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Quantifying the accuracy of steady states obtained from the universal Lindblad equation
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We show that steady-state expectation values predicted by the universal Lindblad equation (ULE) are accurate
up to bounded corrections that scale linearly with the effective system-bath coupling � (second order in the
microscopic coupling). We also identify a near-identity, quasilocal “memory-dressing” transformation, used
during the derivation of the ULE, whose inverse can be applied to achieve relative deviations of observables that
generically scale to zero with �, even for nonequilibrium currents whose steady-state values themselves scale
to zero with �. This result provides a solution to recently identified limitations on the accuracy of Lindblad
equations, which highlighted a potential for significant relative errors in currents of conserved quantities.
The transformation we identify allows for high-fidelity computation of currents in the weak-coupling regime,
ensuring thermodynamic consistency and local conservation laws, while retaining the stability and physicality
of a Lindblad-form master equation.
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The theoretical description of open quantum systems is
an important problem in many fields of physics. While early
groundwork has been laid in the context of quantum optics
and physical chemistry [1–6], recent advances in the control
of complex quantum systems necessitate the development of
new theoretical techniques [7–20].

In this work we focus on the broadly relevant Markovian
regime which emerges for weak system-bath coupling relative
to the intrinsic energy scales of the baths. In this context, Lind-
blad equations play a key role by providing the most general
form of Markovian evolution that is guaranteed to preserve
the physicality of solutions [21,22]. Formulating incoherent
evolution in terms of randomly timed “quantum jumps,” Lind-
blad equations provide valuable physical insight and admit
stable and relatively efficient numerical solutions via stochas-
tic evolution of wave functions (rather than density matrices)
[23,24]. The latter feature allows Lindblad equations to be
solved for systems of greater complexity than accessible with
other approaches.

Historically, routes to deriving Lindblad equations from the
evolution of a system coupled with its environment have relied
on a rotating-wave approximation (RWA), which assumes the
spectral gaps of the system to be larger than any decoherence
rate [5,6]. While typically justified in the traditional contexts
of quantum optics, the RWA is often not valid for complex
quantum systems emerging in many fields of interest such
as hybrid quantum systems [25], nonequilibrium many-body
systems [26], and platforms for large-scale quantum simula-
tion and information processing [27,28].

Recently, several independent works have discovered
routes to circumvent the RWA [8,13–15,17,19,29], opening up
many of the problems above for efficient study with Lindblad
equations [8,10–12,29]. Particular applications include, e.g.,
bath-induced localization in driven many-body systems [30],
modeling of qubit readout experiments [31,32], and elucidat-
ing the conditions of validity for the Landau-Lifshitz-Gilbert

equation [33]. In this work, we focus on the “universal Lind-
blad equation” (ULE), which was derived in Ref. [14] with
rigorous bounds on approximation-induced errors; the bounds
are controlled by the product of a characteristic effective
system-bath coupling strength, � (which is second-order in
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FIG. 1. (a) We consider an open quantum system (gray) coupled
to one or more baths, such as, e.g., phonons/photons (purple/orange)
or particle reservoirs (red/blue). We distinguish generic observables,
S, such as particle or spin densities, from currents of conserved
quantities, I . (b) The expectation value of any observable O =
S and I generically converges to a unique value at long times,
〈O〉exact , regardless of initialization. (c) We show that the corre-
sponding steady-state value resulting from the universal Lindblad
equation (ULE), 〈O〉ULE, deviates from 〈O〉exact by a value that scales
to zero with the system-bath coupling �. In the limit � → 0, the
ULE hence accurately captures steady-state values that remain finite,
as occurs for generic observables S. For nonequilibrium currents I ,
whose steady-state values vanish in the limit � → 0, an accurate
steady-state value can be obtained from a “dressed” current I ′ that
results from applying a near-identity, quasilocal transformation to I
[Eqs. (10) and (12)].
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the microscopic system-bath coupling matrix elements), and
a bath correlation time, τ [see Eq. (6)].

In parallel with the advances above, several groups
have recently explored the nontrivial tradeoffs of studying
nonequilibrium quantum systems with Lindblad equations.
Even away from equilibrium, an open quantum system, e.g.,
as depicted in Fig. 1(a), generically converges to a unique
non-equilibrium steady state, as schematically depicted for
some given observable O by the dashed black curve in
Fig. 1(b). The authors of Ref. [34] showed that the steady
state of any Lindblad equation must deviate from the exact
steady state by a correction linear in the effective system-bath
coupling [the green curve in Fig. 1(b) depicts the flow of
〈O〉 predicted by the ULE]. While the steady state of a
Lindblad equation can approach the exact steady state in
the weak-coupling limit, nonequilibrium currents such as,
e.g., particle or heat currents, scale linearly with system-bath
coupling. Consequently, their relative deviations generically
remain finite as the coupling is taken to zero. This can lead
to apparent violations of the second law of thermodynamics
[8,19] and local conservation laws [34].

To enable further progress in the field, here we quantify the
fidelity of steady states resulting from the ULE and demon-
strate how the apparent inconsistencies above can be resolved.
In Sec. I we summarize our main results. In Sec. II we review
the problem addressed by our work: quantifying the accuracy
of steady states of the ULE. In Sec. III we revisit the derivation
and key features of the ULE relevant for the problem. In
Sec. IV we present our solution via rigorous bounds on the
deviations of observables computed with the ULE steady state
compared with those obtained from the exact steady state. In
Sec. V we demonstrate our results in numerical simulations
of magnon transport in a spin chain. We conclude with a
discussion in Sec. VI. Details of derivations and supplemental
data are provided in the Appendixes.

I. SUMMARY OF THE MAIN RESULTS

We report two main results, summarized in Fig. 1(c).
(i) We show that in the limit �τ → 0 the ULE faithfully

captures the steady-state values of generic observables in ab-
solute scale: for a generic observable, the steady-state value
predicted by the ULE deviates from the true steady-state value
by an amount that scales to zero with �τ [Eq. (15)].

(ii) We demonstrate that steady-state expectation values
with vanishing relative deviations in the limit �τ → 0 can be
obtained by applying the inverse of a quasilocal, near-identity
“memory-dressing” transformation that was employed to ob-
tain the ULE [14] [see Eqs. (10) and (12) below]. The
transformation only affects observables with support near re-
gions connected to baths. This result enables the computation
of accurate and thermodynamically consistent nonequilibrium
currents which obey local conservation laws. Our analysis is
supported by numerical simulations (Fig. 2).
Before embarking on the technical discussion, we offer a few
clarifying remarks about the nature of our results.

Firstly, we emphasize that the memory-dressing trans-
formation can be neglected for many applications: it is
only required for computing nonequilibrium currents (or
other quantities whose steady-state values vanish in the

FIG. 2. Bare and dressed steady-state bond currents in a nine-site
spin chain connected to two baths of unequal temperatures; see text
for model details. (a) The bare bond currents vary significantly from
site to site (blue bars), apparently violating current conservation. The
dressed currents (orange bars) are near uniform. Note the negligi-
ble effect of the memory-dressing transformation deep in the bulk.
(b) Scaling of the standard deviation of the bond currents in the
nine-site chain σI as a function of γ (crosses).

weak-coupling limit) with support close to points of contact
with baths. The transformation is not needed for quantities
with finite steady-state values in the weak-coupling limit, such
as, e.g., spin or occupancy distributions.

Secondly, our results establish that the ULE provides
significant practical advantages over the Bloch-Redfield equa-
tion (BRE), both with and without the memory-dressing
transformation: as a Lindblad equation, the ULE provides
a stable, positivity-preserving map for the evolution of an
open quantum system’s density matrix. The ULE can there-
fore be used to study evolution and steady states of open
quantum systems using stochastic wave-function evolution
approaches. Being computationally less costly than the den-
sity matrix evolution of the BRE, stochastic wave-function
evolution allows much more complex quantum systems to
be systematically studied [35], including many-body systems.
See, e.g., Refs. [30–33] for examples of applications.

After a steady state is computed from the ULE, the in-
verse of the memory-dressing transformation can be applied
if one needs to compute nonequilibrium currents near points
of contact with baths—otherwise, the transformation provides
a negligible correction to the steady-state value of the observ-
able in question. Applying the transformation has the same
computational complexity as evaluating the Bloch-Redfield
dissipator one time. While the memory-dressing transforma-
tion breaks the positivity of the density matrix, it does so
in a small and controlled way, bounded by �τ , which sys-
tematically brings associated observables closer to their true
values. Since the transformation is applied after the evolution,
the stability of the Lindblad evolution and applicability of
quantum trajectory approaches are therefore retained.

II. FORMULATION OF THE PROBLEM

We consider a quantum system with Hamiltonian HS ,
where one or more degrees of freedom {Xα} are coupled to
degrees of freedom in the surrounding environment, or “bath,”
{Bα}, such as, e.g., photonic or phononic modes, or creation or
annihilation operators of particles in attached reservoirs [see
Fig. 1(a)]. The environment can, e.g., consist of several baths
out of mutual equilibrium, where different subsets of {Bα}
act on distinct baths. The combined system has the following
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Hamiltonian,

HSB = HS + HB + √
γ

N∑
α=1

XαBα, (1)

where HB is the Hamiltonian of the bath, and we introduced
γ as a redundant energy scale parametrizing the system-bath
coupling strength. We take each Xα to have unit spectral norm
and take the environment to be in a state where each Bα has
an expectation value of 0 [36].

We consider the broadly relevant case where the envi-
ronment is Gaussian (e.g., comprised of free bosonic or
fermionic modes). A Gaussian environment is fully char-
acterized by its two-point correlation function Jαβ (t ) =
〈Bα (t )Bβ (0)〉, with Bα (t ) ≡ eiHBt Bαe−iHBt . Our discussion
considers two additional objects which equivalently encode
the properties of the environment: the bath spectral func-
tion Jαβ (ω) ≡ ∫

dt
2π

e−iωt Jαβ (t ), and the “jump correlator”
gαβ (t ) = ∫

dω e−iωt [
√

J (ω)/2π ]αβ , with
√· denoting the ma-

trix square root.
Observables of the system are determined by the reduced

density matrix

ρ(t ) = TrB[ρSB(t )]. (2)

Here ρSB(t ) denotes the exact density matrix of the com-
bined system, whose evolution is described by ∂tρSB(t ) =
−i[HSB, ρSB(t )]. For thermodynamically large environ-
ments, ρ(t ) generically goes to a unique steady state in the
long-time limit regardless of the initial state of the system, ρ0

[37]:

ρ̄exact ≡ lim
t→∞ ρ(t ). (3)

Away from equilibrium, ρ̄exact depends on the details of the
environment and the system-bath coupling. Such nonequilib-
rium steady states can be found by establishing approximate
equations of motion for ρ(t ) and seeking their steady-state
solutions.

In the regime where the effective system-bath coupling is
small relative to the inverse correlation time of the bath, it was
recently shown that the system’s evolution is well-described
by the ULE [14,15,29]:

∂tρ ≈ i[ρ, HS + HLS] +
N∑

α=1

(
LαρL†

α − 1

2
{L†

αLα, ρ}
)

, (4)

where Lα = ∑
mnβ [

√
2πγ J (Em − En)]αβ |m〉〈m|Xβ |n〉〈n|,

with HS |n〉 = En|n〉. The Hermitian Lamb shift HLS

effectively renormalizes HS ; its form is given in Ref. [14].
Our goal is to characterize the fidelity of the steady state of
the ULE,

ρ̄ULE ≡ lim
t→∞ eLULEt [ρ0]. (5)

Here LULE denotes the ULE Liouvillian, whose action on an
arbitrary density matrix ρ is given by the right-hand side of
Eq. (4). Note that LULE[ρ̄ULE] = 0.

III. REVIEW OF THE ULE

We first review the key features of the ULE [14].

A. Derivation of the ULE

The validity of the ULE is controlled by two timescales,
�−1 and τ , given by

� = 4γ

[∫ ∞

−∞
dt ‖g(t )‖2,1

]2

, τ =
∫ ∞
−∞ dt ‖g(t )t‖2,1∫ ∞
−∞ dt ‖g(t )‖2,1

, (6)

where ‖g‖2,1 ≡ ∑
β (

∑
α |gαβ |2)1/2. The rate � bounds the ex-

act rate of evolution induced by the bath: ‖∂tρ − i[ρ, HS]‖ �
�/2, where ‖ · ‖ denotes the trace norm [14,38]. The
timescale τ is a characteristic correlation time of the bath;
the dimensionless number �τ controls the approximations
involved in deriving the ULE (as well as the Bloch-Redfield
equation [13,14]).

To derive the ULE, starting from Eq. (2) we first expand
∂tρ to leading order in γ , yielding ∂tρ(t ) = LBR[ρ(t )] +
ξBR(t ) [4,13,14], where LBR denotes the Bloch-Redfield (BR)
Liouvillian [39]. The residual ξBR(t ) captures the difference
between the exact value of ∂tρ and that resulting from the
BR equation [14]. References [13,14] recently established that
‖ξBR(t )‖ � 2�2τ [38].

We obtain the ULE by transforming to a weakly “memory-
dressed” frame of operator space using a near-identity
quasilocal superoperator, V:

ρ ′ = V[ρ]. (7)

We provide an explicit expression for V in Eq. (10) below. By
design, V preserves the Hermiticity and trace of ρ, and satis-
fies −i[V,HS ] = LULE − LBR [14], where HS [ρ] ≡ [HS, ρ].
Evaluating ∂tρ

′(t ) gives

∂tρ
′(t ) = LULE[ρ ′(t )] + ξ (t ), (8)

where the residual ξ (t ) satisfies ‖ξ (t )‖ � 2�2τ [40]. The
ULE is obtained by neglecting ξ (t ), which is subleading in
�τ , since LULE consists of terms of order � and �0.

Reference [14] showed that ‖V − 1‖SO � �τ , where
‖A‖SO = supO ‖A[O]‖/‖O‖. As a result, ρ and ρ ′ nearly
coincide when �τ � 1:

‖ρ ′ − ρ‖ � �τ. (9)

Note that both ‖ρ − ρ ′‖ � 1 and ξ are negligible in the limit
�τ � 1. In this sense, the ULE is accurate when �τ � 1.

B. Memory-dressing transformation

The transformation to the memory-dressed frame V is
given by 1 + δV , with

δV[ρ] = γ

∫ ∞

−∞
dtdt ′[X̃α (t ), ρX̃β (t ′)] fαβ (t, t ′) + H.c., (10)

where X̃α (t ) = eiHS t Xαe−iHS t , the indices α and β are im-
plicitly summed over, and fαβ (t, t ′) ≡ ∑

λ

∫ ∞
−∞ ds g∗

αλ(t −
s)g∗

λβ (s − t ′)θ (t − t ′)[θ (t ) − θ (s)]. In Appendix A we pro-
vide alternative expressions for V in terms of the eigenstates
of HS and via an iterative expansion. Whereas the standard
Markov approximation made en route to the Bloch-Redfield
equation [6] amounts to approximating the density matrix as
constant within the brief window of nonzero bath correlations,
passing to the memory-dressed frame effectively incorporates
a more intricate averaging of the density matrix over the
window of decaying correlations in the bath.
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The memory frame transformation V can be shown to
induce O(�τ ) corrections to ρ and can thus typically be ig-
nored in the limit �τ � 1 [14]. However, the corrections are
relevant for observables whose steady-state values scale with
�, such as nonequilibrium currents. We demonstrate below
how to obtain negligible relative errors of these quantities by
applying the inverse of the memory-dressing transformation
to the ULE steady state, i.e., by computing their expectation
values with the operator V−1[ρ̄ULE]. Using ‖δV‖SO � �τ ,
Taylor expansion yields V−1 = 1 − δV + δ(2)V , where, for
�τ < 1, ‖δ(2)V‖SO � (�τ )2/(1 − �τ ).

Importantly, V only affects observables with support near
regions connected to baths: firstly, the integrand defining fαβ

below Eq. (10) is nonzero only for t > 0 and s < 0 and vice
versa. For a bath with a smooth spectral function (i.e., finite
memory), g(t ) decays to 0 for large t [14] with a characteristic
decay time τg. Hence, f (t, t ′) also decays with a characteristic
timescale of order τg for large |t | or |t ′|. Moreover, X̃α (t ) only
has support within a distance vLRt from the support of Xα ,
where vLR denotes the system’s Lieb-Robinson velocity. Thus,
V only significantly affects operators with support within a
distance of �V ∼ vLRτg from regions connected to baths.

IV. FIDELITY OF ULE STEADY-STATE OBSERVABLES

Here we bound the differences between the exact steady-
state value of a given observable and the steady-state values
resulting from the ULE with and without accounting for the
memory-dressing transformation. In the following, we use
〈O〉exact and 〈O〉ULE to denote expectation values of the ob-
servable O in the exact steady state and the ULE steady state,
respectively:

〈O〉exact ≡ Tr[ρ̄exactO], 〈O〉ULE ≡ Tr[ρ̄ULEO]. (11)

To facilitate the comparison, we first translate 〈O〉exact to
the memory-dressed frame via 〈O〉exact = Tr[O′ρ̄ ′

exact], where
ρ̄ ′

exact ≡ V[ρ̄exact] and [41]

O′ ≡ V−1†[O]. (12)

Next, by setting ∂tρ
′ = 0 in Eq. (8), note that

ρ̄ ′
exact = ρ̄ULE + L−1

ULE[ξ̄ ], (13)

where ξ̄ = limt→∞ ξ (t ); see Appendix B for derivation. Com-
bining these results with ‖ξ̄‖ � 2�2τ , we conclude

|〈O′〉ULE − 〈O〉exact| � CO�τ |〈O′〉ULE|, (14)

where CO ≡ 2�‖L†−1
ULE[O′ − 〈O′〉ULE]‖/|〈O′〉ULE|. Crucially,

as we show in Appendix C, CO is finite for generic O and re-
mains so as � → 0, including for currents whose steady-state
values scale to 0 with � [42]. Thus, the relative deviation of
〈O′〉ULE = Tr{V−1[ρ̄ULE]O} generically vanishes in the limit
�τ � 1.

The transformation to the memory-dressed frame can typ-
ically be neglected if O has a finite steady-state value in
the limit �τ � 1. Specifically, using Eq. (14) along with
|〈O′〉ULE − 〈O〉ULE| � �τ

1−�τ
‖O‖2 (where ‖ · ‖2 denotes the

maximal singular value norm) [43] gives

|〈O〉ULE − 〈O〉exact|�CO�τ |〈O〉ULE| + �τ +CO�2τ 2

1− �τ
‖O‖2.

(15)

The right-hand side of Eq. (15) scales to zero when �τ → 0,
implying that the absolute deviation of 〈O〉ULE vanishes in
this limit. The magnitude of the correction from the memory-
dressing transformation (second term above) moreover decays
to 0 with the distance from O to the bath, over the charac-
teristic scale �V , due to the quasilocality of V . Thus, in the
weak-coupling limit, the correction from V is only relevant if
limγ→0 O = 0 and O has support within a distance �V from
regions connected to baths.

Equations (14) and (15) are our main results. Equa-
tion (15) demonstrates that steady-state expectation values of
observables computed from the ULE have vanishing absolute
deviations from their exact counterparts in the weak-coupling
limit. Equation (14) shows that ULE steady-state observables
are guaranteed to have vanishing relative deviations when
the transformation to the memory-dressed frame is accounted
for by using the memory-dressed observable 〈O′〉ULE =
Tr[ρ̄ULEO′], rather than the bare observable 〈O〉ULE =
Tr[ρ̄ULEO]. We emphasize that the bounds in Eqs. (14) and
(15) are loose, and we define “worst-case” deviations. We
expect that actual deviations can often be much smaller.

V. NUMERICAL DEMONSTRATION

We demonstrate our results in simulations of magnon
transport in a spin chain. We consider a chain of nine sites
with the Hamiltonian HS = ∑8

n=1 g(σ x
n σ x

n+1 + σ
y
n σ

y
n+1 +

�σ z
nσ z

n+1) + ∑9
n=1 hnσ

z
n , where σα

n is the α = {x, y, z}
Pauli operator on spin n; the same model was studied
in Ref. [34]. We couple σ x

1 and σ x
9 to two Gaussian

baths through the terms
√

γ σ x
1 B1 + √

γ σ x
9 B2. The baths

are Ohmic, with temperatures T1 and T2. The bath

spectral function reads Jαβ (ω) = δαβ
ωe−ω2/�2

ω0
nB(ω/kBTα ),

with δαβ being the Kronecker delta, ω0 a normalizing
frequency, � a high-frequency cutoff, nB the Bose-Einstein
distribution, and kB the Boltzmann constant. We simulate
the model with kBT1 = g, kBT2 = 6g, � = 1.4g, � = 8g, and
hn = 2

3 (n − 5)g, describing a uniform field gradient.
The system’s spectrum, {Em − En}, has mean adjacent-

value spacing 4.9 × 10−5g, while the mean decay rate
prescribed by Fermi’s golden rule is given by 2πγ

D

∑D
n,m=1

[J1(En − Em)|〈n|σ x
1 |m〉|2 + J2(En − Em)|〈n|σ x

9 |m〉|2] ≈ 23γ ,
where D = 29 is the system’s Hilbert space dimension. The
commonly used Davies equation [5,44] (based on the RWA)
is thus expected to be valid when γ � 2.2 × 10−6g. On the
other hand, explicit calculation shows �τ ≈ 31γ /g, implying
that the approximations leading to the ULE are justified when
γ � 0.03g.

Microscopically, the magnon current on the bond from site
n to site n + 1 is given by In+1,n = (4igσ+

n+1σ
−
n + H.c.). Since

the exact evolution of the combined system yields ∂tσ
z
n =

In,n−1 − In+1,n for 1 < n < 9, 〈In,n+1〉exact must be uniform
throughout the system. On the other hand, 〈In+1,n〉ULE may be
nonuniform near the baths, because the quasilocal Lamb shift
and jump operators of the ULE modify the equation of mo-
tion for σ z

n (t ). Nontrivially, Eq. (14) predicts that the dressed
bond currents, 〈I ′

n,n+1〉ULE, are homogeneous throughout the
system, up to relative deviations that scale to 0 with γ . This
feature thus serves as a consistency check of our analysis and
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an indicator of the fidelity of the bond currents obtained with
the ULE [45].

Figure 2(a) shows the steady state values of {〈I ′
n+1,n〉ULE}

and {〈In+1,n〉ULE} [46], obtained for γ = 10−3g. Near-identical
data are found for all probed values of γ smaller than 10−2g.
Evidently, the bare currents exhibit significant nonuniformi-
ties near the ends of the chain, while the dressed currents are
nearly uniform. These deviation are consistent with expected
subleading O(γ 2) corrections: in Fig. 2(b), we show the γ

scaling of the standard deviations of the bare and dressed
currents. While the standard deviation of the bare currents
scales linearly with γ , that of the dressed currents scales
quadratically with γ . Deep in the bulk, the bare and dressed
bond currents in Fig. 2(a) are near identical, indicating that the
memory-dressing transformation only affects observables in
vicinities of baths. In Appendix D we provide data confirming
that the memory-dressing transformation is not needed to ac-
curately capture the expectation values of {σ z

n }, which remain
finite when γ → 0.

We finally bound the deviation of the magnon current
predicted by the ULE via Eq. (14). We obtain CI1,2 ≈ 1300
for multiple values of γ between 10−5g and 10−2g (indicat-
ing that limγ→0 CI1,2 is finite), and �τ ≈ 31γ /g. Hence the
current predicted by the ULE is guaranteed to be accurate
(have a relative deviation much smaller than 1) when γ �
2.5 × 10−5g. We expect 〈I ′

1,2〉ULE to be accurate for values of
γ above this rigorous, but loose, bound: the standard deviation
of the dressed bond currents is of the order of 1% even for
γ ≈ 10−2g [see Fig. 2(b)], suggesting that the corrected ULE
observables may remain accurate up to this value.

VI. DISCUSSION

In this work, we established upper bounds on the steady-
state deviations of observables computed from the ULE.
Our analysis revealed two results: (i) We demonstrated that
the ULE yields accurate steady-state values of observables
in the weak-coupling limit, in absolute terms, and (ii) we
showed that accurate steady-state values in relative terms
can be achieved by applying a near-identity, quasilocal
memory-dressing transformation to the observables in ques-
tion [Eqs. (7)–(10)]. The transformation is only needed for
currentlike observables with support close to regions con-
nected to baths.

Even for situations where the memory-dressing transfor-
mation is needed, the advantageous characteristics of the
ULE remain intact. The transformation is only applied after
evolving the system with the ULE until it reaches its steady
state. When applied, the transformation only induces a small,
bounded correction to the state or observables. As a result, the
procedure remains stable and solvable with stochastic evolu-
tion methods (and is hence parallelizable and efficient). The
residual deviations are comparable to those expected for the
BRE, while avoiding the potential instabilities of the BRE and
enabling the use of efficient computational schemes as men-
tioned above (see, e.g., Ref. [47], where extensive benchmark-
ing was recently performed for a dissipative harmonic oscilla-
tor, albeit without the memory-dressing transformation.)

Our results facilitate accurate computation of nonequi-
librium currents in the weak-coupling limit via Lindblad

equations, ensuring thermodynamic consistency and local
conservation laws. Thereby, we demonstrated how to over-
come the fundamental limitations intrinsic to any Lindblad
equation that were pointed out in Refs. [19,34].

Important future directions will be to obtain tighter er-
ror bounds and to extend the proven regime of validity
of the ULE, e.g., by formulating conditions in terms of
the spectral range of the system [15]. Other interesting
directions involve extending our bounds on steady-state de-
viations to driven quantum systems and exploring routes
to computing nonequilibrium currents which circumvent the
memory-dressing transformation. More broadly, our results
enable systematic studies of mixed coherent and incoherent
evolution in complex quantum systems, relevant, e.g., for
characterizing coherences in noisy devices for quantum infor-
mation processing.
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APPENDIX A: EXPRESSIONS FOR V

Here we provide an explicit expression for the superopera-
tor δV which enters in the memory-dressing transformation.
We first show how δV in Eq. (10) is obtained from the
corresponding expression given in Ref. [14]. Subsequently
(for cases with time-independent Hamiltonians) we provide
complementary expressions for δV in terms of the eigenbasis
of the Hamiltonian (Sec. A 1) and in terms of an iterative
expansion using nested commutators with the Hamiltonian
(Sec. A 2). The latter expression may be used in cases where
diagonalization of the Hamiltonian is not feasible.

Reference [14] defines the dressing transformation in the
interaction picture, i.e., in the rotating frame where the state of
the system is given by ρ̃(t ) = e−iHS tρ(t )eiHS t . In this frame,
the transformation is given by Ṽ (t ) = 1 + δṼ (t ), where the
action of δṼ (t ) on a generic Hermitian operator O is given by
[48]

δṼ (t )[O] =
∫ ∞

−∞
da

∫ ∞

−∞
db [θ (a − t ) − θ (b − t )]

× G(a, b)[ρ]. (A1)
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Here G(a, b) is a superoperator:

G(a, b)[O] = −γ

∫ a

−∞
dc g∗(a − b)g∗(b − c)

× [X̃ (a),OX̃ (c)] + H.c. (A2)

Thus, we may write

δṼ (t )[O] = γ

∫ ∞

−∞
da

∫ ∞

−∞
dc [X̃ (a),OX̃ (c)]

× f (a − t, c − t ) + H.c., (A3)

with

f (t, t ′) ≡
∫ ∞

−∞
db g∗(t − b)g∗(b − t ′)θ (b − t ′)[θ (t ) − θ (b)].

(A4)

[See below Eq. (10) in the main text.] When HS is time
independent, the Schrödinger picture version of δṼ can be ob-
tained by setting t = 0: δV = δṼ (0). Doing this above yields
the result quoted in Eq. (10).

1. Expression for V in energy eigenbasis

When HS is time independent we can conveniently
express V in terms of the energy eigenbasis: writ-
ing X̃ (t ) = ∑

mn Xmne−iωmnt , where ωmn = Em − En, Xmn ≡
|m〉〈m|X |n〉〈n|, and HS |n〉 = En|n〉 gives us

δV[O] =
∑

m,n,k,l

[Xmn,OX †
kl ]cmn;kl + H.c., (A5)

with cmn;kl = 4π2 f (−ωmn, ωkl ). Here f (ω,ω′) =
1

4π2

∫ ∞
−∞ dt

∫ ∞
−∞ dt ′eiωt eiω′t ′

f (t, t ′) denotes the Fourier
transform of f (t, t ′). A straightforward evaluation of the
Fourier transform yields

cmn;kl = 2πγ

∫ ∞

−∞
dq

g(q)[g(q) − g(q + ωmn − ωkl )]

(ωmn − ωkl )(q − ωmn − i0+)
, (A6)

where, for ωmn = ωkl , the integrand should be evaluated using
L’Hospital’s rule.

2. Expression of V in terms of commutator expansion

In cases where diagonalization of the Hamiltonian is not
feasible, V can be computed using an iterative series ex-
pansion akin to the one provided for the jump operator
in Ref. [14]. We review this expansion for the case of a
single bath and a time-independent Hamiltonian, while not-
ing that our results can be extended to multiple baths and
time-dependent Hamiltonians. Our first step is to write an
expansion for the interaction picture operator X̃ (t ):

X̃ (t ) =
∞∑

n=0

X (n)t n

n!
+ H.c., X (n) = −i[HS , X (n−1)]. (A7)

Here X (n) is the operator obtained from X after n commutation
operations with −iHS , where we define X (0) ≡ X . Using this
expression in the definition of V [Eq. (10) of the main text]

yields

V[O] = γ

∞∑
m,n=0

[X (m),OX (n)]Kmn + H.c.,

Kmn ≡ 1

m!n!

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′ f (t, t ′)tmt ′n. (A8)

Referring back to Eq. (A1) with t set to zero (to obtain
V in the Schrödinger picture), and noting that G(a, b) decays
to 0 with |a|, |b|, we see that V itself can be computed with
a temporal cutoff with an error that goes to 0 as the cutoff is
increased. For any finite value of the cutoff, the corresponding
integrals in Eq. (A8) are finite, and the sum converges. The
coefficients {Kmn} are inexpensive to compute and depend
only on the bath jump correlator (but not on any details of the
system). Thus the expression in Eq. (A1) provides a viable
way to calculate V to good accuracy for systems where exact
diagonalization is not feasible.

APPENDIX B: RELATIONSHIP BETWEEN ρ̄ULE AND ρ̄′
exact

Here we establish that ρ̄ ′
exact = ρ̄ULE − L−1

ULE[ξ̄ ], as quoted
in Eq. (13) in the main text. As our starting point, we write a
formal solution of Eq. (8) of the main text as

ρ ′(t ) = eLULEt [ρ ′(0)] +
∫ t

0
ds eLULE (t−s)[ξ (s)]. (B1)

We obtain the exact steady state of the system (in the
memory-dressed frame) by taking the t → ∞ limit above:
limt→∞ ρ ′(t ) = ρ̄ ′

exact.
To compute the t → ∞ limit on the right-hand side, we

consider the eigendecomposition of LULE. Due to its Lindblad
form and our assumption of a unique steady state, the super-
operator LULE has a single vanishing eigenvalue, while all
other eigenvalues have strictly negative real parts. The left and
right eigenvectors corresponding to the vanishing eigenvalue
are the identity operator and ρ̄ULE, respectively. In particular,
the definition of ρ̄ULE implies LULE[ρ̄ULE] = 0, resulting in

lim
t→∞ eLULEt [O] = Tr[O] ρ̄ULE. (B2)

Since Tr[ρ ′] = 1, we thus conclude limt→∞ eLULEt [ρ ′(0)] =
ρ̄ULE. On the other hand, Eq. (8) of the main text implies
that Tr[ξ (t )] = 0; hence, eLULE (t−s)[ξ (s)] must decay exponen-
tially with t − s. Taking the limit t → ∞ in Eq. (B1) hence
gives

ρ̄ ′
exact = ρ̄ULE − L−1

ULE[ξ̄ ], (B3)

where L−1
ULE[ξ̄ ] ≡ − ∫ ∞

0 ds eLULEsξ̄ is finite because ξ̄ is trace-
less. This is the result we wished to establish.

APPENDIX C: SCALING OF CO

Here we show that the dimensionless constant CO [first
appearing in Eq. (14) of the main text] is generically finite in
the limit � → 0. To this end, we recall the definition of CO:

CO = 2�‖L†−1
ULE[O′ − 〈O′〉ULE]‖

|〈Ō′〉ULE| . (C1)

205140-6



QUANTIFYING THE ACCURACY OF STEADY STATES … PHYSICAL REVIEW B 109, 205140 (2024)

In the following, we use �(�n) to indicate quantities that scale
as �n in the limit of small �. Likewise, we use O(�n) to
indicate quantities that scale as �n or slower in the same limit.
Our goal is to show that CO = O(�0) for generic operators O.

We first consider the case O = S where 〈S〉ULE is nonzero
in the limit � → 0. Since we assume the system to have
a unique steady state, L†

ULE has a single vanishing eigen-
value with corresponding left eigenvector ρ̄ULE; all other
eigenvalues either scale as �(�) or �(�0). Thus, for any
(�-independent) operator M that is orthogonal to ρ̄ULE (in
the sense of the Hilbert-Schmidt inner product), we infer that
L†−1

ULE[M] = O(�−1). Since S′ − 〈S′〉ULE by definition has
zero expectation value in the ULE steady state and is hence
orthogonal to ρ̄ULE, we have L†−1

ULE[S′ − 〈S′〉ULE] = O(�−1).
Using this in Eq. (C1), we conclude that CS = O(�0) for
observables with finite expectation values in the limit � → 0,
i.e., with lim�→0 〈S′〉ULE �= 0.

Next, we consider the case O = I , where I has a vanish-
ing steady-state value in the limit � → 0. Since lim�→0 ρ̄ ′
is diagonal in the eigenbasis of the Hamiltonian [14], there
are two classes of operators for which lim�→0 〈O′〉ULE = 0:
the first class are operators whose diagonal matrix elements
vanish in the eigenbasis of HS . The second class of operators
are those that have nonzero diagonal elements in the eigen-
basis of HS , but whose combination of diagonal elements
nevertheless causes O to be orthogonal to ρ̄ULE. For the latter
class of operators, CO can be infinite. However, the vanishing
steady-state value of these operators requires fine-tuning of
the system and bath parameters—the operator will generically
acquire nonzero steady-state values under perturbations of the
bath parameters (such as temperature or chemical potential)
or system-bath coupling. We hence expect this case to be
nongeneric.

Operators whose diagonal matrix elements vanish in the
eigenbasis of the Hamiltonian include many physically rel-
evant quantities, such as the total currents of conserved
quantities and, in cases of Hamiltonians with time-reversal
symmetry, current densities. For this class of operators, we
can write

I = −i[HS , Q], (C2)

for some finite operator Q [49]. The magnon current In+1,n for
the spin chain we consider in the main text can, for example,
be written in the form above with Q = ∑n

k=1 σ z
k (i.e., with Q

measuring the total z component of spin on sites 1, . . . , n). We
now use the above property to infer the scaling behavior of CI .

First, we rewrite Eq. (C2) as I = L†
ULE[Q] − D†

ULE[Q],
where DULE denotes the bath-induced component of the ULE
Liouvillian (including the Lamb shift). Writing V†−1[I] =
I + ( 1

1+δV† − 1)[I], and using I ′ = V†−1[I], we thus have

I ′ = L†
ULE[Q] + R, (C3)

with

R = −D†
ULE[Q] +

(
1

1 + δV†
− 1

)
[I]. (C4)

We now note that LULE[ρ̄ULE] = 0, implying
Tr(ρ̄ULEL†

ULE[Q]) = 0. Using this relation with Eq. (C3)

(a)

FIG. 3. Steady-state values of the undressed ({〈σ z
n 〉ULE}, blue)

and dressed ({〈σ z
n

′〉ULE}, orange) on-site magnetizations in the spin-
chain model considered in the main text.

and the definition 〈I ′〉ULE = Tr[ρ̄ULE
1

1+δV† I], we find

〈I ′〉ULE = Tr[ρ̄ULER]. (C5)

To infer the scaling behavior of R, we first use D†
ULE[Q] =

�(�) [14]. Moreover, since ‖δV‖ � �τ , we have ((1 +
δV†)−1 − 1)[I] = �(�). Thus R = �(�), implying

〈I ′〉ULE = �(�). (C6)

This demonstrates that lim�→0〈Ā〉 = 0 for operators with van-
ishing diagonal matrix elements in the eigenbasis of HS , as we
inferred above.

We now show that L†−1[I ′ − 〈I ′〉ULE] = �(�0) for oper-
ators that can be written in the form in Eq. (C2). Using
Eq. (C3), we first note that

L†−1
ULE[I ′ − 〈I ′〉ULE] = Q + L†−1

ULE[R − 〈I ′〉ULE]. (C7)

To analyze the second term on the right-hand side of this
expression, we note two important facts. First, since 〈I ′〉ULE =
Tr[ρ̄ULER] [see Eq. (C5)], R − 〈I ′〉ULE is orthogonal to ρ̄ULE.
Moreover, according to the discussion above, R − 〈I ′〉ULE =
�(�). Therefore, L†−1

ULE[R − 〈I ′〉ULE] = �(�0). Using Q =
�(�0), we find

‖L†−1[I ′ − 〈I ′〉ULE]‖ = �(�0). (C8)

Combining this with 〈Ī ′〉ULE = �(�) in Eq. (C1), we conclude
CI is finite in the limit � → 0.

APPENDIX D: STEADY-STATE VALUE
OF MAGNETIZATION

Here we provide data for the steady-state values of magne-
tization on each site, {σ z

n }, for the nine-site spin-chain model
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considered in the main text. In Fig. 3 we show the steady-state
values of the magnetization obtained with (orange) and with-
out (blue) applying the correction from the memory-dressing
transformation, 〈σ z

n
′〉ULE and 〈σ z

n 〉ULE, respectively. As for the
computation of the bond current in the main text, we apply the

inverse memory-dressing transformation through expansion to
first order, setting V−1 ≈ (1 − δV ) to compute 〈σ z

n
′〉ULE. The

two data sets coincide up to negligible relative corrections, as
we expected due to the finite value of 〈σ z

n 〉ULE in the weak-
coupling limit (see main text).
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