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The puckered lattice geometry, along with p orbitals, is often overlooked in the study of topological physics.
Here, we investigate the higher-order topology of the p, ,-orbital bands in acoustic metamaterials using a sim-
plified two-dimensional phosphorene lattice which possesses a puckered structure. Notably, unlike the s-orbital
bands in planar lattices, the unique higher-order topology observed here is specific to p orbitals and the puckered
geometry due to the unusual hopping patterns induced by them. Using acoustic pump-probe measurements in
metamaterials, we confirm the emergence of the edge and corner states due to the unconventional higher-order
topology. We reveal the uniqueness of the higher-order topological physics here via complimentary tight-binding

calculations, finite-element simulations, and acoustic experiments. We analyze the underlying physics of the
special properties of the edge and corner states in the puckered lattice acoustic metamaterials from the picture
of Wannier orbitals. Our work sheds light on the intriguing physics of p-orbital topological physics in puckered
lattices and acoustic metamaterials which lead to unconventional topological boundary states.

DOLI: 10.1103/PhysRevB.109.205136

I. INTRODUCTION

The past few decades have witnessed tremendous progress
in topological physics and topological materials [1-3], bring-
ing in a new era of unconventional physical effects, novel
material properties, and potential applications. Recently,
higher-order topological insulators [4—10] hosting lower-
dimensional topological boundary states have extended the
conventional bulk-edge correspondence to bulk-corner or
bulk-hinge correspondence, enriching topological phenom-
ena and topological materials as well as their potential
applications. For instance, two-dimensional (2D) higher-
order topological insulators such as quadrupole insulators
[4,5] support one-dimensional gapped edge states and zero-
dimensional topological corner states. Topological phases
have been widely explored in collective wave dynamics in,
e.g., photonic [11-19], acoustic [20-23], and circuit metama-
terials [24-26], to name just a few, as they can be engineered
to simulate topological and quantum phenomena found in
electronic systems and even beyond such a paradigm thanks
to the nonequilibrium nature of these wave dynamic systems
[18]. Furthermore, enabled by metamaterials with fabrication
advantages and design diversity as well as various mea-
surement protocols and techniques, classical wave dynamic
systems can facilitate the observation and control of topolog-
ical phenomena.

To date, most studies on topological phenomena in meta-
materials are based on s-orbital physics in flat lattices. In
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contrast to the spherical-like symmetry exhibited by s-orbital
wave functions, p-orbital ones possess three orthogonal direc-
tionalities in three-dimensional space, namely, py, py, and p_,
as depicted in Fig. 1(a). The phases of p orbitals flip the sign in
the opposite direction. p-orbital physics provides a promising
approach for band structure and topology engineering [27—47]
due to their directionalities. For instance, flat bands can easily
be achieved in p-orbital systems [28,33,36,37]. In addition,
systems with coexisting s and p orbitals can be used to simu-
late lattices with intrinsic flux per plaquette and hence give
access to quadrupole topological insulators without further
engineering [40]. p orbitals also give rise to topological phases
with enriched orbital degrees of freedom [45,46]. In short, p
orbitals can considerably enrich the coupling configurations in
lattice systems and hence provide opportunities for the study
of topological physics and emergent phenomena in meta-
materials. Meanwhile, puckered lattices offer rich geometry
beyond planar lattices that exist in nature (such as phospho-
rene) and have an intrinsic connection with p-orbital physics
[39]. However, the study of p-orbital physics in puckered
lattices is still missing in metamaterials research.

In this work, we study the higher-order band topology in
a two-dimensional simplified phosphorene lattice [39], which
is a puckered analog to the honeycomb lattice. Interestingly,
the higher-order topology here is specific to only p orbitals
due to their unique hopping configurations, whereas the s
orbitals give trivial band topology. In addition, in contrast to
the s-orbital bands in planar honeycomb lattices, we observe
unconventional armchair edge states and corner states within
a sizable band gap due to the rich p-orbital physics in the
puckered lattice. Based on the theory of band representations
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FIG. 1. (a) Illustration of s, p., py, and p, orbitals. (b) Illustration of the tight-binding model for the phosphorene lattice. The unit cell
indicated by the transparent blue zone consists of four atomic sites, denoted by A, B, C, and D. We choose 6, = 6, = 90° for simplicity.
The lattice constants along both the x and y directions are set to unity. (c) The upper panels show five elementary hopping configurations
associated with the s, p,,, and p, orbitals. Distinct orbitals and hoppings are represented by different colors. The dashed lines represent
negative hoppings which are unique to p orbitals. The lower panels schematically visualize the corresponding hoppings among different
orbitals. (d) Band structure of the simplified phosphorene lattice in (b). In the calculation, the hopping parameters labeled in (c) are set as
ty=-15t,=-1,t,=3,t,=t,=12,1, =—-0.3, and t,, = —1.3. The on-site energy of the s, p,, p,, and p, orbitals are chosen as
e, =—11,¢ =0.5, ¢, = —0.5, and €, = 0, respectively. The green, blue, and orange curves represent energy bands originating from the s,
Dx.y, and p, orbitals, respectively. The band gap developed in the p, ,-orbital bands is the topological band gap of concern in this work. (e)
Illustration of the armchair and zigzag types of edge truncations. The outlined green (purple) region denotes the semi-infinite ribbon cell
for calculating the zigzag-type (armchair-type) projected band structures. (f) and (g) Armchair- and zigzag-type projected band structures

calculated from the ribbon supercells in (e) with a total of 62 and 60 atomic sites, respectively.

[48,49], the p-orbital physics in phosphorene lattices falls
into the topological class of obstructed atomic insulators with
Wannier orbitals located at each bond center, which explains
the underlying higher-order topology revealed in both the
tight-binding (TB) calculations and the acoustic simulations.
The theoretical predictions are verified in experiments by
using various acoustic pump-probe configurations. The acous-
tic pump-probe technique involves the utilization of a tiny
speaker as the pump source while simultaneously employing
a microphone to probe the acoustic responses at specific loca-
tions within acoustic crystals.

This paper is organized as follows. In Sec. ITA, we re-
call in brief the simplified phosphorene lattice, which is a
multiorbital TB model, and reveal the existence of the lo-
calized edge and corner states induced by p orbitals, The
analysis of the topological origin is based on the band rep-
resentations and Wannier orbital centers. Then in Sec. I B
we design in a simulation the acoustic analog of the phos-
phorene lattice and confirm its consistency with the TB
model through its band structures for bulk, edge, and cor-
ners as well as their acoustic wave functions. Furthermore,
in Sec. II C, using an airborne acoustic metamaterial as a plat-
form, we experimentally validate the edge and corner states
by acoustic pump-probe measurements. Finally, a summary is
concluded in Sec. III.

II. RESULTS
A. Multiorbital tight-binding model

To investigate the intriguing interplay between the puck-
ered lattice geometry, the p-orbital physics, and the higher-
order band topology, we consider the phosphorene lattice as
a prototype puckered lattice in this study. We consider energy
bands developed from the s and p, , . orbitals. As illustrated
in Fig. 1(b), the original phosphorene lattice resembles a
nonplanar honeycomb lattice with bond angles 6; =~ 103° and
6, ~ 98°, which is essentially a monolayer with a puckered
geometry, pertaining to the layer symmetry group Pman [50].
The unit cell is depicted by the transparent blue region, con-
sisting of four inequivalent atomic sites, labeled separately
as A, B, C, and D in Fig. 1(b). Only the nearest-neighbor
hoppings (indicated by the gray bonds), which adequately
describe the relevant band topology, are considered here.

We then consider a simplified model with 8; = 6, = 90°,
which preserves the same topological classification as the
original phosphorene lattice due to this “orthogonalization”
process that does not alter any inherent spatial symmetry.
Furthermore, the simplified lattice facilitates the simulation
calculation and the preparation of experimental samples. Sub-
sequently, we investigate the simplified phosphorene lattice
and take the s and py, . orbitals into account at each atomic
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site, which results in a total of 16 orbitals in one unit cell and
a 16 x 16 Hamiltonian in momentum space. The hoppings
between the s and p orbitals can be neglected as their on-site
energy difference is very large. Furthermore, the hoppings
between p, , and p, orbitals vanish due to orthogonality con-
straints. With these considerations, there are, in total, five
distinct elementary hopping configurations for the four types
of orbitals, as illustrated in Fig. 1(c). The hopping parameters
are denoted by 1, 1y, tyy, 1y, I, t1;, and t;. Notably, here, due
to the p, ,-orbital geometry, both positive (solid lines) and
negative (dashed lines) hoppings exist in the model.

With these considerations and settings, the Hamiltonian
can be written in the following block diagonal form:

H(k) = diag[H(k), Hay(k), H-(k)], ey

where the subscripts s, xy, and z stand for s, p.,, and p,
orbitals, respectively. The 4 x 4 block Hamiltonian H;(k)

J

[ e h(t,) 0 t, 0 h(tyy) 0 0 7]
h*(t) € . 0 k(@) O 0 0
0 . € h(t,) 0 0 0 h(t,y)
. 0 () & 0 0  hty) O
Hol)=| h(tyy) 0 0 € h(t,) 0 |
R(ty) 0 0 0 K@) e t, 0
0 0 0 h(t,y) 0 . € h(t,)
0 0 K@y O . 0 ) e

with

: 1 1 1 1
h(ty) = 1" el TRTI) — x

€]
and

h(tey) = @ TTRH IR g pl(=3km3k) (5)
Here, t, =t, = 1.2 and ¢, = —0.3 are the hoppings along the
x and y and z directions, respectively. These are the hoppings
within the p, or p, orbital, and they are identical for the two
types of orbitals. #,, = —1.3 is the hopping between the p,
and p, orbitals. The corresponding on-site energies of the
px and p, orbitals are €, = 0.3 and €, = —0.3, respectively.
By diagonalizing the 16 x 16 Hamiltonian #(k), we obtain
the TB band structure shown in Fig. 1(d). Here, the blue
curves represent the energy bands originating from the p, and
py orbitals, while the green and orange curves represent the
energy bands derived from the s and p, orbitals, respectively.
We notice that the energy bands developed from the p, and p,
orbitals exhibit a sizable band gap around zero energy, which
is the band gap of interest in this work. We emphasize that
the puckered lattice geometry plays a crucial role in forming
the sizable p, ,-orbital band gap which is absent in the planar
honeycomb lattice geometry, although the two lattices have
many similar properties.

We now study the bulk-edge responses in our system. Sim-
ilar to the honeycomb lattice, the phosphorene lattice hosts

(i = s, z) can be written in the basis of the A, B, C, and D
sites as follows:

€ h(t) 0 by
h*(t1;) € by 0
Hilke) = 0 by € h(ty) | )
by 0 h*(t1;) €
where
h(ty) = 1Rtk i3k k) 3)

Here, the lattice constant a is set to unity in the TB model.
The hopping parameters are chosen as follows: t);, = f; =
t,=—15t;,=—1,andtp; = 3. ¢, = —11 and ¢, = 0 are the
on-site energies for the s and p, orbitals, respectively. k, and
ky are the components of the 2D wave vector k along the x and
y directions, respectively.

Meanwhile, the 8 x 8 block Hamiltonian #,,(k) can be
explicitly written as

(

two prototypes of edge terminations: the armchair and zigzag
edges, as schematically sketched in Fig. 1(e), where we flat-
tened the geometry of the phosphorene lattice to illustrate
the edge geometry, particularly to illustrate the difference
between the zigzag and armchair edges. The corresponding
projected band structures, calculated from the ribbon-shaped
supercells illustrated in Fig. 1(e), are shown in Figs. 1(f)
and 1(g). We find that for the s-orbital bands, the edge
states here are similar to the edge states in the planar hon-
eycomb lattice, revealing that the puckered lattice geometry
has no effect on the s-orbital bands. Intriguingly, for both
edge terminations the p-orbital band gaps host topological
flat-band edge states with flat dispersion. Here, the armchair
and zigzag edge states have p.,- and p.-orbital natures,
respectively.

The appearance of flat-band zigzag edge states in the p,-
orbital band gap is still connected to the renowned edge
property in the honeycomb lattice [51]. In contrast, the
emergence of the flat-band armchair edge states in the p, -
orbital band gap is an unconventional feature due to the
Pxy-orbital physics. Moreover, calculations for finite-sized
lattices indicate the emergence of degenerate edge and cor-
ner states sharing the same energy, which is an intriguing
manifestation of the higher-order topology. The degener-
ation and flat dispersion arise from the intrinsic chiral
symmetry in p, ,-orbital bands. The chiral symmetry opera-
tor here is defined as I' = diag(1, —1,1, -1, 1, —1, 1, —1),
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FIG. 2. (a) Illustration of maximal Wyckoff positions 2a, 2b, and 4g for the layer group Pman, of which the site-group symmetries are
Cyp, Gy, and Gy, respectively. Four 4g positions are movable along the red lines but are subject to C,, and M,. (b) Band representations of the
lower p-orbital bands. The second and third rows denote the band representations for the p.- and p, ,-orbital bands, respectively. The first two
column represents the corresponding real-space s Wannier orbitals localized at the maximal Wyckoff positions 2a and 4g. The third to sixth
columns include the symmetry representations at high-symmetry points I', X, Y, and M. The labels of these symmetry representations can be
referred to Refs. [39,50]. Schematic diagrams of the truncated Wannier orbitals at (c) the armchair edges, (d) zigzag edges, and (e) corners.
The s Wannier orbitals, as highlighted by green spheres, are cut through by translucent purple ribbons, which indicates the emergence of edge

and corner states.

satisfying
F[ny(k) - (Ex + Ev)/z]r = _[ny(k) - (Ex + 6}')/2]1 (6)

which pins all k-dependent armchair edge states and the emer-
gent topological corner states at the energy level of (e, +
€,)/2.

To characterize the higher-order band topology, it is cus-
tomary to first calculate the bulk polarization and the corner
charge. The bulk polarization P = (P, P,) can be derived
from the parity inversion of Bloch states by [52]

(N

where (—1)% = T1;£;(D)&;(X) and (—1)% = I1;£;(1)&;(Y)
and £(K) denotes the parity-inversion eigenvalue of Bloch
wave functions at high-symmetry points K, that is, +1 for the
even parity and —1 for the odd parity. j is the band index
below the band gap. Based on the symmetry representations
labeled in Fig. 2(b), where I'ig, I'se, X;, and Y; have even
parities and I'y,, 4., X5, and Y, denote odd parities, we
obtain the bulk polarization P = (0, 0) for both the p.- and
Dx,y-orbital bands. We further calculate the corner charges.
Due to the absence of rotational symmetry in the phosphorene
lattice, the applicability of topological indices for calculating
corner charges as described in Ref. [9] is limited in this paper.
We instead employ Q = %;X;p(i, j) mod 1 to directly de-
rive the corner charges [53], where p(i, j) represents the local
density of states for a finite-sized system, with i denoting the
bulk band index below the band gap and j referring to the four
sites in the corner unit cell. Unusually, the corner charges for
both the p.- and p, ,-orbital bands almost vanish as well. We
remark that nonzero bulk polarizations and fractional corner
charges are not necessary and sufficient conditions for the
emergence of topological edge and corner states. A more

P, = %qx mod 1, P, = %qy mod 1,

essential condition is the filling anomaly arising from the
off-center Wannier orbitals [9].

We hereafter study the properties of the p-orbital bands
using Wannier orbital configurations in real space and ele-
mentary band representation (EBR) analysis [48,49,54]. The
Wannier orbital picture is more intuitive and straightforward,
while the EBRs are powerful tools for the analysis of the
band topology. We first figure out the maximal Wyckoff po-
sitions in our system, which are the high-symmetry positions
in a real-space unit cell. The maximal Wyckoff positions for
the layer group Pman are 2a, 2b, and 4g, as illustrated in
Fig. 2(a), having site symmetries Cy;, Cyy, and Cy;, respec-
tively [55]. Interestingly, the 2a, 2b, and 4g Wyckoff positions
are at the centers of the hopping bonds AB, BC, and CD,
respectively. The real-space Wannier orbitals can be derived
from the symmetry representations of Bloch wave functions at
high-symmetry points in wave vector space via the powerful
tool of the EBRs in topological quantum chemistry [54]. The
symmetry representations of the lower six p-orbital Bloch
bands at the I, X, Y, and M momentum points are presented
in Fig. 2(b). One can refer to Refs. [39,50] for the symmetry
representation labels at these high-symmetry points in the
Brillouin zone.

By reviewing the EBRs of the layer group Pman [54], it is
found that the real-space Wannier orbitals of the phosphorene
lattice for the p, and p, , bands below the band gap of interest
are s-like Wannier orbitals located at the 2a and 4g positions,
respectively, which indicates that the topological band gap
of concern gives an obstructed atomic insulator phase (i.e.,
materials with the Wannier orbital centers deviating from
the atomic positions) [48,49,56]. Specifically, the Wannier
orbitals of p, bands reside at the center of the vertical bonds
BC and AD since the p, orbitals contribute to the formation of
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FIG. 3. (a) Acoustic realization of the tight-binding phosphorene lattice. The left panels show the top and side views of the acoustic lattice.
The cylindrical cavities and connecting tubes denote the atomic sites and hopping couplings, respectively. The enlarged panel on the right
shows the unit cell of the acoustic lattice. (b) The acoustic bulk band structure associated with the p, , orbitals, showing a full band gap.
The major geometric parameters in simulation are a = 64.8 mm, d, = 9.8 mm, 7 = 40 mm, r = 18 mm, d = 48.4 mm, r,, = 8.2 mm, and
r, = 8 mm. (c) and (d) The acoustic projected band structures of p, , orbitals for the armchair and zigzag edge terminations, respectively. The
acoustic edge states are highlighted in red. (e) The Wannier center configurations induced by the p,, bands below the topological band gap.
The Wannier centers at the armchair boundary are cut through by the edge boundary termination.

o bonds along the z direction. In contrast, the Wannier orbitals
for the p, , bands below the band gap of concern are located
at the centers of the in-plane bonds AB and CD.

Topological boundary states can emerge in finite-sized
systems when the edge and corner boundaries cut through
the centers of the Wannier orbitals. Here, the zigzag edge
boundaries cut through the Wannier orbitals centered at the
2a Wyckoff position associated with the p, bands, as shown in
Fig. 2(c). Therefore, the p.-band gap supports the edge states
at the zigzag edge boundaries. In comparison, the armchair
edge boundaries cut through the Wannier orbitals centered at
the 4g Wyckoff position associated with the p, , bands below
the band gap, as depicted in Fig. 2(d). Thus, the armchair edge
states appearing in the topological band gap are induced by
Dx,y-orbital bands.

The corner states appearing in the topological band gap
can be analyzed similarly. For the corner geometry and the
Wannier orbital configuration illustrated in Fig. 2(e), the cor-
ner boundary cuts both the 2a and 4g Wyckoff positions.
Therefore, both the p, and p, , bands contribute to the emer-
gence of the corner states. In the following, we focus only
on the topological armchair edge states and corner states
induced by py ,-orbital bands, which are unique to the puck-
ered phosphorene lattice and absent in planar honeycomblike
lattices.

B. Phosphorene-lattice acoustic metamaterial

We use a phosphorene-lattice airborne acoustic metama-
terial to realize the above TB model. The basic approach is
to use the cylindrical acoustic cavities to simulate the atomic
sites that support the s and p, , . orbitals while using the
connecting tubes to simulate the couplings between these
orbitals. Here, as the solid walls can be treated as the acous-
tic hard boundaries, the couplings between the cylindrical
acoustic cavities can be well engineered to realize the tar-
geted couplings in the TB model. The right panel in Fig. 3(a)
gives a zoomed-in view of a unit cell of the designed acous-
tic metamaterial. The acoustic waves are propagating in the
(gray) acoustic cavities and the (blue) connecting tubes. We
remark that the utilization of cylindrical cavities instead of
spherical ones enables effective discrimination among on-site
frequencies of s, p., and p,, orbitals, thereby facilitating
the separation of the bands developed from these orbitals
in frequency. Here, we focus mainly on the acoustic bands
derived from the p,, orbitals. The calculated bulk band
structure induced by p, , orbitals is depicted in Fig. 3(b),
confirming the consistency between the phosphorene lattice
acoustic metamaterial and the TB model. In this study, we
employ the commercial finite-element solver COMSOL MUL-
TIPHYSICS to perform the acoustic wave simulations. In the
simulations, the air density and the acoustic velocity are set as
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1.29 kg/m? and 347 m/s, respectively. The geometric param-
eters used in the simulations are a = 64.8 mm, d, = 9.8 mm,
h =40 mm, r = 18 mm, d = 48.4 mm, r,, = 8.2 mm, and
r, = 8 mm. With such a simple design, the acoustic meta-
material can already reproduce the main features of the
TB model.

It is worth mentioning that the main deviation between
the acoustic metamaterial and the TB model is that in the
former there are inevitable long-range acoustic couplings that
break the chiral symmetry for the p-orbital bands. This effect
leads to the shift in the frequency of the edge and corner states
from the center of the band gap. Often, this effect also leads to
trivial edge states. In this work, thanks to the limited strength
of the long-range couplings for the p, , orbitals, the chiral
symmetry is only slightly broken. Besides these side effects,
the acoustic metamaterial realizes the main properties of the
bulk, edge, and corner states in the TB model.

Acoustic band structures obtained for the ribbon-shaped
supercells with the armchair and zigzag edge boundaries are
presented in Figs. 3(c) and 3(d), respectively. It is evident
that the flat dispersion of the armchair edge states (high-
lighted in red) agrees well with the TB model. For the zigzag
edge boundaries, due to the breakdown of the chiral sym-
metry in the acoustic metamaterial, edge states induced by
trivial boundary effects appear in the band gap. These edge
states are very close to the bulk bands. By adjusting ge-
ometric parameters, these states can be easily shifted into
the bulk bands without closing the band gap due to their
lack of topological protection. As the chiral symmetry is
only slightly broken in our acoustic metamaterial, the arm-
chair edge states continue to exhibit a flat band, which is an
intriguing feature of our system. To provide a better under-
standing of the two types of acoustic edge states with regard
to their topological and trivial nature, we illustrate a top view
schematic of the Wannier center configurations for the p,,
bands below the band gap in a finite lattice in Fig. 3(e). It
can be seen that the armchair edge boundary cuts through
the Wannier centers, whereas the zigzag edge boundary
does not.

C. Observation of the p, ,-orbital edge and corner states

We investigate the higher-order topological phenomena
of the p,, orbitals in the phosphorene lattice through both
simulation and experimental approaches. The experimental
sample, depicted in Fig. 4(a), consists of 5 x 5 unit cells
fabricated using three-dimensional printing technology with
photosensitive resin. The walls that form the cylindrical cavi-
ties and the connecting tubes have a thickness of about 2 mm.
The resin acts as a hard-wall boundary due to its mismatched
acoustic impedance with air, enclosing the air regions where
acoustic waves can be stimulated and propagate. The geomet-
ric parameters used in experiments are identical to those used
in the simulations in Fig. 3. To facilitate measurements, each
cylindrical cavity is equipped with small holes for acoustic
signal excitation and detection. Specifically, considering the
p-orbital feature of acoustic waves, we include three holes on
either the top or bottom surface of each cylindrical cavity. In
Fig. 4(a), four different colored S’s represent the locations of
the acoustic source that excites the bulk states, the armchair

edge states, the zigzag edge states, and the corner states,
totaling four different pump-probe setups.

We first calculate the eigenspectrum of the experimen-
tal sample using acoustic simulations [see Fig. 4(b)], which
reveal 4 degenerate corner states (red) and 32 topological
armchair edge states (blue), along with trivial zigzag edge
states within the band gap and the bulk states, if we consider
only the eigenstates developed from the p,, orbitals. The
calculated eigenspectrum indicates the higher-order topol-
ogy associated with p,, bands which is the focus of this
study.

It is worth noting that the number of armchair edge states
matches precisely the number of Wannier centers cut through
by the armchair edge boundary, which confirms the topolog-
ical origin from the Wannier center picture. In addition, due
to the slight breaking of the chiral symmetry, the degeneracy
between the corner states and the armchair edge states is lifted.
It is seen from Fig. 4(b) that the corner states now have a
different frequency than the armchair edge states. This effect
turns out to be an advantage for the experimental probe of the
corner states and the armchair edge states since they do not
mix with each other in the frequency.

To detect the spectral response around the bulk, armchair,
and zigzag edges, as well as corner regions, we employ four
pump-probe configurations. A tiny speaker is positioned at the
location labeled by the letter S in Fig. 4(a) and connected
to an Agilent network analyzer for frequency excitation. Si-
multaneously, a miniature microphone captures the resulting
acoustic signal in other cavities through small holes at the top
or bottom of the cylindrical cavities [denoted by the letter D in
Fig. 4(a)]. Both the speaker and the microphone are inserted
into the cavities through the small holes (we keep the other
unused holes closed during the measurements). As illustrated
in Fig. 4(c), the resonant frequencies corresponding to the
peaks in the four pump-probe response curves exhibit ex-
cellent consistency with the simulated eigenspectrum shown
in Fig. 4(b).

To visualize the higher-order topological phenomena, we
present in the following both the simulated and experimen-
tally observed features of the bulk, edge, and corner states.
Figure 4(d) shows the acoustic pressure profile correspond-
ing to a bulk eigenstate with eigenfrequency f = 6093 Hz.
In comparison, Fig. 4(e) presents the measured acoustic
field profile with an excitation frequency of f = 6080 Hz,
which corresponds to the peak frequency in the bulk pump-
probe response curve shown in Fig. 4(c). Both acoustic wave
functions exhibit features of bulk extended states. Here, the
acoustic wave amplitude detected in the pump-probe mea-
surements is less extended, which is mainly because of the
non-negligible dissipation and damping that limits the propa-
gation of the excited acoustic waves. Importantly, the acoustic
wave amplitude distributions in both simulations and exper-
iments show clear features of py , orbitals in each cavity. In
Fig. 5 we present the simulated eigenstates wave functions
and the experimentally detected acoustic wave amplitudes for
the corner states, the armchair edge states, and the zigzag
edge states. The detected acoustic wave amplitudes are ob-
tained from the acoustic pump-probe measurements at the
resonance frequencies for various response curves as labeled
in Fig. 4(c).
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FIG. 4. (a) Photograph of the experimental sample for the acoustic phosphorene lattice with 5 x 5 unit cells. The four positions labeled
by s in different colors denote, separately, the locations of the acoustic source to excite the bulk, the armchair edge, the zigzag edge, and the
corner states. (b) Acoustic eigenspectrum from the finite-element simulation for a finite-sized acoustic metamaterial with 9 x 9 unit cells. The
topological corner states (red), armchair edge states (blue), and trivial zigzag states (green) emerge in the acoustic band gap. The black dots
denote the bulk acoustic states. (¢) Measured acoustic response versus frequencies corresponding to various acoustic pump-probe detection
schemes as labeled in (a) and using the same color scheme as in (b). Each curve is normalized so that its maximum value is 1. (d) The simulated
acoustic pressure profile (real part of the acoustic pressure) for the bulk states with eigenfrequency f = 6093 Hz. (e) Measured acoustic
pressure profile (real part of the acoustic pressure) for the bulk states with excitation frequency f = 6080 Hz. The yellow star represents the

location of the acoustic source.

A sharp feature of the corner states here is its p, , orbital
nature, which is confirmed in both the simulation [Fig. 5(a)]
and the experimental results [Fig. 5(d)]. Intriguingly, due to
the flat band property of the armchair edge states, the eigen-
state wave functions of such edge states are highly localized
[Fig. 5(b)]. However, in experiments due to the fact that
the acoustic pump-probe measurements inevitably involve
evanescent signals from the source and the intrinsic acous-
tic dissipation, the detected acoustic wave amplitude profile
cannot be localized within a cavity (this also happens for
the corner state measurements). Nevertheless, the p, , orbital
nature is clearly seen in the detected acoustic wave function
of the armchair edge states [Fig. 5(e)]. Finally, trivial zigzag
edge states can also be seen in the simulation [Fig. 5(c)] and
the experiments [Fig. 5(f)] and also show p, ,-orbital features.
Furthermore, compared to the trivial zigzag edge states, the
topological armchair edge states exhibit stronger localization
due to their nearly flat dispersion, as indicated in Fig. 3(c).
Overall, the consistency between the eigenstate simulations

and the acoustic pump-probe measurements here confirms the
emergence of the topological corner and armchair edge states
in real acoustic systems.

III. CONCLUSION AND OUTLOOK

In summary, we have successfully demonstrated the ex-
istence of py ,-orbital-induced topological edge and corner
states in an acoustic phosphorene metamaterial with puck-
ered geometry. Remarkably, the higher-order topology found
here is unique to p,, orbitals and is absent in s and p, or-
bitals. We used acoustic pump-probe measurements to verify
the theoretical predictions. Our findings highlight alternative
mechanisms for topological phases developed from p orbitals
and shed light on the manipulation of acoustic waves by utiliz-
ing the orbital degrees of freedom. Furthermore, the findings
in this work demonstrate the versatile role of higher orbitals
in engineering phononic states and acoustic dynamics. The
combination of real-space structure (e.g., the puckered lattice
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FIG. 5. The acoustic pressure profile (real part of the acoustic pressure) for the upper cavities from eigenstate simulations for (a) the corner
state, (b) the armchair edge state, and (c) the zigzag edge state. The measured acoustic pressure profiles (real part of the acoustic pressure)
using the acoustic pump-probe technique for (d) the corner state, (e) the armchair edge state, and (f) the zigzag edge state. The arrows in (d)—(f)
label the location of the acoustic source. The corresponding eigenfrequencies and excitation frequencies are labeled above each panel.

geometry in this work) and higher orbitals could possibly
provide unconventional metamaterial solutions for application
challenges. For instance, we expect that our approach can be
generalized to elastic metamaterials [57], where puckered lat-
tice geometry and p-orbital effects could lead to rich physics
and novel manipulation of elastic (phononic) waves. In such
elastic metamaterials, flat-band edge states can be used to
enhance the nonlinear effects in the edge channel, which may
lead to unconventional topological phononic phenomena.
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