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Two-dimensional (2D) materials have emerged as a fertile ground displaying various fascinating properties,
such as nontrivial band topology and exotic correlated states, which can be feasibly tuned by available means
(e.g., electrostatic gating, stacking, sliding, and twist). Due to the scarcity of ever-experimentally synthesized
2D materials, large-scale target searches on 2D materials have been hindered. Here we focus our attention on all
linear band crossings (LBCs) at high-symmetry points, lines, and planes that can be realized in the 80 layer
groups (LGs) with (without) time-reversal symmetry using single-valued and double-valued representations
(corresponding to spinless and spinful bands, respectively), and list all corresponding k · p models expanded up
to the first order of �q = (qx, qy ) (measured from the LBC). The relations of symmetry-related LBCs are explicitly
provided, useful in studies on valley degrees of freedom, which have been overlooked in previous classifications
on band crossings by space and layer groups to our knowledge. The results of 17 LGs, as wallpaper groups,
can be applied to surfaces and interfaces of 3D materials or 2D materials grown on substrates. By exhaustive
tabulation on all LBCs in the 80 LGs, we highlight LGs hosting LBCs that are enforced to exist necessarily.
These LGs are then applied to categorize the 6351 2D structures in the 2D materials database (2DMatPedia)
to 1707 (3035) materials necessarily hosting coexisting spinful and spinless LBCs (only necessarily hosting
spinful LBCs). We also perform first-principles calculations on 66 selected 2D materials to identify the LBCs
at high-symmetry points quantitatively in electronic and phononic bands. We take Zr2HBr2 crystallized in LG
15 to demonstrate the coexisting electronic Dirac nodal point and phononic Weyl nodal line emanating from a
Weyl LBC. The group-theoretical results are expected to guide searches and designs for materials realization for
a target LBC in 2D materials, coexisting LBCs carried by different types of excitations, and can also be applied
to study the evolution of topological band crossings by external perturbations in the future.
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I. INTRODUCTION

The low-energy excitations around the corners of the
Brillouin zone (BZ) in the first-synthesized two-dimensional
(2D) material (graphene) simulate high-energy massless Dirac
fermions in two dimensions [1], underlying a zoo of unique
properties [2], such as ultrahigh mobility [1], Klein tunneling
[3,4], half-integer quantum Hall effect [5,6], quantum anoma-
lous Hall effect [7–11], quantum spin Hall effect [12–16],
valley Hall effect [17–19], nonlinear Hall effect [20–22], topo-
logical band crossings [23–26], and so on. In the past two
decades, more than 100 2D materials have been synthesized
with diverse chemical compositions and structure symmetries
[1,27–39], as well as several computationally predicted 2D
materials databases [40–46], providing a fruitful platform for
studying properties that can be manipulated by stacking [47],
twisting [48–50], electrostatic gating [51,52], and other ap-
propriate means to control and optimize physical properties.

On the other hand, symmetry analysis can provide a gen-
eral guidance of studying materials properties. For example, a
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general theory of ferroelectricity based on the 80 layer groups
(LGs) was built very recently [53], guiding researchers to alter
the electric polarization by sliding and twisting two adjacent
2D materials. Compared with 2D materials, the 3D materials
can accommodate much more fruitful band crossings [54–67].
The space groups for three-dimensional (3D) crystals have
been applied to obtain a complete classification of band topol-
ogy [68–73] and database searches [74–79]. Very recently,
several groups have also constructed exhaustive tabulations
of all band crossings in the 230 space groups (SGs), 1651
magnetic space groups [80–84], and the 80 layer groups and
528 magnetic layer groups for 2D crystals [82,85,86]. These
exhaustive results conclude all possible stable degeneracies
(2, 3, 4, 6, and 8) realized in band structures [80,82]. Charting
the band crossings in these works based on the magnetic
space and layer groups facilitate users to search for and design
materials given a target band crossing: First, know which
magnetic space and layer group(s) could realize it, then search
for materials crystallized in any of these magnetic space and
layer group(s), and, lastly, determine the detailed information
(e.g., position in the BZ and energetics) of the target band
crossing by realistic calculations. Interestingly, some band
crossings can be enforced to appear necessarily insofar as
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the material belongs to the required magnetic space (layer)
group, in which case, the target band crossing’s existence is
guaranteed. Moreover, external perturbations preserving the
crystallographic symmetry can be imposed to optimize the
band structures toward realization of an ideal band crossing,
which necessarily exists in the whole optimization process.

In this paper, we focus on the 80 LGs applicable for 2D
materials, and band crossings with linear dispersion [dubbed
linear band crossing (LBC) hereafter]: The k · p models
around the LBCs are expanded up to the first order in �q =
(qx, qy) (measured from the LBC). We note that the order in
the �q of k · p model and the dispersion near a band crossing
have received immense attention while limiting only to the
first order reasonably avoids the trivial q2(= q2

x + q2
y ) term

that can always be allowed to exist and break the emergent
chiral symmetry. Note that several LBCs can be related by
LG operations, so only one representative LBC among the
symmetry-related LBCs need to be studied. However, ex-
plicitly listing all symmetry-related LBCs could be useful
in analyzing valley-related properties. Here, we tabulate all
symmetry-related LBCs and how the representation matrices
and their k · p models are related explicitly. In total, we con-
struct 2183 LBCs by considering all high-symmetry points
(HSPs), high-symmetry lines (HSLs), and high-symmetry
planes (HSPLs). During the construction, both the spinful
and spinless settings are considered and time-reversal sym-
metry (TRS) can be broken or present. The single-valued
and double-valued representations are applied for the spinless
and spinful settings, respectively. The spinful and spinless
settings can be applied to electronic bands with negligible and
non-negligible spin-orbit coupling (SOC), respectively: For
electronic bands, when the SOC can be neglected, the degen-
eracy we list in the spinless setting should be doubled to derive
a genuine degeneracy. The results in the spinless setting can
also be applied to bosonic systems, such as phonon [87,88],
photon [89], and magnon [90] systems. In the following, we
use the abbreviations NSOC and SOC to indicate the spinless
and spinful settings, respectively.

We provide all positions of LBCs and all explicit represen-
tation matrices for the little groups of the LBCs as well as
all symmetry-related LBCs in Supplemental Material (SM) I
[91]. The statistics of numbers of LBCs is given in Table I
for LBCs that can emerge in 2D materials in the four settings
denoted by NTRS, NSOC; NTRS, SOC; TRS, NSOC; and
TRS, SOC [TRS (NTRS): TRS is present (broken)]. By the
exhaustive tabulation, some generic and unified conclusions

can be deduced. For example, the degeneracy of LBC can
only be 2 or 4 with the corresponding LBC denoted as a Weyl
or Dirac LBC, respectively. The total number of symmetry-
related LBCs (with the same energies) for the Weyl LBC can
be 1, 2, 3, 4, 6, 8, 12 for the NTRS, NSOC and NTRS, SOC
settings; 1, 2, 4, 6, 8, 12 for the TRS, NSOC setting; and 1,
2, 3, 4, 6, 12 for the TRS, SOC setting. Differently, the Dirac
LBC cannot appear in the NTRS, NSOC setting. The Dirac
LBC can only appear at one single HSP in the NTRS, SOC
setting. In both TRS, NSOC and TRS, SOC settings, the total
number of symmetry-related Dirac LBCs can be 1, 2, 4. We’ll
provide detailed discussions on all possible k · p models and
the nodal structures and chiral symmetries by k · p models in
the following.

In addition, results obtained purely from the 80 LGs could
provide not only unified pictures of seemingly diverse phe-
nomena but also hints for reliable and efficient materials
prediction. We highlight the LGs for which there exists an
LBC which necessarily appears at some k point in some
setting. These LGs can be applied to quickly identify concrete
2D materials with LBCs without any realistic calculations. For
electronic band structures, the ideal LBC should be close to
the Fermi level, which can be satisfied more easily in that
LBCs necessarily appear. Note that when SOC is negligibly
weak, the LBC proposed in the spinless setting can coexist
in the electronic bands and phononic bands. However, LBC
might be gapped by finite SOC in electronic bands, and
whether LBCs can coexist in the electronic bands (with non-
negligible SOC) and phononic bands deserves careful study.
Hereafter, SOC is always included for electronic bands. We
then find 37 or 30 LGs, with necessarily coexisting spinful
and spinless LBCs when TRS is preserved or broken, re-
spectively. We then perform a large-scale classification on the
6351 2D materials as listed in 2DMatPedia and tabulate 1707
(3035) materials necessarily hosting coexisting electronic and
phononic LBCs (only necessarily hosting electronic LBC)
listed in SM II [92]. In SM II [92], we also show the first-
principles calculated electronic and phononic bands of 66
selected 2D materials, with all LBCs pinned at HSPs iden-
tified.

This paper is organized as follows. In Sec. II, we briefly
describe the method of obtaining all LBCs in the 80 LGs and
the organization of SM I consisting of a full tabulation of all
LBCs. The nodal structures and possible chiral symmetries
determined by the constructed k · p models are also described.
Then, in Sec. III, LGs necessarily hosting LBCs are listed

TABLE I. Statistics of LBCs in the 80 LGs. The four settings are denoted by NTRS, NSOC; NTRS, SOC; TRS, NSOC; and TRS, SOC in
the first column, corresponding to the settings without TRS and neglecting SOC, without TRS and considering SOC, with TRS and neglecting
SOC, with TRS and considering SOC, respectively. We consider symmetry-independent k points and LBCs in the statistics. We show the
numbers of k points and LBCs outside and inside the parentheses, respectively. Note that the setting neglecting SOC can be applied to bosonic
systems.

Setting HSP HSL HSPL

NTRS, NSOC 70 (98) 200 (510) 37 (37)
NTRS, SOC 116 (152) 200 (280) 37 (37)
TRS, NSOC 78 (111) 202 (498) 37 (37)
TRS, SOC 198 (248) 136 (160) 15 (15)
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FIG. 1. Schematic diagram of LBC and two types of nodal
structures: Nodal point and nodal line are shown in (a) and (b),
respectively. Green sphere indicates the LBC; one point in the BZ
where two branches of bands touch. The blue line in (b) indicates a
nodal line emanating from the LBC which preserves the degeneracy
of the LBC.

in detail, where LGs with necessarily coexisting spinful and
spinless LBC are highlighted. Sections IV and V are devoted
to the demonstration of applying our tabulation to quickly
identity all LBCs given an LG and large-scale materials in-
vestigation by a 2D materials database, respectively. Finally,
the calculation method and conclusion (and discussion) are
provided in Secs. VI and VII, respectively.

II. ALL WEYL AND DIRAC LBCS CLASSIFIED
BY THE 80 LGS

A. Tabulation of all LBCs in the 80 LGs

An LBC is defined as one point in the BZ, where two
branches of bands touch, as schematically shown in Fig. 1. By
exhausting all 80 LGs, considering the four settings, NTRS,
NSOC; NTRS, SOC; TRS, NSOC; and TRS, SOC (without
TRS and neglecting SOC, without TRS and considering SOC,
with TRS and neglecting SOC, with TRS and considering
SOC, respectively), we find that the LBCs can only be two- or
fourfold degenerate (denoted as Weyl LBCs or Dirac LBCs,
respectively). These LBCs are restricted to be located at the
HSP, HSL, or HSPL. Note that the HSPL coincides with the
2D BZ. An LBC at the HSP contains only one irreducible
representation (irrep) or irreducible corepresentation (coirrep)
[93] of dimension 2 or 4, an LBC in the HSL might contain
one or two different (co)irreps, while an LBC in the HSPL
contains two different (co)irreps [82]. Note that the HSPL can
only host one-dimensional (coirrep, so the LBC in the HSPL

is definitely twofold degenerate. In addition, each HSPL hosts
one LBC at most, as shown in Table I. Note that the coirrep for
a little group of any k point is applied to characterize each en-
ergy level at the k point (assuming no accidental degeneracy),
if and only if the little group contains an antiunitary operation
in the form of �R, where � denotes the time-reversal opera-
tion and R represents a spatial operation in the LG. We fix the
convention for the 80 LGs so the c axis is perpendicular to the
2D material, and all LG operations can be found in Ref. [94]
(note that the operations are also listed in SM I [91]). We
also show all the Cartesian coordinates for the conventional
lattice basis vectors �a, �b, �c and the transformation matrix Acp

from the conventional lattice basis vectors to the primitive
lattice basis vectors �a1, �a2, �a3 in SM I [91]. The lattice of
LG can only be primitive or centered and, correspondingly,

�a1 = �a, �a2 = �b, �a3 = �c
(

Acp =
(1 0 0

0 1 0

0 0 1

))
or �a1 = 1

2 �a +

1
2
�b, �a2 = − 1

2 �a + 1
2
�b, �a3 = �c

(
Acp =

( 1
2 − 1

2 0
1
2

1
2 0

0 0 1

))
, respec-

tively.
In total, we collect 2183 LBCs (only independent ones are

counted) including 2091 Weyl and 92 Dirac LBCs, and there
are in total 4953 LBCs counting all symmetry-related LBCs.
Note that one LBC is characterized by its location and the
contained (co)irrep(s). In Table II, we list the LGs allowing the
occurrence of Weyl (Dirac) LBC for each of the four settings.
For example, the Weyl LBC can appear in LG 80 for the TRS,
NSOC setting, as exemplified by graphene. The Dirac LBC
in the spinful setting with TRS can appear in 30 LGs (LGs 7,
15–17, 21, 25, 28–30, 32–34, 38–46, 48, 52, 54, 56, 58, 60,
62–64), as proposed in Ref. [24] and tabulated in Ref. [95].
The Dirac LBC in the spinless setting with TRS can appear in
seven LGs (LGs 29, 33, 40, 43-45, 63), as discussed for Dirac
phonons in Ref. [96]. For these LBCs, we construct the k · p
models up to the first order of �q. Interestingly, we find that
there are 165 different k · p models in total, listed in Table
SI2 of SM I: Hi, i = 1, 2, . . . , 115 are 2 × 2 while the rest
are 4 × 4, enough to describe all LBCs in the 80 LGs. These
k · p models are then expected to be reasonable starting points
to study low-energy behaviors adding interactions, disorder
and external fields to exhaust the possible outcomes for 2D
systems. We list for the four settings the possible k · p models
for Weyl (Dirac) LBCs in Table III. Note that other than these
4953 LBCs which can be identified by computing representa-
tions of energy bands, there exists a twofold degenerate LBC
that can be located at a generic point (GP) whose identification
needs computing Berry phase. Such kind of LBC might occur
when C2z� (C2z: twofold rotation around z axis) is present
in either a spinless or spinful setting, or when I� (I: spatial

TABLE II. The list of LGs which host twofold degenerate Weyl LBCs and fourfold degenerate Dirac LBCs.

Setting LGs hosting Weyl LBCs LGs hosting Dirac LBCs

NTRS, NSOC 4–48, 51–64, 67–72, 74–80
NTRS, SOC 4–48, 51–64, 67–72, 74–80 62, 64
TRS, NSOC 4–48, 51–64, 66–80 29, 33, 40, 43, 44, 45, 63
TRS, SOC 1, 3–5, 8–13, 19–36, 49, 50, 53–60, 65, 67–70 7, 15–17, 21, 25, 28–30, 32–34, 38–46, 48, 52, 54, 56, 58

73, 74, 76–79 60, 62–64
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TABLE III. The list of all possible k · p models of twofold degenerate Weyl LBCs and fourfold degenerate Dirac LBCs in the 80 LGs in
the four settings. The k · p models are given by Hi, i = 1, 2, 3, . . . , 165, whose explicit form can be found in Table SI2 of SM I.

Setting k · p models of Weyl LBCs k · p models of Dirac LBCs

NTRS, NSOC H3, H5, H8, H10, H16, H23, H24, H25, H29, H30, H34, H39, H40,
H45, H48, H49, H50, H51, H54, H55, H57, H61, H62, H64, H65, H66,

H67, H68, H71, H78, H79, H83, H87, H88, H89, H91, H101, H103,
H104, H105, H107, H113

NTRS, SOC H3, H5, H9, H10, H16, H23, H24, H25, H29, H30, H31, H34, H35, H162, H164

H39, H40, H44, H46, H48, H49, H50, H51, H52, H54, H55, H57, H61,
H62, H63, H65, H68, H69, H70, H75, H78, H79, H80, H81, H84, H87,

H88, H89, H91, H92, H93, H94, H95, H97, H98, H99, H100, H102,
H105, H107, H109, H110, H111, H112, H114

TRS, NSOC H3, H5, H6, H8, H10, H12, H13, H16, H18, H19, H21, H22, H25, H26, H124, H125, H134, H141, H142, H148, H149,
H27, H28, H29, H30, H32, H33, H36, H37, H40, H41, H47, H48, H49, H154

H50, H51, H53, H54, H56, H60, H61, H62, H66, H68, H71, H72, H73,
H74, H76, H77, H78, H79, H82, H83, H85, H86, H88, H89, H90, H96,

H101, H107, H108, H113, H115

TRS, SOC H1, H2, H3, H4, H5, H6, H7, H10, H11, H12, H13, H14, H15, H16, H116, H117, H118, H119, H120, H121, H122,
H17, H19, H20, H21, H26, H29, H30, H31, H32, H33, H35, H36, H37, H123, H124, H125, H126, H127, H128, H129,
H38, H41, H42, H43, H44, H46, H47, H48, H49, H50, H51, H52, H53, H130, H131, H132, H133, H135, H136, H137,
H54, H55, H56, H58, H59, H60, H85, H86, H88, H89, H90, H92, H93, H138, H139, H140, H143, H144, H145, H146,
H96, H99, H100, H105, H106, H107, H108, H109, H110, H111, H112, H147, H150, H151, H152, H153, H155, H156,

H113, H114 H157, H158, H159, H160, H161, H163, H165

inversion operation) is present in the spinless setting. Here, for
the TRS, NSOC/TRS, SOC setting, LGs need to contain C2z

and for the TRS, NSOC setting, LGs need to contain I to allow
the twofold LBC at the GP. The k · p model around such kind
of LBC can be written as − 1

2σ0(r1qx + r3qy) − 1√
2
σ1(r5qx +

r6qy) + 1
2σ3(r2qx + r4qy), where σ0, σ1, σ3 are three Pauli

matrices and ri, i = 1, 2, ..., 6 are six real parameters. The
nodal structure for this LBC is obviously a nodal point, as
expected.

B. Nodal structure and chiral symmetry

By all the 165 explicit k · p models enough to characterize
the LBCs in the 80 LGs, we solve for the nodal structure that
emanates from the LBC composed of k points (in the neigh-
borhood of the LBC) at which the degeneracy of the LBC (2
or 4) is still preserved, and find that the nodal structure can be
simply an isolated point, expressed by qx = 0, qy = 0 (which
is simply the position where the LBC is located) or a line
(qy = cqx or qx = cqy, c is a real parameter) (see Table IV),

as schematically depicted in Fig. 1. We note that the LBC
within an HSPL is always twofold and the nodal structure
is definitely a nodal line lying in the BZ. The characteristics
of nodal structures for LBCs located in HSPs and HSLs are
detailed below.

The Weyl LBC at HSP can appear in the four settings
and the nodal structure can be a nodal point or nodal line.
The Dirac LBC at the HSP can appear in the NTRS, SOC;
TRS, NSOC; and TRS, SOC settings: In most cases, the nodal
structure is a nodal point, while in the TRS, SOC setting, the
nodal structure can also be a nodal line. The LBC in the HSL
can be composed of one (co)irrep or two different (co)irreps.
In the former case, the nodal structure is a nodal line along
this HSL and such an LBC can appear in the four settings
when its degeneracy is 2, while it can only appear in the TRS,
SOC setting when the degeneracy is 4. In the latter case, the
degeneracy of the LBC can be 2 (which can appear in the four
settings) and the nodal structure can be a nodal point or nodal
line (not parallel to the HSL). When the degeneracy is 4, the

TABLE IV. The list of all possible nodal structures emanating from LBCs at HSP, HSL, and HSPL. In the first column, the location of the
LBC can be HSP, HSL, or HSPL. In the second column, the degeneracy of the LBC at HSP and HSL can be 2 or 4 while the degeneracy of the
LBC at HSPL can only be 2. In the third column, nodal structures are separated by “;”: qx = 0, qy = 0 stands for a nodal point, while qy = cqx

and qx = cqy stand for nodal lines, where c can be a specific real number or expressed by real parameters r1, r2, r3, r4. Especially, when c = 0,
the nodal line is qy = 0 or qx = 0. Note that the nodal structures are found based on explicit k · p models around the LBCs, and only one LBC
is considered among symmetry-related LBCs for an LG in some setting.

Location of LBC Degeneracy Nodal structure

HSP 2 qx = 0, qy = 0; qx = 0; qy = 0; qy = r1qx
r2

; qy = r2qx
r1

; qy = − r2qx
r1

4 qx = 0, qy = 0; qx = 0; qy = 0
HSL 2 qx = 0, qy = 0; qx = 0; qy = 0; qy = qx; qy = −qx; qy = qx√

3
; qy = −√

3qx; qy = − r4qx
r3

4 qx = 0, qy = 0; qx = 0; qy = 0
HSPL 2 qy = r4qx

r3
; qy = − r4qx

r3
; qy = r3qx

r4
; qy = − r3qx

r4
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TABLE V. The list of LGs and concrete k points which necessarily host LBCs in the four settings. In the first column, NTRS (TRS) and
NSOC (SOC) represent settings without (with) TRS and neglecting (considering) SOC, respectively. In the second column, the number before
parentheses represents an LG number or several LGs (separated by comma), and the numbers (ranging from 1 to 25) in the parentheses encode
the k points hosting essential LBCs in the corresponding LG(s): 1: (0, 0), 2: ( 1

2 , 1
2 ), 3: ( 1

2 , − 1
2 ), 4: (− 1

2 , 1
2 ), 5: (− 1

2 , 0), 6: ( 1
2 , 0), 7: (1, 0),

8: (0, − 1
2 ), 9: (0, 1

2 ), 10: ( 1
2 , w), 11: (− 1

2 , w), 12: ( 1
2 ,−w), 13: (w, 1

2 ), 14: (−w, 1
2 ), 15: (w, − 1

2 ), 16: (w, 0), 17: (−w, 0), 18: (0, w), 19:
(0, −w), 20: (w, w), 21: (0, 2w), 22: (2w, 0), 23: (−w, 2w), 24: ( 1

2 ,−v), 25: ( 1
2 , u), where the coordinates of the k points are given on the

basis of reciprocal lattice basis vectors corresponding to the conventional real-space lattice. We use three colors: blue, red, and green to denote
the degeneracy: When a k point (for an LG and a setting) can only necessarily host twofold degenerate Weyl LBCs, can only necessarily
host fourfold degenerate Dirac LBCs, or can host both twofold degenerate Weyl LBCs [they are composed of one (co)irrep of dimension 2,
and they necessarily appear] and fourfold degenerate Dirac LBCs [they are composed of two different (co)irreps of dimension 2, thus they
do not necessarily appear], the number representing the k point is printed in blue, red, and green, respectively. In addition, when a number
in parentheses is underlined, it means that the k · p model around each LBC in the corresponding k point can be uniquely determined by the
degeneracy: When the LBC is twofold (fourfold) degenerate, the k · p model can only take one of those listed in Table SI2 of SM I [91].

Setting LBCs that necessarily appear

NTRS, NSOC 7(2, 5) 15(3, 6) 16(3, 8) 17(6, 8) 20(2, 6) 21(6, 9) 24(3, 6) 25(6, 9) 31, 32, 33, 34, 38(2, 6, 10) 39(6, 9, 10, 13)
40(4, 5) 41(4, 5, 11) 42(6, 9, 10, 13) 43(3, 6, 8, 12) 44(6, 9) 45(2, 6, 9, 10) 46(6, 9, 10, 13) 48(2) 52(9) 54(6) 56, 58,
60(9) 62(9, 13) 63(9) 64(9, 13)

NTRS, SOC 7(2, 5) 15(3, 6) 16(3, 8) 17(6, 8) 19(1, 2, 6, 9) 20(1, 9) 21(1, 2) 22(1, 7) 23(1, 2, 6, 9) 24(1, 8) 25(1, 2) 26(1, 7) 27,
28, 29, 30(1, 2, 6, 9, 10, 18) 31, 32, 33, 34(1, 9, 18) 35, 36(1, 7, 21) 37(10, 13, 16, 18) 38(2, 6, 13, 16, 18)
39(2, 6, 9, 16, 18) 40(11, 14, 17, 18) 41(4, 5, 14, 17, 18) 42(6, 9, 16, 18) 43(3, 6, 15, 16, 19) 44(10, 13, 16, 18)
45(2, 6, 13, 16, 18) 46(2, 6, 9, 16, 18) 47(21, 22) 48(2, 21, 22) 52(9) 53(1, 2, 9) 54(1, 3) 55(1, 2, 9) 56(1, 2)
57(1, 2, 9) 58(1, 2) 59(1, 2, 9) 60(1, 2) 61(13, 18, 20) 62(2, 9, 18, 20) 63(13, 18, 20) 64(2, 9, 18, 20) 76, 77(9)
78(9, 18) 79(9, 23) 80(18, 23)

TRS, NSOC 5, 7(2, 5) 9(3, 6, 24) 12(3, 8, 15) 15(3, 6, 24) 16(3, 8, 15) 17(6, 8, 15, 25) 20(2, 6, 10) 21(6, 9, 10, 13) 24(3, 6, 12)
25(6, 9, 10, 13) 28(2, 9, 13) 29(2, 9, 13) 30(2, 9, 13) 31(2, 6, 10) 32(6, 9, 10, 13) 33(2, 6, 9, 10, 13) 34(6, 9, 10, 13)
36(2) 38(2, 6, 10) 39(6, 9, 10, 13) 40(4, 5, 11) 41(4, 5, 11) 42(6, 9, 10, 13) 43(3, 6, 8, 12, 15) 44(6, 9, 10, 13)
45(2, 6, 9, 10, 13) 46(6, 9, 10, 13) 48(2) 52(9) 54(6, 12) 56, 58, 60, 62(9, 13) 63(9, 13) 64(9, 13)

TRS, SOC 1(1, 2, 6, 9) 3, 4(1, 2, 6, 8) 5(1, 2, 5, 9) 7(2, 5) 8(1, 3, 6, 8) 9(1, 3, 6, 8, 24) 10(1, 3, 7) 11(1, 3, 6, 8) 12(1, 3, 6, 8, 15)
13(1, 3, 7) 15(3, 6) 16(3, 8) 17(6, 8) 19(1, 2, 6, 9) 20(1, 2, 6, 9, 10) 21(1, 2, 6, 9, 10, 13) 22(1, 2, 7) 23(1, 2, 6, 9)
24(1, 3, 6, 8, 12) 25(1, 2, 6, 9, 10, 13) 26(1, 2, 7) 27(1, 2, 6, 9, 10, 18) 28(1, 2, 6, 9, 10, 13, 18)
29(1, 2, 6, 9, 10, 13, 18) 30(1, 2, 6, 9, 10, 13, 18) 31(1, 2, 6, 9, 18) 32(1, 2, 6, 9, 13, 18) 33(1, 2, 6, 9, 13, 18)
34(1, 2, 6, 9, 13, 18) 35, 36(1, 2, 7, 21) 38(2, 6) 39(2, 6, 9) 40(4, 5, 11) 41(4, 5) 42(6, 9) 43(3, 6, 8, 15)
44(6, 9, 10, 13) 45(2, 6, 9, 13) 46(2, 6, 9) 48(2) 49, 50(1, 2, 9) 52(2, 9) 53(1, 2) 54(1, 3, 6, 12) 55(1, 2, 9)
56(1, 2, 9, 13) 57(1, 2, 9) 58(1, 2, 9, 13) 59(1, 2, 9) 60(1, 2, 9, 13) 62(2, 9) 63(9, 13) 64(2, 9) 65, 67, 68, 69, 70, 73,
74, 76, 77(9) 78(9, 18) 79(9, 23)

nodal structure is definitely a nodal point and the LBC can
only appear in the TRS, NSOC and TRS, SOC settings.

It is worth pointing out that the nodal structures (a nodal
point and nodal line) can be partially deduced from the com-
patibility relations [82]: Once the nodal point solution from
the k · p model of some LBC is found, the LBC is thus
definitely a nodal point, also required by the compatibility re-
lations. However, once a nodal line solution is found, it might
be gapped by including higher-order k · p term(s), leaving a
strictly nodal point by the compatibility relations, in which
sense the nodal line by our k · p model (expanded only to
the first order) is a nearly nodal structure. Interestingly, there
exists a nodal line that cannot be captured by the compatibility
relations. Such a nodal line is protected by mirror symmetry
and can be found by the constructed k · p model.

In addition, we also solve for the possible chiral symmetry
given the explicit k · p model. The chiral symmetry operation
C should satisfy that CHi(�q)C† = −Hi(�q) (where Hi is one
of the 165 k · p models and † denotes the Hermitian conju-
gation), and thus we find that 78 of the 165 models allow a
chiral symmetry, as shown in Table SI2 of SM I [91]. Note
that the chiral symmetry found is approximate in the sense

that it is only satisfied when the k · p model is expanded to
the linear order and can be broken when considering higher
order term(s) of �q. The existence of the chiral symmetry in
the low-energy model enforces symmetry constraints beyond
those by crystallographic symmetries and the complete list
of the possible chiral symmetries can be applied for further
theoretical studies and materials prediction.

III. LBCS ENFORCED TO APPEAR NECESSARILY

Next, we highlight the LBCs that are enforced or guar-
anteed to appear essentially or necessarily in the 80 LGs:
First, such kind of LBC should contain only one (co)irrep
since LBCs composed of two different (co)irreps usually need
an accidental band inversion; Second, any (co)irrep of the k
point hosting the LBC contributes to one LBC. In this way,
we tabulate in Table V all the k points and LGs for the four
settings, where the LBC necessarily appears. In Table V, the k
point (represented by an integer) is in blue, red, or green, when
it only necessarily hosts a Weyl LBC, only necessarily hosts a
Dirac LBC, or hosts both types of LBCs, respectively. When
the k · p model can be uniquely determined by the degeneracy
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TABLE VI. All the LBCs in LG 15 with TRS as listed in SM I [91]. The LBCs are packaged according to the k points hosting them and
each k point corresponds to four rows for a given setting: We first provide the coordinate of the k point in the first row (indicated by k) whose
coordinate is expressed on the basis vectors of reciprocal lattice corresponding to the conventional lattice. Then, in the second row, we provide
the little group G(k): The operations g1, g2, g3, g4 can be found in Sec. IV while � denotes the time-reversal operation. We only provide one
antiunitary operation (combination of � and a spatial operation) once G(k) contains antiunitary operations. In the third row, for each LBC in
the k point, we provide the representation matrices (RepM) and the corresponding k · p model (Hk·p). The representation matrices in the form
of Ri are provided in Table SI1 of SM I [91] while the k · p models in the form of Hi can be found in Table SI2 of SM I [91]. In the fourth row,
we provide all operations (β) that relate other LBCs with the listed LBC. The k · p models around the β-related LBCs can be deduced by β

and the listed k · p model (see SM I [91]). In addition, the color coding on the k point and representation matrix are described as follows. The
k point is printed in blue and red, when it can only necessarily host twofold degenerate Weyl LBCs, and can only necessarily host fourfold
degenerate Dirac LBCs. For HSL, when the LBC contains only one (co)irrep, the corresponding representation matrices are printed in cyan.

LBCs in LG 15 in the TRS, NSOC setting

k
(

1
2 , 0

) (
1
2 , − 1

2

)
(w, 0)

G(k) g1, g2, g3, g4, �g1 g1, g2, g3, g4, �g1 g1, g2, �g3

RepM : Hk·p R35, R11, R34, R9, R35 : H25 R35, R11, R34, R9, R35 : H25 R35, R34, R35 : H21

β g1 g1 g1, g3

k
(
w, − 1

2

) (
1
2 , −v

)
(0, −v)

G(k) g1, g2, �g3 g1, g4, �g2 g1, g4, �g2

RepM : Hk·p R35, R34, R35 : H21 R35, R27, R8 : H26 R35, R34, R35 : H22

β g1, g3 g1, g2 g1, g2

LBCs in LG 15 in the TRS, SOC setting

k
(

1
2 , 0

) (
1
2 , − 1

2

) (
1
2 , −v

)
G(k) g1, g2, g3, g4, �g1 g1, g2, g3, g4, �g1 g1, g4, �g2

RepM : Hk·p R114, R97, R112, R92, R71 : H117 R114, R97, R112, R92, R71 : H117 R114, R113, R69 : H118

β g1 g1 g1, g2

(2 or 4), the integer for this k point is then underlined. See
Table SI578 in SM I [91] for an example, where three LBCs
can be found (the degeneracies are 2, 2, and 4, respectively):
In Table SI578 in SM I [91], the two twofold degenerate
LBCs share one common k · p model (namely, H56) while the
fourfold degenerate LBC owns the k · p model being H124;
thus, directly by the degeneracy of an LBC, the k · p model
can be uniquely determined (namely, H56 or H124 for LBCs
with degeneracy 2 or 4, respectively). Table V is expected to
speed up the materials searches since the existence of LBCs
can be inferred directly from the materials structure symme-
try without any realistic calculations, as we will demonstrate
in the materials investigation on a 2D materials database
(2DMatPedia) [40] in Sec. V. In SM I [91], we have also
printed the coordinate of the k point in red, blue, and green
to convey the same information as above.

IV. EXAMPLE: LBCS IN LG 15

Before an application to materials database investigation,
we take LG 15 with TRS as an example to demonstrate
how to use SM I [91] to quickly obtain all possible LBCs.
First, LG 15 owns a simple rectangle lattice, which can
be known by the Cartesian coordinates of the conventional
lattice basis vectors �a, �b, �c and the transformation matrix Acp

from �a, �b, �c to �a1, �a2, �a3 in the beginning of Sec. SI2.15
of SM I [91]. The representative operations of the
left coset, LG 15 with respect to the translation group
generated by �a1, �a2, �a3, are also listed there: g1 = (x, y, z),
g2 = (x + 1

2 ,−y,−z), g3 = (−x,−y,−z), g4 = ( 1
2 − x, y, z),

where g3 is the inversion operation, and thus the electronic

bands own Kramers degeneracy for all k points in the TRS,
SOC setting. Note that g2 is a screw operation, responsible
for the larger band degeneracy occurring in the BZ boundary
compared with that in the BZ interior. By Sec. SI2.15.c
and Sec. SI2.15.d of SM I [91], relevant for LBCs for the
TRS, NSOC and TRS, SOC settings, respectively, containing
several tables, each of which correspond to one (independent)
k point, we know all LBCs in LG 15 with TRS, as listed in
Table VI for the collection of all these tables.

By Table VI, we know that all possible k · p models for
the LBCs of LG 15 with TRS are H21 = qx(r1σ0 + r2σ3) +
r3qyσ1, H22 = qy(r1σ0+r2σ3) + r3qxσ2, H25 = r1qxσ2, H26 =
qx(r1σ1 + r2σ2) + r3qyσ0 and H117 = r1qyσ0σ2+qx(r2σ1σ1 +
r3σ2σ1 + r4σ3σ1), H118 = r1qyσ0σ0 + qx(r2σ1σ1 + r3σ1σ2 +
r4σ1σ3) + r6qyσ3σ0 (σ0, σ1, σ2, σ3 are four Pauli matrices,
r1, r2, . . . , r6 are all real parameters, which can be determined
by concrete materials structure, and σμσν means a direct
product σμ ⊗ σν ). Besides, all possible representation
matrices of little groups for LBCs of LG 15 with TRS
are R8 = −iσ2, R9 = −iσ1, R11 = −σ2, R27 = −iσ3, R34 =
σ3, R35 = σ0 and R69 = −iσ0σ2, R71 = −iσ2σ0, R92 =
σ0σ2, R97 = iσ0σ1, R112 = σ0σ3, R113 = σ3σ9, R114 = σ0σ0 (i
is the imaginary unit). Note that for all 2183 LBCs, there are
127 matrices in the form of Ri(i = 1, 2, . . . 127), provided in
Table SI1 of SM I [91]. Note that the LBC lying in the HSLs
can be composed of one coirrep or two different coirreps. In
SM I [91], for the HSL, we have printed the representation
matrices in cyan when the corresponding LBC contains only
one (co)irrep. For the LBCs of LG 15 with TRS, all the
LBCs in the HSLs listed in Table VI contain two coirreps
except the LBC in the HSL ( 1

2 ,−v) in the TRS, NSOC

205141-6



COMPREHENSIVE STUDY OF ALL SPINFUL AND … PHYSICAL REVIEW B 109, 205141 (2024)

FIG. 2. Work flow of predicting 2D materials with Weyl (Dirac) LBCs coexisting in both electronic and phononic band structures. Each of
the 6351 2D materials structures cataloged in 2DMatPedia can be assigned by an SG number by VASPKIT. There are 1707 structures whose
SGs belong to the 32 SGs, whose LGs necessarily host coexisting spinless and spinful LBCs. The last step is to quantitatively identify the
LBCs in the first-principles calculated electronic and phononic band structures, which require the structures to be standardized, namely, the
structures should be invariant upon the LG operations, as listed in SM I.

setting which contains only one coirrep (the k · p model
for this LBC is H26, whose nodal structure is qx = 0 along
the HSL while the rest of the LBCs in the HSLs are nodal
points since the nodal structures by the explicit k · p models,
H21, H22, and H118 are qx = 0, qy = 0). Note that the LBC
in the HSL composed of two different (co)irreps can also
be a nodal line. For example, there are six LBCs in HSL
(w, 0) in LG 39 in the TRS, NSOC setting, all composed
of two different (co)irreps, and the k · p models can be
H33 = r1qxσ0 + r2qyσ1 + r3qxσ3 or H51 = r1qxσ0 + r2qxσ3,
whose nodal structure is qx = 0, qy = 0 (a nodal point) or
qx = 0 (a nodal line perpendicular to this HSL), respectively.

V. MATERIALS INVESTIGATION

We then perform a materials investigation for 2D ma-
terials based on our results. The 6351 2D materials struc-
tures in 2DMatPedia [40] are used, of which around 50
structures have been experimentally synthesized. Note that
first-principles calculations on 2D materials usually adopt a
three-dimensional (3D) structure (with the length perpendicu-
lar to the 2D material set very large). The SG, rather than LG,
for the 3D structure, can be identified conveniently, for exam-
ple, by VASPKIT [97]. Though one SG might correspond to
two different LGs as shown in Table VII, it is interesting to
find that both LGs can necessarily host LBCs. Here we are
concerned with two types of necessarily existing LBCs: One
is for the necessarily coexisting spinful and spinless LBCs, de-
noted by green in Table VII, while the other is for necessarily
and only necessarily existing spinful LBCs, denoted by red in

Table VII. Note that necessarily and only necessarily existing
spinless LBCs cannot occur from our results.

Following the work flow shown in Fig. 2, we can obtain
1707 2D materials hosting coexisting LBCs in both electronic
and phononic band structures in one sweep: The 32 SGs
for the 37 LGs: LGs 5, 7, 9, 12, 15-17, 20, 21, 24, 25, 28-34,

36, 38-46, 48, 52, 54, 56, 58, 60, 62-64 as printed in green in
Table VII considering TRS are utilized. In a similar way, we
also obtain 3035 2D materials necessarily and only necessar-
ily hosting electronic LBCs, based on SGs for the LGs printed
in red in Table VII with TRS. All the 1707 and 3035 2D ma-
terials are provided in SM II [92]. We choose 66 2D materials
to demonstrate the coexisting electronic and phononic LBCs
by first-principles calculations and the results are displayed in
SM II [92]. In the following, we choose Zr2HBr2 in LG 15 to
illustrate. It is worth pointing out that the LBCs in these 2D
materials have been required to exist by structure symmetry,
without performing realistic calculations [98].

Zr2HBr2 in LG 15: Coexisting electronic Dirac point and
phononic Weyl nodal line

Zr2HBr2 is crystallized in LG 15 with a simple rectangle
lattice (the material ID in 2DMatPedia [40] is mp-642803),
and the first-principles calculated electronic and phononic
band structures are shown in Figs. 3(a) and 3(c), respectively.
The four HSPs are � = (0, 0), X = ( 1

2 , 0), S = ( 1
2 , 1

2 ), and
Y = (0, 1

2 ). By Table VI, we can know that X and S can host
Weyl LBC in the phononic bands and Dirac LBC in the elec-
tronic bands. Furthermore, according to Table V, these LBCs
at their HSPs exist necessarily, and the corresponding k · p
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FIG. 3. The electronic and phononic band structures of Zr2HBr2 in LG 15. In (a) and (c), the electronic and phoninic bands along high-
symmetry k paths are depicted, respectively, where the necessarily existing Dirac and Weyl LBCs are indicated by red and blue diamonds,
respectively. Around the LBCs inside the circles as shown in (a) and (c), we plot the low-energy band structures in (b) and (d), respectively:
�E (�ω) is defined to be the difference of energy (frequency) and that of the LBC. These low-energy band structures are consistent with the
k · p models: The LBCs in (a) are all Dirac nodal points, and the bands would split in any direction away from the LBCs. The LBCs in (c) lie
in nodal lines along XS. In addition, all the low-energy bands in (b) and (d) display an approximate particle-hole symmetry.

models can be uniquely determined simply by the degeneracy.
Concretely, the k · p models for the Weyl LBCs in X and S in
the phononic bands are all H25, while the k · p models for the
Dirac LBCs in X and S in the electronic bands are all H117.
By H117, the Dirac LBCs are nodal points in the electronic
bands, as shown in Fig. 3(b). By H25, the Weyl LBCs actually
lie in a nodal line qx = 0 along XS, as shown in Fig. 3(d).
The Weyl nodal line emanating from the Weyl LBC by H25

can also be anticipated by H26, which characterizes the k · p
models around all Weyl LBCs with XS based on Table VI.
Since LG 15 contains I symmetry (I: spatial inversion), the
Berry curvatures are all vanishing by �I throughout the BZ.
It can be expected to induce large Berry curvatures by ex-
ternal perturbations breaking �I symmetry starting from this
material.

To verify the correctness of the constructed k · p
model, we demonstrate the comparison of the energy
contours for the electronic band structures near the
Dirac points at X and S for Zr2HBr2. As shown in
Figs. 4(a) and 4(b), the energy contours are chosen
to be for �E = −0.01/ − 0.005/ − 0.001/ − 0.0005/ −
0.0001 eV and �E = 0.01/0.005/0.001/0.0005/0.0001 eV,

respectively, at X . �E denotes the energy difference of the en-
ergy and that for the Dirac point in the green circle [Fig. 3(a)].
We can find that the energy contours obtained by the k · p
model and from the first-principles results fit very well when
they are close to the Dirac point, but the deviation becomes
larger with increasing |�E |. In addition, for the Dirac point
[in the purple circle in Fig. 3(a)] at S, the energy contours
by the k · p model and from the first-principles results for all
the chosen values of �E fit very well. The different fitting
qualities of the band structures for the Dirac points at X and S
can be owed to the effect of higher order k · p terms. It is found
that adding k · p terms proportional to q2 indeed improves
the fitting quality of the energy contours for the Dirac points
around X for all chosen values of �E .

VI. METHOD

Based on the 1707 obtained 2D materials definitely host-
ing coexisting electronic and phononic LBCs, we first select
167 materials to perform first-principles calculations: The
number of atoms per unit cell should be � 10 and ma-
terials containing typical magnetic ions and materials with
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FIG. 4. Comparison of the electronic energy contours around the Dirac points in Fig. 3(a) [which are indicated by the green (purple)
circle] by the fitted k · p model at HSP X/S and by the first-principles calculations for Zr2HBr2. The k · p model for the Dirac point in X
or S is H117 = r1γ02(−qy ) + r2γ11qx + r3γ21qx + r4γ31qx , which contains four real parameters to be determined. For the Dirac point at X ,
the fitted parameters are found to be r1 = 0.1 eV, r2 = 0.814678 eV, r3 = 0.902539 eV, and r4 = 0.5922 eV. For the Dirac point at S, the
fitted parameters are r1 = 0.0021 eV, r2 = 1.518167 eV, r3 = 0.008725 eV, and r4 = 1.008725 eV. The energy contours are for different
values of �E , which is defined to be the difference of energy and that of the Dirac point: The energy contours for �E = −0.01/ − 0.005/ −
0.001/ − 0.0005/ − 0.0001 eV (the lower half in the figure) are shown in (a) and (c) for X and S, respectively. The energy contours for
�E = 0.01/0.005/0.001/0.0005/0.0001 eV (the upper half in the figure) are shown in (b) and (d) for X and S, respectively. In each panel, the
absolute value of �E gradually increases from the inside to the outside.

duplicate chemical formula are filtered out. We obtain 66
materials which have no imaginary frequencies or whose
imaginary frequencies are � 0.5 THz. The first-principles
calculation in this work is based on the density functional
theory implemented in the VIENNA AB-INITIO SIMULATION

PACKAGE (VASP) [99,100] using the projector augmented
wave method [101]. The generalized gradient approximation
[102] in the form of the Perdew-Burke-Enzerhof scheme is
adopted for the exchange and correlation functional [103].
The plane-wave energy cutoff is set to 1.5 times the default
cutoff energy in all calculations. For the self-consistent cal-
culation of the electronic ground state, the gamma-centered

Monkhorst-Pack scheme for BZ sampling is generated using
the VASPKIT package [97] with accuracy of 0.02 2π/Å. The
convergence criterion of the self-consistent calculation is set
at 10−8 eV. SOC is considered in the electronic calculations.
In the calculations of phonons, SOC is not included and the
PHONOPY package [104] is used to compute the phonon
spectra.

VII. CONCLUSION AND DISCUSSION

It is worth pointing out that though Refs. [82,86] have
already been concerned with the band crossings for the 528
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magnetic layer groups, we focus our attention on the LBCs
in the 80 LGs in the four settings, list all symmetry-related
LBCs and also adopted a different convention as adopted
in the Bilbao server, which has been adopted as the default
convention in many famous software [74,97,105]. By the
explicit k · p models around the LBCs, we also find all pos-
sible nodal structures and approximate chiral symmetries.
Several useful rules that guarantee the LBCs to appear as
shown in Tables V and VII are established. Different from
simply a group-theoretical classification in Refs. [82,86], we
perform material predictions for the LBCs in 2D materials by
first-principles calculations.

To conclude, we perform large-scale symmetry analysis on
all LBCs that can appear in the 80 LGs in four different sym-
metry settings with (without) TRS and in the spinless (spinful)
settings. All possible positions, including HSPs, HSLs, and
HSPLs are scanned to obtain a complete list of all LBCs in the
80 LGs. In total, we collect 2183 independent LBCs with 165
different k · p models. It is worth pointing out that, for any of
2183 LBCs, we provide all other symmetry-related LBCs and
their k · p models, suitable for the study of valley-related low-
energy physics. We also provide the representation matrices
for each LBC.

Other than tabulating all LBCs by the 80 LGs, we also
provide useful hints for materials searches. First, we highlight
k points necessarily hosting LBC and list LGs necessarily
hosting LBCs coexisting in the spinless and spinful settings.
Second, it is interesting to find that one can directly utilize
the information of SG for 2D material (SG can be obtained
by restoring the translation symmetry in the direction perpen-
dicular to the 2D material) to determine whether it necessarily
hosts spinful (spinless) LBCs, which is practically convenient
in the first-principles calculation.

Finally, the 17 wallpaper groups, namely, LGs 1, 3, 11–13,
23–26, 49, 55, 56, 65, 69, 70, 73, and 77, can characterize
symmetries of surfaces of three-dimensional crystals and 2D
materials grown on a substrate. The emergent Dirac wallpa-
per fermions have been proposed in Ref. [25], which can be
realized in surfaces owning the pgg or p4g wallpaper group
(LG 25 or LG 56, respectively) of topological crystalline
insulators, consistent with the Dirac LBCs for LGs 25 and
26 revealed in this paper. We expect the results in this work
can act as a basis for further exploration on the effects of
symmetry-breaking perturbation (e.g., the modification of the
topological character, the number of the symmetry-related
LBCs, and the band dispersion around the LBC) in a large-
scale way based on the 80 LGs.

ACKNOWLEDGMENTS

This paper was supported by the National Natural Science
Foundation of China (NSFC) under Grants No. 12188101, No.
12322404, No. 12104215, No. 11834006, the National Key
R&D Program of China (Grant No. 2022YFA1403601), and
Innovation Program for Quantum Science and Technology,
No. 2021ZD0301902. F.T. was also supported by the Young
Elite Scientists Sponsorship Program by the China Associ-
ation for Science and Technology. X.W. also acknowledges
support from the Tencent Foundation through the XPLORER
PRIZE.

205141-10



COMPREHENSIVE STUDY OF ALL SPINFUL AND … PHYSICAL REVIEW B 109, 205141 (2024)

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science
306, 666 (2004).

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[3] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral
tunnelling and the Klein paradox in graphene, Nat. Phys. 2,
620 (2006).

[4] C. Gutiérrez, L. Brown, C.-J. Kim, J. Park, and A. N.
Pasupathy, Klein tunnelling and electron trapping in
nanometre-scale graphene quantum dots, Nat. Phys. 12, 1069
(2016).

[5] Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Experimental
observation of the quantum Hall effect and Berry’s phase in
graphene, Nature (London) 438, 201 (2005).

[6] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L.
Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim,
and A. K. Geim, Room-temperature quantum Hall effect in
graphene, Science 315, 1379 (2007).

[7] F. D. M. Haldane, Model for a quantum Hall effect without
Landau Levels: Condensed-matter realization of the parity
anomaly, Phys. Rev. Lett. 61, 2015 (1988).

[8] M. Onoda and N. Nagaosa, Quantized anomalous Hall effect
in two-dimensional ferromagnets: Quantum Hall effect in met-
als, Phys. Rev. Lett. 90, 206601 (2003).

[9] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z.
Fang, Quantized anomalous Hall effect in magnetic topologi-
cal insulators, Science 329, 61 (2010).

[10] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo,
K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X.
Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang,
L. Lu, X.-C. Ma, and Q.-K. Xue, Experimental observation of
the quantum anomalous Hall effect in a magnetic topological
insulator, Science 340, 167 (2013).

[11] C. Wu, Orbital analogue of the quantum anomalous Hall effect
in p-band systems, Phys. Rev. Lett. 101, 186807 (2008).

[12] C. L. Kane and E. J. Mele, Z2 topological order and
the quantum spin Hall effect, Phys. Rev. Lett. 95, 146802
(2005).

[13] C. L. Kane and E. J. Mele, Quantum spin Hall effect in
graphene, Phys. Rev. Lett. 95, 226801 (2005).

[14] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[15] C.-C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect
in silicene and two-dimensional germanium, Phys. Rev. Lett.
107, 076802 (2011).

[16] X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect
in two-dimensional transition metal dichalcogenides, Science
346, 1344 (2014).

[17] A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter
and valley valve in graphene, Nat. Phys. 3, 172 (2007).

[18] D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in
graphene: magnetic moment and topological transport, Phys.
Rev. Lett. 99, 236809 (2007).

[19] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin
and valley physics in monolayers of MoS2 and other group-VI
dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).

[20] I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced
by Berry curvature dipole in time-reversal invariant materials,
Phys. Rev. Lett. 115, 216806 (2015).

[21] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-
R. Chang, A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu,
S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J.
Cava, E. Kaxiras, H.-Z. Lu, H. Lin, L. Fu, N. Gedik, and
P. Jarillo-Herrero, Observation of the nonlinear Hall effect
under time-reversal-symmetric conditions, Nature (London)
565, 337 (2019).

[22] Z. Z. Du, H.-Z. Lu, and X. C. Xie, Nonlinear Hall effects, Nat.
Rev. Phys. 3, 744 (2021).

[23] P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622
(1947).

[24] S. M. Young and C. L. Kane, Dirac semimetals in two dimen-
sions, Phys. Rev. Lett. 115, 126803 (2015).

[25] B. J. Wieder, B. Bradlyn, Z. Wang, J. Cano, Y. Kim, H.-S. D.
Kim, A. M. Rappe, C. L. Kane, and B. A. Bernevig, Wallpa-
per fermions and the nonsymmorphic Dirac insulator, Science
361, 246 (2018).

[26] C. Le, Z. Yang, F. Cui, A. P. Schnyder, and C.-K. Chiu,
Generalized fermion doubling theorems: Classification of two-
dimensional nodal systems in terms of wallpaper groups, Phys.
Rev. B 106, 045126 (2022).

[27] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional
atomic crystals, Proc. Natl. Acad. Sci. USA 102, 10451
(2005).

[28] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E.
Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and
G. Le Lay, Silicene: Compelling experimental evidence for
graphenelike two-dimensional silicon, Phys. Rev. Lett. 108,
155501 (2012).

[29] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L.
Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional
nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater.
23, 4248 (2011).

[30] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.-L.
Ma, H.-M. Cheng, and W. Ren, Large-area high-quality 2D
ultrathin Mo2C superconducting crystals, Nat. Mater. 14, 1135
(2015).

[31] K. H. Lee, H.-J. Shin, J. Lee, I.-Y. Lee, G.-H. Kim, J.-Y.
Choi, and S.-W. Kim, Large-scale synthesis of high-quality
hexagonal boron nitride nanosheets for large-area graphene
electronics, Nano Lett. 12, 714 (2012).

[32] Y.-L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S.
Feng, L. Chen, M.-L. Chen, D.-M. Sun, X.-Q. Chen, H.-M.
Cheng, and W. Ren, Chemical vapor deposition of layered
two-dimensional MoSi2N4 materials, Science 369, 670 (2020).

[33] Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J.
Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H.
Cobden, J.-H. Chu, and X. Xu, Two-dimensional itinerant
ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 17,
778 (2018).

[34] Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun,
Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and
Y. Zhang, Gate-tunable room-temperature ferromagnetism in
two-dimensional Fe3GeTe2, Nature (London) 563, 94 (2018).

[35] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein,
R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A.

205141-11

https://doi.org/10.1126/science.1102896
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys3806
https://doi.org/10.1038/nature04235
https://doi.org/10.1126/science.1137201
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.90.206601
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1234414
https://doi.org/10.1103/PhysRevLett.101.186807
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.1126/science.1256815
https://doi.org/10.1038/nphys547
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s42254-021-00359-6
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1126/science.aan2802
https://doi.org/10.1103/PhysRevB.106.045126
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1103/PhysRevLett.108.155501
https://doi.org/10.1002/adma.201102306
https://doi.org/10.1038/nmat4374
https://doi.org/10.1021/nl203635v
https://doi.org/10.1126/science.abb7023
https://doi.org/10.1038/s41563-018-0149-7
https://doi.org/10.1038/s41586-018-0626-9


WANG, HUANG, WAN, AND TANG PHYSICAL REVIEW B 109, 205141 (2024)

McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero,
and X. Xu, Layer-dependent ferromagnetism in a van der
Waals crystal down to the monolayer limit, Nature (London)
546, 270 (2017).

[36] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao,
C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia,
and X. Zhang, Discovery of intrinsic ferromagnetism in two-
dimensional van der Waals crystals, Nature (London) 546, 265
(2017).

[37] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R.
Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and M. Batzill,
Strong room-temperature ferromagnetism in VSe2 monolayers
on van der Waals substrates, Nat. Nanotechnol. 13, 289 (2018).

[38] J. Zhou, C. Zhu, Y. Zhou, J. Dong, P. Li, Z. Zhang, Z. Wang,
Y.-C. Lin, J. Shi, R. Zhang, Y. Zheng, H. Yu, B. Tang, F. Liu, L.
Wang, L. Liu, G.-B. Liu, W. Hu, Y. Gao, H. Yang, W. Gao, L.
Lu, Y. Wang, K. Suenaga, G. Liu, F. Ding, Y. Yao, and Z. Liu,
Composition and phase engineering of metal chalcogenides
and phosphorous chalcogenides, Nat. Mater. 22, 450 (2023).

[39] J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang,
Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H.
Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson,
Q. Liu, K. Suenaga, G. Liu, and Z. Liu, A library of atomically
thin metal chalcogenides, Nature (London) 556, 355 (2018).

[40] J. Zhou, L. Shen, M. D. Costa, K. A. Persson, S. P. Ong, P.
Huck, Y. Lu, X. Ma, Y. Chen, H. Tang, and Y. P. Feng, 2DMat-
Pedia, an open computational database of two-dimensional
materials from top-down and bottom-up approaches, Sci. Data
6, 86 (2019).

[41] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S
Schmidt, N. F Hinsche, M. N Gjerding, D. Torelli, P. M
Larsen, A. C Riis-Jensen, J. Gath, K. W Jacobsen, J. J.
Mortensen, T. Olsen, and K. S Thygesen, The Computa-
tional 2D Materials Database: High-throughput modeling and
discovery of atomically thin crystals, 2D Mater. 5, 042002
(2018).

[42] M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F.
Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H.
Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus,
M. K. Svendsen, J. J. Mortensen, T. Olsen, and K. S.
Thygesen, Recent progress of the computational 2D materials
database (C2DB), 2D Mater. 8, 044002 (2021).

[43] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys,
A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G.
Pizzi, and N. Marzari, Two-dimensional materials from
high-throughput computational exfoliation of experimentally
known compounds, Nat. Nanotechnol. 13, 246 (2018).

[44] D. Campi, N. Mounet, M. Gibertini, G. Pizzi, and N. Marzari,
Expansion of the materials cloud 2D database, ACS Nano 17,
11268 (2023).

[45] K. Choudhary, I. Kalish, R. Beams, and F. Tavazza,
High-throughput identification and characterization of two-
dimensional materials using density functional theory, Sci.
Rep. 7, 5179 (2017).

[46] K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost, A. J.
Biacchi, A. R. H. Walker, Z. Trautt, J. Hattrick-Simpers, A. G.
Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G.
Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang,
S. V. Kalinin, B. G. Sumpter, G. Pilania, P. Acar, S. Mandal, K.
Haule, D. Vanderbilt, K. Rabe, and F. Tavazza, The joint auto-

mated repository for various integrated simulations (JARVIS)
for data-driven materials design, npj Comput. Mater. 6, 173
(2020).

[47] A. K. Geim and I. V. Grigorieva, Van der Waals heterostruc-
tures, Nature (London) 499, 419 (2013).

[48] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[49] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[50] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene
superlattices, Nature (London) 556, 80 (2018).

[51] Y. Wu, D. Li, C.-L. Wu, H. Y. Hwang, and Y. Cui, Electrostatic
gating and intercalation in 2D materials, Nat. Rev. Mater. 8, 41
(2023).

[52] P. V. Nguyen, N. C. Teutsch, N. P. Wilson, J. Kahn, X. Xia,
A. J. Graham, V. Kandyba, A. Giampietri, A. Barinov, G. C.
Constantinescu, N. Yeung, N. D. M. Hine, X. Xu, D. H.
Cobden, and N. R. Wilson, Visualizing electrostatic gating
effects in two-dimensional heterostructures, Nature (London)
572, 220 (2019).

[53] J. Ji, G. Yu, C. Xu, and H. J. Xiang, General theory for bilayer
stacking ferroelectricity, Phys. Rev. Lett. 130, 146801 (2023).

[54] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological semimetal and Fermi-arc surface states in the
electronic structure of pyrochlore iridates, Phys. Rev. B 83,
205101 (2011).

[55] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern
semimetal and the quantized anomalous Hall effect in
HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011).

[56] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac semimetal in three dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[57] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,
X. Dai, and Z. Fang, Dirac semimetal and topological phase
transitions in A3Bi(A = Na, K, Rb), Phys. Rev. B 85, 195320
(2012).

[58] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-
dimensional Dirac semimetal and quantum transport in
Cd3As2, Phys. Rev. B 88, 125427 (2013).

[59] B.-J. Yang and N. Nagaosa, Classification of stable three-
dimensional Dirac semimetals with nontrivial topology, Nat.
Commun. 5, 4898 (2014).

[60] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig,
Hourglass fermions, Nature (London) 532, 189 (2016).

[61] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser,
R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl
fermions: Unconventional quasiparticles in conventional crys-
tals, Science 353, aaf5037 (2016).

[62] B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Double
dirac semimetals in three dimensions, Phys. Rev. Lett. 116,
186402 (2016).

[63] T. Zhang, Z. Song, A. Alexandradinata, H. Weng, C. Fang,
L. Lu, and Z. Fang, Double-Weyl phonons in transition-metal
monosilicides, Phys. Rev. Lett. 120, 016401 (2018).

205141-12

https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/s41565-018-0063-9
https://doi.org/10.1038/s41563-022-01291-5
https://doi.org/10.1038/s41586-018-0008-3
https://doi.org/10.1038/s41597-019-0097-3
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1088/2053-1583/ac1059
https://doi.org/10.1038/s41565-017-0035-5
https://doi.org/10.1021/acsnano.2c11510
https://doi.org/10.1038/s41598-017-05402-0
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1038/nature12385
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/s41578-022-00473-6
https://doi.org/10.1038/s41586-019-1402-1
https://doi.org/10.1103/PhysRevLett.130.146801
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1038/nature17410
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevLett.116.186402
https://doi.org/10.1103/PhysRevLett.120.016401


COMPREHENSIVE STUDY OF ALL SPINFUL AND … PHYSICAL REVIEW B 109, 205141 (2024)

[64] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple types of topologi-
cal fermions in transition metal silicides, Phys. Rev. Lett. 119,
206402 (2017).

[65] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M.
Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H.
Lin, and M. Z. Hasan, Unconventional chiral fermions and
large topological Fermi arcs in RhSi, Phys. Rev. Lett. 119,
206401 (2017).

[66] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[67] T. O. Wehling, A. M. Black-Schafferc, and A. V. Balatsky,
Dirac materials, Adv. Phys. 63, 1 (2014).

[68] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-based
indicators of band topology in the 230 space groups, Nat.
Commun. 8, 50 (2017).

[69] H. Watanabe, H. C. Po, and A. Vishwanath, Structure and
topology of band structures in the 1651 magnetic space
groups, Sci. Adv. 4, eaat8685 (2018).

[70] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[71] L. Elcoro, B. J. Wieder, Z. Song, Y. Xu, B. Bradlyn, and
B. A. Bernevig, Magnetic topological quantum chemistry, Nat.
Commun. 12, 5965 (2021).

[72] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-
J. Slager, Topological classification of crystalline insulators
through band structure combinatorics, Phys. Rev. X 7, 041069
(2017).

[73] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, The space
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