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We theoretically investigate topological features of a one-dimensional Su-Schrieffer-Heeger lattice with
modulating non-Hermitian on-site potentials containing four sublattices per unit cell. The lattice can be either
commensurate or incommensurate. In the former case, the entire lattice can be mapped by supercells completely.
While in the latter case, there are two extra lattice points, thereby making the last cell incomplete. We find that an
anti-PT transition occurs at exceptional points of edge states at certain parameters, which does not coincide with
the conventional topological phase transition characterized by the Berry phase, provided the imaginary on-site
potential is large enough. Interestingly, when the potential exceeds a critical value, edge states appear even in
the regime with a trivial Berry phase. To characterize these novel edge states we present topological invariants
associated with the system’s parity. Finally, we analyze the dynamics for initial states with different spatial
distributions, which exhibit distinct dynamics for the commensurate and incommensurate cases, depending on
the imaginary part of edge state energy.
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I. INTRODUCTION

The systematic examination of non-Hermitian (NH)
Hamiltonians with PT symmetry was started by Bender and
Boettcher in their pioneering work [1]. They established that
a broad class of PT -symmetric Hamiltonians possesses real
spectra [2–5], a remarkable departure from the complex eigen-
values typically associated with NH systems. This discovery
has paved the way for a deeper investigation of the intriguing
connection between symmetry and topology within the realm
of NH physics [6–9].

Recent research has brought to the forefront the signif-
icance of NH analogs of the Su-Schrieffer-Heeger (SSH)
model [10] when it comes to elucidating one-dimensional
(1D) topological behavior within systems characterized by
gain and/or loss [11–17]. This intriguing avenue of study has
garnered attention due to its potential to uncover unconven-
tional phenomena in condensed matter physics. In particular,
a multitude of theoretical investigations have put forth inno-
vative approaches to engineer versions of the SSH model that
exhibit PT symmetry [11–22] or anti-PT symmetry [23,24].
These efforts extend our understanding of topological behav-
ior beyond NH systems, delving into the intricate interplay
between gain and loss.

In the study of topological phases in condensed matter
physics, especially in Hermitian [25–36] and NH systems
[37–62], the role of symmetry is paramount, and inver-
sion symmetry is no exception. To delve deeper into the
intricate interplay between inversion symmetry and topologi-
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cal edge states, we turn our attention to a 1D lattice system
where inversion symmetry and bulk-translational symmetry
are incompatible. This intriguing scenario leads to profound
consequences, shedding light on the behavior of edge states
in both topological and nontopological phases. Traditionally,
the coexistence of bulk-translational symmetry and inversion
symmetry has been a cornerstone of the bulk-boundary cor-
respondence principle, which stipulates that the topological
properties of a system are reflected in the presence or absence
of edge states. However, in the absence of bulk-translational
symmetry, this correspondence appears to be challenged. For
example, the celebrated SSH model with an odd number of
lattice sites exhibits one spatially asymmetric edge state in
both its topological nontrivial and trivial phases. This so-
phisticated behavior highlights the intricate interplay between
different symmetries in determining the topological properties
of a system.

In this intriguing landscape, inversion symmetry emerges
as a savior of symmetry-based topological protection [63–65].
Even in NH systems, where the preservation of Hermiticity
is not guaranteed, inversion symmetry plays a crucial role
[66–68]. Specifically, it ensures that the edge states residing
at opposite ends of the 1D chain possess identical imagi-
nary energies. This remarkable feature means that these edge
states share the same decaying rate during time evolution,
preserving their spatial symmetry. Consequently, in parameter
regimes where edge states exhibit the largest imaginary en-
ergies, inversion symmetry acts as a guardian, protecting the
spatially symmetric edge localization over extended periods
of time. This phenomenon in NH systems underscores the
profound influence of inversion symmetry on the topological
and nontopological edge states, enriching our understanding
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of the interplay between symmetry and topology in condensed
matter systems.

Here, we explore the characteristics of a NH chain model
with four sublattices. While various models consisting of four
sublattices have been extensively investigated [23,24], it is
noteworthy that in this model, anti-PT symmetry protected
edge states only manifest themselves within the open bound-
ary conditions (OBCs), with no trace on periodic boundary
conditions (PBCs). In addition, our model is distinctive in its
flexibility, with parameters that accommodate both real and
imaginary values, and the possibility to explore the effect of
the number of unit cells, in the commensurate case with a full
number of unit cells, inversion symmetry is disrupted, while
the incommensurate case with an integer number of unit cells
plus two extra lattice sites restores inversion symmetry at the
cost of translational symmetry. We utilize the twist boundary
condition to delineate phase separation, a strategy contrasting
with previous research [23] that emphasized anti-PT sym-
metry’s role in distorting the imaginary components of edge
state energies. Instead, we propose that inversion asymmetry
primarily drives this distortion.

A key focus of our research is the role of exceptional points
(EPs) [69–71] in NH systems. These points, lacking parallels
in Hermitian systems, introduce distinct topological features
that contrast with Hermitian degeneracy points. Through our
analysis, we discern both exceptional points and topological
phase transition points at specific potential intensities, a task
unachievable by the Berry phase. The concept of the Berry
phase is intricately tied to the closure and subsequent reopen-
ing of bulk states. However, it is important to note that within
certain regions, there exist degenerate edge states that are not
necessarily linked to the closure and reopening of bulk states.
These edge states emerge from EPs within open boundary
conditions and are protected by anti-PT symmetry and in-
version symmetry. These degenerate edge states represent a
distinct phenomenon, highlighting the new kind of topological
phases in materials. This insight leads us to develop a new
interpretation grounded in the concept of inversion symmetry,
to differentiate between these transition types. Moreover, we
delve into the dynamic facets of these phenomena, enhancing
our comprehension of topological behaviors in NH systems.

The paper is organized as follows. In Sec. II, we present
the Hamiltonian of the system and reveal its symmetries.
Section III presents the obtained numerical results for band
structures and the Berry phase. Also, the quantification of
non-Hermiticity and developing new topological invariants
are discussed in Sec. IV. In Sec. V, the dynamics of both bulk
and edge states are analyzed in different lattice termination.
Finally, Sec. VI is devoted to concluding remarks.

II. MODEL AND THEORY

We consider a 1D NH SSH model with commensurate and
incommensurate lengths as shown in Figs. 1(a) and 1(b), re-
spectively. The total tight-binding Hamiltonian of the systems
is comprised of the SSH lattice (H0) and on-site potential (U ),
given by

H = H0 + U, (1)

super cell
(a)

(b)
V1 V1V2V1 V2

V1 V2 V1 V2

unit cell

FIG. 1. Schematic representations of (a) commensurate and
(b) incommensurate SSH lattice with alternating hopping energies
(t1 and t2) and two (four) sublattices per unit (super)cell. The odd
unit cells experience the on-site potential V1 and the even unit cells
have the on-site potential V2.

where

H0 =
n∑

i=1

t1A†
i Bi +

n−1∑
i=1

t2A†
i+1Bi + H.c.,

U =
n∑

i=1

n∑
l=1

(V1δi,2l−1 + V2δi,2l )(A
†
i Ai + B†

i Bi ),

where n is the number of unit cells and δi, j is the Kronecker
delta function. Here, X †

i (Xi), X ≡ (A, B), is the creation (an-
nihilation) operators on the sublattices A and B at the ith
unit cell. t1 = t[1 + δ0 cos(θ )] and t2 = t[1 − δ0 cos(θ )] are
the modulated hopping amplitudes with a phase factor θ .
Throughout this paper, the modulation intensity describing the
strength of dimerization is chosen to be δ0 = 0.8, and t = 1 is
set to be the energy unit. In addition, V1(V2) stands for the
on-site potential in the odd (even) unit cells, defined as

V1 = γ1eiα, V2 = γ2eiα, (2)

where γ1(γ2) is the strength of the potential, and α is the phase
of the potentials resulting in V1 and V2 can be either real or
imaginary depending on the values of α.

The case of two-sublattice unit cell in 1D systems similar to
the original SSH model [10] is well studied [72–75]. Remark-
ably, unlike the previous studies, in the presence of U , since,
the period of on-site potential modulation is twice the dimer-
ization period of the lattice, one must enlarge the unit cells
[76] such that the established supercells include four distinct
sublattices. Consequently, if n is an even number, the lattice
can be mapped by a four-sublattice supercell (4N), leading
to a commensurate lattice. Conversely, for odd values of n,
one deals with an incommensurate case, where, in addition
to the sublattices placed in the supercells, the chain contains
two additional lattice sites (4N + 2). So, this leads to breaking
the transitional symmetry in the presence of U . Here, N is the
number of supercells.

For the commensurate case, under PBCs, one can take
Fourier transformation and use the momentum space Hamil-
tonian to obtain the topological phase transition points. Under
PBCs, the Hamiltonian with even number of unit cells can be
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expressed in the momentum space as

H =
∑

k

ψ
†
k h(k)ψk, (3)

where the four-component basis vector is ψk =
(A1k, B1k, A2k, B2k )†, and the momentum space Hamiltonian
h(k) reads

h(k) =

⎛
⎜⎜⎜⎝

V1 t1 0 t2eik

t1 V1 t2 0
0 t2 V2 t1

t2e−ik 0 t1 V2

⎞
⎟⎟⎟⎠ (4)

= (V1 − V2)

2
σz ⊗ σ0 + (V1 + V2)

2
σ0 ⊗ σ0 + t1σ0 ⊗ σx

+ t2(1 + cos k)

2
σx ⊗ σx + t2(1 − cos k)

2
σy ⊗ σy

+ t2 sin k

2
(σy ⊗ σx + σx ⊗ σy), (5)

with k is the momentum, and σ0 and σx,y,z are the two-by-two
identity matrix and Pauli matrices, respectively. In particular,
if we set α = π/2 and γ1 = −γ2 = γ , so that V1 = −V2 =
V = iγ are purely imaginary. Diagonalizing the above Hamil-
tonian yields the following four energy bands,

E±,± = ±
√

X ± √
Y

2
, (6)

where

X = 4
(
t2
1 + t2

2

) − 4γ 2,

Y = 16t2
1

{
2t2

2 [1 + cos(k)] − 4γ 2
}
. (7)

In the presence of the imaginary potential, the NH system
described by Eq. (4) has a transposition time-reversal symme-
try (T RS†) and a conjugate particle-hole symmetry (PHS	)
[77,78], represented by T hT (k)T = h(−k) and Ch∗(k)C =
−h(−k), respectively, with operators T = σx ⊗ σx, and C =
σ0 ⊗ σz. Consequently, h(k) has chiral symmetry (pseudo-
anti-non-Hermiticity) defined by 
h†(k)
 = −h(k) with 
 =
T C, and belongs to the BDI† class in the 38-fold topological
classifications of NH systems [77]. In addition, Eq. (4) satis-
fies a PT symmetry as

(PT )h∗(k)(PT )−1 = h(k), (8)

with PT = σx ⊗ σx, which can be broken for all eigenstates
when Y < 0 ∀k, i.e.,

2t2
2 [1 + cos(k)] − 4γ 2 < 0 ⇒ γ 2 > t2

2 . (9)

However, under OBCs, the PT symmetry is satisfied only for
the commensurate case, which the operator for such symmetry
can be represented as

PT = σX4N =

⎛
⎜⎜⎜⎜⎝

1
O 1

. .
.

1 O
1

⎞
⎟⎟⎟⎟⎠

4N

. (10)

In contrast to the PBCs, where anti-PT symmetry is
absent, it is noteworthy that Hamiltonian (1) exhibits the

anti-PT symmetry for both the commensurate and in-
commensurate cases as (APT )H∗(APT )−1 = −H with an
explicit forms given by APT = σ0n ⊗ σz where σ0n is n-
by-n identity matrix. The presence and absence of anti-PT
symmetry, respectively, under OBCs and PBCs imply that
zero-real-energy edge states will be affected by this symmetry.

In Hamiltonian (4), a topological phase transition can be
determined by the gap closing condition X 2 = −Y , which is
satisfied only at k = 0 with

t1 = ±
√

t2
2 − γ 2, (11)

provided that all parameters (t1, t2, and γ ) take nonzero real
values. Also, the other gap closing condition Y = 0 does not
signify a topological phase transition associated with zero-
real-energy edge states in our model. Instead, it corresponds
to the subgap closing between the two sub-bands with pos-
itive (or negative) real energies in Eq. (6), which is not our
focus since a subgap is not protected by any symmetry, and
sub-bands may overlap each other and become inseparable
even away from Y = 0. Note that this model does not suffer
from the NH skin effect [60–62], as it satisfies the spinless
time reversal symmetry in its Hermitian limit [79]. Therefore,
the gap closing condition and its associated topological phase
transition will be the same for both PBCs and OBCs, and also
the twisted boundary conditions (TBCs) discussed later.

To validate Eqs. (9) and (11), and highlight the broken and
unbroken phases of PT symmetry in the PBC system, the real
and imaginary parts of the bands versus momentum k are plot-
ted in Fig. 2 for different parameters. In Fig. 2(a), we display
an example where Eq. (9) is satisfied, and it is evident that all
eigenenergies take complex values, indicating a PT -broken
phase. By adjusting θ to the value where Eq. (11) holds, a
topological phase transition occurs with band gap closes for
both the real and imaginary parts of the spectrum, as displayed
in Fig. 2(b). On the other hand, as Eq. (9) is violated for these
parameters, eigenenergies are seen to take real values (with
Im[E ] = 0) for a certain region of k with unbroken PT sym-
metry. In Fig. 2(c), the energy gap reopens with θ increases,
and the energy spectrum possesses PT -broken phase for large
|k| and PT -unbroken phase around small values of |k|.

III. BERRY PHASE

In the incommensurate case, the TBCs [80–84] is more
relevant since k is not a good quantum number to define
topological invariants. In our model, the coupling τ between
the first and last sites specifies the boundary conditions as

τ =

⎧⎪⎨
⎪⎩

0 OBC
t2 PBC
t2ei� TBC

,

where the phase �, known as torsion, is a real number.
For NH Hamiltonians H† �= H , distinct left (|
m〉) and right
(|�m〉) eigenstates emerge, satisfying the Schrödinger equa-
tion as H†|
m〉 = E 	

m|
m〉 and H |�m〉 = Em|�m〉 [85]. Here,
Em is the corresponding eigenenergy with m being the index
of eigenenergy. In NH systems, the process of normalizing
eigenvectors involves a bilinear product that combines both
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FIG. 2. The PBC band structure for the model with imaginary on-site potentials γ = 1.7, with (a) θ/π = 0.8(|γ | > t2), (b) θ/π ≈
0.86(|γ | < t2, t1 = √

t2
2 − γ 2), and (c) θ/π = 1(|γ | < t2).

the left and right eigenvectors, i.e.,

|
̃m〉 = |
m〉√〈�m|
m〉 , |�̃m〉 = |�m〉√〈�m|
m〉 .

Now, the Berry phase under TBCs [86,87] can be defined
as [8,88]

β =
Nf∑

m=1

i
∫ 2π

0
〈
̃m(�)| ∂

∂�
|�̃m(�)〉d�, (12)

where Nf is the number of bands below the Fermi energy.
In what follows, we will discuss topological properties and
the band structures of the system for both real (α = 0, π ) and
imaginary (α = π/2) on-site potentials V1,2.

In addition, to distinguish the localized states from the ex-
tended ones, we evaluate the inverse participating ratio given
by IE = ∑

m |
̃m|4 [89] for each normalized eigenstate 
m

with eigenenergy Em. Typically, localized states and extended
states have IE → 1 and IE → 1/Ntotal ≈ 0, respectively, with
Ntotal = 2n being the total number of lattice sites.

A. Real on-site potentials

Given the interest in studying the band topology in NH
systems, for the sake of comparison, we will first present the
results in the absence of non-Hermiticity, i.e., with α = 0, π

in Eq. (2) and thus real on-site potentials. With γ1 = −γ2 =
γ , the inversion symmetry of Hamiltonian (4) is broken in the
commensurate case, but it is preserved in the incommensurate
case. The band structure and its corresponding topological
invariant (the TBC Berry phase) are shown in Fig. 3 for the
commensurate [Fig. 3(a)] and incommensurate [Fig. 3(b)]
lattices. As can be seen from Fig. 3(a), due to the breaking
of the inversion symmetry, two branches of nondegenerate
edge states with nonzero energies emerge within the cen-
tral band gap. While the band structure manifests the chiral
symmetry of 
 (reflected by the spectrum symmetric about
E = 0), the topological invariant does not have a quantized
value in the presence of these edge states. On the contrary,
for the incommensurate lattice, the inversion symmetry of
the system is restored, but the chiral symmetry is broken
by the incommensurability. Consequently, edge states emerge
with twofold degeneracy at nonzero energies, corresponding

to the quantization of the TBC Berry phase at π , as shown in
Fig. 3(b).

B. Imaginary on-site potentials

In the presence of imaginary on-site potentials, we will find
that different types of edge states emerge, associated with both
the topological phase transition and the symmetries discussed
in the previous sections. In Fig. 4, the band structure and
the TBC Berry phase with different values of γ are shown
for the commensurate (left panels) and incommensurate (right
panels) cases. In Figs. 4(a) and 4(b), one can see that zero-
real-energy edge states emerge in the red region centered at
θ = π , and merge into the bulk bands after the topological
phase transition characterized by the TBC Berry phase β. The
eigenenergies of these edge states form a complex conjugated
pair for the commensurate case due to PT symmetry, and
have a twofold degeneracy in the imaginary part for the in-
commensurate case owing to inversion symmetry. The latter
case will be shown below. On the other hand, the zero real
energy of these edge states reflects both the topological pro-
tection and the unbroken anti-PT symmetry.
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1

2

IE(a)

0 0.5 1

0 0.5 1 1.5 2

0

1

2

-2

-1

0

1

2

IE(b)

0 0.5 1

0 0.5 1 1.5 2

0

1

FIG. 3. Band structure and TBC Berry phase as a function of
θ/π for (a) commensurate and (b) incommensurate lattices. Other
parameters are γ1 = −γ2 = 1.4, and α = 0. The Fermi energy is set
at E = 0, so that Nf = 2n/2 = 20, and Nf = 2n/2 = 19 for the TBC
Berry phase in (a) and (b), respectively.
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FIG. 4. Band structure and relevant topological invariant for
commensurate (left column) and incommensurate (right column)
lattice when (a), (b) γ = 1.4, (c), (d) γ = 1.7, and (e), (f) γ = 2.

By increasing the amplitude of the on-site potentials, we
observe a separation between the topological phase transition
and the vanishing of edge states, as shown in Figs. 4(c) and
4(d). In particular, the edge states do not merge into the bulk
when θ changes from the red region with β = π to the green
region with β = 0. Instead, two additional zero-real-energy
edge states emerge after the topological phase transition. As
θ further moves away from π , these four edge states divide
into two pairs, each possessing the same imaginary energy but
opposite real energies, representing an anti-PT -broken phase.
The transition between the anti-PT -broken and -unbroken
phases are thus marked by an EP of the edge states.

Finally, with further enlarged amplitude of the on-site
potentials, the system becomes always topologically trivial
regarding the TBC Berry phase (β = 0), and supports only
the anti-PT -broken (blue region) and -unbroken (green re-
gion) phases for different θ , hosting anti-PT edge states with
opposite and zero real energies, respectively [see Figs. 4(e)
and 4(f)].

In order to demonstrate the role of inversion symmetry on
the degeneracy of the imaginary part of the edge states, we
modify the on-site potential in the odd unit cells, as V1 →
V1 + ζ where ζ has an arbitrary real value. This disrupts the

0 0.5 1 1.5 2
0

1

2

3

4
(b)

0 pair edge state 1 pair edge state 2 pairs edge state

0 19 38

-0.7

0

0.7

(a)

FIG. 5. (a) Imaginary part of the band structure as a function
of eigenenergy index for the incommensurate case with γ = 1.7,
θ/π = 1, and ζ = 0.5. The degenerate energy states are represented
by the blue stars. (b) Phase diagram of the system in the (θ/π, γ )
plane. The blue color indicates a trivial phase with zero pair of edge
states. The red (green) color shows a region where there is one (two)
pair(s) of zero-real-energy edge states. Here α = π/2.

anti-PT symmetry and preserves the inversion symmetry. As
illustrated in Fig. 5(a), the effect of potential modification is
shown by plotting the imaginary part of band structure versus
eigenenergy index. One can see the degeneracy of the imagi-
nary part (blue stars) is preserved in the absence of anti-PT
symmetry. This emphasizes the role of inversion symmetry in
protecting the degeneracy of the imaginary component.

By counting the number of zero-real-energy edge states,
we have constructed a phase diagram as functions of θ

and γ for the system, as depicted in Fig. 5(b). This phase
diagram distinctly presents three significant regions within
the system’s parameter space. Topological phase transitions
characterized by the TBC Berry phase are indicated by the
boundary between the red region (with one pair of zero-real-
energy edge states) and the rest. For |γ | exceeding a critical
value (γc ∼ 1.4), an anti-PT transition emerges, marked by
the boundary between green (with two pairs of zero-real-
energy edge states) and blue (without zero-real-energy edge
states) regions.

IV. NON-HERMITIAN QUANTIFICATION
AND Z INVARIANT IN REAL SPACE

As already shown above, the anti-PT edge states are a
consequence of the non-Hermiticity of the system, and its
phase boundary is not accompanied by a topological phase
transition of β. As such, the TBC Berry phase characterizing
the gap closing/reopening cannot determine the topology of
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FIG. 6. Band structure and relevant topological invariant and also η and dη/dt as the function of θ/π for (a) γ = 1.4, (b) γ = 1.7, and
(c) γ = 2.

the corresponding phases appropriately. Therefore, in the fol-
lowing discussion, we will first quantify the non-Hermiticity
of the system, and then introduce different symmetry-based
topological invariants to characterize and discriminate the
edge states of the system.

The utilization of biorthogonal bases allows us to investi-
gate the intricacies of NH quantum systems by establishing a
framework within the Hilbert space. However, the challenge
lies in devising a concise and efficient method to charac-
terize the departure from the Hermitian system, due to the
nonorthogonality among right eigenvectors (or left eigenvec-
tors). To address the issue of the lack of Hermiticity of NH
systems, our focus is limited to an in-depth analysis of proper-
ties that are exhibited solely by the right basis. This approach
is taken instead of an examination of the entire biorthogonal
basis, given the analogous characteristics shared by the right
eigenvectors. A quantification measure designed to specify the
degree of non-Hermiticity can be defined as [90,91]

η =
∑

m′<m |〈�̃m′ |�̃m〉|2∑
m′<m |〈�̃m′ |�̃m′ 〉||〈�̃m|�̃m〉| , (13)

where η = 0, all |�̃m′ 〉 are mutually orthogonal to each
other, corresponding to unitary systems (Hermitian or anti-
Hermitian), and η = 1, all eigenvectors coalesce into a single
one, representing the case of nonunitarity.

In Figs. 6(a), 6(b), and 6(c), we illustrate the behavior of
η, together with the corresponding band structures, for our
model with γ = 1.4, 1.7, and 2, respectively. It is seen that
η reaches a local maximum at both the topological phase
transition (indicated by the bulk gap closing points) and the
anti-PT transition (indicated by the edge EPs). In addition,
the first-order derivative ∂η becomes discontinuous at the
anti-PT transitions, reflecting the emergence of EPs [which
coincide with the topological phase transition in Fig. 6(a)].
Note that in contrast to Ref. [90], the edge EPs in our model

do not correspond to a transition in the orthogonality and
localizing direction of edge states, and hence do not induce
discontinuity to η itself.

Taking into account the inversion symmetry for our model
in the incommensurate case, we further propose to charac-
terize the edge states by counting the parities of all OBC
eigenstates below the Fermi energy (i.e., with Re[E ] < 0).
Explicitly, the presence of inversion symmetry ensures that the
commutation of the Hamiltonian with the inversion symme-
try operator yields [H,�] = 0 under OBCs. Here, � stands
for the operator representing inversion symmetry, i.e., � =
σX4N+2 . This fundamental relationship establishes a noteworthy
outcome, namely, the shared eigenvectors of both the Hamil-
tonian and �, creating a well-defined inversion symmetry
operator [65,92]

〈
̃m|�|
̃m〉 = ±1. (14)

Therefore we can use the expectation value of this operator to
define two invariants,

Z1 =
Nf∑

m=1

〈
̃m|�|
̃m〉, (15)

Z2 =
Nf∑

m=1

[(〈
̃m|�|
̃m〉 − 1)/2], (16)

where Nf is the number of states below Fermi energy E f = 0.
Here Z1 counts the total parity of all states with Re[E ] < 0,
and Z2 counts only the ones with negative parity. Note that
Z2 may change with the system’s size, and it is its jump that
characterizes the change of a system’s overall parity.

In the bottom two panels of Fig. 6, the values of Z1 and Z2

as a function of θ/π are depicted. In Fig. 6(a), both Z1 and Z2

jump discontinuously at the bulk gap closing points, simulta-
neously, revealing both the transitions of anti-PT symmetry
and topological phases. For the parameter regions where these
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two transitions separate, it is found that the topological phase
transition is characterized by the jump of Z1, and the anti-PT
transition is characterized by the jump of Z2, as displayed
in Fig. 6(b). Finally, as shown in Fig. 6(c) with γ = 2, Z1

remains unchanged for all values of θ , as now the system
hosts only the anti-PT transition marked by edge EPs and
the jumps of Z2.

V. EDGE MODES IN THE TIME DOMAIN

NH systems exhibit unique dynamics due to the existence
of localized eigenstates with large imaginary energies. These
states suggest novel propagation scenarios that dominate the
system’s behavior over long periods of time. Although the
time evolution of such systems is nonunitary, any initial state
can still be decomposed into a combination of different eigen-
states. Therefore, we can design various schemes to test our
model.

To investigate the behavior of the system under NH time
evolution, we prepare two types of initial states, i.e., edge
states and bulk states. By analyzing their time evolution, we
aim to understand whether the initial states remain localized
or spread throughout the system. We define the normalized
spatial distribution of the final state,

ρx(t ) = |
 f (x, t ))|2/〈
 f (t )|
 f (t )〉, (17)

|
 f (t )〉 = U (t )|
i〉, (18)

where 
 f (t ) (
i) is the finial (initial) state and U (t ) = e−iHt

is the time-evolution operator of the system after time t .
In Figs. 7 and 8, we simulate ρx(t ) as functions of position

and time, for the commensurate and incommensurate case,
respectively. These simulations were conducted with initial
states prepared at distinct positions either within the bulk (left
columns) or at the edges (right columns) of the system, and the
parameters chosen for the system to host a pair of topological
edge states with zero real energy [as in Fig. 4(c) and 4(d)].
We find that for the commensurate case, the final state always
evolves to the left edge of the system, regardless of where
the initial state is placed, as shown in Fig. 7. In particular,
as can be seen in Fig. 7(f), a state prepared at the right edge
shows a clear diffusion even in a short period of time, despite
the presence of a topological edge state localized at this edge.
Physically, this is because the left edge state possesses a large
positive imaginary energy and thus dominates the long-time
dynamics, while the negative imaginary energy of the right
edge state represents a strong dissipation, resulting in the
dynamical instability of a state localized at this edge.

On the other hand, for the incommensurate case, topologi-
cal edge states at both sides have the same positive imaginary
energy, therefore they will both have a significant impact on
the dynamics. Indeed, we find that an inversion-symmetric
initial state, whether placed in the bulk or at the edges, results
in a balanced distribution localized at the two edges for the
final state, as shown in Figs. 8(a) and 8(d). For nonsymmetric
initial states, the final states display a strong localization at
only one of the two edges, depending on the distribution
tendency of the initial states. This is shown in Figs. 8(b) and
8(c) for the initial state within the bulk states and in Figs. 8(e)
and 8(f) for the initial state at the edge states.
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FIG. 7. Time evolution of different bulk (left) and edge (right)
states for the commensurate case. The initial bulk state is prepared at
(a) the center, (b) the middle of the left half, and (c) the middle of the
right half of the chain. The initial edge state is prepared at (d) both
edges, (e) left edge, and (f) right edge of the system. Parameters are
γ = 1.7 and θ = π .
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FIG. 8. Time evolution of different bulk (left) and edge (right)
states for the incommensurate case. The initial bulk state is prepared
at (a) the center, (b) the middle of the left half, and (c) the middle of
the right half of the chain. The initial edge state is prepared at (d) both
edges, (e) left edge, and (f) right edge of the system. Parameters are
γ = 1.7 and θ = π .

205142-7



JANGJAN, LI, FOA TORRES, AND HOSSEINI PHYSICAL REVIEW B 109, 205142 (2024)

Our investigation stands out for exploring a new type of
edge states protected by anti-PT symmetry. This differs from
the topological monomodes described in Refs. [93,94], where
NH chiral symmetry supports the edge mode without relying
on inversion symmetry. To elucidate the characteristics of
edge states in our study, we analyze their dynamics. Particu-
larly in the commensurate case, these states share similarities
with the monomodes discussed in Ref. [93]. Furthermore,
in the incommensurate case, we identify inversion symmetry
as a critical factor in preserving spatially symmetric edge
localization in the system, presenting a unique aspect of our
work. Interestingly, the dynamics in the incommensurate case
reveals a spontaneous breaking of inversion symmetry, con-
trasting with existing literature.

VI. CONCLUSIONS

In conclusion, our investigation into the one-dimensional
Su-Schrieffer-Heeger lattice with modulating non-Hermitian
on-site potentials reveals intricate topological characteristics
in both commensurate and incommensurate configurations.
The study highlights the emergence of exceptional points
(EPs) and their divergence from conventional topological
phase transitions marked by the Berry phase, particularly in
presence of imaginary on-site potential. This leads to the oc-
currence of edge states in regimes with trivial Berry phase and
necessitates the development of new topological invariants
for their characterization. Additionally, our research under-
scores the importance of inversion asymmetry, rather than
anti-PT symmetry, in influencing the imaginary part of edge
state energies. The findings not only shed light on the unique
topological behaviors within non-Hermitian systems but also
propose a novel approach to understanding phase transitions

and dynamics of carriers, enriching our comprehension of the
underlying physics in these systems.

Most realistic and applicable systems are finite, lacking
bulk translational invariance, unlike ideal systems, which
exhibit bulk translational symmetry. The exploration of in-
commensurate case in our model provides insights into the
interplay between inversion symmetry and translational sym-
metry, offering a model that can be adapted to analyze
similar systems supporting the fundamental symmetry, inver-
sion symmetry. So our model and the defined invariants can be
studied in real platforms such as cold atom systems, photonic
setups, and mechanical configurations.

It should be noted that our model with anti-PT symme-
try can be realized in photonic systems with non-Hermitian
character [12] where a topological phase transition was ob-
served experimentally by employing bulk dynamics [95]. In
such systems, the existence of robust edge states has been
demonstrated [96,97]. Moreover, selective control and en-
hancement of the topologically induced state in the SSH
chain in a one-dimensional microwave setup have been
reported [98].
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