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We conduct a theoretical investigation of the topological phenomena associated with chiral superconducting
pairing states induced in a doped Kane-Mele model on a honeycomb lattice. Through numerical analysis, we
obtain exotic phase diagrams for both the d + id and p + ip superconducting states. In the case of the d + id
pairing state, high Chern number states with C = ±4 emerge. The Chern number decreases as the spin-orbit
coupling is introduced. For the p + ip pairing state, additional phase transition lines are present in the overdoped
region near the Van Hove singularity point, leading to the emergence of high Chern number phases with C = ±6.
We further verify these high Chern number phases through the bulk-edge correspondence. To understand the
origin of the exotic topological phase diagrams in the chiral superconducting state, we examine the electronic
structure at the phase transition lines. This investigation provides insight into the complex interplay between
chiral superconductivity and topological properties, potentially paving the way for the discovery of new materials
with unique topological properties.
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I. INTRODUCTION

Chiral topological superconductors have been both theo-
retically and experimentally investigated, drawing significant
research interest due to their fascinating properties [1,2].
The chiral pairing term breaks time-reversal symmetry, lead-
ing to chiral Majorana zero modes and edge currents with
promising potential for quantum computation. Various chiral
superconducting pairing states have been proposed in numer-
ous systems [3–19].

Honeycomb lattice systems, such as graphene-based ma-
terials, are excellent candidates for achieving chiral super-
conductivity. These materials have attracted considerable
research interest due to their unique lattice symmetry. Var-
ious theoretical techniques, including symmetry analysis,
exact numerical study, random phase approximation, renor-
malization group method, dynamic cluster approximation,
kinetic-energy-driven superconductivity, and quantum Monte
Carlo method, have extensively suggested that the supercon-
ducting pairing symmetry in graphene-based materials could
be either p + ip pairing symmetry or d + id pairing symme-
try [20–32]. Thus the honeycomb lattice system could indeed
provide a useful platform for realizing chiral superconductiv-
ity and exploring its nontrivial topology [33].

*tzhou@scnu.edu.cn
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Experimentally, superconductivity signatures have been
observed in various graphene-based materials [34–39]. Be-
sides graphene-based materials, superconductivity has also
been discovered in β-MNCl (M = Hf, Zr) [40,41], SrP-
tAs [12,42], silicene-based materials [43–45], hydrogenated
germanene [46], and stanene [47,48]. These materials also
exhibit honeycomb lattice symmetry. On the other hand, it has
been reported that the honeycomb lattice and unconventional
superfluidity can be realized in cold atom systems [49,50],
offering another platform for exploring chiral pairing states
and potential exotic topological behaviors.

Another nontrivial topological state that has garnered
significant attention is the quantum spin Hall insulating
(QSHI) state. The QSHI state in a honeycomb lattice can
be characterized by the Kane-Mele (KM) model, which was
originally proposed to describe the topological properties of
graphene [51]. It has subsequently been proposed for imple-
mentation in materials such as silicene, germanene, stanene,
Pt2HgSe3, and Pd2HgSe3 [52–59]. In the QSHI state, energy
bands are fully gapped, rendering the material a topological
insulator. The Fermi level of a material can be artificially
adjusted through gate voltage or chemical doping. As a
result, the metallic state is realized when the Fermi level
intersects the energy bands. At low temperatures, the chi-
ral superconducting state was proposed to be the ground
state, with an additional effective pairing interaction [60]. It
has previously been reported that the Fermi level of mono-
layer QSHI material WTe2 can be gate tuned, subsequently
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inducing superconductivity [61,62]. For graphene, it has also
been reported that the material can be heavily overdoped, with
the Fermi level being tuned beyond the Van Hove singularity
(VHS) point [63]. Consequently, unconventional supercon-
ductivity may be realized due to fermiology near the VHS
point [64]. Hence investigating the topological behavior in
the superconducting state of doped QSHI material on a hon-
eycomb lattice is fundamentally fascinating, as the interplay
between distinct nontrivial topologies could result in a con-
siderably more complex phase diagram and even more exotic
topological phenomena.

In this paper, motivated by the considerations above, we
investigate the topological properties of a honeycomb lattice
system by introducing chiral superconductivity into the doped
KM model. The topological properties can be characterized by
defining the Chern number of the system. Through numerical
analysis, we uncover a diverse phase diagram, revealing the
presence of topological phases with Chern numbers reach-
ing up to 6 in scenarios of strong spin-orbit coupling. The
presence of high Chern number states strongly depends on
lattice symmetry and can be investigated by examining the
Dirac cones around phase transition lines. The occurrence
of high Chern number states, previously documented in var-
ious systems, has garnered substantial attention [65–67].
The high Chern number states can be further confirmed by
exploring the edge states of the system. Notably, in a chi-
ral topological superconductor with Chern number C = N ,
there exist N zero-energy fermionic modes, each of which
can split into two chiral Majorana zero modes, leading to
a total of 2N chiral Majorana zero modes at the system
edges [68,69]. The existence of multiple Majorana zero modes
may have potential applications in topological quantum com-
putation [69–71]. Experimentally, the Chern number of a
chiral topological system relates to the edge current, the
anomalous Hall conductance, the thermal Hall transport, and
the Tomasch oscillations [72–76]. However, the relationship
between the Chern number and transport properties still ne-
cessitates further investigation. The rich and exotic phase
diagram presented here offers a platform for exploring the re-
lationship between the Chern number and observable physical
quantities in a chiral topological superconducting system.

The organization of this paper is as follows. In Sec. II, we
describe the model and elaborate on the formalism. In Sec. III,
we present the numerical results, including phase diagrams,
energy spectra, and corresponding boundary spectral func-
tions for different phases. In Sec. IV, we discuss the origins
of the numerical results. Finally, we provide a brief summary
of our work in Sec. V.

II. MODEL AND FORMALISM

We begin by defining the Hamiltonian on a honeycomb
lattice, which includes both the normal state component and
the chiral superconducting pairing component. The complete
Hamiltonian can be represented in momentum space as H =∑

k �†(k)H (k)�(k), where H (k) is expressed in an 8 × 8
matrix,

H (k) =
(

H0(k) �D/P(k)

�
†
D/P(k) −H∗

0 (−k)

)
. (1)

The basis vector �†(k) is expressed as (C†
kA↑,C†

kA↓,C†
kB↑,

C†
kB↓,C−kA↑,C−kA↓,C−kB↑,C−kB↓). H0(k) is the 4 × 4 nor-

mal states Hamiltonian matrix, taken as the doped KM
model [51], expressed as

H0(k) =
(

hSO(k) ht (k) + hR(k)
[ht (k) + hR(k)]† −hSO(k)

)
− μ, (2)

where ht (k), hSO(k), and hR(k) are the nearest-neighbor
hopping term, spin-orbit coupling term, and Rashba term,
respectively,

ht (k) = −ts0

∑
n

exp (ik · an), (3)

hSO(k) = −2λSOs3

∑
n

sin (k · bn), (4)

hR(k) = iλR

∑
n

exp (ik · an)

(
s × ai

|ai|
)

z

, (5)

with t being the nearest-neighbor hopping constant. s0 and
si (i = 1, 2, 3) are the identity matrix and the Pauli matri-
ces in the spin channel, respectively. Vectors an and bn are
expressed as a1 = (

√
3a/3, 0), a2 = (−√

3a/6, a/2), a3 =
(−√

3a/6,−a/2), and b1 = (0,−a), b2 = (
√

3a/2, a/2),
b3 = (−√

3a/2, a/2).
The superconducting pairing term, �D/P(k), associated

with the d + id/p + ip pairings, originates from an effec-
tive attractive interaction between nearest-neighbor sites,
described by HI = −V

∑
〈ij〉 ninj, where ni = ∑

σ c†
iσ ciσ rep-

resents the particle number operator at site i in real space.
Within the mean-field approximation, the order parame-
ters for d + id and p + ip pairings are defined respectively
as �D

0 = V
2N

∑
in〈ei 4n

3 πci↑ci+an↓ − ei 4n
3 πci↓ci+an↑〉 and �P

0 =
V
2N

∑
in〈ei 2n

3 πci↑ci+an↓ + ei 2n
3 πci↓ci+an↑〉, with N signifying the

total number of lattice sites. Consequently, the pairing term
can be articulated in momentum space as follows:

�D(k) = i�D
0 σ1s2(eiσk·a1 + ei4π/3 · eiσk·a2 + ei8π/3 · eiσk·a3 ),

(6)

�P(k) = −�P
0 σ2s2(eiσk·a1 + ei2π/3 · eiσk·a2 + ei4π/3 · eiσk·a3 ),

(7)

where σi are Pauli matrices in the sublattice channel. σ takes
+1 or −1 depending on the pairing orientation: A to B or B to
A, respectively.

The mean-field order parameters �
D/P
0 can be calculated

self-consistently in the momentum space as

�D
0 = V

2N

∑
kn

u∗
1nku8nk tanh

(
βEnk

2

)
(eik·a1

+ ei4π/3 · eik·a2 + ei8π/3 · eik·a3 ), (8)

�P
0 = V

2N

∑
kn

u∗
1nku8nk tanh

(
βEnk

2

)
(eik·a1

+ ei2π/3 · eik·a2 + ei4π/3 · eik·a3 ). (9)

Here uink is the ith component of the vector unk. unk and Enk

are the nth eigenvector and eigenvalue of the Hamiltonian
matrix H (k), respectively.
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When the chiral superconducting pairing term is present,
the time reversal symmetry of the Hamiltonian is broken. As
a result, the Chern number can be utilized to describe the
nontrivial topology of the system, expressed as [77]

C = 1

2π i

∑
k

F̃xy(k), (10)

where F̃xy is the lattice field strength that can be defined by

F̃xy(k) ≡ ln
Ux(k)Uy(k + x̂)

Ux(k + ŷ)Uy(k)
, (11)

with

Uα (k) = det 	†(k)	(k + α̂)

|det 	†(k)	(k + α̂)| . (12)

Here 	(k) is an 8 × 4 matrix, which is constructed by colum-
nwise packing the four occupied eigenstates with 	(k) =
(u1k, u2k, u3k, u4k ).

To investigate the edge states, we apply a periodic
boundary condition in the x direction and a zigzag boundary
condition in the y direction with 1 � y � Ny (Ny is the
number of sites along the y direction). The Hamiltonian
with a partial open boundary condition can be expressed
as H = ∑

y,kx
�†(y, kx )M̂(kx )�(y, kx ), where M̂(kx ) is an

8Ny × 8Ny matrix and �
†
y,kx

is the basis vector with �
†
y,kx

=
(C†

y,kxA↑,C†
y,kxA↓,C†

y,kxB↑,C†
y,kxB↓,Cy,−kxA↑, Cy,−kxA↓,Cy,−kxB↑,

Cy,−kxB↓) (y = 1, 2, . . . , Ny).
Then the spectral function can be calculated by

Ay(kx, ω) = − 1

π

4∑
p=1

∑
n

Im
|um+p,n(kx )|2

ω − En(kx ) + i�
, (13)

with m = 4(y − 1). um+p,n(kx ) and En(kx ) are eigenvectors
and eigenvalues of the matrix M̂(kx ), respectively.

In the following presented results, without loss of gener-
ality, we use the hopping constant t and the lattice constant
a as the energy unit (t = 1) and the length unit (a = 1), re-
spectively. Other parameters are taken as λR = 0.05, β = 105,
N = 104, and Ny = 100.

III. RESULTS

In the chiral superconducting state, the topological prop-
erties are described by the Chern number [Eq. (10)]. The
Chern number should, in principle, depend strongly on the
chemical potential μ and the spin-orbit coupling strength λSO.
We present the (λSO, μ)-dependent topological phase diagram
for the d + id and p + ip superconducting states in Figs. 1(a)
and 1(b), respectively.

For the d + id pairing symmetry, as seen in Fig. 1(a), the
phase diagram includes four regions (indicated as 1©– 4©) with
the Chern number C equal to 4, 0, −2, and −4, respectively.
For the p + ip pairing symmetry, as seen in Fig. 1(b), the
phase diagram comprises nine regions ( 1©– 9©). The phase dia-
gram in the regime −0.9 < μ < 0.9 is qualitatively consistent
with that of the d + id pairing symmetry. However, additional
phase transition lines exist at the chemical potentials around
μ = ±0.9. Consequently, the phase diagram for the heavily
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FIG. 1. Topological phase diagrams depicting the dependence
of Chern number C on parameter sets (λSO, μ) in distinct pairing
states with the gap magnitude �0 = 0.2: (a) d + id pairing state and
(b) p + ip pairing state.

overdoped regions with |μ| > 0.9 is significantly different and
high Chern number phases with C = 6 and C = −6 emerge.

Due to the existence of the Rashba term, the phase
diagrams for both pairing symmetries are electron-hole asym-
metric [78]. The phase diagram for the electron-doped
(μ > 0) region differs from that for the hole-doped (μ < 0)
region. For the d + id pairing symmetry, the C = −2 phase
in the hole-doped region is significantly larger than in the
electron-doped region.

For the p + ip pairing symmetry, in the heavily over hole-
doped region (μ < −0.9), there are three phases with C =
−2, −4, and −6, as well as two phase transition lines. The
Chern number decreases by 2 when crossing each transi-
tion line. In the heavily over electron-doped region (μ >

0.9), there are two stable topological phases with C = 2 and
C = 6. Between these two phases lies a rather narrow re-
gion with C = 8. This phase is unstable and exists only at
several lattice sites. The maximal sustainable Chern number
(C = 6) exhibits a direct correlation with the C6 rotational
symmetry inherent to the honeycomb lattice structure. As the
spin-orbit strength λSO increases, there are still two phase tran-
sition lines. The Chern number increases by 6 when crossing
the first line and decreases by 2 when crossing the second
one.

According to the bulk-edge correspondence, a topological
nontrivial state with a Chern number C = N should give rise
to N edge states when considering the aforementioned partial
open boundary condition, resulting in N pairs of Majorana
zero modes at the system edges. We now aim to verify the
topological phase with different Chern numbers by investigat-
ing the edge states of the system while employing a zigzag
boundary condition along the y direction. The energy bands
and site-dependent spectral functions can then be obtained
through the diagonalization of the Hamiltonian matrix. We
present the numerical results of the energy bands and spec-
tral functions with � = 0.002 at the system edge (y = 1) in
various topological regions for the d + id and p + ip pairing
symmetries in Figs. 2 and 3, respectively.

In the d + id pairing state, there are three topologically
nontrivial phases with Chern numbers of 4, −2, and −4.
We present the numerical results of the energy bands for
the regions with C = 4 and C = −2 in Figs. 2(a) and 2(c),
respectively. The corresponding spectral functions are shown
in Figs. 2(b) and 2(d), respectively.
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FIG. 2. Energy bands and spectral functions at the system edge
(y = 1) in d + id superconducting pairing states with zigzag bound-
ary condition along the y direction, varying with parameter sets
(λSO, μ). Panels (a) and (b) showcase the energy bands and spectral
function in region 1© (C = 4) for (λSO, μ) = (0.1, 1.1), respectively.
Panels (c) and (d) display the energy bands and spectral function in
region 3© (C = −2) for (λSO, μ) = (0.15, −0.6), respectively.

As can be seen from Figs. 2(a) and 2(b), in the C = 4
region, there are eight energy bands crossing the Fermi en-
ergy, resulting in four pairs of Majorana zero modes at the
momenta kx = ±0.65π ± 0.02π . These energy bands orig-
inate from the edge states and the edge modes are chiral,
as observed from the spectral function spectra at the system
edge [Fig. 2(b)]. The four energy bands with positive slopes
(corresponding to the quasiparticles with positive velocity) are
contributed by the y = 1 edge. The other four energy bands
with negative slopes are contributed by the y = Ny edge (not
presented here).

In the C = −2 region, as is seen in Figs. 2(c) and 2(d),
there are four energy bands crossing the Fermi energy, corre-
sponding to two pairs of Majorana zero modes at the momenta
kx = ±0.77π . The Chern number is consistent with the num-
ber of edge states at the y = 1 edge. The quasiparticle energy
bands and spectral functions in the C = −4 region are qual-
itatively similar to those in the C = 4 region; therefore, the
numerical results are not presented here.

We now present the numerical results of the energy bands
and spectral functions in the p + ip superconducting state.
The phase diagram in the p + ip state is more complex,
with topological phases having high Chern numbers C = ±6
emerging. The numerical results of the energy bands and spec-
tral functions with Chern numbers 2, −4, and 6 are displayed
in Fig. 3. As observed, the number of edge states is consistent
with the Chern number.

In the C = 2 region, using the parameter set (λSO, μ) =
(0.08, 1.1) [Fig. 3(a)], there are four energy bands cross-
ing the Fermi energy at kx = 0 momentum, resulting in two
pairs of Majorana zero modes at this momentum. In the C =
−4 region, using the parameter set (λSO, μ) = (0.22,−1.1)
[Fig. 3(c)], eight energy bands cross the Fermi energy, among
which four energy bands cross at kx = 0 and the other four

FIG. 3. Similar to Fig. 2, but for numerical results in p + ip
superconducting states. Panels (a) and (b) display results in region 1©
(C = 2) with (λSO, μ) = (0.08, 1.1). Panels (c) and (d) show results
in region 8© (C = −4) with (λSO, μ) = (0.22,−1.1). Panels (e) and
(f) depict results in region 2© (C = 6) with (λSO, μ) = (0.3, 1.1).

cross at the momenta kx = ±0.86π . In this case, two pairs of
Majorana zero modes emerge at the momentum kx = 0 and
the other two pairs emerge at kx = ±0.86π .

In the C = 6 region, using the parameter set (λSO, μ) =
(0.3, 1.1) [Fig. 3(e)], twelve energy bands cross the Fermi
energy, among which four energy bands cross at kx = 0 and
the other eight cross at the momenta kx = ±0.9π ± 0.01π .
In this case, two pairs of Majorana zero modes emerge at
the momentum kx = 0 and the other four pairs emerge at
kx = ±0.9π ± 0.01π , resulting in six pairs of Majorana zero
modes. The spectral functions at the system edge, presented
in the right panels of Fig. 3, also indicate that the edge modes
are chiral, similar to the results of the d + id pairing states.

IV. DISCUSSION

At this stage, we aim to elucidate the origin of the exotic
topological phase diagram in the chiral superconducting state.
Initially, in the normal state, we utilize the doped KM model
as described by the Hamiltonian in Eq. (3). The determination
of topological characteristics for the KM model hinges on the
interplay between the spin-orbit coupling strength, λSO, and
the Rashba coupling strength, λR [51]. Specifically, the system
presents gapless behavior when λR � 2

√
3λSO, transitioning

to a topologically nontrivial QSHI state for λR < 2
√

3λSO.
In the current analysis, we set the Rashba coupling strength
at 0.05, placing the system in a topologically nontrivial do-
main provided that λSO > 0.014. Upon transitioning to the
superconducting state, our findings reveal an absence of phase

205144-4



EXOTIC TOPOLOGICAL PHENOMENA IN CHIRAL … PHYSICAL REVIEW B 109, 205144 (2024)

0 0.2 0.4
-2

-1

0

1

2

0 0.2 0.4
-2

-1

0

1

2

0

0.02

0.04

0.06

0.08

0.1(a) (b)

(c) (d)

FIG. 4. Electronic structures in the d + id and p + ip supercon-
ducting states. Panels (a) and (b) display intensity plots of the energy
gap as functions of spin-orbit coupling strength λSO and chemical
potential μ for the d + id pairing state and the p + ip pairing state,
respectively. Panels (c) and (d) illustrate the energy bands along
highly symmetric lines of the first Brillouin zone for both states
(d + id and p + ip) without spin-orbit coupling and with a chemical
potential of μ = 0.9.

transition crossing the λSO = 0.014 threshold, as illustrated
in Fig. 1. This observation suggests that the topology of the
normal state does not directly influence the phase diagram of
the superconducting state.

Generally, a single-band two-dimensional chiral supercon-
ductor is topologically nontrivial with a Chern number C =
±1. In scenarios where superconductivity develops in a doped
Chern insulator, the system may transition to a topological
superconducting state with a Chern number that can be either
odd or even, depending on specific parameters [79]. The KM
model, which describes the QSHI system, essentially inte-
grates two intertwined Chern insulators. This configuration
naturally leads to a doubling of the Chern number in the re-
sultant superconducting state, thereby maintaining the Chern
number as an even value throughout the phase diagram. Addi-
tionally, due to the presence of spin-orbit coupling and the two
sublattices, there are four energy bands in the normal state.
As a result, it is understandable that the C = ±4 topological
phase initially emerges in the phase diagram.

Topological phase transitions may occur when the parame-
ters μ and λSO change. Along the topological transition lines,
the energy gap tends to close. The intensity plots of the energy
gap in the two pairing states, as functions of μ and λSO, are
displayed in Figs. 4(a) and 4(b), where the blue lines indicate
the gap closing lines. In comparison to the phase diagrams
shown in Fig. 1, the energy gaps of the system indeed close
along the phase transition lines. The differences between the
phase diagrams of the d + id state and the p + ip state can
be effectively explained by examining the band structures of
these two pairing states. Previous studies have extensively
investigated the electronic structures in the superconducting
state on the honeycomb lattice. The normal state energy band

exhibits the VHS at the chemical potential around μ = 1.
Near the VHS point, the energy gap in the p + ip super-
conducting state is generally smaller than that in the d + id
superconducting state [80]. Furthermore, the nodal or fully
gapped states near the VHS point for graphene material have
been previously investigated [81]. It was indicated that, for
the p + ip pairing symmetry, additional nodal points emerge
near the M point when the Fermi level is around the VHS
point. In this work, we present numerical results of the energy
bands along the highly symmetric lines near the VHS point
(μ = 0.9) and without spin-orbit coupling (λR = λSO = 0)
for these two pairing states in Figs. 4(c) and 4(d), respectively.
As observed, in the p + ip superconducting state, the energy
gap closes and nodal points indeed emerge near the M point.
In contrast, in the d + id superconducting state, the system re-
mains fully gapped along the entire highly symmetrical lines.
These results are consistent with the previous study [81]. As
a result, additional phase transition lines near the VHS point
appear for the p + ip pairing states, as illustrated in Fig. 1.

We now attempt to elucidate the origin of the exotic topo-
logical phase diagram in the chiral superconducting state by
examining the Dirac cones along phase transition lines in the
phase diagrams. Within the topologically nontrivial phase, the
bulk energy bands of the system are generally fully gapped,
allowing the Chern number of the system to be defined. At
the phase transition points, the energy gap typically closes,
often accompanied by Dirac cones. The change in the Chern
number should be related to the number of Dirac cones in the
energy bands [82].

Numerically, the position and number of Dirac cones can
be explored by calculating the zero-energy spectral function.
The phase diagram of the d + id pairing state is relatively
simple and the main characteristics are involved in that of the
p + ip state. We focus on the phase transitions in the p + ip
pairing state. The intensity plots of the zero-energy spectral
function at different phase transition points with � = 0.01 are
presented in Figs. 5(a)–5(d), respectively. The corresponding
energy bands along the highly symmetric lines of the Brillouin
zone are presented in Figs. 5(e)–5(h).

As seen in Fig. 1(b), the point (λSO, μ) = (0.11, 0.5) con-
nects two topological phases of C = 4 and C = −2. The
numerical results of the electronic structure at this point are
displayed in Figs. 5(a) and 5(e). The gap is closed and a
Dirac cone emerges along the � − K line. Due to the sixfold
symmetry of the honeycomb lattice, there are actually six
different Dirac cones in the first Brillouin zone. This explains
why the Chern number decreases from 4 to −2 when crossing
this point. Similarly, the point (0.05,−0.9) connects the two
phases with C = 4 and C = −2. The corresponding numerical
results of the electronic structure at this point are displayed in
Figs. 5(b) and 5(f). A Dirac cone emerges along the � − M
line. Also, in the first Brillouin zone, there are six different
Dirac points due to the sixfold symmetry of the energy bands,
consistent with the decrease in the Chern number when cross-
ing this point.

We now discuss the energy bands at the points (0.21,−1.2)
and (0.28,−1.2). Crossing these two points, the Chern num-
ber changes from −2 to −4 and from −4 to −6, respectively.
As seen in Figs. 5(g) and 5(h), the Dirac cones emerge at the
K points, namely, the vertices of the Brillouin zone. For the
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FIG. 5. Electronic structures along various phase transition points. Panels (a)–(d) display the intensity plots of zero-energy spectral
functions for parameter sets (λSO, μ) = (0.11, 0.5), (0.05, −0.9), (0.21, −1.2), and (0.28,−1.2), respectively. Panels (e)–(h) illustrate the
corresponding energy bands along highly symmetric lines within the first Brillouin zone for these parameter sets.

hexagonal Brillouin zone, among the six vertices, only two
neighboring vertices belong to the first Brillouin zone. The
other four vertices can be obtained by translating these two
points through reciprocal lattice vectors. Therefore, at these
two points, there are merely two different Dirac cones in the
first Brillouin zone, resulting in a change of 2 in the Chern
number when crossing these points.

Let us discuss the practical applicability and potential ex-
perimental implementation of our theoretical model, which is
characterized by several key parameters: the nearest-neighbor
hopping constant t , the Rashba coupling strength λR, the
spin-orbit coupling strength λSO, the chemical potential μ,
and the superconducting gap magnitude �0. The chemical
potential can be modulated via chemical doping [34–37,63]
or the application of a quantum gate [61,62]. The values for t ,
λR, and λSO are material specific, with comprehensive data for
materials exhibiting a honeycomb lattice structure presented
in Ref. [52]. Specifically, for stanene, these parameters (t ,
λR, λSO) are reported as 1.3 eV, 0.0095 eV, and 0.1 eV, re-
spectively. It was also proposed that λSO can be increased to
0.3 eV via chemical functionalization techniques [53]. More-
over, the observation of superconductivity in stanene-based
materials [47,48] underscores their suitability as candidates
for the realization of our model.

We now explore the influence of superconducting gap mag-
nitudes. In Fig. 1, we consider a constant superconducting
gap magnitude with �0 = 0.2. This gap magnitude is taken
as a large value to enhance the visibility of energy bands and
spectral functions. We have checked numerically that, for a
much smaller gap magnitude (�0 = 0.01), the main features
of the phase diagram remain qualitatively the same [78].
Moreover, for an intrinsic superconductor, the superconduct-
ing magnitudes may strongly depend on the parameters.
We also calculate the superconducting gap magnitudes self-
consistently based on Eqs. (8) and (9) by considering an

effective attractive interaction V = 2. The self-consistently
obtained phase diagram and the superconducting order pa-
rameters are plotted in Fig. 6. As seen, the order parameters
indeed depend strongly on the parameters, while the main
features of the phase diagram remain qualitatively similar.
For the d + id pairing state, the original C = ±4 topological
phases emerge. The Chern number reduces as the spin-orbit
coupling strength increases and a large topologically trivial
region appears in the phase diagram. For the p + ip pair-
ing states, additional phase transition lines appear near the
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FIG. 6. Numerical results from self-consistent calculations. Pan-
els (a) and (b) display the self-consistently obtained phase diagram
and pairing magnitudes for the d + id pairing state. Panels (c) and
(d) show the corresponding results for the p + ip pairing state.
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VHS. The high Chern number regions with C = ±6 emerge
in the phase diagram. These numerical findings corroborate
the qualitative robustness of the exotic topological properties
exhibited by the phase diagram.

V. SUMMARY

In summary, we have explored the topological properties
of the chiral superconducting state in the doped Kane-Mele
model, considering two different pairing symmetries: the d +
id state and the p + ip state. The phase diagram with differ-
ent chemical potentials and spin-orbit coupling strengths is
displayed, using the Chern number to describe various topo-
logical phases.

In the d + id pairing state, high Chern number states
with C = ±4 emerge in the phase diagram. As the spin-orbit
coupling strength increases, the Chern number decreases,
and ultimately the system becomes topologically trivial.
In the p + ip state, the phase diagram at small chemical

potentials is qualitatively similar to that in the d + id state,
while additional phase transition lines emerge in the heavily
overdoped region with chemical potentials around μ = ±0.9.
High Chern number phases with C = ±6 emerge. We also
examine the number of edge states to verify the Chern number
of different phases. All the exotic topological properties can
be understood by studying the electronic structures at the
phase transition points.
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