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The time evolution of quantum many-body systems is one of the most promising applications for near-term
quantum computers. However, the utility of current quantum devices is strongly hampered by the proliferation
of hardware errors. The minimization of the circuit depth for a given quantum algorithm is therefore highly
desirable, since shallow circuits generally are less vulnerable to decoherence. Recently, it was shown that
variational circuits are a promising approach to outperform current state-of-the-art methods such as Trotter
decomposition, although the optimal choice of parameters is a computationally demanding task. In this work, we
demonstrate a simplification of the variational optimization of circuits implementing the time evolution operator
of local Hamiltonians by directly encoding constraints of the physical system under consideration. We study the
expressibility of such constrained variational circuits for different models and constraints. Our results show that
the encoding of constraints allows a reduction of optimization cost by more than one order of magnitude and
scalability to arbitrary large system sizes, without loosing accuracy in most systems. Furthermore, we discuss
the exceptions in locally constrained systems and provide an explanation by means of an restricted lightcone
width after incorporating the constraints into the circuits.
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I. INTRODUCTION

Quantum computers are promising computational plat-
forms which are expected to lead to breakthroughs for several
difficult problems like integer factorization, optimization or
machine learning algorithms by significant quantum speedups
over their classical counterparts [1–4]. While most tasks will
not become feasible before the realization of scalable quantum
error correction, the simulation of quantum many-body sys-
tems is one of the most promising applications on near term
devices [5]. The nonequilibrium behavior of different con-
densed matter systems [6–13], lattice gauge theories [14,15]
or quantum interactive dynamics [16,17] are examples for
applications which were studied recently. Current experimen-
tal platforms range from tens to more than a hundred qubits
[18,19], with thousands of qubits projected for the near future.
Such quantum processor sizes becomes increasingly challeng-
ing to simulate using the capabilities of classical computers
[20–24].

While the physical system sizes are increasingly impres-
sive, the reachable quantum volume [25] of present-day
devices is still limited by the presence of noise. The coupling
to the environment, gate imperfections, and measurement er-
rors can destroy the coherence of the quantum state and limit
the accuracy of the results of quantum computations. There
are several attempts to quantify the amount of errors and
to find protocols which allow one to average out the errors
by increasing the number of required measurements. These
techniques can be summarized by the term quantum error
mitigation [26–39]. Recent work has shown that a combi-
nation of quantum simulation and quantum error mitigation
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gives competitive results for the time evolution of quantum
systems [23,24].

An alternative approach consists of reducing the circuit
depth of the algorithm. The idea is simple: The proliferation
of errors is suppressed when the possibilities where such an
error can occur are reduced. In other words, one can try to
squeeze a given quantum algorithm into a given quantum
volume by finding a more efficient circuit representation of
the algorithm. For simulations of time evolution in this era of
noisy quantum computing, the state-of-the-art-method is the
Trotter decomposition [40–43].

Here the unitary operator U generating the time evolution
U |ψ〉 is expressed by a circuit of few-body gates, which can
then be evaluated on a quantum computer. The error resulting
from this mapping can be controlled by the circuit depth.
Trotter circuits have the best known asymptotic error scaling
for a large class of local quantum many-body systems and do
not require any ancilla qubits [44]. They are projected to be
the best iterative algorithms for gate and qubit counts that are
expected in the early fault-tolerant era [45,46]. Nevertheless,
at fixed time the circuit depth can potentially be made smaller
by employing numerical optimization.

One promising approach are variational circuits [47–70].
The main idea is to describe the time-evolved state or the time
evolution operator using a parametrized circuit. Choosing the
parameters boils down to an optimization problem, which
can be tackled using the gradient descent method. Several
proposed algorithms try to optimize the circuit on a quantum
computer or simulator [51–66]. However, this is currently
unfeasible due to the high error rate on present-day devices.
Other attempts, including our previous work, utilize a circuit
optimization algorithm that is specifically designed for
classical computers [67–70]. In some cases, we could reduce
the circuit depth by almost 50% in comparison to standard
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Trotter decomposition at fixed fidelity. While this approach is
thus a promising strategy for the future, one major drawback
is the large computational cost of the optimization. A possible
solution for this issue is to exploit constraints of the system to
reduce the number of independent parameters in the circuit.
These can be encoded directly into the variational circuit
ansatz.

In this work we study this approach for different con-
straints and analyze the resulting error scaling in comparison
to generic variational circuits and Trotter decomposition.

This paper is organized as follows: In Secs. II A and II B,
we describe our variational circuits and the implementation of
constraints. Furthermore we describe our optimization proce-
dure in detail in Sec. II C. In Sec. III, we present our results
for optimizing the time evolution of three different models
with different constraints: The Heisenberg XXZ chain, the
PXP model and the quantum link model. Finally, we discuss
the implications of our results for encoding constraints into
variational circuits in Sec. IV.

II. METHODS

In this section, we explain in detail the different circuit
architectures that we use to approximate the exact time evo-
lution of a given Hamiltonian. In Sec. II A, we introduce a
generic brickwall circuit architecture tailored to hardware-
native gates. In the following discussions we will refer to these
as unconstrained circuits. If the underlying time evolution has
conserved charges or local constraints, these can be incorpo-
rated into our circuit template. This is described in Sec. II B.
We refer to them as blocked circuits. In Sec. II C, we describe
our cost functions and optimization strategies to determine
the free parameters of our circuits. Finally, we explain in
Sec. II D how the optimized circuits can be used to simulate
time evolution on quantum computers for large systems and
long time scales beyond the capability of classical devices.

A. Parameterized circuits

Since our main intention is to simplify the implementation
of the time evolution of a many-body wave function using a
quantum computer, it is sensible to use a set of native gates
as building blocks. In our case, we use single-qubit gates
parametrized as

u(θ, φ, χ ) =
(

eiφ cos(θ ) eiχ sin(θ )
−e−iχ sin(θ ) e−iφ cos(θ )

)
, (1)

and controlled NOT (CNOT) gates. These gates form a universal
gate set [71].

The unconstrained circuit architecture C consists of M
brickwall layers, as shown in Fig. 1(a). Each brickwall layer
consists of two half-layers of CNOT gates connecting neigh-
boring qubits, with general single-qubit layers interspersed.
At the end of the circuit, we add a final layer of single-qubit
unitaries. The advantage of the brickwall architecture is its
minimal depth for a fixed amount of CNOTs. This is favorable
in the presence of noncorrectable errors.

B. Symmetries and constraints

When the targeted unitary U has conserved charges be-
cause of an underlying symmetry or local constraint, we
can incorporate these into the parameterized circuit by

FIG. 1. (a) Template for an unconstrained circuit with M = 2
layers. Each layer of CNOT gates is interspersed with a single-qubit
gate layer. At the end of the circuit, we add an extra layer of single-
qubit unitaries. Equal colored single-qubit gates are identical. The
dotted box encloses one layer of the circuit. (b) By adding translation
symmetry, we reduce the number of different single-qubit unitaries
to two independent single-qubits per half layer. Note that we cannot
further reduce the number of different unitaries since the brickwall
gate layout manifestly breaks site-inversion symmetry. For the rest of
the work, we call this architecture translationally invariant variational
brickwall (TIVB) circuits.

constraining the angles of the one-qubit unitaries or modifying
the circuit structure.

1. Lattice symmetries

We are often interested in translationally invariant sys-
tems. In this case we choose the one-qubit unitaries as in
Fig. 1(b), where we illustrate a translation-invariant circuit
with M = 2 brickwall layers. Here each horizontal layer of
one-qubit unitaries contains two independent unitaries (equal
colors have equal parameters), giving a circuit with 12M + 6
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real parameters. We note that the translation invariance in a
brickwork circuit is necessarily reduced: The minimal unit
cell for translations consists of two qubits. This implies that
we require two different single-qubit unitaries per half layer.

Apart from reducing the number of parameters to optimize,
the implementation of translation symmetry has additional
advantageous implications for the optimization: A fundamen-
tal property that C should reproduce is the Lieb-Robinson
bound of correlation spreading for local many-body quantum
systems [72,73]. As a result, if we want to approximate the
unitary U (t ) for system size L∗, and the corresponding light-
cone of correlations has width W (t ) < L∗, then optimizing C
at a smaller size L > W (t ) is sufficient.

This allows us to perform a difficult optimization proce-
dure for a small amount of qubits and use the result for larger
system sizes. We find that this extrapolation works extremely
well, sometimes even when L < W (t ). For the time scales we
have considered, we find that optimization for L = 8 qubits is
sufficient, with additional optimization at larger sizes giving
only insignificant improvements. For the rest of this work,
we have implemented this translation symmetry in our most
generic variational circuits, denoting them as TIVB circuits.

2. Local constraints

Apart from lattice symmetries, many systems of interest
exhibit symmetric couplings that induce a global symmetry.
Here each coupling only connects states with equal global
charges. These charges can also be local, as it is the case for
gauge theories, or do not need to be associated to a symmetry
or gauge freedom at all. Instead, a local constraint is sufficient,
as for example in the PXP model [74].

The constraints or conserved quantities imposes a block-
diagonal time evolution operator U (t ). Each block corre-
sponds to a different charged sector. In the following, we want
to encode such symmetries or constraints directly into the
circuit architecture, which we will then denote as a blocked
circuit architecture. By incorporating such special properties
into the circuit architecture, we get a blocked circuit that man-
ifestly has the corresponding block-diagonal structure. This
restricts the space of variational circuits to a subspace in which
the targeted time-evolution operator U lives, and reduces the
parameter count per number of CNOTs. However, it does not
guarantee an increased accuracy. In fact, such a restriction
can reduce the expressibility, e.g., restricting the maximum
possible distance that correlations can travel among the qubits
in M layers of CNOTs.

C. Optimization

As a cost function for the optimization of circuits C to
faithfully represent a given unitary tranformation U , we use
the normalized Frobenius distance between U and C,

ε = ||C − U ||2F
2L+1

=
∑

i j |Ci j − Ui j |2
2L+1

= 1 − Tr[C†U ]

2L
. (2)

The last equality holds because both C and U are unitary. For
small system sizes up to L ≈ 16 this expression can be evalu-
ated exactly, representing U and C as matrices with dimension
2L. Otherwise, we represent U and C as matrix-product oper-
ators (MPOs), where we inevitably lose information at large
t due to entanglement truncation [70]. To represent the exact
evolution operator U as a MPO, we Trotterize the exact time

evolution using a sufficiently small step size �t such that
the discretization error is smaller than machine precision or
truncation errors due to the entanglement barrier.

To determine the parameters of the single-qubit unitaries
in the specific architecture, we minimize the distance (2),
which we do with first-order gradient descent, using the Adam
optimizer [75] (see Algorithm 1). This optimizer uses expo-
nentially decaying averages of the first and second moments
of previous parameter updates to modulate the next update.

Our goal is to compress the time-evolution operator U (t )
for a sequence of times t = 1, 2, ..., 10 into parameterized
circuits with M layers. The minimization of ε is performed
for each pair (t, M ) separately. For a fixed layer count M, we
first optimze the circuit for the smallest timestep t = 1. We
initialize C as the identity circuit and choose a set of Adam
hyperparameters (λ, β1, β2, εreg). We perform O(105) itera-
tions of gradient descent to reduce the possibility of getting
stuck in local minima. For t > 1, we initialize with the same
set of hyperparameters and the optimal result of t − 1.

We perform this optimization simultaneously for a large
grid of hyperparameters. In particular, we choose

β1, β2 ∈ {0.9, 0.99, 0.999, 0.9999},
εreg ∈ {10−2, 10−4, 10−8, 10−12},

λ ∈
{{0.5, 0.2, 0.1, 0.01, 0.001, 0.0001}, blocked
{10−1, 10−2, . . . , 10−6}, TIVB circuit.

(3)

ALGORITHM 1. The Adam optimizer [75]. We want to min-
imize the distance ε as a function of the the circuit parameters �θ .
Adam uses first-order gradient descent to update the parameters.
With Adam, we calculate exponentially decaying running averages
of the first moment m and the second moment v of the gradient,
which are then used to update the parameters as δ�θ ∝ m/

√
v. This

ensures that the updates are steered away from tiny or huge values
to improve convergence to the global minimum, by providing a
mechanism to escape local minima without excessively large updates
(which are likely to be inaccurate since we are using only local
gradient information).

Hyperparameters:
λ: Base learning-rate
β1: First moment decay rate
β2: Second moment decay rate
δ: Regularization
Niters: Amount of iterations

Initial conditions:
m0 ← 0 (First moment initially set to zero)
v0 ← 0 (Second moment initially set to zero)

for (i = 0; i < Niters; i = i + 1) do
gi ← ∇�θi−1

ε(�θi−1) (Calculate gradient at current parameters)
mi ← β1mi−1 + (1 − β1)gi (Update running average
of first moment)
m∗

i ← mi/(1 − β i
1) (Bias correction)

vi ← β2vi−1 + (1 − β2)g2
i (Update running average

of second moment)
v∗

i ← vi/(1 − β i
2) (Bias correction)

�θi ← �θi−1 − λm∗
i /(

√
v∗

i + δ) (Update parameters)
end for
return �θi (Final circuit parameters)
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The difference in the choice of λ accounts for the fact
that the blocked circuits have less parameters per number
of CNOTs. After this sequential optimization, we determine
the best set of hyperparameters at each (t, M ) and use the
corresponding parameters to initialize another round of op-
timization at L = 6, with the same set of hyperparameters
and amount of iterations as before. These results are used to
initialize the last round of optimization, now for L = 8, with
O(104) iterations.

Removing any of the sequential optimization steps leads to
results that are orders of magnitude worse in accuracy. Fur-
thermore, we find that using a finer sequential optimization,
e.g., starting at t = 10−2 and progressing in steps of 10−2,
decreases the accuracy of the circuits after every round of
optimization.

D. Stacking circuits

The circuits shown in this work are optimized on small
system sizes and for short evolution times. As mentioned in
Sec. II B 1, the translation symmetry of the circuit template
allows to extend the optimized circuits to arbitrarily large
system sizes. Furthermore, stacking the circuits [70] allows
to reach time scales on a quantum device beyond classical
capabilities: Consider a circuit, optimized for a given time
t∗. By repeatedly applying this circuit n times on a quantum
computer, this allows to implement the time step nt∗ on the
quantum device. It was analyzed in Ref. [70] that the advan-
tageous scaling in terms of resource cost for the compressed
circuit in comparison to Trotter decomposition persists while
stacking a circuit multiple times.

III. MODELS AND RESULTS

In this section, we consider specific models and investi-
gate whether shallow depth circuits benefit from incorporating
conserved quantities or local constraints into the compressed
circuit ansatz C.

A. XXZ model

We start with the following XXZ model on a periodic
chain:

H =
∑
〈i, j〉

Sx
i Sx

j + Sy
i Sy

j + 1

2
Sz

i Sz
j, (4)

which satisfies [H, Q] = 0 with Q = ∑L
i=1 Sz

i . The conser-
vation of the total z spin can be associated with the global
U (1) symmetry corresponding to the invariance of (4) under
a simultaneous rotation of all spins in the XY plane. This
conserved global charge Q induces a splitting of the time-
evolution operator U (t ) = exp(−itH ) into O(L) blocks with
fixed Q. Specifically, because Q has L + 1 possible values,
i.e., Q = −L/2,−L/2 + 1, ..., L/2, there is an equal amount
of diagonal blocks. The dimension of the largest block, i.e.,
the zero-magnetization sector, is equal to the binomial co-
efficient ( L

L/2). The second-largest sector has ( L
L/2 − 1), such

that their ratio is ((L/2)!)2/((L/2 + 1)!(L/2 − 1)!). This ap-
proaches 1 for large L. More broadly, for the XXZ model there
is never a single block that significantly outsizes the rest.

FIG. 2. The blocked architecture that we use to compress the
XXZ time-evolution operator. Equal-colored gates are identical, with
the architecture consisting of U(1)-symmetric two-qubit unitaries,
Eq. (5). The dotted box encloses one layer of circuits. The colors
display the manifest translational and bond-inversion symmetries of
the XXZ model.

A TIVB circuit architecture from Sec. II A does not respect
this conservation by default. We can modify this circuit, how-
ever, by replacing the elementary CNOT gate with the U(1)
symmetric gate

UXXZ(θ, φ) = eiθ (σx⊗σx+σy⊗σy )+iφσ z⊗σ z
. (5)

Furthermore, we remove the one-qubit unitaries. This is illus-
trated in Fig. 2.

The gate (5) can be decomposed into three CNOTs with
one-qubit unitaries, see, e.g., Eq. (6) in Ref. [76]. This yields
a blocked circuit of M̃ U(1)-symmetric brickwall layers with
2M̃ parameters. The number of CNOT gates is the same as for
the previous TIVB circuit with M = 3M̃ layers. The lightcone
width for a fixed amount of CNOTs is reduced by a factor
three, since a minimum of three CNOTs is required to entangle
neighboring spins, instead of only one CNOT for the TIVB
architecture.

Choosing θ = t/2 and φ = t/4, we obtain the local evolu-
tion operator

Ul = e−it (Sx
i Sx

j +Sy
i Sy

j + 1
2 Sz

i Sz
j ), (6)

so the blocked circuit is a generalization of first-order Trotter
decomposition with variational time steps [56,64,65,68]. We
find that compressing into the second-order Trotter layout,
i.e., adding an extra half-layer on top of the circuit in Fig. 2,
provides no advantage over the first-order layout. To be more
concrete, the optimized ε decreases smoothly as we add half-
layers to the architecture. We checked that in both cases we get
the Trotter scaling from Ref. [77] when stacking the optimized
circuits.

In order to see the advantages of the blocked architecture,
we benchmark it against the TIVB architecture. We compare
blocked circuits with M̃ = 1, 3, 4, 5, 7, 8 layers against TIVB
circuits with M = 4, 8, 12, 16, 20, 24 layers. As we discussed
before, each U (1)-conserving two-qubit gate can be expressed
by a combination of unitaries and at most three CNOT layers.
The number of CNOT gates for a blocked circuit with M̃
layers is thus the same as for the previous TIVB circuit with
M = 3M̃ layers. Therefore we have a slight mismatch in our
comparison by means of circuit depth, since only for M̃ = 4, 8
can we exactly match the CNOT count with M = 12, 24. The
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FIG. 3. Results for the compression of the XXZ time-evolution
operator for system size L = 16 and times up to t = 10 for brickwall
circuits for a different number of layers M. We compare TIVB
circuits with M = 4, 8, 12, 16, 20, 24 with blocked circuits with
M̃ = 1, 3, 4, 5, 7, 8. (a) The normalized distance ε of the optimized
circuits as a function of the evolution time t , for the TIVB circuits
(solid lines), blocked circuits (dashed lines) and second-order Trotter
decomposition with M̃ + 1/2 steps (dotted lines). The blocked archi-
tecture outperforms the TIVB architecture in ε per number of CNOTs
for all t . Both parameterized architectures outperform the second-
order Trotter circuits. (b) The z-magnetization imbalance P of the
propagated Néel state |Z2〉 for the different circuits architectures. As
before, the blocked architecture outperforms the other approaches, as
long as ε is on the order of 1% at most. The observable is calculated
on a time grid with spacing δt = 1 and lines are guides to the eye.

other compared circuits differ at most by one additional brick-
wall layer of CNOTs.

We minimize Eq. (2) for the time-evolution operator of
(4) for times t = 1, 2, ..., 10. The results are shown in Fig. 3
for system size L = 16. We optimized the parameters of the
circuit for system sizes L = 6 and L = 8 and interpolated
to larger system sizes by imposing translation symmetry as
described above. We compare the error for TIVB (solid lines),
blocked (dashed), and second-order Trotter circuits with M̃ +
1/2 layers (dotted).

In Fig. 3(a), we show the normalized distance ε of the
optimized circuits. The blocked circuits outperform the TIVB
circuits for all investigated timesteps t . This difference is
most prominent at short times and vanishes for large times.
For small time steps t , the second-order Trotter circuits per-
form worse than the optimized circuits. For large t , the

performance is similar to the optimized blocked circuit. Even
if this observation is tight only for M = 12, 24 due to the equal
number of CNOT gates, it extends to other numbers of layers
M. However, in this case the comparison is more difficult due
to the mismatch in CNOTs.

We are not only interested in the distance between the
circuit and the targeted unitary, but also in the resulting error
for measurable observables. Moreover, we want to know if op-
timizing the full distance also yields systematically increasing
accuracy on the dynamics of the biggest block. As a check for
that, we show in Fig. 3(b) the z-magnetization imbalance

P =
∑

j

(−1) j
〈
σ z

j

〉
(7)

for the Néel-state

|Z2〉 = | ↑↓↑ ...〉 (8)

propagated to time t by the different circuit architectures.
The time evolution of |Z2〉 is constrained to the largest block
when the global U(1) constraint is satisfied. We compare with
the exact time evolution obtained from exact diagonalization
(red line). The blocked circuits reproduce P with the highest
accuracy as long as at least ε ∼ O(10−2). As an example, for
M = 12 the blocked circuit is best until t = 5, where its error
is a few percent. The blocked circuit with M = 24 is best
until t = 8, after which the Trotter circuit is best. For larger
distance ε, the TIVB and Trotter circuits perform better, with
almost all Trotter curves lying around the exact curve until
t = 10. As long as at most ε ∼ O(10−2), the accuracy on
P increases systematically, i.e., determining a deeper circuit
with lower ε generally also improves the accuracy on P.

It is unclear whether this situation will change significantly
when performing a simulation on noisy quantum computers.
In that case, we can perform classical postprocessing based
on the constraint, discarding output states that violate it, in an
effort to mitigate errors [29]. Furthermore, it should be noted
that the TIVB architecture has more than eighteen times as
many parameters as the blocked architecture for an equivalent
circuit depth. This makes the backpropagation computations
during the optimization process at least eighteen times as
expensive.

In Appendix B we show that the relative performance of
the blocked and TIVB circuits cannot be improved by con-
straining the cost function to one of the largest blocks and its
off-diagonal.

B. PXP model

The PXP model on a chain of L qubits with periodic bound-
ary conditions is given by [74]

H =
L∑

j=1

Pz
j−1σ

x
j Pz

j+1, (9)

where σα
j denote the Pauli operators acting on spin j and Pz

j =
(1 − σ z

j )/2 is a projector of the j-th qubit into its ground state.
The three-body term introduces a local constraint: neighbor-
ing excited states are immobile and cannot be created or
annihilated. This can be associated with an extensive num-
ber of conserved local charges Qj = (1 + σ z

j )(1 + σ z
j+1) that

205134-5



TEPASKE, LUITZ, AND HAHN PHYSICAL REVIEW B 109, 205134 (2024)

FIG. 4. The three-qubit circuit U3(θ ) that implements a PXP-
blocked rotation on the middle site. The blue unitaries correspond to
u(θ, 0, 0) and the gray to u(0, φ, 0). The gray and CNOT gates ensure
that u(4θ, 0, 0) is applied to the inner qubit only when its neighboring
qubits are in the ground state.

encode the absence (Qj = 0) or existence (Qj = 1) of a frozen
pair on the bond between sites j and j + 1. The time-evolution
operator splits into O(2L ) blocks, each block being labeled
by a particular charge configuration {Qj}. The largest block
has Qj = 0 ∀ j and is well known for its weak ergodicity
breaking: its Hilbert space has an exponentially small fraction
of ETH violating states, as revealed by the revivals in return
probability and z-magnetization imbalance that occur when
time-evolving Néel product states [74].

Besides the PXP model having exponentially many more
blocks than the XXZ model (4), another qualitative difference
is the relative size between the largest and second largest
blocks: The largest block has dimension FL−1 + FL+1, where
Fj is the Fibonacci sequence F0 = 0, F1 = 1, ... [74]. The
second-largest block has a dimension equal to that of the
largest block of the L − 4 PXP model with OBC, i.e., FL−2.
Their ratio approaches 5.8541... for L → ∞. The PXP model
thus has a dominant block in the Hilbert space, in contrast to
the XXZ model where this ratio approaches 1.

1. Circuit architectures

We compare again the compression of the PXP time-
evolution operator into TIVB and blocked circuit architec-
tures. The TIVB architecture is the same as in Fig. 1, which
breaks the site-inversion symmetry of the PXP model (9).

In order to incorporate the local constraint of the PXP
model, we have to fix the relation between different one-qubit
angles. To do so, we consider a blocked circuit U3(θ ) acting
on three qubits that satisfies the local constraint. It has a
single parameter and is displayed in Fig. 4. In this figure,
the blue unitaries denote u(θ, 0, 0) = exp(iθσ y). The gray

unitary gates correspond to u(0,±π/4, 0). The interplay of
u(0,±π/4, 0) and the CNOT gates ensures that the inner qubit
is only rotated when the neighboring qubits are in the ground
state. With the choice θ = t/4, it is an implementation of the
local time-evolution operator Uj = exp(−itPj−1σ

x
j Pj+1).

It is important to note that we can generalize U3(θ ) to a
full circuit which implements the constraint on all even qubits
(and then on all odd qubits) simultaneously. This allows us to
construct a blocked circuit as shown in Fig. 5, implementing
the PXP constraint for the entire system. From this circuit
diagram it is immediately clear that information can only
travel one site after four brickwall layers of CNOT gates.

We find that we can implement a time-inversion symmetry
without loosing accuracy, i.e., choosing the angles θi sym-
metric as θi = θM/2−i. The resulting brickwall circuit with M
layers has M/4 free parameters.

Similarly to the U(1)-symmetric circuits in Sec. III A, the
blocked ansatz is a first-order Trotter circuit with variational
time steps, and it always satisfies M mod 4 = 0 due to its
construction. It gives the identity operator when all angles are
set to zero.

We compress the PXP time-evolution operator for times
t = 1, 2, ..., 10 into TIVB and blocked circuits with M =
4, 8, ..., 24 brickwall layers of CNOTs. The results are shown
in Fig. 6, evaluated at L = 16. The TIVB circuits are shown
as solid lines, the blocked circuits as dashed lines, and the
second-order Trotter circuits with M + 2 layers as dotted
lines.

2. Distance and imbalance

In Fig. 6(a) we show the normalized distance ε. The accu-
racy of the TIVB circuits is at least one order of magnitude
better than the blocked circuits for fixed circuit depth. This
is in contrast to the case for the XXZ chain. As before,
both architectures outperform the Trotter circuits in terms of
distance.

We evolve the Néel state (8) up to a time t and measure
the imbalance P defined in Eq. (7). In the case of the PXP
model, the dynamics gives rise to prominent revivals in the
imbalance P, since the initial |Z2〉 state has large overlap
with scarred eigenstates of the model [29,74]. In Fig. 6(b) we
show the results for the optimized circuits from Fig. 6(a). The
red line displays the exact values Pexact obtained from exact
diagonalization.

FIG. 5. The blocked architecture with M = 8 brickwall layers. The building blocks is the sub-circuit U3(θ ) defined in Fig. 4 and indicated
by a black dashed box. The implemented circuit has a time-inversion symmetry, resulting in M/4 parameters for M brickwall layers. The gray
unitaries correspond to u(0, ±π/4, 0), and the blue and green unitaries to u(θ j, 0, 0), with equal-colored gates being equivalent.
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FIG. 6. Results for the compression of the PXP time-evolution
operator for system size L = 16 and times up to t = 10 for brickwall
circuits with up to M = 24 layers. (a) The normalized distance ε

as a function of the timestep t , results for the TIVB circuits (solid
lines), blocked circuits (dashed) and second-order Trotter circuits
with M + 2 layers (dotted). The TIVB architecture outperforms the
blocked architecture with the same circuit depth. Both architectures
outperform the second-order Trotter circuits, although the blocked
architecture is only marginally better at large t . (b) The imbalance P
(7) as a function of time, starting from the Néel state. The exact result
is shown as a solid red line. The same qualitative picture emerges as
in panel (a).

Although we focus here on a state that evolves within a
single block of the Hilbert space, the same picture as in Fig. 6
a carries over: The TIVB circuits outperform the blocked cir-
cuits with the same circuit depth. For a fixed amount of gates
and a fixed accuracy threshold ε, the TIVB circuits can reach
times around 2t when the blocked and Trotter circuits reach
t . Similar to the situation for the XXZ model, the blocked
circuits outperform the Trotter circuits when ε is of order
O(10−2) at most. Afterwards, there is a short region where
the Trotter circuit is most accurate, before both the Trotter and
constrained circuits are inaccurate. This is in contrast to our
results for the XXZ model, where the Trotter circuits remained
fairly accurate for the magnetization even when ε was highly
inaccurate.

3. Detailed error analysis

To understand the origin of the discrepancy between the
architectures, we consider the component-wise absolute error

FIG. 7. The component-wise absolute error |Ci j − Ui j |2 of a
TIVB circuit (a) and a blocked circuit (b) with M = 20 brickwall lay-
ers for L = 6 at t = 5. The blocks are shown as turquoise boxes. The
TIVB circuit connects different subspaces: It hybridizes blocks that
have a fixed amount of frozen pairs but at slightly shifted locations.
This hybridization is accompanied with a higher approximation ac-
curacy inside of the blocks, where the errors are more than an order
of magnitude smaller than for the blocked circuit architecture with
the same circuit depth.

|Ui j − Ci j |2 for L = 6 at time t = 5 with M = 20 in Fig. 7.
We compare the TIVB architecture (left), with a total dis-
tance ε ≈ 10−2, with the blocked architecture (right), which
is significantly worse with ε ≈ 10−1. The block structure of
the Hilbert space is indicated by turquoise lines. The main
contributions of errors in the TIVB circuit stem from violation
of the block structure. In particular, we find that the optimiza-
tion systematically leads to hybridization of blocks that have
an equal amount of frozen spin pairs, i.e., it allows for small
moves of the frozen spin-up pairs.

As a compensation, this allows a significant increase of
expressibility within the diagonal blocks in comparison to
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FIG. 8. The out-of-time-ordered correlators CL/2, j (t ) (10) as a
function of time t and position j, traced over the largest subspace.
Results are shown for the exact L = 16 PXP time-evolution operator
(left panel), the TIVB brickwall circuit approximation (center), and
the blocked brickwall circuit approximation (right). Both circuits
have a fixed depth of M = 16 layers for all times t . The architecture
of the blocked circuit constraints its correlation range. As a conse-
quence, it can reproduce CL/2, j (t ) only for times t < 4. In contrast,
the TIVB architecture is only limited by the expressibility due to its
given circuit depth.

the blocked architecture: The errors within a diagonal block
are more than one order of magnitude lower on average. In
case the violation of the constraint is not severe, this still
allows the use of post-processing quantum simulation data in
real experiments, e.g., discarding measurement output which
violates the constraint. This improves the mitigation of errors
in a quantum simulation. The downside of the TIVB architec-
ture is the optimization cost: This architecture has 48 times
more parameters than the blocked circuits for fixed circuit
depth. This increases the cost of backpropagation during the
optimization process by at least the same amount.

4. Growth of correlations

To gain more insight, we analyze the results for the out-of-
time-ordered correlator (OTOC)

CL/2, j (t ) = ∣∣∣∣[σ z
L/2(t ), σ z

j

]∣∣∣∣2

F (10)

as a function of j and t . The average is taken only over the
largest block without frozen spin-up pairs. The results are
shown in Fig. 8 for a system with L = 16 sites, up to time
t = 8. In the left panel we show the exact results. In the middle
and right panels, we look to reproduce this using the TIVB and
blocked architecture with M = 16 layers.

Due to the specific construction of U3 shown in Figs. 4
and 5, the blocked circuit can only reproduce correlations
within M/4 sites. As a result, the blocked architecture has
a reduced maximum-velocity lightcone width, which limits
its expressibility. As is shown in Fig. 8, this restricts the
reachable times of the blocked circuit: In case of M = 16, the
maximum reachable time is thus t = 4. In contrast, the TIVB
architecture has no such limitation and is capable to reproduce
the lightcone structure of the OTOC up to t = 8.

5. Scaling with system size

Now we will check the scaling of accuracy with system
size. We use the M = 24 circuits optimized at t = 1, 2, ..., 10

FIG. 9. The system-size extrapolation of the normalized distance
ε for the TIVB (solid), blocked (dashed) and second-order Trotter
circuits with M = 24 layers (dotted) at times t = 1, 2, ..., 10. The
circuits are optimized at L = 8 and then used to evaluate the quan-
tities at larger sizes L = 10, 12, 14, 16 by exploiting translational
invariance. All optimized circuits extrapolate as good as the Trotter
circuits, with errors that show only weak dependence on system size.
Thus the optimization of circuits is scalable to larger system sizes
without losing accuracy.

with L = 8 to calculate their distances to the exact time-
evolution operator at larger sizes L = 10, 12, 14, 16. In Fig. 9
we present the results. All architectures have a weak depen-
dence on system size L. This shows the scalability of our
approach to system sizes larger than investigated in this work.

6. Comparison with Trotter decomposition

In order to compare the optimized blocked circuits with
the Trotter circuits, we analyze the optimized circuit param-
eters θl . As mentioned above, the Trotter circuits have the
same structure as the blocked circuits, but with fixed angles
θ1 = t/(2M ) and θl = t/M for l > 1.

In Fig. 10(a), we compare the six angles θl of the blocked
circuit with M = 24 layers at various times and compare it
with the angles of the Trotter circuit. In Fig. 10(b), we com-
pare the sum of the optimized angles

∑
j θ j as a blue solid

line, with the sum of Trotter angles t/4 shown as a dotted line.
The optimized angles are far off the Trotter parameters

in most cases. The blocked circuits implement a sequence
of forward and backward time evolutions. In contrast their
sums

∑
j θ j are close as long as ε ∼ O(10−2). Higher-order

Trotter circuits also contain backward time evolution [43],
but we did not find any symmetrical Trotter decomposition
that matches our optimized angles. Specifically, the angles of
the often-used decompositions from Ref. [43] are significantly
smaller.

In Appendix A we consider the scar states of the PXP
model in more detail. In Appendix B we consider the distance
(2) restricted to various blocks. There we also show that the
distance of the largest block is not improved by restricting the
cost function to it. We show this for the PXP and XXZ models.
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FIG. 10. (a) The six optimized angles θl of the blocked architec-
ture with M = 24 brickwall layers. The angles of the second-order
Trotter circuit with two extra brickwall layers are shown as dotted
lines. While the angles of the Trotter circuit θl are positive, the opti-
mized blocked circuit relies on the cancellation of multiple forward
and backward evolutions. (b) The sum of the optimized angles from
panel (a) shown as a solid line, and the sum of the Trotter angles
t/4 shown as a dotted line. Both angles sum up to the same value
of t/4, as long as the blocked circuit has an optimized distance
below ε ≈ 10−1. The sequences of forward and backward evolutions
observed in panel (a) always accumulate to t/4 when it is sufficiently
accurate.

C. Quantum link model

As a third model, we consider the massless spin-1/2 quan-
tum link model (QLM)

H = −
L∑

j=1

σ+
j s+

j, j+1σ
−
j+1 + h.c., (11)

which describes matter spins σ j that are coupled by gauge
spins s j, j+1 that live on the links. It is equivalent to a a discrete
massless Schwinger model with staggered fermions [78]. The
time-evolution operator splits into exponentially many blocks,
to account for the gauge freedom that is generated by the
conserved charges

Qj = (
σ z

j + sz
j−1, j − sz

j, j+1 + (−1) j
)
/2, (12)

which act on a matter spin and its neighboring gauge spins. It
takes on the values Qj = 0,±1,±2.

FIG. 11. One layer of the TIVB architecture used for the quan-
tum link model (11). Each horizontal layer of one-qubit unitaries
contains four distinct one-qubit unitaries.

One of the two largest blocks corresponds to the gauge-
invariant sector Qj |ψ〉 = 0 ∀ j. When tracing out the matter
spins in this sector, we get a PXP model for the gauge spins
[79]. As such, the gauge-invariant block is simply the largest
block of a PXP model with L sites. The other largest block
corresponds to the charged sector with Qj |ψ〉 = (−1) j |ψ〉,
which is the largest block of a dual PXP model where neigh-
boring gauge spins are frozen when they both point down. The
next-largest blocks correspond to the charge configurations
Qj that can be obtained from the gauge-invariant sector by
replacing pairs of neighboring Qj = 0 with Qj = (−1) j , leav-
ing at least one pair of zeros. The ratio of the dimensions of
the largest and second-largest blocks is 1.206.... Hence there
are many similarly sized blocks, unlike the PXP model where
the largest block is multiple times larger than the rest. The
situation is analogous to the XXZ model, where at finite L
the second-largest block is only marginally smaller than the
largest block. However, we now have L conserved charges
instead of one, such that there are exponentially more blocks
(that are therefore exponentially smaller).

To account for the doubled unit cell of the QLM, we com-
press its time-evolution operator into TIVB brickwall circuits
that contain four unique one-qubit unitaries per half-brickwall
layer. This is illustrated in Fig. 11 for M = 1. This TIVB ar-
chitecture has 24M + 12 parameters. Due to the chosen layout
of matter and gauge spins, each elementary nearest-neighbor
gate always acts on a matter and gauge spin. To compress
while respecting the local constraint, we start by decomposing
the local time-evolution operator into nearest-neighbor CNOTs
and one-qubit unitaries. This yields the circuit G3(θ ) shown
in Fig. 12. The local time-evolution operator is obtained by
setting θ = t/8. G3(θ ) is our building block for a charge-
conserving circuit, as is shown in Fig. 13 for M̃ = 2 layers.
Each three-qubit gate represents a two-local subcircuit G3(θ ),

FIG. 12. CNOT implementation of the parameterized constrained
coupling G3(θ ) between a gauge field and its neighboring matter
sites. It contains a single parameter θ . The gray one-qubit unitaries
are u(±π/4, 0, 0), the green are u(±θ,−π/2, 0) and the yellow are
u(±θ, π/2, 0).
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FIG. 13. The translationally invariant blocked architecture with
M = 2 layers, where every three-qubit “gate” is a G3(θ ) subcircuit.
The circuit has a time-inversion symmetry, as indicated by the colors,
such that a blocked circuit with M̃ layers has only M̃ parameters.

and equal-colored gates have equal angles in order to enforce
translation and time-inversion symmetry. Consequently, the
blocked circuit with M̃ layers has only M̃ parameters, and
has an equal amount of CNOTs as a brickwall circuit with
M = 6M̃. However, because a blocked circuit cannot be cast
into a two-local brickwall circuit, the comparison at fixed gate
count is not entirely straightforward.

The performance of the circuit compressions for the QLM
model is shown in Fig. 14. The normalized distance ε for the
different circuit architectures is shown in Fig. 14(a). The situ-
ation is analogous to that for the XXZ model from Fig. 3. The
blocked circuits outperform the other approaches for fixed
gate count when ε � 10−2, and afterwards they all perform
similarly. For the circuit sizes that we have considered, any
significant advantage over the Trotter circuits is restricted to
t < 3.

The curves for M = 6, 12 are an exception, since here
the second-order Trotter circuits appear to outperform the
optimized circuits. However, the Trotter architecture gets an
extra half-layer in Fig. 13, such that in Fig. 14 we, e.g.,
compare a blocked circuit with M̃ = 1 with a Trotter circuit
with M̃ = 1 + 1/2. The difference is three brickwall layers
worth of CNOT gates. This difference becomes negligible at
large M̃, but for small M̃ it skews the comparison, as we see
for M = 6, 12 in Fig. 14.

As a further test, we simulate the dynamics of the
gauge-invariant block, again in order to determine whether
optimizing the global distance ε also yields systematic
improvement on a block-restricted quantity. Specifically, be-
cause the QLM restricted to the gauge-invariant sector is a
PXP model on the gauge spins, the propagation of states in
this block can again yield revivals [79]. For this correspon-
dence, the gauge z-spin operator is mapped onto a staggered
z-spin operator. Consequently, revivals now occur for uniform
up or down states of the gauge spins, as captured by the
magnetization

P =
L∑

i=1

〈
sz

i,i+1

〉
/L. (13)

We consider the initial state
∣∣ZQLM

2

〉 = | ↓σ1↓s1↑σ2↓s2↓σ3↓s3 ...〉, (14)

which is the product of a staggered state for the matter spins
| ↓σ1↑σ2 ...〉 and a uniform down state for the gauge spins

FIG. 14. Results for the compression of the massless spin-1/2
quantum link model time-evolution operator for system size L = 16,
counting both matter and gauge spins, and times up to t = 7 for
brickwall circuits with up to M = 36 layers. The blocked circuit with
M̃ layers has an equal amount of CNOTs as the TIVB circuit with
M = 6M̃, but the CNOT architecture is deeper in the blocked case.
For convenience we label M̃ as 6M in the plots. (a) The normalized
distance ε of the optimized circuits. We compare TIVB circuits (solid
lines), blocked circuits (dashed) and second-order Trotter circuits
with M̃ + 1/2 layers (dotted). The blocked circuits outperform the
others for fixed gate count, most prominently at low t . (b) The string-
order parameter P of the gauge spins, evaluated for the circuits from
(a). The exact result is shown as a red line. As for the PXP model,
this quantity shows revivals. The relative performance observed in
panel (a) carries over for the circuits with ε below some threshold of
order O(10−2 ).

| ↓s1↓s2 ...〉. The state (14) is part of the gauge-invariant
sector, in which it remains as long as it is evolved with a
circuit that obeys the local constraint. We show the results in
Fig. 14(b), where the exact curve is shown as a red line. As
for the other models, the picture from panel (a) carries over
for the circuits with distance smaller than ε � O(10−2). For
larger compression errors, all circuits show large deviations
from the exact curve.

IV. DISCUSSION

In this work, we have studied the performance of different
circuit architectures to simulate time evolution in the presence
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of conserved charges. In particular, we put an emphasis on the
accuracy that the compressed circuits can achieve when we
directly encode constraints into the circuit architecture.

In the presence of global charges and also for lattice gauge
theory, we can decrease the optimization cost by more than
two orders of magnitude and simultaneously increase the ac-
curacy. At the same time, translation invariance allows for
a scalability of our circuits to arbitrary large system sizes
while remaining accurate. The only exception arises for sys-
tems with local constraints such as the PXP model. In this
case, the expressibility of the blocked circuits is reduced to
the extent that lifting the constraint gives rise to substantial
improvement. It manifests itself as a severely restricted light-
cone of correlation spreading (see Fig. 8) and thus imposes
fundamental limitations on the accuracy that can be reached
with shallow circuits.

Furthermore, we believe that the ability of the TIVB ar-
chitecture to outperform the blocked architecture on only
one of the three considered models is related to the different
symmetry block structures of the Hamiltonians. As shown in
Fig. 7, lifting the constraint allows for a hybridization of dif-
ferent symmetry blocks in the PXP model. While this induces
additional errors violating the constraint, the hybridization of
different blocks allows a larger expressibility and thus error
reduction within a symmetry block.

Another interesting observation arises for the blocked
circuits: In many cases, the constraint puts such heavy con-
straints on the final architecture that they automatically turn
out as a Trotter circuit with variational time steps. However,
our optimized circuits did not coincide with any conventional
Trotter decompositions, relying on the cancellation of rela-
tively large forward and backward local time evolutions. In the
case of the PXP model they achieved an increase in accuracy
of more than an order of magnitude in comparison to standard
second-order Trotter decomposition with the same gate count,
as measured in the normalized distance. It is desirable to get
a more rigorous understanding of the origins of this improved
accuracy [44].

Another interesting direction for future studies is the use
of different cost functions to simulate quantum dynamics.
In the case of adaptive Trotter decomposition, it was shown
that bounding the errors in the mean and the variance of the
energy is sufficient to obtain very precise expectation values
for local observables at intermediate to long times [64,65].
This raises the question whether we can use shallower circuits
if we only care about reproducing the time evolution of local
observables.
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FIG. 15. The absolute overlap of the eigenstates |λ〉 with the
Néel state |Z2〉, versus the argument of the complex eigenvalues λ,
for the exact PXP time-evolution operator and compressed circuits
with M = 16 layers at time t = 4 for system size L = 14. Note
that these are the eigenstates of the entire unitary, not only the first
block. Even though the TIVB circuit simulates the time evolution
most accurately, the breaking of the constraint leads to multiple
additional non-degenerate eigenstates with small overlap. The six
exact eigenstates with the largest overlap are encircled in red. The
TIVB architecture can reproduce them to high precision.

APPENDIX A: QUANTUM MANY-BODY SCARS IN THE
PXP MODEL

The PXP model is known to host so-called quantum many-
body scars [6,74]. In this section we probe the accuracy with
which these states are reproduced by the different architec-
tures. To do so, we show in Fig. 15 the absolute overlap
between the eigenstates |λ〉 of the circuits with eigenvalues
λ and the Z2 Néel state. The calculations were performed at
L = 14 for t = 4. The overlap with eigenstates of the blocked
circuit with M = 16 are shown in dark blue, and of the TIVB
circuit with M = 16 in cyan. As a reference we show the
overlap for the exact time evolution with red crosses. The
TIVB circuit reproduces the uppermost scarred eigenstates to
high accuracy, while the blocked circuit is visibly off. This is
in line with their distance, namely ε ∼ O(10−3) for the TIVB
circuit and ε ∼ O(10−2) for the blocked circuit, as can be
seen in Fig. 6(a). On account of breaking the constraint, there
are many spurious states for the TIVB circuit. It is shown in
Fig. 6(b) that these do not significantly affect the imbalance
revivals.

APPENDIX B: RESTRICTED DISTANCES

To better understand how the TIVB circuits can outperform
the blocked circuits in compressing the PXP time-evolution
operator, we plot in Fig. 16 the Frobenius distance (2) re-
stricted to various parts of the unitary. We do this for a TIVB
and a blocked circuit, both with M = 24 brickwall layers,
shown as the solid and dashed light blue lines. The second-
order Trotter circuit with M = 26 is shown as a dashed green
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FIG. 16. The normalized Frobenius distance for various parts of
the PXP time-evolution operator with size L = 12. We consider a
TIVB and a blocked circuit with M = 24, shown as solid and dashed
lines, respectively. The second-order Trotter circuit with M = 26 is
shown as a dashed green line. The light blue curves correspond to
circuits that were optimized with the total distance ε as cost function,
which for the dark blue curves was restricted to the largest diagonal
block and its off-diagonal rectangles. In (a) we show the distance of
the largest diagonal block εd1, in (b) the distance of the remaining
diagonal blocks εd1, in (c) the distance of the off-diagonal rectangles
adjacent to the largest diagonal block εo1, and in (d) the distance of
the remaining off-diagonal rectangles εor. The block cost function
provides a marginal increase in accuracy for the first diagonal block,
which is outweighed by the exponential complexity of determining
the block. Interestingly, for t > 1 the restricted cost function achieves
equally high accuracy outside of the first block.

line. In (a) we show the distance of the largest diagonal block
εd1, in (b) the distance of the remaining diagonal blocks εdr , in
(c) the distance of the off-diagonal rectangles adjacent to the
largest block εo1, and in panel (d) the distance of the remaining
distances. To normalize the Frobenius norm we divide it by
2
√

Ne, with Ne being the amount of matrix entries in the
average. This reduces to the normalized distance (2) when the
average is over one or multiple diagonal blocks.

We see that all distances are roughly equal, indicating that
optimizing the total ε leads to systematic improvement of all
sectors. The TIVB circuit has almost two orders of magni-
tude higher accuracy on the diagonal blocks than the blocked
circuit. We know from Sec. III B 2 that this gain carries over
to the simulation accuracy of the imbalance revivals, even at
times when the largest diagonal block couples to the other
diagonal blocks with εo1 ∼ εor ∼ O(10−2).

Given these results, it is sensible to ask whether we can
increase the accuracy of the largest block by restricting the
cost function to the largest block and the adjacent off-diagonal
rectangles. The results of this optimization are shown as
the dark blue lines in Fig. 16. First we consider the TIVB

FIG. 17. The normalized Frobenius distance for various parts of
the XXZ time-evolution operator with size L = 12. We consider a
TIVB circuit with M = 24 and a blocked circuit with M̃ = 8, shown
as solid and dashed lines, respectively. The second-order Trotter
circuit with M̃ = 8 + 1/2 is shown as a dashed green line. The light
blue curves correspond to circuits that were optimized with the total
distance ε as cost function, which for the dark blue curves was re-
stricted to the largest diagonal block and its off-diagonal rectangles.
In panel (a) we show the distance of the largest diagonal block εd1,
in (b) the distance of the remaining diagonal blocks εd1, in (c) the
distance of the off-diagonal rectangles adjacent to the largest diago-
nal block εo1, and in (d) the distance of the remaining off-diagonal
rectangles εor. The block cost function does not improve the accuracy
of the first diagonal block, and it no longer automatically yields high
accuracy on the smaller diagonal blocks.

circuit. There is a marginal improvement in the distance of
the largest diagonal block εd1 and the distance of its off-
diagonal rectangles εo1. Furthermore, the distance of the other
diagonal blocks εdr and the distance of its off-diagonals εor

are automatically reproduced to almost the same extent as
when using the full cost function. Only at t = 1 the accu-
racy of the distances εdr and εor is diminished, which does
not affect the distances εd1 and εo1. We have checked that
the imbalance revivals are reproduced equally accurate with
both cost functions. For the blocked circuit there is no gain
at all, with the differences stemming from the optimization
procedure. In summary, there seems to be little merit to a
restricted cost function, especially because determining the
blocks is exponentially complex in L and requires a priori
knowledge of the particular structure of U .

In Fig. 17 we repeat this analysis for the XXZ model, now
for a TIVB circuit with M = 24 brickwall layers of CNOT

gates and a blocked circuit with M̃ = 8 brickwall layers of
U (1)-symmetric gates. The second-order Trotter circuit has
M̃ = 8 + 1/2 brickwall layers of U (1)-symmetric gates, with
the +1/2 indicating an extra half brickwall layer. Clearly, the
restricted cost function provides no benefit.
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