) modulated
gauge theories through the condensation of anyonic quasipar-
ticles.

We are interested in lattice models obtained from gauging
symmetries associated with modulated generators

G[ f ] =
∑

r

fr qr, (1)
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where qr corresponds to the charge density of quasiparticles
at site r = (x, y) and fr is a fixed integer lattice function
that defines the modulated symmetry. For concreteness, G[1]
corresponds to the global charge, G[x] and G[y] are the x
and y components of dipole momentum, and G[x2 − y2] and
G[xy] are quadrupole momentum and so on. Although in this
work we focus only on polynomial symmetries, the genera-
tors in Eq. (1) can be more exotic symmetries by choosing
nonpolynomial functions. As explicit examples, we mention
exponential symmetries, with fr = ax+y for some parameter a
(mod N); and subsystem symmetries, with fr = δr (�),

δr (�) =
{

1, if r ∈ �

0, otherwise ,

for � a subset of lattice points where the symmetry opera-
tors have nontrivial support on. In 3D cubic lattices, gauging
G[δr (�)] for � corresponding to planes or fractal membranes
can give rise to well-known fracton codes, as the X-Cube and
Haah’s code [44].

In this work, we strive to demonstrate that a variety of
2D discrete modulated gauge theories [26–28,32], whose
symmetries are generated by Eq. (1), associated with differ-
ent polynomial functions fr can be connected to each other
through an anyon condensation web. Specifically, the conden-
sation of a subset of quasiparticles confines dual excitations,
which have nontrivial braiding statistics with them, thereby
altering the underlying higher-rank gauge structure. This does
not correspond to usual anyon condensation, as we modulate
the condensing potential through space, explicitly breaking
some of the lattice symmetries. By meticulously selecting the
type of anyon condensation, we can obtain a web of stabilizer
models that connect various modulated gauge theories in two
dimensions.

Generally, we study phase transitions between phases as-
sociated with the ultra-infrared (IR) limit of gauge theories
linked to two sets of generators: G[ f1], G[ f2], . . . , G[ fn] and
G[g1], G[g2], . . . , G[gm]. Schematically, the gauge structure
before and after the transition can be represented as

G[ f1] ⊕ · · · ⊕ G[ fn] → G[g1] ⊕ · · · ⊕ G[gm], (2)

where the arrow indicates the condensation of a set of ap-
propriate anyons. Surprisingly, we find that the resulting
condensated phase sometimes has more global anyonic super-
selection sectors than the uncondensed phase. This is captured
by the total quantum dimension D = √∑

a da, which corre-
sponds to the square root of the number of independent anyons
in the theory since da = 1 for Abelian anyons. Generically, in
the transitions represented in Eq. (2), we find that

Duncondensed � Dcondensed. (3)

The fact that more anyons can emerge after the transition is
a direct consequence of their nontrivial transformations under
lattice symmetries. This is to be contrasted to usual Abelian
anyon condensation transitions, where the number of super-
selection sectors is smaller in the condensed phase, since some
of the anyons have condensed and some others have confined
[45]. As we illustrate here, this follows from the modification
of the Gauss law and magnetic flux in the condensed, allowing
for emergent additional conserved quantities.

FIG. 1. A small section of an anyon condensation web. The
arrows correspond to phase transitions implemented through anyon
condensation.

In a nutshell, in the first part of this work we have explored
a small section of a large web of theories that can be connected
to each other through phase transitions implemented by anyon
condensation, as illustrated in Fig. 1. The theories depicted in
gray boxes are well known in the literature, and the arrows
indicate the condensation of an appropriate set of anyons
when transitioning between the SETs. In Table I we show a
summary table with all the main properties of such different
topological phases.

Additionally, in a slightly different context, we study lattice
defects, such as dislocations or disclinations, as mechanisms
for interchanging different charge and flux sectors. This oc-
curs due to the fact that distinct topological sectors in spatially
modulated gauge theories undergo nontrivial permutations
under translation and rotation. We also posit that geomet-
ric defects in modulated gauge theories can be perceived as
branch lines subject to the condensation of appropriate anyons
[46–48]. We then proceed to study the implications on the
gauge structure of the theory when such condensation defects
are present.

We believe our findings might have significant impli-
cations for both the theoretical and eventual experimental
understanding of 2D modulated gauge theories. The anyon
condensation transitions we consider provide a unique play-
ground for exploring unconventional phase transitions beyond
the Landau-Ginzburg-Wilson (LGW) paradigm within sys-
tems possessing UV/IR scale mixing. From an alternative
perspective, anyon condensation can also be implemented
through partial measurements on a quantum many-body wave
function [49–52]. Explicitly, by measuring some qubits in
the ground-state wave function of a higher-rank stabilizer
code, the postmeasurement state—after error correction—is
the ground state of another type of modulated gauge the-
ory. In this context, partial measurement procedures play the
role of implementing anyon condensation on the quantum
many-body wave function, suggesting that various spatially
modulated phases are connected to each other through partial
measurements.

Finally, we also propose multipartite entanglement mutual
information [53] as a strategy to differentiate between distinct
2D modulated gauge theory ground states. While entangle-
ment entropy has been studied in the context of spatially
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TABLE I. Summary table of properties associated with several two-dimensional spatially modulated ZN gauge theories discussed in this
work. The table shows the conserved modulated electric and magnetic quantities G[ f ] and G̃[ f̃ ], respectively. It also shows the local Gauss
law and the gauge-invariant magnetic flux for each modulated gauge theory.

modulated phases [54,55], here the idea is that such modulated
theories are characterized by their unique gauge structures
and holonomies [56–58]. By performing different geometric
cuts on the wave function, the long-range correlation between
Wilson operators should be reflected in the multipartite en-
tanglement. Effectively, it captures the underlying spatially
modulated holonomy structures defined in geometric sectors.
An important factor in multipartite entanglement mutual in-
formation in spatially modulated gauge theories is that it is
influenced not only by the system size but also by the distance
(with periodic oscillations) and orientation of the cuts, incor-
porating a strong geometric dependence and UV/IR mixing.

II. SPATIALLY MODULATED GAUGE THEORIES

We often refer to spatially modulated gauge theories
through the generators G[ f ] of their gauged ZN symmetries.
When gauging the global ZN symmetry associated with G[ f ],
we introduce gauge fields Aa and their canonical conjugated
electric fields Ea, for some suitable set of indices a. The gauge
transformations Aa → Aa + �aα are generated by the Gauss
law, schematically represented as

qr = �aEa, (4)

where �a is a generalized difference operator that contains
information about the lattice function fr . It is defined through
the annihilation property �̃a fr = 0, where

∑
r

gr �ahr =
∑

r

hr �̃agr (5)

for any lattice functions gr and hr . The above definition can be
thought of as an integration by parts, defining a generalized
notion of the Leibniz rule. Fixing a given function fr , the
annihilation property �̃a fr = 0 does not completely fix the
derivative operator �a. A simple example is to consider a
polynomial function fr of degree n, which is annihilated by
any mth-order derivative. If m > n + 1, however, the theory
conserves unwanted extra quantities G[g], with g any polyno-
mial of degree m − 1. We thus want to choose �a carefully
such that only G[ f ] is conserved.

One can also define a gauge-invariant magnetic flux,
schematically expressed as

br = q�aAa, (6)

where q�a is defined such that q�a�aα = 0 for any lattice func-
tion α. This condition enforces that br is gauge invariant. The
choice of �a and q�a completely specifies the gauge theory.

The Noether’s charges associated with G[ f ] are still con-
served in the gauge theory through its Gauss law. From
inspection, one can see that G[ f ] is a conserved quantity in
the whole lattice

G[ f ] =
∑

r

fr �aEa

=
∑

r

(�̃a fr ) Ea = 0, (7)

which follows from definition �̃a fr = 0. In general, a similar
constraint for the magnetic fluxes also exists,

G̃[ f̃ ] =
∑

r

f̃r q�aAa

=
∑

r

( q̃�a f̃r ) Aa = 0, (8)

for dual functions f̃r that are annihilated by q̃�a. The fact that
G[ f ] vanishes [Eq. (7)] for any gauge-invariant state in the
Hilbert space implies in constrained dynamics for quasipar-
ticles. The excitations can move only in ways such that its
dynamics respects Eq. (7), signaling the presence of fracton-
like behavior.

For convenience, we introduce the ZN notation Xa =
ei2πEa/N and Za = eiAa , which obey the clock algebra XaZb =
ωδabZbXa, with ω = e2π i/N . It is also convenient to introduce
ZN charge Qr and magnetic fluxes Br operators,

Qr = e
2π iqr

N =
∏

a

X �a
a ,

Br = e
ibr
N =

∏
a

Z
q�a
a . (9)
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Here �a and q�a should be understood in terms of the coeffi-
cients that accompany the terms of Ea and Aa in the Gauss law
and magnetic fluxes in Eqs. (4) and (6).

In this notation the conservation laws become constraints
for the allowed charges and fluxes eigenvalues:∏

r

Q fr
r = 1,

∏
r

B f̃r
r = 1. (10)

As we discuss later through some examples, under periodic
boundary conditions the ZN gauge theory can be reduced to a
Zk gauge theory, where k might depend on the system sizes.
This follows from the imposition that the constraints in (10)
are well defined, implying twisted boundary conditions for the
gauge fields.

The higher-form symmetries of the ZN (or Zk ) modulated
gauge theories can be made explicit by taking the product Qr

and Br in a finite region A. Let ∂A be the boundary A, then
we have that the product∏

r∈A
Q fr

r = W f (∂A),

∏
r

B f̃r

A = V f̃ (∂A) (11)

reduces to string operators at the boundary ∂A. Such closed
line operators correspond to gauge-invariant Wilson and
t’Hooft loops, which allow us to study excitations in the
theory as well as their mobility properties. For this, we con-
sider open strings W f and V f̃ , whose general effect is to
excite electric charges and magnetic fluxes at their endpoints.
The constrained mobility of anyonic excitations, frequently
present in modulated gauge theories, are incorporated in the
rigidity of such strings.

As a final comment, instead of dealing with a con-
strained Hilbert space and identifying physical states as
gauge-invariant ones (Qr − 1)ψ = 0, we instead choose to
enforce it energetically. This is convenient as we can interpret
nongauge-invariant states as charge excitations in the spec-
trum of the theory. For this, we add the ZN Gauss law and
magnetic fluxes operators directly into the lattice Hamilto-
nian,

H = −
∑

r

Qr −
∑

r

Br + H.c. (12)

By construction, the model defined above is exactly solvable,
as every term commutes with each other one,

BrQr =
∏

a

ω−q�a�aQrBr

= QrBr, (13)

where we used that q�a�a = 0.

III. R2TC FROM ANYON CONDENSATION
OF TORIC CODE MODELS

To set the stage, we briefly review the anyon condensate
protocol introduced in Ref. [27], where rank-2 gauge theory

FIG. 2. Illustration for (a) condensed magnetic flux B and
(b) condensed Gauss’s law G defined in Eqs. (21) on two interpen-
etrating square lattices. Sublattice 1 is shown by dashed lines, and
sublattice 2 is shown by the solid lines. The condensation of the fields
takes place on the dotted links. (a) The red and blue arrows represent
the fields Aa

r,1 and Aa
r,2 (a = x, y), respectively, where the positive

directions are right and up. (b) The red and blue arrows represent
the fields Ea

r,1 and Ea
r,2 (a = x, y), respectively.

can emerge through anyon condensation from two copies of
the rank-1 gauge theory. The details of this anyon condensate
were elucidated in Ref. [27]; we reiterate them here as a
prelude to introducing the general anyon condensate proce-
dure. Let us begin with two sets of ZN gauge theories living
on the interpenetrating square lattices denoted 
1 (dashed
lines) and 
2 (solid lines) as in Fig. 2, with lattice vectors
in the x and y directions given by e1 and e2. Each square
lattice has gauge degrees of freedom (Aμ

a,r, Eμ
a,r ) residing at

the μ = x, y-oriented links of the respective square sublattice
labeled by a = 1, 2, at site r. They satisfy the canonical com-
mutation [Aμ

a,r, Eμ′
a′,r′ ] = iδaa′δμμ′δr,r′ . Each square lattice hosts

a deconfined ZN gauge theory as

qa = (∇ · Ea), ba = (∇ × Aa). (14)

In the above, the charges qa can assume any integer value mod
N and the fluxes ba = 2πk/N with (k = 1, 2, . . . , N ). Also,
∇ = (�1,�2) is the 2D lattice derivative nabla operator, with

�i fr ≡ fr+ei − fr . (15)

To implement the anyon condensation, we add a strong
onsite interaction term cos[ 2π

N (Ex
1,r+ey

− Ey
2,r+ex

)] illustrated
in Fig. 2. The local Hilbert space is projected to the subspace
as

Ex
1,r+ey

= Ey
2,r+ex

(mod N ). (16)

The projection operator can be viewed as an anyon conden-
sation process that proliferates an anyon-bound state of a flux
dipole of layer 1 oriented in the x direction with a flux dipole
of layer 2 oriented in the y direction. Such procedure, in
turn, confines operators Ax

1,r+ey
, Ay

2,r+ex
due to their nontrivial

mutual statistics. As a result, the magnetic field operator is
no longer well defined, and the leading-order gauge-invariant
operator that commutes with the constraint is

br = �x(∇ × A1,r ) − �y(∇ × A2,r ). (17)
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Such a term involves only the symmetric combination Ax
1 +

Ay
2, for which one can explicitly verify its commuting property

with the constraint (Ex
1 − Ey

2 ) = 0 mod N .
To characterize the gauge theory after anyon condensation,

we introduce a convenient notation(
Ex

2,r, Ey
1,r, Ex

1,r+ey
= Ey

2,r+ex

) → (
Exx

r , Eyy
r , Exy

r

)
. (18)

Likewise,(
Ax

2,r, Ay
1,r, Ax

1,r+ey
+ Ay

2,r+ex

) → (
Axx

r , Ayy
r , Axy

r

)
, (19)

which makes the relation to a rank-2 gauge theory (Aa
r , Ea

r )
(a = xx, xy, yy) more explicitly. From definition, the fields
obey the canonical relation [Aa

r , Eb
r′ ] = iδrr′δab and transform

under gauge as

Axx → Axx + �x f1,

Ayy → Ayy + �y f2,

Axy → Axy + �x f2 + �y f1. (20)

The resulting gauge theory is defined by the following
Gauss laws and magnetic flux:

qx = �xExx + �yExy,

qy = �xExy + �yEyy,

b = �2
xAyy + �2

yAxx − �x�yAxy, (21)

where qx and qy are the gauge transformation generators asso-
ciated with f1 and f2 in Eq. (20). In the presence of periodic
boundary conditions, this theory possesses a ground-state de-
generacy that is sensitive to the linear system sizes Lx and Ly:

GSD = N3 gcd(N, Lx ) gcd(N, Ly ) gcd(N, Lx, Ly ). (22)

The gauge theory specified in Eq. (21) corresponds to
the rank-2 toric code (R2TC) model, proposed in Ref. [26],
and corresponds to a discrete ZN rank 2 vector tensor gauge
theory. Such a theory has vector-like charges qx and qy, which
can be shown to conserve the modulated quantities,

Gx[1] =
∑

r

qx, Gy[1] =
∑

r

qy,

and Gy[x] − Gx[y] =
∑

r

(x qy − y qx ), (23)

which follow from the Gauss law in Eq. (21). Similarly, one
can explicitly check that the magnetic fluxes conserve

G̃[1] ⊕ G̃[x] ⊕ G̃[y], (24)

where G̃[ f̃ ] = ∑
r f̃r br , as summarized in Table I. Because

of this asymmetry in the electric and magnetic conserved
quantities, the electric and magnetic anyons of the R2TC
obey different mobility restriction rules. Schematically, we
represent the phase transition we discussed in the above as

G[1] ⊕ G[1] → Gx[1] ⊕ Gy[1] ⊕ (Gy[x] − Gx[y]), (25)

which encodes the Gauss laws of both theories before and
after the transition. These results were originally studied in
Refs. [26,33,59]. In particular, Ref. [33] pointed out that
when choosing N = 2, the vector rank-2 tensor gauge the-
ory is reminiscent of three copies of the toric code model
(denoted as Z3

2 gauge theory), with three flavors of (Z2)

charge and flux. Notably, the three charges (fluxes) can be
permuted by lattice translations/rotations, manifesting as a
spatial symmetry-enriched topological phase where different
anyons are intertwined with each other through crystalline
symmetries. This interplay between anyon excitation and spa-
tial symmetry is a signature of higher-rank gauge theory in
two dimensions as well as fracton in three. Reference [30]
delineated that 2D ZN higher-rank gauge theory can be treated
as a spatial symmetry-enriched topological order as spatial
symmetry permutes different anyon types. Likewise, Ref. [60]
suggests that 3D fractonic matter can naturally emerge from a
3D SPT phase with global U(1) and translational symmetries
after we gauge the global U(1) symmetry. In the SPT state, the
global symmetry quantum numbers of excited quasiparticles
depend on their positions in a nontrivial way. Thus, after
gauging U(1) symmetry, the resultant gauge charge in three
dimensions exhibits restricted mobility as fractons.

IV. ANYON CONDENSATION WEB FOR 2D
MODULATED THEORIES

From now on, we will consider the R2TC model as a
starting point for our studies and demonstrate that a variety
of 2D spatially modulated gauge theories can be derived from
different anyon condensation schemes. The key concept is that
in spatially modulated gauge theories, the gauge structure and
conservation laws are associated with generalized higher-form
symmetries, and their ground-state degeneracy results from
the spontaneous breaking of such symmetries. A specific type
of anyon condensation necessarily confines all other excita-
tions that have nontrivial mutual statistical interactions with
them, thus altering the gauge structure and engendering a new,
distinct, ordered phase.

A. A route to Dipolar-Quadrupolar code

In this section, we aim to establish a connection between
the R2TC theory as represented in Eq. (21), and the Dipolar-
Quadrupolar code introduced in Ref. [28], and also studied in
Refs. [33,61], via charge vector condensation. The operator
eiAxy

generates a pair of vector dipole moments for both qx

and qy. Assume we condense these dipole moments by intro-
ducing a strong Higgs term that favors the constraint Axy = 0
(mod 2π ), as shown in Fig. 3, inherently ruling out operators
that do not commute with it, such as Exy. Consequently, the
vector charge (qx, qy), as specified in Eq. (21), is no longer
well defined after introducing the Higgs term. In its place, a
new Gauss law arises,

q ≡ �xqy − �xqx = �2
xExx − �2

yEyy, (26)

which commutes with the Axy = 0 (mod 2π ) constraint. Ac-
cordingly, the magnetic flux operator after introducing the
Higgs term yields

b = �2
xAyy + �2

yAxx. (27)

To maintain consistency with the notation used for the
Dipolar-Quadrupolar code in Ref. [28], we adjust the labels
for the electric field and gauge potential as follows:

Eyy → −Eyy, Ayy → −Ayy, (28)
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FIG. 3. Gauge fields at vertices and face centers in Dipolar-
Quadrupolar code on a square lattice.

so the corresponding gauge theory can be rephrased as

q = �2
xExx + �2

yEyy,

b = −�2
xAyy + �2

yAxx. (29)

The two gauge potentials follow a gauge transformation as

Axx → Axx + �2
x f ,

Ayy → Ayy + �2
y f . (30)

Before we delve deeper, it is essential to emphasize the
gauge structure of this theory. Unlike the traditional lattice
gauge theory—which assigns different gauge potentials to
individual links—this theory distinctively places both gauge
potentials Axx, Ayy on the same lattice sites. The gauge theory
detailed in Eq. (29) represents a generalized electromagnetism
that preserves charge G[1], dipole moments G[x], G[y], and
quadrupole moment component G[xy]. The self-dual structure
of the theory in Eq. (29) indicates that magnetic flux shares a
similar multipolar conservation law.

To express the gauge theory in Eq. (29) in terms of a
stabilizer code, we parametrize the field components as two
sets of ZN Pauli operators: ei 2π

N Eyy = X, eiAyy = Z, ei 2π
N Exx =

X̄ , and eiAxx = Z̄ . Under this notation, the gauge theory can
be expressed in terms of a CSS-type stabilizer code,

H = −
∑

r

Qr −
∑

r

Br + H.c. (31)

with Qr and Br being the charge and flux operators, defined
as

Qr = X̄ †
r−ex

X̄ †
r+ex

X̄ 2
r X 2

r X †
r+ey

X †
r−ey

and Br = Zr−ex Zr+ex Z−2
r Z̄2

r Z̄†
r+ey

Z̄†
r−ey

, (32)

as illustrated in Fig. 4.
The commutative nature of these two terms contributes to

the exact solvability of the ground state, generating a wave
function characterized by patterns exhibiting zero flux and
charge. It is worth mentioning that we added the Gauss law
and magnetic flux terms directly into the Hamiltonian (31). In
this sense, we are enforcing gauge invariance Qr = 1 energet-
ically, in the lowest energy states, and do not impose further
constraints in the Hilbert space.

FIG. 4. Discrete ZN charge and flux operators in the doubled
version of Dipolar-Quadrupolar code.

As mentioned before, the model in Eq. (32) presents the ZN

dipole and off-diagonal quadruple moment conservation and,
as a consequence, restricts the mobility of excitations. We can
see this anyon condensate transition as

Gx[1] ⊕ Gy[1] ⊕ (Gy[x] − Gx[y])

→ G[1] ⊕ G[x] ⊕ G[y] ⊕ G[xy], (33)

where the additional invariance under off-diagonal quadrupole
moment G[xy] emerges as an effect of the condensation and
confinement of dual excitations.

Under periodic boundary conditions, on a Lx × Ly square
lattice, the ground-state degeneracy can be counted to be

GSD = [N gcd(Lx, N ) gcd(Ly, N ) gcd(Lx, Ly, N )]2. (34)

The excitations above the ground state can be violations of
either Qr or Br plaquettes and can come in four flavors each
(or combinations of these): x- and y-oriented dipolar bound
states px and py, as well as single monopoles q and four-
particle bound states m. While the three first excitation types
have constrained mobility, as we discuss later in Sec. V A, the
last one is completely free to move.

Finally, we comment on the relationship between the
Dipolar-Quadrupolar code in Eq. (32) and other topological
orders in two dimensions. If we take N = 2, the theory re-
duces to a Z4

2 gauge theory with four copies of the toric
code [33]. This is evident from the stabilizer code perspective,
where Eq. (32) simplifies to four independent toric codes
living on four sublattice sites: (2m, 2m + 1), (2m, 2m), (2m +
1, 2m + 1), and (2m + 1, 2m). As a result, different flavors
of charges (fluxes) are related by lattice translations. This
echoes the fact that the anyonic excitation in most higher-rank
gauge theories undergoes permutation under spatial transla-
tion, which indeed imposes mobility constraints. For a general
ZN Dipolar-Quadrupolar code in Eq. (32), the theory should
resemble the ZN topological order with N2 types of charge
(flux), featuring nontrivial mutual statistics between charges
and fluxes of different types, where translation permutes
anyon types [30].

B. Flux attachment, Chern-Simons term, and non-CSS code

At this point, we have established an anyon condensation
process that bridges the R2TC code and the CSS version of the
Dipolar-Quadrupolar code, as studied in [61] and as schemat-
ically illustrated in Eq. (33), both of which are contenders for
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FIG. 5. After the projection, the charge and flux operators are
bound together, giving rise to a non-CSS code.

spatially modulated gauge theories in 2D with distinct charge
multipole conservation laws. In this section, our goal is to
generate non-CSS codes that exhibit a gauge structure similar
to the model in Eq. (32), recovering the models studied in
Ref. [28]. Intriguingly, these theories can be manifested as
Chern-Simons theories, where charge and flux are intrinsi-
cally linked.

To set the stage, we begin with a modified Gauss law that
features charge structures similar to the ones in Eq. (37),
but with an additional constraint: unit charges are bound to
unit gauge fluxes. This flux-charge binding process has the
potential to give rise to a higher-rank Chern-Simons theory
[22,28] in addition to the Maxwell term. In conventional
Maxwell-type gauge theories, the ground-state manifold is
defined by projecting the local Hilbert space onto the vanish-
ing net charge and flux sectors. With the flux-charge binding
effect, the net charge condition will be automatically satisfied,
provided the theory is flux-free. Additionally, any excitation
electric charge would also contain gauge flux, and vice versa,
leading to fractional statistics between charges (and fluxes).

To create a Chern-Simons-type coupling, we assign the
charge density to be equal to the local flux,

qr
!= br, (35)

where Br is defined in Eq. (32). A sufficient solution to this
equation is to impose an onsite operator mapping between the
two sets of ZN Pauli operators X, Z and X , Z , such that

X̄ †
r = Zr, Z̄r = Xr . (36)

In this case, the local Hilbert space per site is reduced from
N2 to N , with only one set of Pauli operators per site. The
Hamiltonian in Eq. (31) is reduced to

H = −Y †2
r Zr+ex Zr−ex Xr+ey Xr−ey + H.c., (37)

as shown in Fig. 5, where Yr = ZrXr .
It is worth noting that the solution given in Eq. (36) is

not unique. It is possible that there are other solutions that
satisfy the flux-charge binding constraint, but we will defer
investigation of this to future research.

From a continuum point of view, such a flux attachment
process engenders a dipole Chern-Simons-like coupling

1

2π

[
A0

(− ∂2
x Ayy + ∂2

y Axx
) − Axx∂t A

yy
]

(38)

between the Axx and Ayy gauge field components. This is
the theory studied in detail in Ref. [28] and defines a dipole
moment and off-diagonal quadrupole moment, conserving ZN

Chern-Simons-like theory.
The theory in Eq. (38) presents ground-state degeneracy

that depends on the system size and is given by

GSD = N gcd(Lx, N ) gcd(Ly, N ) gcd(Lx, Ly, N ), (39)

which is very similar to the CSS code expression in Eq. (34),
but without the overall power of two. This is due precisely to
the reduction in total number of charge and flux global sectors
under the attachment in Eq. (35). While the doubled theory in
Eq. (31) is time-reversal (TR) invariant, as expected coming
from a Higgsian Maxwell-like theory, the non-CSS theory in
Eq. (37) is not. This follows from the requirement that charge
and flux, which transform differently under TR, should be
bound together, and is expected from a Chern-Simons-like
theory.

C. Route to Moessner code

To develop a comprehensive anyon condensation web that
links a variety of modulated models, we once again initiate
with the R2TC and employ an alternative anyon condensa-
tion scheme that confines the diagonal components Exx, Eyy.
Through this process, we obtain an exactly solvable model
dubbed the Moessner code, as its gauge structure bears sim-
ilarity to the classical spin model proposed by Moessner in
Ref. [62].

We still come up with the R2TC exploited in Eq. (21),
wherein the operator eiAxx

(eiAyy
) generates a pair of dipole

moments for both qx (qy). Consider we condense these dipole
moments by adding a strong Higgs term, cos(Axx + Ayy),
which imposes the constraint (Axx + Ayy) = 0 (mod 2π ). That
necessarily precludes operators such as Exx, Eyy that do not
commute with the constraint, and as a result the vector charge
(qx, qy) in Eq. (21) ceases to be well defined. A new Gauss
law, that commutes with the constraint, arises:

�xqx − �yqy = (
�2

x − �2
y

)
Exy + �x�y(Exx − Eyy). (40)

Accordingly, the magnetic flux operator becomes

b = (
�2

x − �2
y

)
Axx − �x�yAxy. (41)

To avoid confusion and simplify notation, we redefine the
field as

Exy → Ex, (Exx − Eyy) → Ey,

Axx → Ay, Axy → Ax, (42)

where the elements Ey, Ay reside at centers of plaquettes and
Ex, Ax occupy vertex sites. With this, the theory’s Gauss law
and magnetic flux are shown in Fig. 6 and are expressed as

q = (
�2

x − �2
y

)
Ex + �x�yEy,

b = (
�2

x − �2
y

)
Ay − �x�yAx. (43)
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FIG. 6. (a) Gauss law and (b) magnetic flux for Moessner model.

The gauge potential components transform under gauge trans-
formations as

Ax → Ax + (
�2

x − �2
y

)
f ,

Ay → Ay + �x�y f . (44)

We can also express the gauge theory in Eq. (43) in terms
of stabilizer code by parametrizing the field components as
ei 2π

N Ex = X, eiAx = Z, ei 2π
N Ey = X̄ , and eiAy = Z̄ . The resulting

CSS-type code is given by

H = −
∑

r

Qr −
∑

r

Br + H.c. (45)

with Qr and Br being the charge and flux operators, defined
as

Qr = X †
r−ex

X †
r+ex

Xr+ey Xr−ey X̄ †
r+ev

X̄r−ev
X̄r+eu X̄ †

r−eu
,

and Br = Z̄†
r−ex

Z̄†
r+ex

Z̄r+ey Z̄r−ey Z†
r−ev

Zr+ev
Zr−eu Z†

r+eu
.

(46)

Here X, Z are situated on the vertex sites, while Z̄, X̄ are
located at the center of the plaquette. The vectors eu, ev con-
nect coordinates of vertices and centers of plaquettes, where
eu = (ex + ey)/2 and ev = (ex − ey)/2.

The exactly solvable Hamiltonian in Eq. (31) can be
thought of as coming from gauging symmetries associated
with the dilaton transformation generator G[x2 + y2], as well
as charge G[1] and dipole momenta G[x] and G[y]. Thus,
this particular scheme of anyon condensation gives rise to a
transition

Gx[1] ⊕ Gy[1] ⊕ (Gy[x] − Gx[y])

→ G[1] ⊕ G[x] ⊕ G[y] ⊕ G[x2 + y2], (47)

where we again observe the emergence of extra spatially mod-
ulated symmetries in the condensed phase.

D. Modulated-gauge principle: Confinement, restricted
mobility, and conservation laws

We expect the protocol illustrated in Sec. IV C and
Sec. IV A to establish a connection among a variety of 2D
modulated gauge theories through anyon condensation mech-
anisms, laying the groundwork for a network of spatially
modulated stabilizer codes. A prevailing question is: Is there a
unique correspondence between the modulated phases before
and after a specific type of anyon condensation? Furthermore,

can we generalize this scheme to obtain other 2D models
[32,63] via anyon condensation of R2TC?

Before addressing the central question, let’s compare the
symmetry and conservation laws between R2TC and the
Dipolar-Quadrupolar code, as detailed in Sec. IV A. R2TC
embodies a gauge theory with flux and flux dipoles

G̃[1] =
∑

r

br,

G̃[x] =
∑

r

x br,

G̃[y] =
∑

r

y br (48)

conservation. In contrast, the Dipolar-Quadrupolar code in-
corporates an additional flux-quadrupole

G̃[xy] =
∑

r

xy br (49)

conservation. Implementing anyon condensation through
Higgs mechanism and freezing Axy has the effect of confining
ei 2π

N Exy
, responsible for transporting a flux x dipole in the y

direction (or a flux y dipole in the x direction). We review
the mobility of flux and charge-bound states in Sec. V A. This
confinement results in two outcomes:

(1) Flux dipoles experience enhanced mobility constraints,
such that their motion is strictly limited to the longitudinal
direction aligned with the flux-dipole orientation.

(2) The ei 2π
N Exy

operator, which acts by creating flux
quadrupoles, is prohibited at low energies, thereby conserving
the flux-quadrupole moment G̃[xy].

Notably, these two outcomes are interconnected. In spa-
tially modulated gauge theories, quasiparticle motions are
restricted due to generalized conservation laws. Conversely,
the conservation of charge multipole restricts the movement of
charge excitations. When condensing anyons (such as charge
multipoles), other excitations exhibiting nontrivial braiding
with the condensed anyons (like flux multipoles) become
confined. This confinement of multipole flux hinders specific
kinetic movements of the flux excitations. Such quasiparticle
motion constraints imply the presence of additional conserva-
tion laws, leading to a unique type of modulated gauge theory.

The same ideas are behind the anyon condensation towards
Moessner code in Sec. IV C. When we “Higgs” the theory by
imposing (Axx + Ayy) = 0, the operator ei 2π

N (Exx+Eyy ) becomes
confined. This confined operator is responsible for transport-
ing a flux x dipole in the x direction (or a flux y dipole
along the y direction). Hence, the flux dipole can move only
along the transverse direction perpendicular to its orientation,
suggesting the conservation of flux dilaton (x2 + y2)B. This
conservation can be further illustrated by the fact that the
monopole operator of the flux dilaton, ei 2π

N (Exx+Eyy ), is prohib-
ited at low energy. These results are summarized in Fig. 7.

In summary, the anyon condensation procedure we pro-
posed introduces additional mobility constraints and conser-
vation laws for higher-order charge multipoles, leading to
alternative types of modulated gauge theories. Based on this
protocol, the conserved charge multipole before anyon con-
densation is a subgroup of those after the condensation. This
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FIG. 7. Higgs potential, confined bound states, and restriction
on mobility of flux excitations in both Dipolar-Quadrupolar and
Moessner models.

means that if we start with a higher-rank gauge theory with
both charge and dipole conservation and allow various anyon
condensations schemes, we can reasonably anticipate a hi-
erarchy of spatially modulated gauge theories with charge,
quadrupole, or even octupole conservation emergent laws.
However, our anyon condensation protocol might not be easily
generalized to phases with polynomial fractal symmetries or
exponential symmetries [31,63]. We leave this point for future
exploration.

Typical anyon condensation in conventional topological
field theory plays a role in reducing the topological de-
generacy [45]. This result is intuitive: through the anyon
condensation transition, some anyons become indistinguish-
able from the vacuum, and dual anyons (which have nontrivial
statistical interactions with the condensed ones) become con-
fined. These effects have the general role of diminishing the
number of global flux sectors, consequently reducing the
ground-state degeneracy. In the context of gauge theories
arising from gauging spatially modulated symmetries, this
concept is more nuanced. In these cases, alternative multipole
conservation laws might emerge when we condense anyons.
We argue that the additional conservation laws introduce
holonomy sectors in the theory, implying that the ground-state
degeneracy could also increase after the condensation phase
transition

A simple example of this was covered in Sec. III. Starting
with two copies of standard ZN toric codes, with a total of
N4 anyons, condensation of certain anyonic particles leads to
R2TC, whose ground-state degeneracy is given by Eq. (22).
For for some system sizes Lx and Ly, it can saturate its up-
per bound N6 and effectively be more degenerate than the
original uncondensed phase. One significant consideration in
this example is that due to the additional conservation laws,
the types of charges/fluxes of the uncondensed phase do not
completely dictate the ground-state degeneracy of the con-
densed one. Implementing anyon condensation from two
copies of standard toric codes (which carry two flavors of
charges, e1 and e2, and two types of flux, m1 and m2) results
in the R2TC carrying a two-component vector charge (qx, qy )
and a scalar flux B. Despite a qualitative decrease in the
number of distinct anyon types, the additional conservation

laws have the role of identifying new superselection anyon
sectors coming from multiparticle bound states. As a result,
the ground-state degeneracy of the condensed phase increases
when compared to the degeneracy of the uncondensed one.

E. Implement anyon condensation by partial measurement

Building on our previous discussions, we have shown
that various 2D modulated gauge theories can be connected
through anyon condensation. This is accomplished by intro-
ducing a strong onsite potential term so that some gauge
potential components completely freeze. The resulting fluc-
tuations to the canonical conjugated electric fields, upon
perturbative expansion, yield a unique type of modulated
gauge theory.

In this section, we propose an alternative approach to
implementing the anyon condensate, which relies on the
decoherence and partial measurements of wave functions.
We begin with the ground-state wave function of the R2TC
Hamiltonian in Eq. (21). By partially measuring some of
the qubits of the wave function, the postmeasurement state
resembles the ground state of the Dipolar-Quadrupolar code.
In this scenario, the measurement process plays a role as
anyon condensation. For comparison, the essence of an anyon
condensate involves enforcing an operator into its low-energy
eigenstate by adding onsite interactions to the Hamiltonian.
The partial measurement procedure naturally projects certain
qubits of the wave function into their eigenstates.

To obtain the Dipolar-Quadrupolar code in Eq. (29) from
R2TC, we need to Higgs the off-diagonal component Axy, as
mentioned in Sec. IV A. This can be achieved by performing
a measurement of the operator cos(Axy) on all sites. The
postmeasurement result would fix the value of Axy, which
is analogous to the process of anyon condensation through
a Higgs application of Axy. We now demonstrate that the
postmeasurement state is equivalent to the ground-state wave
function of the Dipolar-Quadrupolar code. The argument pro-
ceeds as follows. The ground-state wave function of R2TC
can be expressed in terms of a tensor-type wave function that
encapsulates an equal weight superposition of all possible
patterns of Axy

r , Axx
r , Ayy

r , with the local constraint �2
xAyy +

�2
yAxx − �x�yAxy = 0. Suppose the postmeasurement out-

come on site r is Āxy
r , the postmeasurement state then becomes

a superposition of all possible patterns of Axx
r , Ayy

r that meet
the local constraint

�2
xAyy + �2

yAxx = �x�yĀxy. (50)

The right-hand side of the equation is a constant, which we
denote as the background flux �x�yĀxy = B̄r . This postmea-
surement wave function is similar to the gauge theory we
defined for the Dipolar-Quadrupolar code, with one key dif-
ference: the ground state of the Dipolar-Quadrupolar code has
a net flux per site, while our result ends up with a background
flux that depends on the measurement outcome of Āxy

r .
Our measurement protocol can also be applied to other

anyon condensation schemes. As an example, one can be-
gin with the wave function of R2TC, and, upon measuring
the diagonal component, the postmeasurement wave function
becomes akin to the ground state of the Moessner model, as
described in Sec. IV C.
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The intriguing and emerging effects of measurements on
the evolution of quantum many-body states have sparked in-
creased interest from both the condensed matter and quantum
information communities. Recently, the potential to create
exotic long-range entangled states, e.g., topological order or
fracton topological ordered state, through the use of adap-
tive circuits has been proposed [49–52] had been studying
extensively. While we will not delve into the effects of mea-
surement on the 2D modulated SETs web in detail in this
paper, we hope our discussion sheds light on the potential
for connecting and manipulating various spatially modulated
states through partial measurement.

F. Advantage and limitations of our anyon
condensation protocol

To this end, we introduced a protocol for anyon conden-
sation that facilitates the connection between various discrete
higher-rank gauge theories. Anyon condensation serves as a
useful mechanism for bridging different topological orders,
including fracton topological orders. A comprehensive de-
fect network approach for intertwining various topological
quantum field theories (TQFTs) and higher-rank gauge the-
ories through anyon condensation at network interfaces or
junctions is detailed in Refs. [33,39,40]. We briefly illustrate
both the limitations and advantages of our anyon conden-
sation approach in comparison to others. As detailed in the
Modulated-Gauge principle (see Sec. IV D), a distinctive as-
pect of our approach is that anyon condensation not only
introduces conservation laws but also generates additional
topological sectors. This increase in ground-state degeneracy
means that the conserved charge multipoles before anyon
condensation become a subgroup of those postcondensation.
Consequently, our protocol cannot connect two topological
phases or higher-rank gauge theories unless one is a subgroup
of the other, although most of these examples can still be con-
nected via a defect network approach [33,39,40]. Nonetheless,
our protocol offers an alternative advancement: it can be im-
plemented either through the addition of an on-site potential or
by conducting a single-site measurement. This contrasts with
the general protocols in defect networks, which typically re-
quire many-body interactions or simultaneous measurements
of several operators across multiple sites. Notably, the on-site
measurement we illustrated in Sec. IV E is applicable in Ry-
dberg atom arrays as proposed and realized in Refs. [49,64–
66]. This method requires only the natural atomic interactions
for time evolution, followed by a single qubit measurement.

V. GEOMETRY DEFECTS IN SETS: AN ANYON
CONDENSATION VIEW

In this section, we explore the role of geometry de-
fects in spatially modulated gauge theories. As explored in
Refs. [46–48], lattice defects in fracton and modulated the-
ories might have the role of permuting anyons, as well as
introducing non-Abelian zero modes in the theory. Here we
study geometric defects in spatially modulated gauge the-
ory naturally realized as branch lines subject to specific
anyon condensation. As we show, the condensations of mobile
anyons along a branch cut play a role in creating an edge
dislocation, while in a similar way, the condensation of diag-

FIG. 8. Anyons p and d and their corresponding string operators
with support on γx , γy, �1, and �2.

onally moving bound states has the general role of creating
disclination defects. For simplicity, we study excitations in
the Dipolar-Quadrupolar model, whose properties we quickly
review in the next section.

A. Excitations and string operators

Let us quickly review the allowed symmetry respecting
dynamics of the excitations of Dipolar-Quadrupolar code in
Eq. (37). There are four types of excitations: monopole parti-
cles q, dipolar bound states px and py, and four-particle bound
states m anyons. The m particles are completely mobile and
can be created at the endpoints of the completely flexible
string:

m :

{
W (γx ) = ∏

γx
XrX †

r+ey
,

W (γy) = ∏
γy

ZrZ†
r+ex

,
(51)

where γx and γy are x- and y-oriented string sections.
The dipolar bound states px and py can move only along
straight lines, in a lineon-like behavior, and are created at the
endpoints of the string operators

px : V (γx ) =
∏
γx

Xr,

py : V (γy) =
∏
γy

Zr, (52)

as illustrated in Fig. 8. Finally, the isolated excitations can be
moved only through fixed-length N string operators

q :

{
U (λx ) = ∏

λx
X x

r ,

U (λy) = ∏
λy

, Zy
r

(53)

for straight strings λx and λy whose size are N (or integer
multiples of N).
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FIG. 9. New plaquette operators B̃r , in second-order perturbation
theory, overlapping with the double string at γx and γx+1, generated
in second order in perturbation theory.

Additionally, there are also “diagonal” dipoles d1 and d2,
created at the endpoint of diagonal strings �1 and �2

S(�1) =
∏
�1

XrZr,

S(�2) =
∏
�2

XrZ†
r , (54)

as illustrated in Fig. 8. These dipolar bound states are not
completely independent from the px and py ones. Instead, they
are the result of fusion

d1 = px × py and d2 = px × py. (55)

We note that, similarly to the V (γx ) and V (γy) strings, the
S(�1) and S(�2) ones have support along straight lines �1 and
�2, which cannot bend. Otherwise, additional excitations are
created around the region of the bent region.

B. Anyon condensate: m dipole

Let us start by spatially condensing m dipoles along a
defect line γx and demonstrate that such anyon condensation
on the defect branch is akin to adding a dislocation defect.
To begin, we apply a strong Ising coupling along the y link
XrX †

r+ey
, which is responsible for condensing a dipole consist-

ing of a pair of m anyons

H → H − g
∑
r∈γx

XrX †
r+ey

. (56)

The condensation along the branch is illustrated in Fig. 10.
In the strong g coupling limit, we consider only states in

the Hilbert space that obey XrX †
r+ey

ψ = +1ψ . We then use
a perturbative expansion on the stabilizers near the branch
to obtain an effective Hamiltonian. For this, let us explicitly
write

H = g

(
H0 + 1

g
H1

)
, (57)

where H1 = HDQ is the Dipolar-Quadrupolar Hamiltonian
in Eq. (37). The perturbative parameter is g−1 and H0 =∑

r∈γx
XrX †

r+ey
+ H.c. is the strong field applied along γx

Let P be a projection operator onto the states satisfying the
constraint XrX †

r+ey
= +1 for all x in γx and let Br abbreviate

FIG. 10. Condensing m anyons along a branch γx effectively
implements a lattice dislocation defect.

each one of the terms in Hamiltonian (37). Then, in first-order
perturbation theory, the terms in the Hamiltonian that overlap
with the condensed branch γx vanish. The effective Hamilto-
nian, in first order

H (1)
eff = PH1P = −

∑
r /∈γx

Br + H.c., (58)

contains only terms that are not in the string γx. This follow
because the plaquette terms Br do not commute with the
constraint XrX †

r+ey
= +1 for r ∈ γx. In second order, however,

there are nontrivial contributions to the effective Hamiltonian
near the branch,

H (2)
eff = PH1

(1 − P )

E − H0
H1P

� −K
∑
r∈γx

B̃r + H.c., (59)

where K ∼ O(g−2) and B̃r for r ∈ γx is depicted in Fig. 9.
Upon condensing the m dipole along the branch cut by

projecting XrX †
r+ey

= +1, the two qubits at sites x and x + ey

become constrained and can be effectively treated as a single
degree of freedom located at an intermediate site. In other
words, the dipole condensation introduces a dislocation where
two adjacent rows along the x direction shrink into a single
row, as depicted in Fig. 10. The effective perturbative Hamil-
tonian we derived in Eq. (59) indeed produces the stabilizer
Hamiltonian of the Dipolar-Quadrupolar code on a dislocation
lattice as Fig. 10.

When we condense the m dipole along the branch cut,
reminiscent of creating a translation defect (dislocation) that
merges two adjacent x rows, both the total charge and x dipole
remain conserved quantities, as

∏
r

Br = 1 and
∏

r

Bρxx
r = 1, (60)

still hold. However, since the dislocation literally mixes the
positions between r and r + ey along the branch cut, the y-
dipole and xy-quadrupole moment of Br become ill-defined
when passing through the branch cut. In particular, if we count
the total number of y-dipole and xy-quadrupole moments in
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FIG. 11. The presence of a d1 condensate along the line � breaks
the total x and y dipole conservation and allows px and py anyons to
convert into each other.

the presence of dislocation lines,∏
r

B
ρyy
r = W (γx+1)ρy ,

∏
r

B
ρxyxy
r = W (γx+1)ρxy x, (61)

where W (γx ) is the stringlike operator defined in Eq. (51).
The fact that Eq. (61) does not act as an identity in the entire
Hilbert space under closed boundary conditions implies that
the y-dipole and xy-quadrupole momenta are no longer con-
served quantities, and as a consequence py and m no longer
correspond to well-defined anyonic superselection sectors in
the theory.

C. Anyon condensate: d1 particle

Condensates of d1 anyons can offer a more intriguing sce-
nario. Similar to the protocol we elucidated in the previous
section, we can introduce a strong onsite field

H → H − h
∑
�1

(ZrXr + H.c.) (62)

acting along a diagonal line �1 (Fig. 11) that proliferates d1

anyons. Under a perturbative expansion, the effective plaque-
tte stabilizers B′

r around the branch cut, which commutes with
the d1 condensate, are shown in Fig. 12. The effect of the
defect line is to transmute px anyons into py anyons as they
cross the condensation line, as showed in Fig. 11.

If we create a px excitation along the x direction and cross
the defect branch cut, the resulting excitation becomes py

anyons, which can move only along the y direction. In this
regard the role of the d1-particle condensate along the branch
cut is reminiscent of a disclination line (a rotational defect)
that can permute two types of anyons—px and py—which
display nontrivial braiding statistics with different subdimen-
sional mobilities. What sets its peculiar character is that the

FIG. 12. New plaquette operators B′
r in second-order perturba-

tion theory.

d1 anyon condensation along the � introduces additional non-
Abelian defects at the endpoints of the line, as referenced in
Refs. [46,67]. We plan to address this matter in a future study.

VI. MULTIPARTITE ENTANGLEMENT
MUTUAL INFORMATION

A. Holonomies and Wilson algebra

In this section, we derive the Wilson algebra of the code, as
presented in Eq. (37). A detailed derivation of the Wilson line
operator can be found in the Appendix; here we summarize
only the results. There are four types of Wilson operators
along the y direction,

W1(x) =
∏

y

X (x, y)X †(x + 1, y),

W2(x) =
∏

y

X y(x, y)X †y(x + 1, y),

W3(x) =
∏

y

X (x, y), W4(x) =
∏

y

X y(x, y). (63)

The Wilson operators are subjected to the uniform condi-
tion: ∂2

x W3(x) = ∂2
x W4(x) = 0. This indicates that we need to

pin the value of two nearby Wilson lines to establish the value
of all holonomies generated by W3,W4. Further, once we set
the values of W3 and W4, other Wilson lines like W1,W2 can
be uniquely determined, since ∂xW3 = W1, ∂xW4 = W2. This
implies the existence of four independent Wilson operators
along the y direction. We can apply the same logic to identify
the dual Wilson operators along the x lines:

V1(y) =
∏

x

Z (x, y)Z†(x, y + 1),

V2(y) =
∏

x

Zx(x, y)Z†x(x, y + 1),

V3(y) =
∏

x

Z (x, y), V4(y) =
∏

x

Zx(x, y). (64)

It is worth mentioning that all the Wi and Vi operators have
support on closed single/double parallel strings. Not all Wi

and Vi operators commute with each other, as they have a
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nonvanishing intersection. The nontrivial algebra between
these operators and its action on the Hilbert space produces
the degeneracy of the ground-state space (as well as a topo-
logical degeneracy in all other energy sectors).

In order to specify the Wilson line algebra and recover
the ground-state degeneracy, we identify the set of Wilson
line operators that generate the ground-state manifold. From
our previous demonstration, it is not hard to conclude that
the eigenvalue of operators Vi(0),Wi(0) for i = 1, . . . , 4 fixes
the ground-state Hilbert space so we can use them to span the
ground-state manifold:

V3(0)W3(0) = e−i 2π
N W3(0)V3(0),

V1(0)W4(0) = ei 2π
N W4(0)V1(0),

V4(0)W1(0) = ei 2π
N W4(0)V1(0),

V2(0)W2(0) = ei 2π
N W2(0)V2(0). (65)

Now we comment on the ground-state degeneracy. The oper-
ators V3(y),W3(x) are ZN operators, regardless of the system
size. It is not difficult to show that these operators span an N-
fold degenerate Hilbert space. Extra caution is needed when
evaluating the eigenvalues of the remaining operator pairs. For
W4(x), it reduces to a Zgcd(Ly,N ) operator under closed bound-
ary conditions, meaning its eigenvalues can only change mod
gcd(Ly, N ). The same reasoning applies to V4(y) and W1(x),
which together span a gcd(Lx, N )-fold degenerate Hilbert
space. Finally, consider the pair V2(y),W2(x). Under closed
boundary conditions, V2(y) reduces to a Zgcd(Lx,N ) operator and
its eigenvalues can only change mod gcd(Lx, N ). Similarly,
W2(x) reduces to a Zgcd(Ly,N ) operator, and its eigenvalues
can only change mod gcd(Ly, N ). Thus, V2(y),W2(x) span a
gcd(Lx, Ly, N )-fold degenerate Hilbert space.

B. Diagnosing modulated behavior using mutual information

Many intriguing aspects of modulated gauge theories stem
from UV/IR mixing [68–72], where the behavior at low en-
ergy can be influenced by the specific details of the lattice.
This phenomenon is compelling because it seemingly con-
tradicts the principles of topological quantum field theories,
where low-energy physics arises from topologically robust
patterns due to entanglement [16,56,73,74] and often remains
unaffected by UV properties [75,76]. When it comes to mod-
ulated gauge theories, a pertinent question is whether one can
visualize UV-IR mixing through observable quantities, such
as correlation functions or entanglement mutual information.
In this section, we show that the emergence of UV-IR mixing
in spatially modulated gauge theories can be detected through
entanglement entropy and mutual information. More specif-
ically, we will evaluate the long-range mutual information
between distant rows of qubits under various geometric cuts,
which sheds light on the inherent correlation between differ-
ent Wilson line operators.

In Refs. [53,77], the authors demonstrate that both topolog-
ical order and symmetry-breaking states can be detected and
diagnosed using long-range mutual information (LRMI). This
formalism is based on the fact that a topological ground state,
when on a closed manifold, exhibits long-range correlations
between nonlocal string operators. Starting with a maximally

FIG. 13. Computation of the tripartite mutual information among
the three rows illustrated as dashed lines at xa, xb, and xc.

entangled state on a half-torus, the Wilson line operators—
defined on the open cylinder—emerge as cat states exhibiting
maximal uncertainty. This state resembles the cat state of
the 1D quantum Ising model, except that in the topologically
ordered state, the order parameter assumes the form of a non-
contractible string. Thus, it is natural to expect a nonvanishing
long-range mutual information (LRMI) between two distant
noncontractible regions (such as stripes), which symbolize
stringlike order parameters circling the noncontractible loops.
The existence of nonvanishing mutual information between
stripes implies that the Wilson line operator defined on differ-
ent stripe regions shares the same eigenvalue, so determining
the pattern in one stripe would subsequently reduce the infor-
mation entropy of the other stripe. In this section our aim is to
adapt and expand upon this concept for 2D modulated codes,
such as the Dipolar-Quadrupolar code. Intriguingly, due to the
UV-IR mixing nature inherent in modulated gauge theories,
we witness that the entanglement LRMI is acutely sensitive to
both the geometry and distance of the cut.

We focus on the Dipolar-Quadrupolar code in Eq. (37) as
an example. Suppose we take out three rows of qubits along
the y direction and label their position as xa, xb, xc (with xa −
xb = bc − xc = M) as Fig. 13. The mutual information among
these three rows indicates the information entropy shared over
large distances. Let us assume we start with a specific ground
state, which is the eigenstate of all Wilson line operators Vi

along the x direction. In other words, all Wi operators along the
y direction appear as cat states with maximal uncertainty. We
now calculate the tripartite mutual information among these
three regions:

I (a:b:c) = S(a ∪ b ∪ c) + S(a) + S(b) + S(c)

− S(c ∪ b) − S(a ∪ c) − S(a ∪ b). (66)

Here a, b, c refer to the three rows at xa, xb, xc. The entan-
glement entropy S offsets the information entropy contributed
by locally fluctuating patterns in each region, and the residual
LRMI I (a:b:c) documents the long-range correlations be-
tween them.

We first analyze the entropy produced by each row at xi.
Given that the ground-state wave function is projected by
the stabilizer operators in the Hamiltonian, the entanglement

205146-13



GUILHERME DELFINO AND YIZHI YOU PHYSICAL REVIEW B 109, 205146 (2024)

entropy of a single row or sets of rows depends on two
factors: (1) the number of independent stabilizers, including
combinations of several stabilizers, that act directly on the
row or sets of rows, and (2) the constraints on certain global
operators, like Wilson line operators, that are independent of
local stabilizers.

Let us start with S(a), which quantifies the information
entropy of the qubits on row xa. There are no stabilizers, nor
combinations thereof, that act on the row of xa independently.
Additionally, given that the Wi operators along the y direction
appear as cat states with maximal uncertainty, there are no
global constraints on the row of xa. Consequently, S(a) has
only local contributions with its entropy being Ly ln(N ). The
same principle applies to S(b) and S(c).

Now, let’s examine S(c ∪ b). There are no stabilizers, nor
combinations thereof, that act on the rows on xb ∪ xc inde-
pendently. Given that all Wi operators along the y direction
manifest as cat states with maximal uncertainty, there appears
to be no global constraint on the two distant rows at xa, xb.
Nevertheless, the conditions ∂2

x W3 = 0 and ∂xW 2
4 = 0 neces-

sitate that (see the Appendix for full derivations)

[
W3(xa)W −1

3 (xb)
] Lx

gcd(Lx ,M ) = 1,[
W4(xa)W −1

4 (xb)
] Lx

gcd(Lx ,M ) = 1. (67)

The operator W3(xa)W −1
3 (xb) is a ZN operator, but the con-

straint from Eq. (67) reduces its eigenvalue to a Zgcd( Lx
gcd(Lx ,M ) ,N )

value. Likewise, W4(xa)W −1
4 (xb) is a Zgcd(Ly,N ) operator, but

the constraint reduces its eigenvalue to a Zgcd( Lx
gcd(Lx ,M ) ,N,Ly )

value. This reduces the information entropy of the two rows
by

ln(N ) + ln(gcd(Ly, N )) − ln

[
gcd

(
Lx

gcd(Lx, M )
, N

)]

− ln

[
gcd

(
Lx

gcd(Lx, M )
, N, Ly

)]
(68)

in addition to the entropy contributed by local fluctuations. By
applying the same logic, the information entropy of S(a ∪ b)
is reduced by

ln(N ) + ln[gcd(Ly, N )] − ln

[
gcd

(
Lx

gcd(Lx, M )
, N

)]

− ln

[
gcd

(
Lx

gcd(Lx, M )
, N, Ly

)]
, (69)

while that of S(a ∪ c) is reduced by

ln(N ) + ln[gcd(Ly, N )] − ln

[
gcd

(
Lx

gcd(Lx, 2M )
, N

)]

− ln

[
gcd

(
Lx

gcd(Lx, 2M )
, N, Ly

)]
. (70)

Now we look into S(c ∪ b ∪ a). As long as we know the
patterns on the rows at xa, xb, the Wilson line operators W3(xa)
and W4(xa) are determined, leading to a reduction in total
information entropy by ln(N ) + ln[gcd(Ly, N )]. Additionally,
the restrictions in Eq. (67) further decrease the information

entropy by

ln(N ) + ln[gcd(Ly, N )] − ln

[
gcd

(
Lx

gcd(Lx, M )
, N

)]

− ln

[
gcd

(
Lx

gcd(Lx, M )
, N, Ly

)]
. (71)

Based on these arguments, it can be concluded that the tripar-
tite mutual information takes the following form:

I (a:b:c) = ln(N ) + ln[gcd(Ly, N )]

− ln

[
gcd

(
Lx

gcd(Lx, M )
, N

)]

− ln

[
gcd

(
Lx

gcd(Lx, M )
, N, Ly

)]

− ln

[
gcd

(
Lx

gcd(Lx, 2M )
, N

)]

− ln

[
gcd

(
Lx

gcd(Lx, 2M )
, N, Ly

)]
. (72)

The LRMI depends on both the system size and the distance
between the three areas, which is distinctly different from
the mutual information in conventional gauge theories [53].
More precisely, the LRMI of modulated gauge theories is
influenced by the system size as well as the distance between
the cuts. By altering the distance M between the a-b-c region,
the LRMI exhibits periodic fluctuations. This starkly contrasts
with LRMI in conventional gauge theory, where mutual infor-
mation saturates to a constant at long distances.

The uniqueness of modulated gauge theories arises from
the fact that the Wilson operators must adhere to a specific
geometric pattern without local deformation. Consequently, if
we calculate the tripartite mutual information between distant
rows along different directions by varying cuts, the LRMI
can change dramatically depending on the geometric cut. To
substantiate this statement, we rotate the system by π/4 and
examine the qubits along the rows in the x̂ ± ŷ directions. Here
we redefined the coordinate as

√
2r1 = x + y,

√
2r2 = x − y, (73)

The magnetic flux operator becomes(
∂2

r1
+ ∂2

r2

)
(Ayy − Axx ) + ∂r2∂r1 (Axx + Ayy) = B,

Axx − Ayy → Axx − Ayy + ∂r2∂r1α,

Axx + Ayy → Axx + Ayy + (
∂2

r1
+ ∂2

r2

)
α. (74)

If we remove a single row along the r1 direction, the only
noncontractible operator that commutes with the Hamiltonian
is ∫

(Axx − Ayy) dr1 = U (r2), ∂2
r2

U = 0, (75)

which can be treated as a Wilson line operator along the r1

direction. We now place the theory under periodic boundary
conditions along r1, r2 and choose the ground state as a cat
state for which both the U and ∇r2U operators reach maximal
uncertainty. We then remove three rows of qubits along the
r1 direction and label the columns as ra, rb, rc (ra − rb = rb −
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rc = 2M). Based on our previous argument, one can conclude
that tripartite mutual information takes the following form:

I (a : b : c) = ln(N ) − ln

[
gcd

(
L2

gcd(L2, M )
, N

)]

− ln

[
gcd

(
L2

gcd(L2, 2M )
, N

)]
. (76)

L2 is the number of sites along r2 direction. Upon compar-
ing this result with Eq. (72), it becomes evident that the
long-range mutual information (LRMI) between three distant
regions is influenced not only by their distance but also by the
orientation of the cut, thereby introducing a level of geometric
dependence. This sensitivity to geometry can be interpreted
through the perspective of the Wilson operators, which might
adhere to a specific geometric shape without the flexibility
to bend. Since LRMI is governed by the correlations among
the Wilson operators, changing the direction or geometry of
the cut also changes the number of Wilson line operators that
survive within the cut, which results in a change in LRMI.

VII. OUTLOOK

In this work, we have introduced an anyon condensa-
tion framework that links different 2D spatially modulated
gauge theories. As we explicitly studied through some ex-
amples, a general effect of the condensate is the emergence
of additional higher-multipole momenta conservations, which
directly affects the quasiparticle content, as well as their al-
lowed dynamics.

For future perusal, we highlight a few open questions
that are worth exploring in the future. (1) As discussed in
Sec. IV E, anyon condensation can be manipulated by making
partial measurements upon the wave function. Since measure-
ments can be achieved by introducing decoherence channels
in an open system, it is feasible that the anyon condensa-
tion scheme we have introduced could be realized through
quantum decoherence. This scenario extends the exploration
of spatially modulated states in open systems and provides
a feasible platform for building quantum memories in noisy
intermediate-scale quantum (NISQ) devices. (2) Likewise,
since the geometric defect introduces additional anyon con-
densation defects to the modulated gauge theory, we expect
that impurities and lattice defects can engender a zoology
of new exotic spatially modulated states. (3) We studied a
multipartite mutual information protocol that is able to detect
UV/IR mixing information in the ground-state wave function,
in contrast to the usual topological entanglement topolog-
ical entropy. We expect that it can applied to various 3D
fracton theories, opening a new chapter in the exploration
of novel entanglement features in higher-dimensional fracton
phases.
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APPENDIX

1. Wilson algebra for Dipolar-Quadrupolar code

Historically, the holonomies engendered by the Wilson
line operators manifest the global flux sectors to which the
ground state on a torus belongs. Building on this line of
thinking, we show how to obtain Wilson operators pertinent
to the Dipolar-Quadrupolar code from the underlying gauge
theory. For higher-rank gauge theories, the “Wilson operators”
creating immobile quasi-particle excitations turn out to be
richer and more diverse than in the conventional ZN gauge
theory for the following reasons. (1) Due to the restricted
mobility of the quasiparticles, some of the Wilson lines need
to be straight and geometrically oriented in a specific direc-
tion. (2) There might exist other “Wilson operators” defined
on a noncontractible manifold, such as membrane, cage, or
fractal, that are responsible for the holonomies of higher-rank
gauge theory [11,22,78]. (3) Different Wilson operators that
are parallel to each other may not render the same value, as
opposed to the conventional ZN gauge theory whose Wilson
line operators are invariant under translation. For higher-rank
gauge theory, the dipole and quadruple moments transform
nontrivially under translation, and so does the global flux sec-
tor. Consequently, two parallel flux lines might return different
values.

Recall that in the usual 2D ZN gauge theory, the magnetic
flux is given by B = ∂xAy − ∂yAx and the total flux on the half
cylinder A bounded by at x = x0 and x = xn is be character-
ized by parallel Wilson line operators

∫
A

B dV =
∮

Ay(xn, y) dy −
∮

Ay(x0, y) dy = 0

with the integral
∮

going around the full circumference of the
cylinder. The net flux condition (

∫
BdV = 0) implies that the

two parallel Wilson lines render the same value. Since the two
Wilson lines are spatially separated while the Hamiltonian is
local, each

∮
Ay(x, y) dy must commute with all local terms in

the Hamiltonian and can be treated as a global flux operator
that characterizes the holonomy. One obtains another Wilson
line operator along the y direction from the charge sector, i.e.,∮

Ey(x, y) dy. These two comprise all possible Wilson lines
along the y loop.

In this Appendix, we derive the Wilson operators of the
non-CSS version of the Dipolar-Quadrupolar code, as rep-
resented in Eq. (37). We begin with the definition of the
flux operator b = ∂2

x Ayy − ∂2
y Axx. Given that the Dipolar-

Quadrupolar code can be characterized by a Chern-Simons
type gauge theory, the pattern of the ground state on a closed
manifold is based on the net flux condition b = 0. The mag-
netic charges represented by b demonstrate a number of
conservation laws associated with G̃[1], G̃[x], G̃[y], G̃[xy].

Suppose we place the ground-state wave function on an
open cylinder and focus on the Wilson lines defined along
the y loop. In this scenario, we can study the holonomies
associated with G̃[1] and G̃[x] by integrating them in a finite
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FIG. 14. The integral of conserved quantities in a finite region A
results into Wilson lines at the boundary ∂A of the region A.

region A, as showed in Fig. 14:∏
r∈A

Br =
∏

y

ei�xAyy (xn,y)e−i�xAyy (x0,y),

∏
r∈A

By
r =

∏
y

ei�xyAyy (xn,y)e−i�xyAyy (x0,y), (A1)

where �x refers to the lattice difference along the x direction.
Based on Eq. (A1), the total flux on an open cylinder is
reduced to two operators localized on the boundary. Following
the notation in Sec. IV A, we express the gauge potential in
terms of Pauli operators X = eiAyy

, Z = eiAxx
and obtain the

Wilson operators,

W1(x) =
∏

y

X (x, y)X †(x + 1, y),

W2(x) =
∏

y

X y(x, y)X †y(x + 1, y). (A2)

Here we choose a coordinate that the site (x, y) resides on the
lattice characterized by integer coordinates. Due to the flux
conservation law, Eq. (A1), these two operators are uniform
along the x coordinate: �xW2(x) = �xW1(x) = 0.

Similarly, the other two conserved quantities G̃[y] and
G̃[xy] engender another set of Wilson line operators,

W3(x) =
∏

y

X (x, y),

W4(x) =
∏

y

X y(x, y). (A3)

Due to the flux conservation law, they are nonuniform along
the x coordinate: �2

xW3(x) = �2
xW4(x) = 0. This indicates

the necessity of pinning the value of two proximate Wilson
lines to establish the value of all holonomies generated by
W1,W2. However, once the values of the aforementioned Wil-
son operators W1,W2 are fixed, W3(x),W4(x) can be uniquely
determined, since �xW3 = W1,�xW4 = W2. This implies the
existence of four independent Wilson operators along the y
direction. The same argument can be applied to identify the
dual Wilson operators along the x lines:

V1(y) =
∏

x

Z (x, y)Z†(x, y + 1),

V2(y) =
∏

x

Zx(x, y)Z†x (x, y + 1),

V3(y) =
∏

x

Z (x, y),

V4(y) =
∏

x

Zx(x, y). (A4)

2. Information entropy for Wilson line operators

In this Appendix, we provide a detailed derivation for the
constraint of the Wilson line operator in Eq. (67). There are no
stabilizers, nor combinations thereof, that act on the rows on
xb ∪ xc independently. Nevertheless, the conditions ∂2

x W3 = 0
and ∂xW 2

4 = 0 indicate that the value of [W3(xa)W −1
3 (xb)]

and [W4(xa)W −1
4 (xb)] are uniform under translation. In the

presence of periodic boundary conditions, multiplying these
operators along the x direction Lx

gcd(Lx,M ) times gives unity:

[
W3(xa)W −1

3 (xb)
] Lx

gcd(Lx ,M ) = 1,[
W4(xa)W −1

4 (xb)
] Lx

gcd(Lx ,M ) = 1. (A5)

The operator W3(xa)W −1
3 (xb), by definition, is a ZN operator,

but the constraint reduces its eigenvalue to a gcd( Lx
gcd(Lx,M ) , N )

value. Likewise, W4(xa)W −1
4 (xb) is a Zgcd(Ly,N ) operator, but

the constraint reduces its eigenvalue to a gcd( Lx
gcd(Lx,M ) , N, Ly )

value.
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