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High-harmonic generation in semi-Dirac and Weyl semimetals with broken time-reversal
symmetry: Exploration of the merging of Weyl nodes
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We explore anomalous high-harmonic generation in a model that realizes a transition from a broken time-
reversal symmetry Weyl semimetal to a semi-Dirac regime, i.e., a gapless semimetal with dispersion that is
parabolic in one direction and conical in the other two. We point out the intensity of the induced anomalous high
harmonics is high in the semi-Dirac regime. For Weyl semimetals, we reveal anomalous high harmonics are due
to excitations at momenta where the dispersion is not strictly linear and that in the linearized low-energy theory
the anomalous response is harmonic only. Our findings aid in the experimental characterizations of Weyl, Dirac,
and semi-Dirac semimetals.
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I. INTRODUCTION

The high-harmonic generation (HHG) in condensed matter
systems has attracted significant attention due to its potential
applications in ultrafast optics [1–8] and as a characterization
method [9–16]. HHG was proposed to be efficient in Dirac
semimetals (DSMs) and Weyl semimetals (WSMs) as they
are gapless materials with linear energy dispersion [16–24]
and exhibit very high carrier mobilities [25–29]. Here, we
focus on the anomalous optical response (i.e., in the current
in a direction perpendicular to the electric field) [30–32]. In
WSMs, the linear anomalous response is proportional to the
separation of the Weyl nodes and thus related to topology in
these materials. Anomalous high harmonics were proposed as
a means for probing the Berry curvature [33–36]. In WSMs,
the Berry curvature diverges at the Weyl points [16,37] and
one might expect this enhances the generation of anomalous
high harmonics (although the contribution due to Berry cur-
vature may not be dominant for all driving frequencies [36]).

In WSMs, the band touchings are characterized by their
topological charge which determines the chirality of massless
Weyl fermions [38]—and by combining two Weyl fermions
with opposite chiralities one obtains a Dirac fermion. How-
ever, the merging of a pair of Weyl nodes may also give rise to
a topologically trivial yet unconventional semi-Dirac regime
with parabolic dispersion in the direction of the Weyl nodes’
separation vector and linear dispersion in the other two direc-
tions (i.e., parabolic two-dimensional (2D) conical; see Fig. 1)
[39,40]. Note that the semi-Dirac regime is distinct from
the double-Weyl regime [38,41,42] that arises from merging
the Weyl nodes with the same chiralities and has parabolic
dispersion in two directions. An example of a material that
realizes a semi-Dirac regime is SrNbO3 where the fourfold
degenerate semi-Dirac point is protected by a nonsymmorphic
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symmetry [39]. Another candidate with such parabolic 2D
conical dispersion, albeit with a tiny energy gap of 6 meV,
is ZrTe5 [1,6,40,43–49].

HHG has already been studied in DSMs and WSMs with
broken time-reversal symmetry (TRS) [30–32] or inversion
symmetry (IS) [34,35,50]. Despite great interest, the quali-
tative understanding of anomalous HHG (AHHG) in WSMs
seems poor, and which aspects of Weyl physics are really con-
tributing is unclear. Here, we disentangle the contributions to
the response that can be described in terms of well-separated
Weyl nodes with conical dispersion [51,52], which was argued
to lead to an AHHG response that increases with the distance
between the nodes [30], from the contributions that come from
nonlinearity of dispersion, which becomes large when the
nodes approach, and to investigate the effects of the merging
of a pair of Weyl nodes to a Dirac or semi-Dirac node.

We consider a minimal three-dimensional (3D) model,
which describes a transition between two-node WSMs with
broken TRS and semi-DSMs with a parabolic 2D conical
energy dispersion. We use the semiconductor Bloch equa-
tions (SBEs) [30,32,53,54] to explore the dynamics of the
system under the influence of an infrared pulse. We investi-
gate how the anomalous response varies with the separation
between the Weyl nodes. In a regime of large Weyl-node
separation, we find that whereas the linear response is large,
the higher-harmonic intensity drops and becomes negligible.
Our results reveal the key aspect of AHHG in WSMs: (i) The
response vanishes for linearized Weyl dispersion, and hence
(ii) the response arises from deviations from strict linearity.
The response becomes large when the Weyl nodes merge
and a semi-DSM is realized. We also consider the effects of
tilting the Weyl cones. Very recently, a related study has found
enhancement of AHHG in multi-Weyl systems [42].
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II. MODEL AND METHODS

We begin with the Hamiltonian [31,38,55] H (k) =∑
i di(k)σi where k = (kx, ky, kz ) represents the crystal

momentum, and Pauli matrices σi act on the pseudospin
degree of freedom, such as orbital or sublattice. The compo-
nents of the vector d(k) are given by dx(k) = tx cos(akx ) +
ty cos(bky) + tz cos(ckz ) − γ , dy(k) = ty sin(bky) and dz(k) =
tz sin(ckz ). The Hamiltonian has orthorhombic symmetry, but
for simplicity, we will investigate it for a symmetric choice
of parameters tx = ty = tz = t and a = b = c and take dimen-
sionless units a = 1, t = 1.

With varying γ , the Hamiltonian exhibits three distinct
regimes, as detailed in the Supplemental Material (SM) S1
[56]: (a) A trivial insulator phase occurs for |γ | > 3, (b) a
WSM phase with one pair of Weyl nodes for 1 < |γ | < 3,
and two pairs of Weyl nodes for |γ | < 1, and (c) at the crit-
ical points, |γ | = 3 and |γ | = 1, a semi-Dirac regime arises,
featuring one band touching and three band touchings, respec-
tively. In the semi-Dirac regime, the band touchings exhibit a
parabolic dispersion along the separation vector of the Weyl
nodes (kx direction), while in the perpendicular plane (ky − kz)
they display a 2D conical dispersion. The energy dispersions
for the conduction (c) and valence (v) bands are given by
εc,v (k) = ±|d(k)|.

The Hamiltonian lacks TRS, leading to an anomalous re-
sponse, but possesses IS and mirror symmetry, expressed by
σxH (−k)σx = H (k) and H (kx, ky, kz ) = H (−kx, ky, kz ), re-
spectively. Additionally, Hamiltonians with opposite values of
γ are related by

σzH (R − k̃,−γ )σz = H (k, γ ), (1)

where we employed the notation k̃ = (kx,−ky, kz ) and R =
(π, π, π ).

At time t = 0 we expose the system to an ultrashort laser
pulse with a duration T . The electric field of the laser pulse is
described by E(t ) = E0 fτ (t − T/2) sin(ω0t )ê, where E0 is the
electric field amplitude, ê is the polarization vector (in our cal-
culations we use ê = êz), ω0 is the carrier frequency, and fτ (t )
is the Gaussian envelope function fτ (t ) = exp[−t2/(2τ 2)]
where τ characterizes the pulse width.

The dynamics of the system are described by the SBE for
density matrix elements ρk

mn in the Houston basis [5,57,58],

∂tρ
k
mn(t ) = − iωk(t )

mn ρk
mn(t ) − 1 − δmn

T2
ρk

mn(t )

+ iE(t ) ·
∑

l

[
dk(t )

ln ρk
ml − dk(t )

ml ρk
ln

]
, (2)

where we work in units e0 = h̄ = 1, k(t ) = k + A(t ), A(t ) =
− ∫ t

0 E(t ′)dt ′ is the vector potential, ωk
mn = εm(k) − εn(k)

specifies the energy gap, T2 is the (effective) decoherence time
[32,53,59], and dk

mn = 〈m, k|i∂k|n, k〉 are transition dipole
moments. The initial condition is ρmn(t = 0) = δmvδnv , i.e.,
fully occupied valence band.

The current density is

J(t ) =
∑

k

J(k, t ) =
∑

k

⎛
⎝−

∑
m,n

ρk
mnpk(t )

nm

⎞
⎠, (3)
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FIG. 1. Low-energy spectra in (a) Weyl and (b) semi-Dirac
semimetals (blue lines highlight the parabolic 2D conical dispersion).

where pk
nm = 〈n, k|∂kH (k)|m, k〉 are group-velocity matrix

elements. Finally, using the Larmor’s formula [53], we obtain
the spectrum which is proportional to the intensity of emitted
radiation:

I (ω) =
∣∣∣∣FT

[
d

dt
J(t )

]∣∣∣∣
2

= ω2|J(ω)|2. (4)

To obtain a time series of a specific harmonic with ω = mω0

(m ∈ N), we use the following filter,

Jω(t ) = FT −1

[∫ ω+δω

ω−δω

FT [J(t )]dω′
]
, (5)

where the width of the filter is 2δω = ω0.
We report results for the following values of parameters

(taking a = 1 Å and t = 1 eV): h̄ω0 = 0.2 eV, E0 = 0.043
V/Å, τ = 40 fs, T = 790 fs, T2 = 3 fs. Our choice of pa-
rameters follows Ref. [31]. We used the discretization of the
Brillouin zone (BZ) with 603 points. The longer time window,
compared to that of Ref. [31], helps to reduce the noise but
does not affect any of our conclusions.

III. RESULTS

Excitations at the final time Nc(k, T ) = ρcc(k, T ), i.e.,
after the pulse has passed, are shown in Fig. 2 (top). The
bottom panels depict dispersions along two high-symmetry
lines where energy band touchings occur. We see that higher
concentrations of excitations coincide with the band touchings
where transition dipole moments dvc diverge [30].

In Fig. 3, we present the Iy component, perpendicular
to both the electric field polarization vector and the Weyl
node separation vector, for three different values of γ . We
observe that the even harmonics (ω = 2nω0) vanish due to
the IS [31,60]. While the spectra may appear similar at first
glance, it is important to note that the intensity of higher-
order harmonics in the semi-Dirac regimes (γ = 1 and γ =
3) is significantly higher compared to the WSM regime
(γ = 2).

To study the dynamics of the semi-Dirac regime in the
low-energy limit, i.e., in the case of low frequency and
strength of the laser pulse, we compare the lattice result
for γ = 3 with the corresponding continuous model ob-
tained by Taylor expansion around the � point (see SM S1
[56]). The results, shown in Fig. 3, demonstrate agreement
between the two models, confirming that the dominant con-
tributions arise from the region near � where excitations are
present.
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FIG. 2. Top: Excitations Nc at final time T for different γ (increasing from left to right). Excitations occur near band touchings due to
the divergence of transition dipole moments. Positive (negative) topological charges are indicated by + (−). Bottom: The energy bands are
depicted in red and blue colors for momenta along the high-symmetry lines � − X (ky = kz = 0) and Z − U (ky = 0, kz = π ), respectively.
(a) For |γ | < 1 there are two pairs of Weyl cones; (b) for γ = 1 there are three semi-Dirac points; (c), (d) for 1 < γ < 3 there are two Weyl
cones; (e) and when γ = 3 there is one semi-Dirac point. Diagrams are similar for negative γ where the roles of � and R points of the primitive
orthorhombic lattice are reversed which is a consequence of the symmetry (1).

From the spectra obtained for different values of γ we
extract the peak intensities of the odd harmonics, ω = (2n +
1)ω0, and present them in Fig. 4. Intensities show a sym-
metry Iy(γ ) = Iy(−γ ) and also Iy(γ = 0) = 0 holds. These
observations are a result of IS and symmetry Eq. (1) (for the
derivation, see SM S2 [56]). Moreover, we observe a quali-
tative difference between the first harmonic and higher-order
harmonics, where the former increases from γ = 0 to γ = 1
and then decreases from γ = 1 to γ = 3. In contrast, the
higher-order harmonics exhibit distinct peaks at |γ | = 1 and 3
(the reasons underlying the fine structure seen in these peaks
are discussed below). The comparatively higher peaks at γ =
3, in comparison to γ = 1, are due to the co-occurrence of
three semi-Dirac points, which is related to the symmetric
choice tx = ty = tz. If hoppings were unequal, the semi-Dirac
points would occur at different values of γ (SM S1 [56]), and
the present peaks at γ = 1 would split.
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cont. model

FIG. 3. Anomalous spectrum Iy for γ = 1, 2, and 3 (correspond-
ing to three semi-Dirac nodes, one pair of Weyl nodes, and one
semi-Dirac node, respectively). The dashed line illustrates the contin-
uous model, with the current density integrated over crystal momenta
near the � point within the [−π/3, π/3]3 range.

To analyze the results presented in Fig. 4, it is beneficial
to illustrate the anomalous response decomposed into its har-
monic components Jω

y (t ) using Eq. (5). Figure 5 displays the
outcomes of this decomposition for the first [Fig. 5(a)] and
the third [Figs. 5(b)–5(f)] harmonic, where we summed the
contributions over planes (ky − kz) perpendicular to the Weyl
node separation vector. We will refer to the results of Fig. 5 in
the subsequent analysis of AHHG.

The dominant contribution to the first harmonic
can be explained by the linear intraband anomalous
Hall current [30,32,61] which is proportional to the
separation between the pairs of Weyl nodes [see Fig. 5(a)]
Jω0

y (t ) ∼ 1
2

∑
k (E × Bk(t ) )y = 1

2 Ez(t ) 1
(2π )2

∫ π

−π
Cx(kx )dkx =

− k0
4π2 Ez(t ) where Bk = 2idk

cv × dk
vc is the Berry curvature,

Cx(kx ) = 1
2π

∫∫
(Bk )xdkydkz is the Chern number for

the 2D slice at kx, and 2k0 = 2 arccos(γ − 2) is the
separation between Weyl nodes for 1 < γ < 3. When
integrating the Chern number over kx we took into account
Cx(|kx| < k0) = −1 and 0 otherwise. Similar reasoning

FIG. 4. Peak intensities for different γ and anomalous harmonics
at odd multiples of ω0. For each ω, intensities Iy(γ ) are scaled by a
factor I0 = maxγ(Iy ).
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FIG. 5. Time series of sliced contributions to the anomalous current Jω
y (t, kx ) = ∑

ky,kz
Jω

y (t, k) for (a) the first harmonic, ω = ω0, and
(b)–(f) the third harmonic, ω = 3ω0, at various γ values. Dashed lines indicate the positions of Weyl nodes (a)–(d) and a semi-Dirac node (e).

applies for −1 < γ < 1, however, in this case, there are
two pairs of Weyl nodes [see Fig. 2(a)] which contribute
Cx(|kx| < k0) = 2. As a result, in the range −1 < γ < 1, the
intensity Iy(ω = ω0) increases twice as fast as it decreases
for 1 < γ < 3 [30]. Trivially, the linear anomalous response
also goes to zero upon the merger of a pair of Weyl nodes to
a Dirac node.

Understanding the different qualitative behavior of anoma-
lous higher-order harmonics as the Weyl nodes merge,
specifically the pronounced peaks at |γ | = 1 and |γ | = 3 in
Fig. 4, requires recognizing that high harmonics result from
the presence of excitations (Nc) and interband polarization
(ρvc) [30]. Consequently, only regions around the Weyl or
semi-Dirac points contribute significantly to higher-order har-
monics, which implies the response cannot be expressed in
terms of Cx(kx ). Furthermore, we have evaluated separately
different contributions to the response [30] and found that the
Berry curvature contribution and the interband contribution to
the high harmonics are of similar magnitude, which precludes
interpretation of the signal in terms of the Berry curvature
alone.

To closely examine the higher-order response, we first con-
sider the case with a pair of well-separated Weyl nodes [62]
[Fig. 5(b)]. For each well-separated Weyl node at k0, we can
take the region where dispersion is conical and make a Taylor
expansion in terms of q = k − k0. Then, as detailed in SM S4
[56], we have a C2z rotational symmetry with respect to each
Weyl node, where the axis is defined by the electric field polar-
ization vector, σzH (−qx,−qy, qz )σz = H (qx, qy, qz ), which
leads to the relation for the anomalous current:

Jy(qx, qy, qz ) = −Jy(−qx,−qy, qz ). (6)

As a result, contributions to the anomalous response near each
Weyl node in the linearized limit cancel out (generalization to
3D Dirac cones applies trivially). Hence, the only nonvanish-
ing contribution to AHHG may arise from regions far enough
from Weyl nodes, where the linear dispersion approximation
no longer applies, but still have nonzero excitations; in other

words, a finite response is a result of deviations from strict
linearity near each Weyl node [63]. Interestingly, this result
applies (under some limitations) even for tilted type-I WSMs
(for more details, see SM S5 [56]). Note that our conclusion
regarding the vanishing of an anomalous high-harmonic re-
sponse in the regime of well-separated Weyl cones differs
from the one presented in Ref. [30]. The resolution of this
discrepancy is provided in SM S6 [56]. As a side note, it is
also worth mentioning that C2z symmetry does not lead to the
cancellation of the normal response, i.e., the response parallel
to the electric field polarization vector (see SM S7 [56] for the
results).

Now, let us consider the case when a pair of Weyl nodes
start to approach each other and eventually merge into a
semi-Dirac point. Utilizing mirror symmetry H (kx, ky, kz ) =
H (−kx, ky, kz ) (as detailed in SM S8 [56]), we find

Jy(kx, ky, kz ) = Jy(−kx, ky, kz ). (7)

Thus, studying only half-space kx > 0 is sufficient. Bringing
a Weyl cone in the proximity of the � point, e.g., as γ → 3,
brings along two important changes. First, the density of ex-
citations near the � point starts to increase which leads to
increasing contributions to the anomalous current that do not
have a counterpart that would cancel them since near � the
linear approximation does not hold [Fig. 5(c)]; consequently,
the total anomalous current is not vanishing and increases
as the Weyl node moves towards �. Second, as the Weyl
node keeps approaching the � point, the region near � with
nonlinear dispersion and nonzero excitations starts to shrink
[Fig. 5(d)] which first leads to a decrease in the intensity of
the anomalous high harmonics; but then as the region near �

keeps shrinking the outer region contributions (kx > k0) start
to dominate and HHG intensity increases again. This explains
the dip near γ = 2.9 observed in Fig. 4. In the limit γ → 3
[Fig. 5(e)] only the outer regions (kx > k0 → 0) contribute to
HHG and since Jy(qx = 0) = 0 for each Weyl node we have
in this limit Jy(kx = 0) → 0. Hence, in the semi-Dirac regime
(γ = 3) we still have Jy(kx ) = Jy(−kx ) [from Eq. (7)] with the
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additional constraint Jy(kx = 0) = 0. When the parameter γ is
increased beyond 3, the high-harmonic response continues to
increase because regions near kx = 0 also begin to contribute
to the overall anomalous current [see Fig. 5(f)]. However,
as the gap widens further, the density of excitations quickly
decreases, resulting in an overall reduced response in the Iy.

We considered a system at half filling, where the Fermi
surface resides at the Weyl points. With small dopings, the
validity of our results persists, holding true for both the WSM
and semi-Dirac regimes. This is because the regions in the BZ
where states in both bands are either empty or occupied do not
contribute to the current. For high dopings, the pronounced
peaks in Fig. 4 would start to diminish, as regions near kx = 0
in Fig. 5(e) would cease to contribute to the AHHG.

IV. DISCUSSION

In conclusion, our study clarifies the distinction between
AHHG in WSMs, 3D DSMs, and semi-DSMs. AHHG arises
from deviations from the conical dispersion, regardless of the
specific (Weyl or Dirac) semimetallic system under consid-
eration. Conversely, in the semi-Dirac regime, the dispersion
is quadratic along the Weyl node separation vector, leading
to enhanced AHHG. As a result, this distinction provides a
valuable opportunity for experimental differentiation between
the semi-Dirac and 3D Dirac regimes.

We reveal a symmetry that leads to the vanishing of the
AHHG in the well-separated Weyl regime and explain the

enhancement of AHHG (which is maximized near the semi-
Dirac regime) in terms of a departure from that idealized
Weyl situation, thereby providing a complementary insight
from that offered in a study of multi-Weyl systems [42] that
stressed the role of the higher population in the conduction
band.

We used a simplified lattice model to study AHHG. In
future research, it would be interesting to conduct realistic
calculations on SrNbO3 [39] and ZrTe5 [43–45]. Notably,
SrNbO3 might be worth investigating, as it hosts symmetry-
protected semi-Dirac points at the Brillouin-zone boundary,
and applying an external magnetic field generates pairs of
Weyl nodes. To generalize our results, it is important to con-
sider the fourfold degeneracy exhibited in such materials.
Additionally, investigating similar effects in 2D materials such
as black phosphorus [64], which exhibit a mixed quadratic and
linear dispersion profile at critical points, would be of interest
as well.

It would also be instructive to explore the significance of
the overtilted, type-II Weyl cones on AHHG in our TRS-
broken model, which we leave for further studies.

ACKNOWLEDGMENTS

We thank G. Mkrtchian for useful correspondence. We
acknowledge support from the Slovenian Research and In-
novation Agency (ARIS) under Contract No. P1-0044; A.R.
was also supported by Grant No. J2-2514. J.M. acknowledges
support by ARIS under Grant No. J1-2458.

[1] G. Manzoni, A. Sterzi, A. Crepaldi, M. Diego, F. Cilento, M.
Zacchigna, P. Bugnon, H. Berger, A. Magrez, M. Grioni, and F.
Parmigiani, Phys. Rev. Lett. 115, 207402 (2015).

[2] U. Huttner, M. Kira, and S. W. Koch, Laser Photonics Rev. 11,
1700049 (2017).

[3] C. P. Weber, B. S. Berggren, M. G. Masten, T. C. Ogloza,
S. Deckoff-Jones, J. Madéo, M. K. L. Man, K. M. Dani, L.
Zhao, G. Chen, J. Liu, Z. Mao, L. M. Schoop, B. V. Lotsch,
S. S. P. Parkin, and M. Ali, J. Appl. Phys. 122, 223102
(2017).

[4] E. J. Sie, C. M. Nyby, C. D. Pemmaraju, S. J. Park, X. Shen, J.
Yang, M. C. Hoffmann, B. K. Ofori-Okai, R. Li, A. H. Reid, S.
Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet,
A. Antony, L. Balicas, J. Hone, T. P. Devereaux, T. F. Heinz
et al., Nature (London) 565, 61 (2019).

[5] F. Nematollahi, S. A. Oliaei Motlagh, V. Apalkov, and M. I.
Stockman, Phys. Rev. B 99, 245409 (2019).

[6] S. B. Seo, S. Nah, M. Sajjad, J. Song, N. Singh, S. H. Suk, H.
Baik, S. Kim, G.-J. Kim, J.-I. Kim, and S. Sim, Adv. Opt. Mater.
11, 2201544 (2023).

[7] Y. Gao, S. Kaushik, E. J. Philip, Z. Li, Y. Qin, Y. P. Liu, W. L.
Zhang, Y. L. Su, X. Chen, H. Weng, D. E. Kharzeev, M. K. Liu,
and J. Qi, Nat. Commun. 11, 720 (2020).

[8] J. L. Boland, D. A. Damry, C. Q. Xia, P. Schönherr, D.
Prabhakaran, L. M. Herz, T. Hesjedal, and M. B. Johnston, ACS
Photonics 10, 1473 (2023).

[9] B. Cheng, N. Kanda, T. N. Ikeda, T. Matsuda, P. Xia, T.
Schumann, S. Stemmer, J. Itatani, N. P. Armitage, and R.
Matsunaga, Phys. Rev. Lett. 124, 117402 (2020).

[10] C. Reinhoffer, P. Pilch, A. Reinold, P. Derendorf, S. Kovalev,
J.-C. Deinert, I. Ilyakov, A. Ponomaryov, M. Chen, T.-Q. Xu,
Y. Wang, Z.-Z. Gan, D.-S. Wu, J.-L. Luo, S. Germanskiy, E. A.
Mashkovich, P. H. M. van Loosdrecht, I. M. Eremin, and Z.
Wang, Phys. Rev. B 106, 214514 (2022).

[11] A. Zong, B. R. Nebgen, S.-C. Lin, J. A. Spies, and M. Zuerch,
Nat. Rev. Mater. 8, 224 (2023).

[12] K. Takasan, T. Morimoto, J. Orenstein, and J. E. Moore, Phys.
Rev. B 104, L161202 (2021).

[13] E. Goulielmakis and T. Brabec, Nat. Photonics 16, 411
(2022).

[14] J. Li, J. Lu, A. Chew, S. Han, J. Li, Y. Wu, H. Wang, S. Ghimire,
and Z. Chang, Nat. Commun. 11, 2748 (2020).

[15] Y. Murakami, K. Uchida, A. Koga, K. Tanaka, and P. Werner,
Phys. Rev. Lett. 129, 157401 (2022).

[16] Y.-Y. Lv, J. Xu, S. Han, C. Zhang, Y. Han, J. Zhou, S.-H. Yao,
X.-P. Liu, M.-H. Lu, H. Weng, Z. Xie, Y. B. Chen, J. Hu, Y.-F.
Chen, and S. Zhu, Nat. Commun. 12, 6437 (2021).

[17] S. A. Mikhailov, Europhys. Lett. 79, 27002 (2007).
[18] S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20,

384204 (2008).
[19] L. Wang, J. Lim, and L. J. Wong, Laser Photonics Rev. 16,

2100279 (2022).

205130-5

https://doi.org/10.1103/PhysRevLett.115.207402
https://doi.org/10.1002/lpor.201700049
https://doi.org/10.1063/1.5006934
https://doi.org/10.1038/s41586-018-0809-4
https://doi.org/10.1103/PhysRevB.99.245409
https://doi.org/10.1002/adom.202201544
https://doi.org/10.1038/s41467-020-14463-1
https://doi.org/10.1021/acsphotonics.3c00068
https://doi.org/10.1103/PhysRevLett.124.117402
https://doi.org/10.1103/PhysRevB.106.214514
https://doi.org/10.1038/s41578-022-00530-0
https://doi.org/10.1103/PhysRevB.104.L161202
https://doi.org/10.1038/s41566-022-00988-y
https://doi.org/10.1038/s41467-020-16480-6
https://doi.org/10.1103/PhysRevLett.129.157401
https://doi.org/10.1038/s41467-021-26766-y
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1088/0953-8984/20/38/384204
https://doi.org/10.1002/lpor.202100279


MEDIC, MRAVLJE, RAMŠAK, AND REJEC PHYSICAL REVIEW B 109, 205130 (2024)

[20] H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N.
Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z.
Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen,
M. Bonn, M. Gensch, and D. Turchinovich, Nature (London)
561, 507 (2018).

[21] S. Kovalev, R. M. A. Dantas, S. Germanskiy, J.-C. Deinert, B.
Green, I. Ilyakov, N. Awari, M. Chen, M. Bawatna, J. Ling, F.
Xiu, P. H. M. van Loosdrecht, P. Surówka, T. Oka, and Z. Wang,
Nat. Commun. 11, 2451 (2020).

[22] R. M. A. Dantas, Z. Wang, P. Surówka, and T. Oka, Phys. Rev.
B 103, L201105 (2021).

[23] S. Germanskiy, R. M. A. Dantas, S. Kovalev, C. Reinhoffer,
E. A. Mashkovich, P. H. M. van Loosdrecht, Y. Yang, F. Xiu, P.
Surówka, R. Moessner, T. Oka, and Z. Wang, Phys. Rev. B 106,
L081127 (2022).

[24] H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian, and K. V.
Sedrakian, Phys. Rev. B 85, 115443 (2012).

[25] C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I.
Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y.
Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B.
Yan, Nat. Phys. 11, 645 (2015).

[26] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P.
Ong, Nat. Mater. 14, 280 (2015).

[27] A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo,
Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C.
Canfield, and A. I. Coldea, Phys. Rev. Lett. 114, 117201 (2015).

[28] N. Kumar, Y. Sun, N. Xu, K. Manna, M. Yao, V. Süss, I.
Leermakers, O. Young, T. Förster, M. Schmidt, H. Borrmann,
B. Yan, U. Zeitler, M. Shi, C. Felser, and C. Shekhar, Nat.
Commun. 8, 1642 (2017).

[29] S. Kaneta-Takada, Y. K. Wakabayashi, Y. Krockenberger, T.
Nomura, Y. Kohama, S. A. Nikolaev, H. Das, H. Irie, K.
Takiguchi, S. Ohya, M. Tanaka, Y. Taniyasu, and H. Yamamoto,
npj Quantum Mater. 7, 102 (2022).

[30] H. K. Avetissian, V. N. Avetisyan, B. R. Avchyan, and G. F.
Mkrtchian, Phys. Rev. A 106, 033107 (2022).

[31] A. Bharti, M. S. Mrudul, and G. Dixit, Phys. Rev. B 105,
155140 (2022).

[32] J. Wilhelm, P. Grössing, A. Seith, J. Crewse, M. Nitsch, L.
Weigl, C. Schmid, and F. Evers, Phys. Rev. B 103, 125419
(2021).

[33] R. E. F. Silva, Á. Jiménez-Galán, B. Amorim, O. Smirnova, and
M. Ivanov, Nat. Photonics 13, 849 (2019).

[34] T. T. Luu and H. J. Wörner, Nat. Commun. 9, 916 (2018).
[35] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis,

Nat. Phys. 13, 262 (2017).
[36] L. Yue and M. B. Gaarde, Phys. Rev. Lett. 130, 166903 (2023).
[37] F. Nathan, I. Martin, and G. Refael, Phys. Rev. Res. 4, 043060

(2022).
[38] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.

90, 015001 (2018).
[39] N. Mohanta, J. M. Ok, J. Zhang, H. Miao, E. Dagotto, H. N.

Lee, and S. Okamoto, Phys. Rev. B 104, 235121 (2021).
[40] J.-R. Wang, W. Li, and C.-J. Zhang, Phys. Rev. B 107, 155125

(2023).
[41] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev.

Lett. 108, 266802 (2012).

[42] A. Bharti and G. Dixit, Phys. Rev. B 107, 224308 (2023).
[43] E. Martino, I. Crassee, G. Eguchi, D. Santos-Cottin, R. D.

Zhong, G. D. Gu, H. Berger, Z. Rukelj, M. Orlita, C. C. Homes,
and A. Akrap, Phys. Rev. Lett. 122, 217402 (2019).

[44] D. Santos-Cottin, M. Padlewski, E. Martino, S. B. David, F. Le
Mardelé, F. Capitani, F. Borondics, M. D. Bachmann, C. Putzke,
P. J. W. Moll, R. D. Zhong, G. D. Gu, H. Berger, M. Orlita, C. C.
Homes, Z. Rukelj, and A. Akrap, Phys. Rev. B 101, 125205
(2020).

[45] Z. Rukelj, C. C. Homes, M. Orlita, and A. Akrap, Phys. Rev. B
102, 125201 (2020).

[46] Y.-X. Wang and F. Li, Phys. Rev. B 101, 195201 (2020).
[47] Y.-X. Wang and F. Li, Phys. Rev. B 103, 115202 (2021).
[48] Y.-X. Wang and F. Li, Phys. Rev. B 106, 205102 (2022).
[49] Y.-X. Wang and Z. Cai, Phys. Rev. B 107, 125203 (2023).
[50] Z.-Y. Li, Q. Li, and Z. Li, Chin. Phys. B 31, 124204 (2022).
[51] J. Cano, B. Bradlyn, Z. Wang, M. Hirschberger, N. P. Ong, and

B. A. Bernevig, Phys. Rev. B 95, 161306(R) (2017).
[52] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201

(2013).
[53] I. Floss, C. Lemell, G. Wachter, V. Smejkal, S. A. Sato, X.-

M. Tong, K. Yabana, and J. Burgdörfer, Phys. Rev. A 97,
011401(R) (2018).

[54] M. S. Mrudul and G. Dixit, Phys. Rev. B 103, 094308 (2021).
[55] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang, Annu.

Rev. Condens. Matter Phys. 8, 289 (2017).
[56] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.109.205130 for an analysis of the model’s
low-energy spectrum, identification of distinct regimes, deriva-
tion of symmetry relations, investigation into the influence of
laser pulse parameters, assessment of the impact of tilt on the
anomalous high harmonic response, an analysis of AHHG in a
model with decoupled Weyl spinors, and the results of normal
harmonics.

[57] W. V. Houston, Phys. Rev. 57, 184 (1940).
[58] J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986).
[59] I. Kilen, M. Kolesik, J. Hader, J. V. Moloney, U. Huttner, M. K.

Hagen, and S. W. Koch, Phys. Rev. Lett. 125, 083901 (2020).
[60] R. Boyd and D. Prato, Nonlinear Optics (Elsevier Science,

Amsterdam, 2008).
[61] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B.

Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901 (2014).
[62] We define well-separated Weyl nodes as those for which the

energy gap in the region between the nodes becomes signifi-
cantly larger than the electric-field-induced perturbation (ωcv �
|E · dcv|) in the SBE (2). Additionally, as shown in SM S3 [56],
ω0 should be small in comparison to t . These two conditions
ensure that contributions to the anomalous current remain lo-
calized near each Weyl node, allowing the nodes to be treated
separately.

[63] In a different setting, unrelated to HHG, the importance of
deviations from strict linearity was discussed in Ref. [65].

[64] J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J.
Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Science 349, 723
(2015).

[65] A. Bharti, M. Ivanov, and G. Dixit, Phys. Rev. B 108, L020305
(2023).

205130-6

https://doi.org/10.1038/s41586-018-0508-1
https://doi.org/10.1038/s41467-020-16133-8
https://doi.org/10.1103/PhysRevB.103.L201105
https://doi.org/10.1103/PhysRevB.106.L081127
https://doi.org/10.1103/PhysRevB.85.115443
https://doi.org/10.1038/nphys3372
https://doi.org/10.1038/nmat4143
https://doi.org/10.1103/PhysRevLett.114.117201
https://doi.org/10.1038/s41467-017-01758-z
https://doi.org/10.1038/s41535-022-00511-0
https://doi.org/10.1103/PhysRevA.106.033107
https://doi.org/10.1103/PhysRevB.105.155140
https://doi.org/10.1103/PhysRevB.103.125419
https://doi.org/10.1038/s41566-019-0516-1
https://doi.org/10.1038/s41467-018-03397-4
https://doi.org/10.1038/nphys3946
https://doi.org/10.1103/PhysRevLett.130.166903
https://doi.org/10.1103/PhysRevResearch.4.043060
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.104.235121
https://doi.org/10.1103/PhysRevB.107.155125
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1103/PhysRevB.107.224308
https://doi.org/10.1103/PhysRevLett.122.217402
https://doi.org/10.1103/PhysRevB.101.125205
https://doi.org/10.1103/PhysRevB.102.125201
https://doi.org/10.1103/PhysRevB.101.195201
https://doi.org/10.1103/PhysRevB.103.115202
https://doi.org/10.1103/PhysRevB.106.205102
https://doi.org/10.1103/PhysRevB.107.125203
https://doi.org/10.1088/1674-1056/ac9220
https://doi.org/10.1103/PhysRevB.95.161306
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevA.97.011401
https://doi.org/10.1103/PhysRevB.103.094308
https://doi.org/10.1146/annurev-conmatphys-031016-025225
http://link.aps.org/supplemental/10.1103/PhysRevB.109.205130
https://doi.org/10.1103/PhysRev.57.184
https://doi.org/10.1103/PhysRevB.33.5494
https://doi.org/10.1103/PhysRevLett.125.083901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1126/science.aaa6486
https://doi.org/10.1103/PhysRevB.108.L020305

