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Recent studies on the interplay between band topology and the layer degree of freedom provide an effective
way to realize exotic topological phases. Here we systematically study the C6- and C3-symmetric higher-order
topological phases in bilayer spinless tight-binding lattice models. For concreteness, we consider bilayer
phononic crystals as the realizations of these models. We find that for mirror-symmetric-stacking bilayer
lattices the interlayer couplings control the emergence and disappearance of the topological bound states in the
continuum where we consider the corner states as possible bound states in the bulk continuum. For the bilayer
phononic crystals formed by two different lattices with identical symmetry, the band topology is determined by
both the band topology of each layer as well as their mutual couplings. The bilayer phononic crystals experience
various topological phase transitions when the interlayer couplings are gradually increased. Our paper reveals the
rich physics and topological phases emerging in bilayer lattice systems that can be used to engineer interesting
phenomena and topological effects.
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I. INTRODUCTION

Exploring topological phases in phononic systems gives
birth to the field of topological phononics [1–6]. Benefit-
ing from flexibility and scalability in design and fabrication,
phononic crystals provide a powerful and versatile plat-
form to realize various topological phases, which in turn
largely enrich the manipulation of the acoustic and elastic
waves. Recently, the discovery of higher-order topological
phases has largely expanded the classification of the topo-
logical phases of matters [7]. In contrast to the conventional
topology, higher-order topology manifests itself in multidi-
mensional topological boundary states (such as edge and
corner states) beyond the conventional bulk-boundary cor-
respondence [7]. Various higher-order topological phases,
including quadruple topological insulators [8–11], octupole
topological insulators [12,13], Wannier-type higher-order
topological insulators [14–26], and higher-order Weyl and
Dirac semimetals [27–32], have been theoretically proposed
and experimentally demonstrated to host wave localization in
multidimensional boundaries. For example, two-dimensional
higher-order acoustic topological insulators with both gapped
edge states and in-gap corner states offer an unprecedented
way to realize simultaneous wave localization at the edges

*xiongzhan@zjnu.edu.cn
†wanghaixiao@nbu.edu.cn
‡jianhuajiang@suda.edu.cn

and corners in a dimensional hierarchy manner, which may
find potential applications on topological routing of acoustic
waves.

On the other hand, there has been growing interest in intro-
ducing the layer degree of freedom to topological phononics,
which likely give rise to richer topological phases. The layer
degree of freedom with tunable interlayer couplings provides
an efficient tool to design phononic states. For example,
the layer-stacking approach offers a scheme to enrich the
spatial symmetry, which plays a key role in the design of
three-dimensional acoustic topological insulators with Dirac
hierarchy [33–37], and higher-order Weyl and Dirac semimet-
als [27–32]. Furthermore, the combination of the layer and
valley degrees of freedom gives rise to a rich topological
phase diagram, as shown in honeycomb phononic crystals
[38–42]. In Lieb lattice phononic crystals, an acoustic spin-
Chern insulator is proposed by introducing a layer degree
of freedom with the proper interlayer coupling [43,44], in
which the layer plays the role of the pseudospin degree of
freedom. Very recently, it was reported that layer-stacked
structures with mirror symmetry provide a useful approach to
turn the boundary states of any topological monolayer model
into topological bound states in the continuum [45,46]. To
date, the interplay between the layer degree of freedom and
the higher-order topological phases, however, remains largely
unexplored, especially for bilayer structures.

To fill this gap, we systematically study the bilayer
phononic crystals consisting of either identical or distinct
monolayers with higher-order band topology. For instance,
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FIG. 1. (a) Bilayer phononic crystals (with mirror symmetry) formed by stacking two identical monolayers h3c. (b) Mirror-stacked bilayer
phononic crystals supporting two different topological bound states in the continuum. (c) Bilayer phononic crystals (without mirror symmetry)
formed by stacking two distinct monolayers h2b and h3c. (d) Stacked bilayer phononic crystal formed by monolayers h2b and h3c, of which the
phase transition is triggered by tuning interlayer couplings.

taking the monolayer with C6 symmetry into consideration,
there are two categories of C6-symmetric higher-order topo-
logical insulators, labeled as h(6)

2b and h(6)
3c , which are classified

according to the Wannier centers of the bands below the gap
[47]. When two identical monolayers, e.g., h(6)

3c and h(6)
3c , are

stacked together, a bilayer structure with mirror symmetry
forms [see Fig. 1(a)]. Remarkably, the presence of mirror
symmetry enables a classification of the states into two sub-
spaces according to their mirror eigenvalues, i.e., even or
odd. By tuning the interlayer couplings, the topological bound
states in the even subspace can be tuned into the bulk contin-
uum of the odd subspace, giving rise to the topological bound
states in continuum [see sketch in Fig. 1(b)]. On the other
hand, by stacking two distinct monolayers, e.g., h(6)

3c and h(6)
2b ,

bilayer structure without mirror symmetry can be formed [see
Fig. 1(c)]. In this case, by tuning the interlayer coupling, the
band structure of the bilayer phononic crystal undergoes the
process of band hybridization and reorganization, leading to
unique topological transitions and the emergence of higher-
order topological phases [see the sketched in Fig. 1(d)].

For convenience, we divide the bilayer phononic crystals
into two types, according to the symmetry of layer stack-
ing. The first type is the mirror-stacked bilayer phononic
crystals that consist of two identical monolayer phononic
crystals. The second type is the heterogeneous-stacked bilayer
phononic crystals that consist of two monolayer phononic
crystals with distinct structure and band topology. In the fol-
lowing sections, we will elaborate on the properties of these
two types of bilayer phononic crystals. We pay special at-
tention to the role of the interlayer couplings, the symmetry
and band topology, as well as the topological bound states.
Specifically, in Sec. II we study the mirror-stacked bilayer
phononic crystals and the topological bound states in the bulk

continuum. In Sec. III we discuss the heterogeneous-stacked
bilayer phononic crystals and their band topology as well as
the topological corner states. We conclude and discuss all the
results as a whole in Sec. IV. In all calculations, we use the
commercial finite-element software COMSOL MULTIPHYSICS to
obtain the phononic dispersions and eigenstates.

II. MIRROR-STACKED BILAYER PHONONIC CRYSTALS

In this section, we focus our attention on the mirror-stacked
bilayer phononic crystals and their physical results. Through-
out this paper, the phononic crystals are made of cavity-tube
structures. Physically, the cavity resonators mimic atomic or-
bitals and the narrow tubes introduce hoppings between them.
Hence, cavity-tube structure-based phononic crystals provide
an ideal platform to mimic the corresponding tight-binding
models.

A. C6-symmetric mirror-stacked bilayer phononic crystals
formed by Wu-Hu’s lattice (h(6)

3c and h(6)
3c )

As a starting point, we utilize two-dimensional sixfold (C6)
rotation symmetric phononic crystals as a monolayer to work
on. As shown in Fig. 2(a), the lattice constant is a = 62 mm.
The intracell and intercell couplings are realized by the air
tubes with a diameter d1 = 2.0 mm and d2 = 4.2 mm, respec-
tively. Note that such a C6-symmetric lattice with nontrivial
band topology was first proposed in Ref. [48] (denoted as
Wu-Hu’s lattice), and has been extensively studied in the lit-
erature. Next, we constructed mirror-stacked bilayer phononic
crystals by stacking the monolayer phononic crystals along z
direction with distance h2 = 9.5 mm [Fig. 2(b)]. By tuning
the diameter d3 of the connecting air tube, the interlayer
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FIG. 2. (a) Schematic of monolayer phononic crystals with h(6)
3c configuration. Inset: The side view of the primitive cell. (b) Mirror-stacked

bilayer phononic crystals formed by two identical monolayers with h(6)
3c configuration. (c) Band structure of monolayer phononic crystals.

(d) Band structure of the mirror-stacked bilayer phononic crystals formed by two identical monolayers with h(6)
3c configuration.

coupling can be finely controlled. To characterize the band
topology, we employ the topological crystalline index [47],
which can be expressed by the full sets of the crystalline sym-
metry eigenvalues at high-symmetry points. The basic idea is
to compare the rotation eigenvalues at various high-symmetry
points with a reference point (the � point). If the eigenvalues
change at these high-symmetry points, then the bands are of
nontrivial topology. For instance, the Cn rotation eigenvalues
of the valence bands at a high-symmetry point � are defined
as �(n)

p = ei2π (p−1)/n with p ranges from 1 to n. By utilizing
the Cn symmetry eigenvalues at the high-symmetry point �

compared to the reference high-symmetry point �, an integer
topological index can be defined as follows:

[
�(n)

p

] = #�(n)
p − #�(n)

p , (1)

where #�(n)
p (#�(n)

p ) refers to the number of bands below the
band gap with the Cn symmetry eigenvalue �(n)

p (�(n)
p ) at the

� (�) point. Note that some of the topological indices are
mutually dependent due to physical constraints. According to
Ref. [47], the minimum set of indices that describe the band
topology of the C6 crystalline insulator is given by

χ (6) = ([
M (2)

1

]
,
[
K (3)

1

])
. (2)

For the monolayer phononic crystal, it is seen that there
are a total of six acoustic bands, and a complete band gap
separates them into two groups [Fig. 2(c)]. The calculated
topological indices of the monolayer phononic crystal are

χ (6) = (2, 0), indicating that it is of nontrivial topological
property. In the view of the Wannier configuration, the Wan-
nier centers of the lowest three bands are located at positions
c, c′, and c′′, respectively [also see the green hexagon in
Fig. 2(a)]. For convenience, we use the notation h(n)

mW to char-
acterize the monolayer phononic crystals with Cn symmetric
with m filled bands and with Wannier centers at the maximal
Wyckoff position W . Hence, the monolayer phononic crystals
in Figs. 2(a) and 2(c) are termed as h(6)

3c . Note that such a
Wannier configuration leads to a “fractional corner charge” of
1
2 , which is determined by the topological indices of the bulk
bands as [47]

Q(6) = 1
4

[
M (2)

1

] + 1
6

[
K (3)

1

]
mod 1. (3)

For the mirror-stacked bilayer phononic crystals with h(6)
3c

[Fig. 2(d)], it is seen that there are 12 bands, which according
to their mirror parities can be divided into two sets. The blue
(red) bandset refers to the bands with even (odd) mirror parity.
Obviously, there exists an energy offset between two bandsets
due to the interlayer coupling, and the band structure of each
bandset is identical to that of the monolayer phononic crys-
tal. Interestingly, the calculated topological indices (fractional
corner charge) of the mirror-stacked bilayer phononic crystals
are χ (6) = (4, 0) (Q(6) = 0), which can be regarded as the
summation of topological indices (fractional corner charge)
of two independent monolayer phononic crystals.
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FIG. 3. (a) The eigenspectrum of mirror-stacked bilayer phononic crystals vs the diameter d3 of the connecting air tubes. (b)–(d) The band
structure of the mirror-stacked bilayer phononic crystals with diameter of the connecting air tubes (b) d3 = 1.2 mm, (c) d3 = 3.0 mm, and
(d) d3 = 5.0 mm. (e)–(g) The corresponding eigenspectrum of the mirror-stacked bilayer phononic crystals in (b)–(d), where the blue and red
points refer to the acoustic states with even and odd mirror parities, respectively.

The mirror-stacked bilayer phononic crystals inherit the
original band topology of the monolayer, which, in this case,
is a higher-order topological phase. It is predicted that the
corner states can move continuously into and out of the two-
dimensional bulk continuum of opposite parity by tuning the
interlayer couplings, which leads to the appearance and dis-
appearance of the topological bound states in the continuum.
To this end, we plot the energy spectra of the finite-sized
mirror-stacked bilayer phononic crystals versus the diameter
d3 of the connecting air tube in Fig. 3(a). The shadow light
blue (red) area and the blue (red) line refer to the bulk (edge)
and corner states of mirror-stacked bilayer phononic crystals
with even (odd) parity, respectively. For each subspace, it is
clearly seen that the corner states emerge as the manifestation
of the higher-order band topology. Remarkably, since those
energetically degenerate bound and continuum states (see the
overlapped areas) belong to the subspaces of different parties,
hence, hybridization cannot occur between them and yield the
formation of the topological bound states in the continuum.
It is observed that the corner states (bound states) with odd
parity emerge in the bulk states (continuum) with even parity
when d3 ranges from 3.0 to 4.5 mm, while the corner states
(bound states) with even parity emerge in the bulk states (con-
tinuum) with odd parity when d3 ranges from 1.2 to 4.0 mm.

To verify it, Figs. 3(b)–3(d) display the band structures
of the mirror-stacked bilayer phononic crystals with h(6)

3c
configuration, as well as the topological indices, with d3 =
1.2, 3.0, 5.0 mm, respectively. As expected, accompanying
the increase of the interlayer couplings, the band offset be-
tween the bandsets with even and odd mirror parities widens,
and the bandset with odd (even) mirror parity move upwards
(downwards). Despite the disappearance and appearance of
the band gap during the band evolution, we note that the
total topological indices of mirror-stacked bilayer phononic
crystals remain unchanged since the topologies of the bands
with different parities do not interact with each other. Accord-
ingly, we further present the eigenspectrum of the finite-sized

mirror-stacked bilayer phononic crystals in Figs. 3(e)–3(g).
Note that the eigenstates with even and odd mirror parities
are separately plotted, as indicated by the blue and red points.
It is seen that due to the lack of the chiral symmetry, the
corner states are no longer pinned at the center of the bulk gap.
As shown in Fig. 3(e), when d3 = 1.2 mm, the frequency of
corner states with even parity enters into the frequency range
of the edge states with odd parity, yielding the bound states in
the edge. Meanwhile, the frequency of the corner state with
odd parity is in the frequency gap of the bandset with even
parity. The corresponding acoustic field patterns of two typical
frequencies f1 = 4687 Hz and f2 = 4708 Hz, the topological
bound states of which in the continuum at f1 are highlighted
by the dashed box, can be visualized in Fig. 4(a). For the
case of d3 = 3.0 mm in Fig. 3(f), the frequency of the corner
states with even (odd) parities move to the frequency range of
bulk states with odd (even) parity, yielding the two topolog-
ical bound states in the continuum, which can be visualized
more clearly in Fig. 4(b). Further increasing d3 to 5.0 mm
[see Fig. 3(g)], the corner states with even (odd) parity move
away from the frequency range of the bandset with odd (even)
parity. Hence, only topological corner states are observed for
a given frequency [see the acoustic field patterns of the corner
states with even and odd parities in Fig. 4(c)]. We remark
that the mirror-stacking approach provides a universal way to
realize topological bound states in the continuum, which have
been revealed in Ref. [45].

B. C6-symmetric mirror-stacked bilayer phononic crystals
formed by a hexagonal lattice (h(6)

2b and h(6)
2b )

We then proceed to discuss the mirror-stacked bilayer
phononic crystals formed by stacking two identical mono-
layer phononic crystals with h(6)

2b configuration. As shown in
Fig. 5(a), the unit cell indicated by the green hexagon consists
of six cavity resonators, in which the cavity resonators are
placed at the middle point of the line from the corners to
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FIG. 4. (a)–(c) The corresponding acoustic pressure field patterns of mirror-stacked bilayer phononic crystals with (a) d3 = 1.2 mm at
frequencies of f1 = 4687 Hz and f2 = 4708 Hz, (b) d3 = 3.0 mm at frequencies of f1 = 4663 Hz and f2 = 4818 Hz, and (c) d3 = 5.0 mm,
at frequencies of f1 = 4629 Hz and f2 = 4951 Hz, respectively. The topological bound states in the continuum can be visualized from those
acoustic pressure field patterns in the dashed boxes.

the center of the unit cell. For simplicity, we denote it as the
hexagonal lattice. Note that the topological property of the
hexagonal lattice is different from that of Wu-Hu’s lattice in
spite of the similarity in the lattice configurations. To illustrate
it, we keep all the geometric parameters of the monolayer

phononic crystals in hexagonal lattice configuration the same
as that in Wu-Hu’s lattice configuration, namely, H = 38 mm
and D = 16 mm, d1 = 2.0 mm and d2 = 4.2 mm. The band
structure is depicted in Fig. 5(c). It is seen that there are only
two bands below the gap in the hexagonal lattice, which is

FIG. 5. (a) Schematic of monolayer phononic crystals in the configuration of a hexagonal lattice. Inset: The side view of the primitive cell.
(b) The mirror-stacked bilayer phononic crystals formed by two identical monolayers in hexagonal lattice configuration. (c) Band structure of
monolayer phononic crystals. (d) Band structure of the mirror-stacked bilayer phononic crystals formed by two identical monolayer phononic
crystals in hexagonal lattice configuration.
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FIG. 6. (a) The eigenspectrum of mirror-stacked bilayer phononic crystals vs the interlayer coupling d3. (b)–(d) The band structure of
mirror-stacked bilayer phononic crystals with interlayer coupling (b) d3 = 1.2 mm, (c) d3 = 3.9 mm, and (d) d3 = 5.0 mm. (e)–(g) The
corresponding eigenspectrum of the mirror-stacked bilayer phononic crystals in (b)–(d), where the blue and red points refer to the acoustic
states with even and odd mirror parities, respectively.

different from that in Wu-Hu’s lattice configuration. More-
over, the topological indices of the first band gap give χ (6) =
(0, 2), indicating that such a complete band gap is of a
nontrivial topological nature. In the view of the Wannier con-
figuration, the Wannier centers of the lowest two bands are
located at positions b and b′, respectively [also see the green
hexagon in Fig. 5(a)]. According to Eq. (3), the calculated
fractional corner charge arising from the filling anomaly is
Q(6) = 1

3 .
Next, we constructed mirror-stacked bilayer phononic

crystals by stacking the monolayer phononic crystals
in hexagonal lattice configuration along the z direction
[Fig. 5(b)]. The radii of the connecting tubes are the same
as in Fig. 2(b). As shown in Fig. 5(d), it is seen that there
are 12 bands, which according to their mirror parities can
be divided into two sets. The blue (red) bandset refers to the
bands with even (odd) mirror parity. Obviously, the interlayer
coupling results in the splitting of the bands with odd and even
parities. On the other hand, we notice that the calculated topo-
logical indices (fractional corner charge) of the mirror-stacked
bilayer phononic crystals are χ (6) = (0, 4) (Q(6) = 2

3 ), which
equal to the summation of topological indices (fractional cor-
ner charge) of the monolayer phononic crystals in hexagonal
lattice configuration.

Owing to the higher-order band topology in the monolayer
configured with h(6)

2b , it is evident that each layer structure
with finite size supports six corner states in the gap. Hence,
when two monolayers in hexagonal lattice configuration are
placed together via mirror-stacking approach, it is expected
that each layer of mirror-stacked bilayer phononic crystals
hosts corner states inheriting higher-order band topology of
the monolayer. Similar to the bulk band with specific mir-
ror parity, 12 corner states in the gap are reorganized into
two groups according to the mirror parities. Therefore, it is
possible that the corner states can move continuously into
and out of the two-dimensional bulk continuum of opposite
parity by tuning the interlayer couplings, which results in the

appearance and disappearance of the topological bound states
in the continuum.

To this end, we plot the energy spectra of the finite-sized
mirror-stacked bilayer phononic crystals versus the diameter
d3 of the connecting air tube in Fig. 6(a). The shadow light
blue (red) area and blue (red) line refer to the bulk (edge)
and corner states of mirror-stacked bilayer phononic crystals
with even (odd) parity, respectively. For each subspace, it is
clearly seen that corner states emerge as the manifestation of
the higher-order band topology. Specifically, for the diameter
d3 ranges from 2.0 mm (1.2 mm) to 4.2 mm (4.4 mm), the
frequency of the corner states with odd (even) parity falls
into the frequency windows of the bulk states with even
(odd) parity, giving rise to the topological bound states in the
continuum. Since those energetically degenerate bound and
continuum states belong to the subspaces of different parties,
hence, hybridization cannot occur between them and yield the
formation of the topological bound states in the continuum.

Moreover, Figs. 6(b)–6(d) display the band structures of
the mirror-stacked bilayer phononic crystals formed by two
hexagonal lattices with diameters d3 = 1.2, 3.9, 5.0 mm, re-
spectively. As expected, the band offset between the bandsets
with even and odd mirror parities widens, and the bandset
with odd (even) mirror parity moves upwards (downwards)
accompanying the increase of the interlayer couplings. In spite
of the gap closing and reopening during the band evolution,
we remark that the summation of the topological indices
remains unchanged owing to the fact that the topologies of
two identical monolayer phononic crystals are the same but
independent from each other. Accordingly, we present the
eigenspectrum of finite-sized mirror-stacked bilayer phononic
crystals in Figs. 6(e)–6(g). Note that the eigenstates with even
and odd mirror parities are separately plotted, as indicated
by the blue and red points. It is seen that due to the lack of
the chiral symmetry the corner states are no longer pinned at
the center of the bulk gap. As shown in Fig. 6(e), when d3 =
1.2 mm, the frequency of corner states with even parity enters
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FIG. 7. (a)–(c) The corresponding acoustic pressure field pattern of mirror-stacked bilayer phononic crystals with (a) d3 = 1.2 mm at
frequencies of f1 = 4670 Hz and f2 = 4690 Hz, (b) d3 = 3.9 mm at frequencies of f1 = 4635 Hz and f2 = 4838 Hz, and (c) d3 = 5.0 mm
at frequencies of f1 = 4612 Hz and f2 = 4932 Hz, respectively. The topological bound states in the continuum can be visualized from those
acoustic pressure field patterns in the dashed boxes.

into the frequency range of the edge states with odd parity,
yielding the bound states in the edge [also see the correspond-
ing acoustic field pattern at a frequency of f1 = 4670 Hz in
the dashed box of Fig. 7(a)]. Meanwhile, the frequency of the
corner states with odd parity is in the frequency gap of the
bandset with even parity [also see the corresponding acoustic
field pattern at a frequency of f1 = 4690 Hz in Fig. 7(a)]. For
the case of d3 = 3.9 mm in Fig. 6(f), the frequency of the
corner states with even (odd) parities, namely, f1 = 4635 Hz
( f2 = 4838 Hz), falls into the frequency range of bulk states
with odd (even) parity, yielding the topological bound states in
the continuum, which can be visualized more clearly from the
acoustic field patterns in the dashed box in Fig. 7(b). Further
increasing d3 to 5.0 mm [see Fig. 6(g)], the frequency of the
corner states with even (odd) parity, namely, f1 = 4612 Hz
( f2 = 4932 Hz), is in the frequency gap of the bandset with
odd (even) parity [see the acoustic field pattern of the corner
states with even and odd parities in Fig. 7(c)]. It is believed
that the mirror-stacking approach provides a universal way to
realize topological bound states in the continuum.

C. C3-symmetric mirror-stacked bilayer phononic crystals
formed by an upward kagome lattice (h(3)

1b and h(3)
1b )

Following the above procedures, we move to discuss
mirror-stacked bilayer phononic crystals formed by stacking
monolayer phononic crystals with C3 symmetry. We first dis-
cuss the mirror-stacked bilayer phononic crystals formed by
stacking two identical monolayers in kagome lattice config-
uration. As shown in Fig. 8(a), each unit cell is made up by
three cavity resonators, which are aligned with upward trian-
gular shape. For simplicity, we denoted as upward kagome
lattice. The geometric parameters of the unit cell are as fol-
lows: the diameter of the connecting air tube within the unit
cell is d1 = 2.4 mm, and that between two nearby unit cells
is d2 = 4.6 mm. The height and diameter of the individual
cavity are h1 = 38 mm and D = 20 mm. The band structure
of the monolayer phononic crystal in upward kagome lattice
configuration in Fig. 8(c) shows that there is only a single
band below the band gap. We further characterize the band

topology by utilizing the topological crystalline index. The
minimum set of indices that describe the band topology of
the C3-symmetric crystalline insulator is given by [47]

χ (3) = ([
K (3)

1

]
,
[
K (3)

2

])
. (4)

The calculated topological indices of the monolayer phononic
crystal in upward kagome lattice configuration are χ (3) =
(1,−1), indicating that it is of nontrivial topology. In the view
of the Wannier configuration, the Wannier center of the lowest
band is located at position b [also see the green hexagon in
Fig. 8(a)]. Hence, such a monolayer is of h(3)

1b configuration.
Note that such a Wannier configuration leads to a fractional
corner charge of 2

3 , which is determined by the topological
indices of the bulk bands as [47]

Q(3) = 1
3

[
K (3)

2

]
mod 1. (5)

By stacking the monolayer phononic crystals along the z
direction, as depicted in Fig. 8(b), a C3-symmetric mirror-
stacked bilayer phononic crystals form. The diameter of the
connecting tube between two layers is given by d3, which
is originally set as 1.2 mm. Figure 8(d) depicts the band
structure of the C3-symmetric mirror-stacked bilayer phononic
crystals. It is seen that there are six bands, which according
to their mirror parities can be divided into two sets. The blue
(red) bandset refers to the bands with even (odd) mirror parity.
Obviously, the interlayer coupling results in the splitting of the
bands with odd and even parities. The calculated topological
indices of the first gap give χ (3) = (2,−2), which are the
summation of topological indices of two identical monolayer
phononic crystals. Accordingly, the fractional corner charge
gives 1

3 .
Owing to the higher-order band topology in the monolayer

phononic crystals, it is evident that each layer structure with
finite size supports three corner states in the gap. When two
monolayer phononic crystals are placed together via mirror-
stacking approach, each layer also hosts corner states that
inherit higher-order band topology of the monolayer. Similar
to the bulk band with specific mirror parity, six corner states
in the gap are reorganized into two groups according to their
mirror parities. Therefore, it is possible that the corner states
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FIG. 8. (a) Schematic of monolayer phononic crystals with h(3)
1b configuration. Inset: The side view of the unit cell. (b) The mirror-stacked

bilayer phononic crystals formed by two identical monolayer phononic crystals configured with h(3)
1b configuration. (c) Band structure of

monolayer phononic crystals. (d) Band structure of the mirror-stacked bilayer phononic crystals with h(3)
1b configuration.

can move continuously into and out of the two-dimensional
bulk continuum of opposite parity by tuning the interlayer
couplings, which contribute topological bound states in the
continuum.

To this end, we plot the energy spectra of the finite-sized
mirror-stacked bilayer phononic crystals made up by mono-
layer phononic crystals configured with the upward kagome
lattice versus the diameter of the interlayer connecting air
tubes in Fig. 9(a). The shadow light blue (red) area and
blue (red) line refer to the bulk (edge) and corner states of
mirror-stacked bilayer phononic crystals with even (odd) par-
ity, respectively. For each subspace, it is clearly seen that the
corner states emerge as the manifestation of the higher-order
band topology. Moreover, the corner states with odd (even)
parity fall into the frequency windows of the bulk states with
even (odd) parity when the diameter d3 ranges from 1.2 mm
(2.0 mm) to 4.6 mm (4.2 mm). Remarkably, since those en-
ergetically degenerate bound and continuum states (see the
overlapped areas) belong to the subspaces of different parties,
hence, hybridization cannot occur between them and yield the
formation of the topological bound states in the continuum.

To verify it, Figs. 9(b)–9(d) display the band structures
of the mirror-stacked bilayer phononic crystals with various
diameters d3 = 1.2, 3.6, 5.0 mm, respectively. As expected,
the band offset between the bandsets with even and odd mirror
parities widens, and the bandset with odd (even) mirror par-
ity moves upwards (downwards) accompanying the increase

of the interlayer couplings. Accordingly, we further present
the eigenspectrum of mirror-stacked bilayer phononic crys-
tals with finite-sized systems in Figs. 9(e)–9(g). Note that
the eigenstates with even and odd mirror parities are sepa-
rately plotted, as indicated by the blue and red points. It is
seen that due to the lack of the chiral symmetry the corner
states are no longer pinned at the center of the bulk gap. As
shown in Fig. 9(e), when d3 = 1.2 mm, the corner states at
a frequency of f2 = 4547 Hz with odd parity enter into the
frequency range of the edge states with even parity, yielding
the bound states in the edge. Meanwhile, the frequency of
the corner state at a frequency of f1 = 4531 Hz with even
parity is in the frequency gap of the bandset with odd parity.
The corresponding acoustic field patterns can be visualized
in Fig. 10(a). For d3 = 3.6 mm in Fig. 9(f), the corner states
at a frequency of f1 = 4514 Hz ( f2 = 4624 Hz) with even
(odd) parities move to the frequency range of bulk states with
odd (even) parity, yielding the topological bound states in
the continuum, which can be visualized more clearly in the
dashed boxes in Fig. 10(b). Further increasing d3 to 5.0 mm
[see the eigenspectrum in Fig. 9(g)], the corner states at a
frequency of f1 = 4496 Hz ( f2 = 4702 Hz) with even (odd)
parity move away from the frequency windows of the bandset
with odd (even) parity, leading to the disappearance of the
topological bound states in the continuum [see the acoustic
field pattern of the corner states with even and odd parities in
Fig. 10(c)].
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FIG. 9. (a) The eigenspectrum of mirror-stacked bilayer phononic crystals vs the diameter d3 of the layer connecting tubes. (b)–(d) The
band structure of the mirror-stacked bilayer phononic crystals with the diameter d3 of the layer connecting tubes (b) d3 = 1.2 mm, (c) d3 =
3.6 mm, and (d) d3 = 5.0 mm. (e)–(g) The corresponding eigenspectrum of the mirror-stacked bilayer phononic crystals in (b)–(d), where the
blue and red points refer to the acoustic states with even and odd mirror parities, respectively.

D. C3-symmetric mirror-stacked bilayer phononic crystals
formed by a downward kagome lattice (h(3)

1c and h(3)
1c )

It is noteworthy that there exists another C3-symmetric
lattice. As shown in Fig. 11(a), each unit cell is made
up by three cavity resonators, which are aligned with
downward triangular shape. For simplicity, we denote
it as the downward kagome lattice. Note that the ge-
ometric parameters of monolayer phononic crystals in
downward kagome lattice configuration are the same as those
of the upward kagome lattice. Hence, it is evident that the
monolayer phononic crystals in downward kagome lattice
configuration share the same band structure with that of
the upward kagome lattice, which is depicted in Fig. 11(c).
Nevertheless, we also remark that the topological indices of

monolayer phononic crystals in downward kagome lattice
configuration are χ (3) = (1, 0), which are different from those
of the upward kagome lattice. In view of the Wannier config-
uration, the Wannier center of the lowest band is located at
position c [also see the green hexagon in Fig. 11(a)]. Hence,
the monolayer with downward kagome lattice is of h(3)

1c con-
figuration. Accordingly, the fractional corner charge arising
from the filling anomaly via Eq. (5) is zero.

Next, we further construct C3-symmetric mirror-stacked
bilayer phononic crystals by stacking two identical monolayer
phononic crystals in downward kagome lattice configuration,
as indicated in Fig. 11(b). The diameter of the connecting
air tube between two layers is given by d3. Figure 11(d) de-
picts the band structure of the mirror-stacked bilayer phononic

FIG. 10. (a)–(c) The corresponding acoustic pressure field pattern of mirror-stacked bilayer phononic crystals with (a) d3 = 1.2 mm at
frequencies of f1 = 4531 Hz and f2 = 4547 Hz, (b) d3 = 3.6 mm at frequencies of f1 = 4514 Hz and f2 = 4624 Hz, and (c) d3 = 5.0 mm,
at frequencies of f1 = 4496 Hz and f2 = 4702 Hz, respectively. The topological bound states in the continuum can be visualized from those
acoustic pressure field patterns in the boxes.
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FIG. 11. (a) Schematic of monolayer phononic crystals in downward kagome lattice configuration. Inset: The side view of the primitive
cell. (b) The mirror-stacked bilayer phononic crystals formed by two identical monolayers’ phononic crystals. (c) Band structure of monolayer
phononic crystals. (d) Band structure of the C3-symmetric mirror-stacked bilayer phononic crystals in downward kagome lattice configuration.

crystals. As expected, they share the identical band structure
of the monolayer and mirror-stacked bilayer phononic crystals
with h1b configuration. It is seen that there are six bands,
which according to their mirror parities, can be divided into
two sets. The blue (red) bandset refers to the bands with
even (odd) mirror parity. Obviously, the interlayer coupling
results in the splitting of the bands with odd and even pari-
ties. The calculated topological indices of the first gap give
χ (3) = (2, 0), which are the summation of topological indices
of two identical monolayer phononic crystals, while the filling
anomaly of the Wannier configuration results in zero frac-
tional corner charge.

Owing to the higher-order band topology in the monolayer,
it is evident that each layer structure with finite size supports
three corner states in the gap. When two monolayers are
placed together via mirror-stacking approach, each layer also
hosts corner states that inherit higher-order band topology of
the monolayer. Similar to the bulk band with specific mirror
parity, six corner states in the gap are reorganized into two
groups according to the mirror parities. Therefore, it is possi-
ble that the corner states can move continuously into and out
of the two-dimensional bulk continuum of opposite parity by
tuning the interlayer couplings, which contribute topological
bound states in the continuum.

To this end, we plot the energy spectra of finite-sized
mirror-stacked bilayer phononic crystals versus the diameter
d3 of the interlayer connecting air tube in Fig. 12(a). The
shadow light blue (red) area and the blue (red) line refer to

the bulk (edge) and corner states of mirror-stacked bilayer
phononic crystals with even (odd) parity, respectively. For
each subspace, it is clearly seen that a corner state emerges
as the manifestation of the higher-order band topology. More-
over, the corner states with odd (even) parity fall into the
frequency windows of the bulk states with even (odd) par-
ity when the diameter d3 ranges from 1.2 mm (1.6 mm) to
3.8 mm (5.0 mm). Remarkably, since those energetically de-
generate bound and continuum states (see the overlapped
areas) belong to the subspaces of different parties, hence,
hybridization cannot occur between them and yielding the
formation of the topological bound states in the continuum.

To verify it, Figs. 12(b)–12(d) display the band structures
of the mirror-stacked bilayer phononic crystals with various
diameters d3 = 1.2, 3.6, 5.0 mm, respectively. As expected,
the band offset between the bandset with even and odd mirror
parities widens, and the bandset with odd (even) mirror parity
moves upwards (downwards) accompanying the increase of
the interlayer couplings. Accordingly, we further present the
eigenspectrum of finite-sized mirror-stacked bilayer phononic
crystals in Figs. 12(e)–12(g). Note that the eigenstates with
even and odd mirror parities are separately plotted, as indi-
cated by the blue and red points. It is seen that due to the
lack of the chiral symmetry, the corner states are no longer
pinned at the center of the bulk gap. As shown in Fig. 12(e),
when d3 = 1.2 mm, the corner states at a frequency of f2 =
4600 Hz with odd parity fall into the frequency range of the
bulk states with even parity, yielding the bound states in the
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FIG. 12. (a) The eigenspectrum of mirror-stacked bilayer phononic crystals vs the interlayer coupling d3. (b)–(d) The band structure of
the mirror-stacked bilayer phononic crystals with interlayer coupling (b) d3 = 1.2 mm, (c) d3 = 3.6 mm, and (d) d3 = 5.0 mm. (e)–(g) The
corresponding eigenspectrum of the mirror-stacked bilayer phononic crystal in (b)–(d), where the blue and red points refer to the acoustic
states with even and odd mirror parities, respectively.

continuum. Meanwhile, the corner state at a frequency of f1 =
4585 Hz with even parity is in the frequency gap of the band-
set with odd parity. The corresponding acoustic field pattern
can be visualized in Fig. 13(a). For the case of d3 = 3.6 mm
in Fig. 12(f), the corner states at a frequency of f2 = 4678 Hz
( f1 = 4568 Hz) with odd (even) parity fall into the frequency
range of bulk states with even (odd) parity, yielding the topo-
logical bound states in the continuum, which can be visualized
more clearly in the dashed boxes of Fig. 13(b). Further in-
creasing d3 to 5.0 mm [see Fig. 12(g)], the corner states at a
frequency of f2 = 4752 Hz ( f1 = 4549 Hz) with odd (even)
parity move into the frequency gap of the bandset with even
(odd) parity [see the acoustic field patterns in Fig. 13(c)].

To conclude this section, we emphasize that the interlayer
coupling controlled by the diameter of the connecting air
tubes in the mirror-stacked bilayer phononic crystals plays a
vital role in the emergence of topological bound states in the
continuum, and the topological corner and bulk states serve
as bound and continuum states, respectively. To be specific,
the mirror symmetry enables the separation of the Hilbert
space and hence hinders the hybridization of the topological
corner and bulk states with different mirror symmetry eigen-
values. Due to the independence of the two subspaces, the
summation of the gap topological indices of mirror-stacked
bilayer phononic crystals remains unchanged during the band
evolutions.

FIG. 13. (a)–(c) The corresponding acoustic pressure field pattern of mirror-stacked bilayer phononic crystals with (a) d3 = 1.2 mm at
frequencies of f1 = 4585 Hz and f2 = 4600 Hz, (b) d3 = 3.6 mm at frequencies of f1 = 4568 Hz and f2 = 4678 Hz, and (c) d3 = 5.0 mm
at frequencies of f1 = 4549 Hz and f2 = 4752 Hz, respectively. The topological bound states in the continuum can be visualized from those
acoustic pressure field patterns in the boxes.
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FIG. 14. (a) Top view of the C6-symmetric heterogeneous-stacked bilayer phononic crystals, which formed by connecting the monolayer
phononic crystal arrayed with Wu-Hu’s and hexagonal lattices (h(6)

2b and h(6)
3c ), respectively. Inset: The unit cell. The geometric parameters of

two monolayer phononic crystals are adopted from Figs. 2(a) and 5(a), respectively. The diameter of the individual cavity is D = 18 mm
(b, c) Simulated band structure of heterogeneous-stacked bilayer phononic crystals with (b) weak interlayer coupling, i.e., d3 = 1.2 mm, and
(c) strong interlayer coupling, i.e., d3 = 8.0 mm. (d) Eigenspectrum of the C6-symmetric heterogeneous-stacked bilayer phononic crystals with
d3 = 1.2 mm. Inset: Simulated acoustic pressure profile of the corner state.

III. HETEROGENEOUS-STACKED
BILAYER PHONONIC CRYSTALS

Based on the above studies, we further discuss the
heterogeneous-stacked bilayer phononic crystals formed by
stacking two different monolayer phononic crystals in this
section. In general, there are at least two categories of
heterogeneous-stacked bilayer phononic crystals according to
the geometric symmetry. The first kind of heterogeneous-
stacked bilayer phononic crystals is formed by stacking two
different monolayer phononic crystals with identical sym-
metries, and the other kind of heterogeneous-stacked bilayer
phononic crystals is formed by stacking two different mono-
layer phononic crystals with different symmetries.

A. C6-symmetric heterogeneous-stacked bilayer phononic
crystals formed by Wu-Hu’s and hexagonal lattices (h(6)

3c and h(6)
2b )

We first consider the C6-symmetric heterogeneous-stacked
bilayer phononic crystals formed by stacking Wu-Hu’s and
hexagonal lattices with nontrivial band topology. To this end,
we adopt the monolayer phononic crystals configured with
h(6)

3c and h(6)
2b , and the geometric parameters are the same as

in Figs. 2(a) and 5(a), respectively. As shown in Fig. 14(a),
the unit cell indicated by the green hexagon consists of 12
acoustic cavities, and each cavity is connected with two near-
est neighbor cavities (within the unit cell) of the upper or
lower layer via two sloped air tubes. In what follows, we pay
special attention to the role of the interlayer couplings on the
band topological transition. We select two values of d3, i.e.,
d3 = 1.2 and 8 mm, which represent the weak and strong in-
terlayer couplings, respectively, and present the corresponding
band structure in Figs. 14(b) and 14(c), respectively.

For the C6-symmetric heterogeneous-stacked bilayer
phononic crystals with weak interlayer coupling, namely d3 =
1.2 mm, in Fig. 14(b), it is seen that a band gap divides
the 12 bands into two sets, the lower bandset below the gap
consisting of five bands, with higher bandset above the gap
consisting of seven bands. The lower bandset is inherited
from the band structure of the monolayer phononic crystals,
which is almost not affected. Nevertheless, due to the absence
of the mirror symmetry, the separability into subspaces with
opposite parities is no longer valid in heterogeneous-stacked

bilayer phononic crystals, which is in strong contrast to that
in the C6-symmetric mirror-stacked bilayer phononic crystals.
The band mixing effect originated from interlayer coupling
can be further examined from the band anticrossing in the
higher bandset. Note that the band gap of monolayer phononic
crystals in the configuration of Wu-Hu’s and hexagonal lat-
tices shares a common frequency range, which, however,
is of different nontrivial topology. Thanks to the compati-
ble symmetry between Wu-Hu’s and hexagonal lattices, it is
possible to characterize the band topology of heterogeneous-
stacked bilayer phononic crystals by utilizing the topological
crystalline index. The calculated topological indices of the
band gap give χ (6) = (2, 2), suggesting a nontrivial higher-
order topology. According to Eq. (3), the filling anomaly
of the heterogeneous-stacked bilayer phononic crystals re-
sults in a fractional corner charge of 5

6 . Interestingly, the
topological indices of the band gap in heterogeneous-stacked
bilayer phononic crystals with weak interlayer coupling are
equal to the summation of those in two monolayer phononic
crystals. In other words, in the condition of weak interlayer
coupling, the band topology of the heterogeneous-stacked bi-
layer phononic crystals inherits from the nontrivial monolayer
phononic crystals.

For the C6-symmetric heterogeneous-stacked bilayer
phononic crystals with the strong interlayer coupling, namely
d3 = 8 mm, in Fig. 14(c), it is seen that two band gaps di-
vide the 12 bands into three sets. To be specific, the lowest
bandset (with three bands) inherits the band structure of the
monolayer phononic crystal configured with Wu-Hu’s lattice,
while higher bandsets are reorganized owing to the strong
interlayer coupling, which is different from the condition of
weak interlayer coupling. Remarkably, the calculated topo-
logical indices of both band gaps give χ (6) = (0, 0), leading
to the zero fractional corner charge. Hence, it is emphasized
that the phase transition in the heterogeneous-stacked bilayer
phononic crystals can be triggered by adjusting the interlayer
couplings, rather than breaking the geometric symmetry. Gen-
erally, the topological phase transition is accompanied by the
process of band gap closing and reopening, and the number of
the bands below the band gap remains unchanged. However,
the strong interlayer coupling leads to the band reorganization,
which changes the number of the bands below the band gap.
Hence, it is noteworthy that there is no specific transition point
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FIG. 15. (a) Top view of the C3-symmetric heterogeneous-stacked bilayer phononic crystals, which formed by connecting the monolayer
phononic crystal configured with Wu-Hu’s and hexagonal lattices. Inset: The unit cell. The geometric parameters of two monolayer phononic
crystals are adopted from Figs. 8(a) and 11(a), respectively. (b), (c) Simulated band structure of heterogeneous-stacked bilayer phononic
crystals with (b) weak interlayer coupling, i.e., d3 = 1.2 mm, and (c) strong interlayer coupling, i.e., d3 = 8.0 mm. (d) Eigenspectrum of the
C3-symmetric heterogeneous-stacked bilayer phononic crystals with d3 = 1.2 mm. Inset: Simulated acoustic pressure profile of the corner
state.

during the topological phase transition triggered by interlayer
couplings (see details in Appendix A).

To manifest the higher-order topology of C6-symmetric
heterogeneous-stacked bilayer phononic crystals, we con-
struct a finite-sized heterogeneous-stacked bilayer phononic
crystal [see Fig. 14(a)] and calculate its eigenspectrum
with both weak and strong interlayer couplings. For
heterogeneous-stacked bilayer phononic crystals with weak
interlayer coupling, i.e., d3 = 1.2 mm, as expected, six corner
states marked by red points are identified at f = 4682 Hz
in the nontrivial band gap in Fig. 14(d). The corresponding
acoustic pressure field distributions are displayed in the inset
of Fig. 14(d). Interestingly, since most of the acoustic pressure
field is localized in the lower monolayer phononic crystal
configured with Wu-Hu’s lattice, it is believed that the nontriv-
ial topology mostly originated from the monolayer phononic
crystal in Wu-Hu’s lattice configuration. Moreover, we remark
that the interlayer coupling plays a key role in the topolog-
ical phase transition in C6-symmetric heterogeneous-stacked
bilayer phononic crystals formed by both trivial and nontrivial
monolayer phononic crystals, as we discuss in Appendix B.

B. C3-symmetric heterogeneous-stacked bilayer phononic
crystals formed by upward

and downward kagome lattices (h(3)
1b and h(3)

1c )

Following the above procedure, we now consider C3-
symmetric heterogeneous-stacked bilayer phononic crystals
formed by stacking the monolayer phononic crystals config-
ured with upward and downward kagome lattices, and the
geometric parameters are adopted from Figs. 8(a) and 11(a).
As shown in Fig. 15(a), the unit cell indicated by the green
hexagon consists of six acoustic cavities, and each cavity is
connected with two nearest neighbor cavities (within the unit
cell) of the upper or lower layer via two sloped air tubes.
In what follows, we pay special attention to the role of the
interlayer couplings on the topological transition. We select
two values of d3, i.e., d3 = 1.2 and 8 mm, which represent the
weak and strong interlayer couplings, and present their band
structures in Figs. 15(b) and 15(c), respectively.

For the C3-symmetric heterogeneous-stacked bilayer
phononic crystals with weak interlayer coupling, namely d3 =
1.2 mm, in Fig. 15(b), it is seen that a band gap divides the six

bands into two sets; the lower bandset below the gap consists
of two bands, while the higher bandset above the gap consists
of four bands. Interestingly, the band structure of the C3-
symmetric heterogeneous-stacked bilayer phononic crystals
can be regarded as the superposition of the band structure of
the monolayer phononic crystals configured with upward and
downward kagome lattices. Nevertheless, due to the absence
of the mirror symmetry, the separability into subspaces with
opposite parities is no longer valid in heterogeneous-stacked
bilayer phononic crystals, which is in strong contrast to the
C3-symmetric mirror-stacked bilayer phononic crystals. Note
that the monolayer phononic crystals in configurations of
upward and downward kagome lattices share identical band
gaps, which, however, are of different nontrivial topology.
Thanks to the compatible symmetry between upward and
downward kagome lattices, it is possible to characterize the
band topology of heterogeneous-stacked bilayer phononic
crystals by utilizing the topological crystalline index. The
calculated topological indices of the band gap give χ (3) =
(2,−1), leading to a fractional charge of 2

3 . Interestingly, the
topological indices of the band gap in heterogeneous-stacked
bilayer phononic crystals with weak interlayer coupling are
equal to the summation of those in two monolayer phononic
crystals. In other words, in the condition of weak interlayer
coupling, the band topology of the heterogeneous-stacked bi-
layer phononic crystals inherits from the nontrivial monolayer
phononic crystals.

For the C3-symmetric heterogeneous-stacked bilayer
phononic crystals with strong interlayer coupling, namely
d3 = 8 mm, in Fig. 15(c), it is seen that two band gaps
divide the six bands into three bandsets. To be specific,
there is only a single band below the first band gap, while
higher bandsets are reorganized owing to the strong interlayer
coupling, which is different from weak interlayer coupling.
Remarkably, the calculated topological indices of both band
gaps give χ (3) = (0, 0), leading to the zero fractional corner
charge. Hence, it is emphasized that the phase transition in the
C3-symmetric heterogeneous-stacked bilayer phononic crys-
tals can be triggered by adjusting the interlayer couplings,
rather than breaking the geometric symmetry. Generally, the
topological phase transition is accompanied by the process
of band gap closing and reopening, and the number of the
bands below the band gap remains unchanged. However, the
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FIG. 16. (a) Top view of the C3-symmetric heterogeneous-stacked bilayer phononic crystals, which formed by connecting the monolayer
phononic crystal configured with Wu-Hu’s and hexagonal lattices. Inset: The unit cell. The geometric parameters of two monolayer phononic
crystals are listed as follows: d1 = 3.0 mm, d2 = 4.8 mm for upper layer and d1 = 1.6 mm, d2 = 4.0 mm for lower layer, respectively.
(b), (c) Simulated band structure of heterogeneous-stacked bilayer phononic crystals with (b) weak interlayer coupling, i.e., d3 = 1.2 mm,
and (c) strong interlayer coupling, i.e., d3 = 5.0 mm.

strong interlayer coupling leads to the band reorganization,
which changes the number of the bands below the band gap.
Hence, it is noteworthy that there is no specific transition point
during the topological phase transition triggered by interlayer
couplings.

To manifest the higher-order topology of C3-symmetric
heterogeneous-stacked bilayer phononic crystals, we con-
struct finite-sized C3-symmetric heterogeneous-stacked bi-
layer phononic crystals [see Fig. 15(a)] and implement the
eigencalculation in the condition of both weak and strong in-
terlayer couplings. For C3-symmetric heterogeneous-stacked
bilayer phononic crystals with weak interlayer coupling, i.e.,
d3 = 1.2 mm, as expected, three corner states marked by red
points are identified at a frequency of f = 4554 Hz in the
nontrivial band gap in Fig. 15(d). The corresponding acous-
tic pressure field distributions are displayed in the inset of
Fig. 15(d).

C. C3-symmetric heterogeneous-stacked bilayer phononic
crystals formed by Wu-Hu’s

and downward kagome lattices (h(6)
3c and h(3)

1b )

Although we consider heterogeneous-stacked bilayer
phononic crystals formed by two different monolayer
phononic crystals with identical symmetry, it is possible
to construct heterogeneous-stacked bilayer phononic crys-
tals (HSPCs) by stacking two different monolayer phononic
crystals with distinct symmetry. As an illustration, we con-
sider another C3-symmetric heterogeneous-stacked bilayer
phononic crystal formed by monolayer phononic crystals in
configurations of upward kagome lattice and hexagonal lat-
tice. The former lattice with C3 symmetry is compatible with
the latter with C6 symmetry, making it possible to construct
HSPCs. As shown in Fig. 16(a), the upper (lower) layer of
the unit cell consists of three (six) acoustic cavities, and two
monolayer phononic crystals are connected via three pairs of
air tubes. In what follows, we pay special attention to the role
of the interlayer couplings on the topological transition. We
select two values of d3, i.e., d3 = 1.2 and 5 mm, which rep-
resent the weak and strong interlayer couplings, and present
their band structures in Figs. 16(b) and 16(c), respectively.

For the C3-symmetric heterogeneous-stacked bilayer
phononic crystals with weak interlayer coupling, namely d3 =
1.2 mm, in Fig. 16(b), it is seen that a band gap divides the
nine bands into two sets; the lower bandset below the gap
consists of four bands, while the higher bandset above the
gap consists of five bands. Note that the band gaps of the
monolayer phononic crystals in configurations of Wu-Hu’s
and upward kagome lattices share a common frequency range,
which, however, are of different nontrivial topology. Thanks
to the compatible symmetry between Wu-Hu’s and upward
kagome lattices, it is possible to characterize the band topol-
ogy of heterogeneous-stacked bilayer phononic crystals by
utilizing the topological crystalline index, which gives χ (3) =
(1,−2) and results in a fractional corner charge of 1

3 .
On the other hand, for the C3-symmetric heterogeneous-

stacked bilayer phononic crystals with strong interlayer
coupling, namely d3 = 5 mm, in Fig. 16(c), it is seen that only
a single band is below the first band gap, while higher bandsets
are reorganized owing to the strong interlayer coupling, which
makes a difference from weak interlayer coupling. Remark-
ably, the calculated topological indices of all band gaps indi-
cate that all band gaps are of topological nontrivial nature [see
the calculated topological indices in Fig. 16(c)]. In contrast to
the phase transition from topological nontrivial to trivial, here
we identify that there exist topological transitions between
two nontrivial phases in the C3-symmetric heterogeneous-
stacked bilayer phononic crystals. Generally, the topological
phase transition is accompanied by the process of band gap
closing and reopening, and the number of the bands below the
band gap remains unchanged. However, the strong interlayer
coupling leads to the band reorganization, which changes
the number of the bands below the band gap. Hence, it is
noteworthy that there is no specific transition point during the
topological phase transition triggered by interlayer couplings.

To manifest the higher-order topology of C3-symmetric
heterogeneous-stacked bilayer phononic crystals, we con-
struct finite-sized C3-symmetric heterogeneous-stacked bi-
layer phononic crystals [see Fig. 16(a)] and implement the
eigencalculation in the condition of both weak and strong in-
terlayer couplings. For C3-symmetric heterogeneous-stacked
bilayer phononic crystals with weak interlayer coupling, i.e.,
d3 = 1.2 mm, as expected, three corner states marked by red
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FIG. 17. Eigenspectrum of the C3-symmetric heterogeneous-stacked bilayer phononic crystals with (a) weak interlayer coupling d3 =
1.2 mm, where the inset refers to the acoustic profile of the corner state at a frequency of 4694 Hz and (b) strong interlayer coupling d3 =
5.0 mm. (c) Simulated acoustic pressure profiles of the corner state marked in (b) at frequencies of 4535,4709, 4748, and 4918 Hz, respectively.

points are identified at f = 4694 Hz in the nontrivial band gap
in Fig. 17(a). The corresponding acoustic pressure field distri-
butions are displayed in the inset of Fig. 17(a). In contrast, for
C3-symmetric heterogeneous-stacked bilayer phononic crys-
tals with strong interlayer coupling, namely, d3 = 5.0 mm,
there also exist four sets of corner states [see Fig. 17(b)]. Fig-
ure 17(c) further displays the corresponding acoustic pressure
profiles of the corner states.

Last but not least, it is noteworthy that the nontrivial band
topology of heterogeneous-stacked bilayer phononic crystals
is inherited from monolayer phononic crystals, while the in-
terlayer coupling provides an alternative way to trigger the
topological phase transition. In other words, it is impossible
to realize phase transition if the heterogeneous-stacked bi-
layer phononic crystals are formed by two trivial monolayer
phononic crystals (see details in Appendix C).

IV. CONCLUSION AND DISCUSSIONS

In conclusion, we systematically studied the C6- and
C3-symmetric higher-order topological phases in bilayer
phononic crystals with two types of stackings: the mirror
symmetric stacking and the heterogeneous stacking. For the
mirror-stacked bilayer lattice, the separability of the Hilbert
space with odd and even parities and the tuning of the in-
terlayer coupling enable the emergence and disappearance of
the topological corner states in the bulk continuum. For the
bilayer phononic crystals formed by two distinct monolayer
lattices of the same symmetry, the band topology is strongly
affected by the interlayer couplings as well as the two original

monolayers. The bilayer phononic crystals can even experi-
ence a phase transition from nontrivial to trivial band topology
when the interlayer coupling is gradually strengthened. Our
paper unveil the rich physics of the interlayer couplings in
bilayer systems, suggesting that the layer degree of freedom
can be used to enrich the higher-order topological phases.
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APPENDIX A: BAND EVOLUTION
OF HETEROGENEOUS-STACKED BILAYER PHONONIC

CRYSTALS WITH INCREASING INTERLAYER COUPLING

In most existing cases, the process of band gap closing
and reopening is a hallmark of the topological phase tran-
sition. However, accompanying strong interlayer coupling,
bands of heterogeneous-stacked bilayer phononic crystals
originated from different lattices interacted with each other,
resulting in the band reorganization, which may change the
band number below the band gap. To prove it, we present the
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FIG. 18. Band structures of C6-symmetric heterogeneous-stacked bilayer phononic crystals formed by monolayer phononic crystals in
configuration of Wu-Hu’s and hexagonal lattices with (a) d3 = 1.2 mm, (b) d3 = 3.4 mm, (c) d3 = 3.8 mm, (d) d3 = 6.0 mm, and (e) d3 =
8.0 mm.

band structures of C6-symmetric heterogeneous-stacked bi-
layer phononic crystals with various d3 in Fig. 18. Let us focus
on the first band gap; for C6-symmetric heterogeneous-stacked
bilayer phononic crystals, it is seen that there are five bands
below the first band gap for C6-symmetric heterogeneous-
stacked bilayer phononic crystals with d3 = 1.2 and 3.4 mm,
of which the topological indices are χ (6) = (2, 2). On the
other hand, only three bands are below the first band gap for
C6-symmetric heterogeneous-stacked bilayer phononic crys-
tals with d3 = 6.0 and 8.0 mm, of which the topological
indices are χ (6) = (0, 0). Obviously, it is impossible to iden-
tify the specific transition point.

APPENDIX B: C6-SYMMETRIC
HETEROGENEOUS-STACKED BILAYER PHONONIC

CRYSTALS FORMED BY TRIVIAL AND NONTRIVIAL
MONOLAYER PHONONIC CRYSTALS

Here we consider the heterogeneous-stacked bilayer
phononic crystals formed by trivial and nontrivial monolayer
phononic crystals, and pay special attention to the role of
the interlayer couplings. As shown in Fig. 19(a), we con-
struct C6-symmetric heterogeneous-stacked bilayer phononic
crystals by stacking Wu-Hu’s lattice with d1 = 1.6 mm and
d2 = 4.2 mm, and the hexagonal lattice with trivial config-
uration, i.e., d1 = 2.4 mm and d2 = 2.6 mm. By setting the
interlayer coupling strength d3 = 0.8 and 6.0 mm, which rep-
resent weak and strong couplings, respectively, we discuss the
interlayer coupling effect on the phase transition. The band
structures are displayed in Figs. 19(b) and 19(c), and the gap

topological indices are χ (6) = (2, 0) and (0,0), indicating that
the strong interlayer coupling triggers a phase transition.

To manifest the nontrivial band topology in the
heterogeneous-stacked bilayer phononic crystals, we
construct a finite-sized heterogeneous-stacked bilayer
phononic crystal and calculate its eigenspectrum. The results
are displayed in Fig. 19(d). It is seen that the corner states, as
the hallmark of the higher-order topological phases, emerge
in the band gaps. The simulated acoustic pressure profiles of
the corner states are presented in inset of Fig. 19(d).

APPENDIX C: C6-SYMMETRIC
HETEROGENEOUS-STACKED

BILAYER PHONONIC CRYSTALS FORMED BY
STACKING MONOLAYER PHONONIC CRYSTALS WITH

TRIVIAL BAND TOPOLOGY

In the main text, we only focus on the bilayer phononic
crystal formed by stacking nontrivial monolayer phononic
crystals. It should be emphasized that the band topol-
ogy of the heterogeneous-stacked bilayer phononic crystals,
if present, is originated from the higher-order topological
monolayer phononic crystals. In other words, the triv-
ial monolayer phononic crystals cannot generate nontrivial
topological heterogeneous-stacked bilayer phononic crystals
no matter how the interlayer coupling is tuned. To ver-
ify it, here we consider the heterogeneous-stacked bilayer
phononic crystals formed by monolayer phononic crys-
tals in configuration of Wu-Hu’s and hexagonal lattices

FIG. 19. (a) Schematic of C6-symmetric heterogeneous-stacked bilayer phononic crystals formed by stacking the both trivial (upper layer)
and nontrivial monolayers (bottom layer). Inset: The primitive cell. (b, c) Band structures of C6-symmetric heterogeneous-stacked bilayer
phononic crystals with (b) d3 = 0.8 mm and (c) d3 = 6.0 mm. (d) Eigenspectrum of C6-symmetric finite-sized heterogeneous-stacked bilayer
phononic crystals with d3 = 0.8 mm and its acoustic pressure profiles of the corner states.
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FIG. 20. (a) Schematic of C6-symmetric heterogeneous-stacked bilayer phononic crystals formed by two trivial monolayer phononic
crystals. (b, c) Eigenspectrum of the heterogeneous-stacked bilayer phononic crystals with (b) weak interlayer coupling d3 = 0.8 mm and
(c) strong interlayer coupling d3 = 4.0 mm.

with trivial band topology [see Fig. 20(a)]. The geomet-
ric parameters are listed as follows: d1 = 2.6 mm, d2 =
2.8 mm. To examine the interlayer coupling effect on the
band topology of heterogeneous-stacked bilayer phononic
crystals, we select d3 = 0.8 mm (d3 = 4.0 mm) to mimic
the weak (strong) interlayer couplings, and calculate the
corresponding topological indices. The band structures of

heterogeneous-stacked bilayer phononic crystals with weak
and strong interlayer coupling are displayed in Figs. 20(b)
and 20(c), respectively. It is seen that both heterogeneous-
stacked bilayer phononic crystals exhibit a complete band
gap, and the calculated topological indices of both band
gaps are χ (6) = (0, 0), indicating that they are of trivial
topology.
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