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We show that all lowest Landau-level projected and unprojected chiral parton type fractional quantum Hall
ground and edge-state trial wave functions, which take the form of products of integer quantum Hall wave
functions, can be expressed as conformal field theory (CFT) correlation functions, where we can associate a
chiral algebra to each parton state such that the CFT defined by the algebra is the “smallest” such CFT that
can generate the corresponding ground and edge-state trial wave functions (assuming that the corresponding
chiral algebra does indeed define a physically “sensible” CFT). A field-theoretic generalization of Laughlin’s
plasma analogy, known as generalized screening, is formulated for these states. If this holds, along with an
additional assumption, we argue that the inner products of edge-state trial wave functions, for parton states
where the “densest” trial wave function is unique, can be expressed as matrix elements of an exponentiated local
action operator of the CFT, generalizing the result of Dubail et al. [Phys. Rev. B 85, 115321 (2012)], which
implies the equality between edge-state and entanglement level counting to state counting in the corresponding
CFT. We numerically test this result in the case of the unprojected ν = 2/5 composite fermion state and the
bosonic ν = 1φ2

2 parton state. We discuss how Read’s arguments [Phys. Rev. B 79, 045308 (2009)] still apply,
implying that conformal blocks of the CFT defined by the corresponding chiral algebra are valid quasihole trial
wave functions, with the adiabatic braiding statistics given by the monodromy of these functions, assuming the
existence of a quasiparticle trapping Hamiltonian. Generalizations of these constructions are discussed, with
particular attention given to simple current constructions. It is shown that all chiral composite fermion wave
functions can be expressed as CFT correlation functions without explicit symmetrization or antisymmetrization
and that the ground, edge, and certain quasihole trial wave functions of the φm

n parton states can be expressed
as the conformal blocks of the U(1) ⊗ SU (n)m WZW models. Finally, we discuss the relation of the φk

2

series with the Read-Rezayi series, where several examples of quasihole braiding statistics calculations are
given.
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I. INTRODUCTION

A. Motivation

Several decades on, the fractional quantum Hall effect
(FQHE) still stands as one of the prime examples of topologi-
cally ordered matter [1–5]. Each plateau in the Hall resistivity
corresponds to a different phase of matter, with any pair not
being distinguishable by their symmetry properties. As well
as their filling fractions ν, each phase of matter can instead
be characterized by fractional charge and braiding statistics of
their quasiparticles [6–8], a ground-state degeneracy that only
depends on the topology of space they exist within [9–11], and
patterns of long-range entanglement [12–20].

One of the main themes in understanding the FQHE has
been the use of zero-parameter trial wave functions. The main
idea of this is that, if a trial wave function is adiabatically con-
nected to the physical system of interest, then one can predict
the universal properties of the physical system by calculating
those of the trial wave function. Each trial wave function
is then seen as being representative of a particular phase of
matter. Given an explicit trial wave function, extracting the
universal properties is, however, highly nontrivial.

In the case of Laughlin’s trial wave functions at filling
factors ν = 1/m, these properties can be calculated by map-
ping to a one-component plasma that is in a screening phase.
This is the, now famous, Laughlin plasma analogy. By rather
straightforward calculations, this can be used to determine the
fractional charge [6] and adiabatic braiding statistics [7] of the
quasiparticles, as well as the properties of the edge [21].

A broader class of wave functions, to which Laughin’s be-
long, are those that can be written directly as conformal blocks
of a particular (unitary) Conformal Field Theory (CFT). This
includes, for example, the Moore-Read [22] and Read-Rezayi
[23] series wave functions. Within the construction, quasi-
particle states are generated by the insertion of CFT primary
fields within the conformal block. As shown by Read, inner
products between these wave functions can be mapped to
correlation functions of a perturbed CFT [24]. Assuming this
perturbed CFT is short-range correlated and there exists a
trapping Hamiltonian for which these quasiparticle states are
the lowest energy states, Read was then able to show that the
adiabatic quasiparticle braiding is given by the monodromy
of the conformal blocks1 (i.e., the analytic continuation of
the conformal block along the quasiparticle paths; see also
Bonderson et al. [25]). The assumption of short-range corre-
lations in the perturbed CFT has been termed the generalized
screening hypothesis and can be thought of as a field-theoretic
generalization of Laughlin’s plasma analogy.

1This is up to an area-dependant phase factor.
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The CFT construction does not only give ground and quasi-
particle states. By putting a CFT state that is not the vacuum
on one boundary of the conformal block one can generate
edge state wave functions, in such a way that this gives a
linear map from the CFT Hilbert space to edge-state wave
functions [26]. By applying the generalized screening hypoth-
esis Dubail, Read, and Rezayi (DRR) were able to show that
this linear map preserves the inner product of the two Hilbert
spaces (an isometric isomorphism in more technical language)
in the thermodynamic limit, with finite-size correction being
given by the exponentiation of a local action within the CFT
[27]. Thus, generalized screening then gives rise to a precise
bulk-edge correspondence. Using this result for edge-state
inner products DRR were then able to understand the struc-
ture of the real-space entanglement spectrum (RSES) as the
spectrum of some integral of local operators within the CFT,
which is also termed the entanglementaction.

The implications of generalized screening have been di-
rectly verified numerically for certain Laughlin, Moore-Read,
and Read-Rezayi wave functions in various works [27–32].
Interestingly, in the work of Wu et al. [30] the adiabatic braid-
ing of the quasiparticle excitations was computed using matrix
product state (MPS) representations of the corresponding
wave function, where the MPS representations were directly
derived from the CFT construction of these wave functions
[33–35].

In short, if the generalized screening hypothesis holds for a
given wave function expressed as a conformal block then the
universal or topological properties are manifest. There are, of
course, many wave functions that cannot directly be written as
a conformal block.

The phenomenologically successful composite fermion
([36,37]) trial wave functions are a prominent example. It
has previously been shown that they can be expressed as
antisymmetrized conformal blocks [38–41], however, this an-
tisymmetrization procedure meant that it was not obvious if
some form of a generalized screening hypothesis could be
formulated. Furthermore, to the best of the authors’ knowl-
edge, the structure of composite fermion edge-state trial wave
function inner products has not yet been studied from this CFT
perspective and it is not clear if results similar to those found
for other states [27,29] should hold.

A more general class of trial wave functions, that cannot
be directly written as conformal blocks and that includes the
composite fermion wave functions, are the parton trial wave
functions which are formed as products of integer quantum
Hall wave functions. The parton wave functions have seen
renewed interest in recent years as possible candidates in the
second Landau level in GaAs heterostructures [42–46], in
graphene systems [47–51] and even for some states in the
lowest Landau level (LLL) [52–55]. Using a slave particle
approach combined with a mean-field approximation, Wen
derived an effective low-energy field theory in terms of a
non-Abelian Chern-Simons gauge theory for the symmetric
parton states (an integer quantum Hall wave function to an
integer power), which strongly indicated these states can host
non-Abelian anyons [56]. More recently, the non-Abelian
statistics of low-energy quasiparticles of some parton states
have been directly calculated using an approach based
on the Fock-space description of the corresponding wave

functions [57,58]. The non-Abelian nature of these states
has been further demonstrated in a recent work by one of
the authors, where the real-space entanglement spectra state
counting was empirically found to match the state counting
of U(1) ⊗ SU (n)m CFT for various cases [59]. Such CFTs
have conformal blocks that, in principle, can be used to
represent non-Abelian anyons [60,61] and are related to
non-Abelian Chern-Simons theory [62]. To the best of the
authors’ knowledge, the parton wave functions have not yet
been directly related to CFT correlation functions and hence
it is not at all obvious if these CFT methods are a viable
approach to extract their topological properties.

B. Summary of the paper

In the following work, we show that all lowest Landau-
level projected and unprojected chiral parton ground and
edge-state trial wave functions can be expressed using CFT
correlation functions, where to each parton state one can as-
sociate a chiral algebra, A, such that the CFT defined by it
CFTA is, in some sense, the smallest CFT that can be used to
generate the ground and edge-state trial wave functions of the
given parton state, where we are assuming that there indeed
exists a CFT with the chiral algebra A. A generalized screen-
ing hypothesis is formulated for these CFT constructions. We
argue that if generalized screening holds for a given parton
state then its topological properties can be directly related to
certain properties of the corresponding chiral algebra.

We first give a review of how these CFT methods have
previously been used to understand the topological properties
of certain trial wave functions in Sec. II B. The parton and
specifically the composite fermion trial wave functions are
reviewed in Sec. II C.

In Sec. II D we show how all integer quantum Hall ground
and edge-state wave functions can be generated using CFT.
This then allows us to show how the parton wave functions
can be expressed as CFT correlation functions in Sec. III. We
give two detailed examples of this construction in the case of
the ν = 2/5 composite fermion state and the bosonic ν = 1
φ2

2 parton state. It is shown that all chiral composite fermion
states (i.e., those without reverse flux attachment or negative
effective magnetic field) can be expressed as CFT correlation
functions without explicit symmetrization or antisymmetriza-
tion in Sec. III A 4. Then in Sec. III B 4 it is shown that the
symmetric parton states, which take the form of a ν = n
integer quantum Hall ground state raised to the mth power
φm

n , can be expressed in terms of the conformal blocks of the
û(1) ⊕ ŝu(n)m WZW models. This allows us to give rigorous
upper bounds of the state counting of edge-state trial wave
functions in terms of the state counting of the û(1) ⊕ ŝu(n)m

WZW models.
In Sec. III B 5 it is shown that, if it is known how to

generate two wave functions �1 and �2 using CFT with
corresponding chiral algebras A1 and A2, then the product
wave function �1�2 can also be generated using CFT with
the corresponding chiral algebra being a chiral subalgebra of
A1 ⊗ A2. This is the inductive step that implies that all chiral
parton wave functions can be expressed as CFT correlation
functions. For each parton state the generation of the trial
edge-state wave functions can be understood as a linear map
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from the vacuum representation of the corresponding chiral
algebra. This, in general, allows for rigorous upper bounds
to be given for the edge-state counting in terms of the state
counting in the vacuum representation of the corresponding
chiral algebra. The general construction for generating trial
wave functions with CFT, that these parton states point to-
wards, is discussed in Sec. III C, which allows one to generate
trial wave functions using chiral algebras that are generated
by multiple fields and their conjugates. This includes a large
variety of chiral algebras that can be understood as simple
current constructions [63].

A generalized screening hypothesis for these CFT con-
structions is then given in Sec. IV. Then in Sec. IV B it
is argued that if generalized screening holds, along with an
additional assumption, that the inner products of edge-state
trial wave functions, for parton states where the densest (i.e.,
lowest angular momentum for a given number of particles)
trial wave function is unique, can be expressed as matrix
elements of the exponentiation of a CFT operator known as
the inner product action which takes the form of a sum of inte-
grals of local operators, thus generalizing the result of Dubail
et al. [27]. The coefficients of the terms in the inner product
action scale with the system size in such a way that implies
the existence of a linear map from CFT states to edge-state
trial wave functions that preserves the inner product. Thus,
given generalized screening and the additional assumption,
the aforementioned upper bounds on the edge-state counting
will be saturated. We further show in Sec. IV C how the result
of Ref. [27] can easily be extended to these CFT constructions
which is that if generalized screening holds for a given wave
function then the real-space entanglement spectrum of the
wave function can be expressed as the spectrum of a CFT
operator known as the entanglement action which takes the
same form as the inner product action, again for the parton
states where the densest trial wave function is unique. This
also implies that the entanglement level counting also matches
the CFT state counting which gives a partial explanation for
some of the observations of Ref. [59].

In Sec. V we present numerical tests of this edge-state
inner-product result in the cases of the ν = 2/5 composite
fermion state and the bosonic ν = 1 φ2

2 parton state.
Finally, in Sec. VI it is shown how the quasiparticle trial

wave functions of a given state, with corresponding chiral
algebra A, can be generated by conformal blocks of CFTA.
It is discussed how the arguments of Read [24] still apply in
these cases, which implies that if generalized screening holds
the adiabatic braiding of the quasiparticle wave functions is
given by the monodromy of the corresponding conformal
block, assuming that there exists a trapping Hamiltonian for
which these quasiparticle trial states have the lowest energy.
This then allows one to relate the various anyon types that
can be generated for a given state using CFTA to the irre-
ducible representation of A. In Sec. VI B for the case when
A can be understood as a simple current construction we
show how certain representations of A can be constructed. In
these cases, the corresponding quasiparticle conformal block
trial wave functions can be decomposed into a product of a
chiral boson conformal block and a conformal block of the
simple current CFT. It is then discussed how this implies that
for the symmetric parton state, φm

n , certain quasiparticle trial

wave functions can be expressed in terms of products of chiral
boson conformal blocks and conformal blocks of the ŝu(n)m

WZW models. The φk
2 series is then considered in detail in

Sec. VI C, where the relation to the Read-Rezayi series is
discussed and several examples of computing quasiparticle
adiabatic statistics are given.

II. BACKGROUND

For the relevant background we first cover, very briefly,
rational conformal field theory in Sec. II A. Then in Sec. II B
we discuss how rational conformal field theory has already
been used to generate certain trial wave functions such as the
Laughlin and Moore-Read wave functions, and how quasipar-
ticle braiding statistics and edge-state inner products can be
understood assuming the generalized screening hypothesis.
The composite fermion and parton trial wave functions will
then be briefly discussed in Sec. II C. Finally, in Sec. II D we
show how integer quantum Hall ground state and edge exci-
tation wave functions can be generated using CFT methods,
which will be used later to construct parton and composite
fermion wave functions using CFT.

Throughout this work, we use the following notation: A
generic fractional quantum Hall wave function of N par-
ticles, in a finite number of Landau levels, will take the
form �(z1, z̄1, z2, z̄2, . . . , zN , z̄N , ), where � is a finite degree
polynomial in its arguments and z j = x j + iy j with (x j, y j )
being the usual two-dimensional Cartesian coordinates of the
position of particle j. For any such wave function, the corre-
sponding ket vector will be denoted by |�〉〉. The Gaussian
factor exp[−∑N

i=1 |z|2/(4l2
B)], with lB being the magnetic

length, is moved into the integration measure of inner products
so that the inner product between two wave functions �1 and
�2 is given by,

〈〈�2|�1〉〉 = 1

N!

∫ N∏
i=1

D2zi�2(z1, z̄1, z2, z̄2, . . . , zN , z̄N , )

× �1(z1, z̄1, z2, z̄2, . . . , zN , z̄N , ) (1)

where D2z = d2z exp[−|z|2/(2l2
B)]. One should note the

1/(N!) factor which is used here. We also work in units such
that lB = 1.

In second quantized notation, the wave function takes the
form

|�〉〉 = 1

N!

∫ N∏
i=1

d2zie
−|zi|2/4�(z1, z̄1, z2, z̄2, . . . , zN , z̄N , )

× c†(z1, z̄1)c†(z2, z̄2) · · · c†(zN , z̄N )|0〉〉, (2)

where |0〉〉 is the vacuum state and c†(z, z̄) are the usual real-
space creation operators with {c(z1, z̄1), c†(z2, z̄2)} = δ2(z1 −
z2, z̄1 − z̄2) for fermions and [c(z1, z̄1), c†(z2, z̄2)] = δ2(z1 −
z2, z̄1 − z̄2) for bosons.

One should also note further shorthand notations used in
this paper. If two CFT fields, φ(z) and ψ (z), have an operator
product expansion (OPE) with no singular terms then we
denote this by φ(z)ψ (w) ∼ 0. If a ∼ symbol is not used when
expressing any OPE then we are referring to the full OPE
which includes both the singular and nonsingular terms.

205128-4



CONFORMAL FIELD THEORY APPROACH TO PARTON … PHYSICAL REVIEW B 109, 205128 (2024)

A. Rational conformal field theory

We now give a very brief overview of rational CFT
(RCFT), which will lay the foundation for this work. For
a fuller account of CFT in general we refer the reader to
Refs. [64–66].

Following Moore and Seiberg [67,68], the chiral algebra A
of a CFT is the set of all holomorphic fields of the theory (i.e.,
all the fields which have purely holomorphic dependence on
position within any correlation function). In the mathematics
literature these algebras correspond to vertex operator alge-
bras [69–71]. In any CFT, A must at least contain both the
identity field, 1(z), and the energy-momentum tensor T (z).
We define the modes of a holomorphic field, φ(z), with scaling
dimension h, by φn = ∮

dz
2π i z

n+h−1φ(z), where n + h ∈ Z. As
the operator product expansion (OPE) between any two holo-
morphic fields must only contain other holomorphic fields,
the commutation, or anticommutation, relations between the
modes of these fields must be expressible as a sum of modes
of fields belonging to A. The reader should note that if the
fields have integral or half-integral conformal dimensions then
one should consider commutation or anticommutation rela-
tions respectively so as to be consistent with the spin-statistics
theorem.

A CFT is rational if and only if its Hilbert space can
be decomposed as H = ⊕i jHi ⊗ H j , where the direct sum
of vector spaces is finite and Hi and H j are irreducible
representations of the chiral algebra and its antichiral copy,
respectively. In other words, by state operator correspondence,
the fields of the theory can be organized into a finite number
of primary fields, with respect to A, and their descendants.
For the remainder of this work, we only consider the case
of a diagonal unitary RCFT where the decomposition of the
Hilbert space is of the form H = ⊕ jH j ⊗ H j and each H j is a
unitary representation of the chiral algebra. The WZW models
are classic examples of rational CFTs, where the currents Ji(z)
generate the chiral algebra of the theory.

The information on what primaries appear in the OPE
of two primary fields, φi and φ j , is encoded in the fusion
rules, φi × φ j = ∑

k Nk
i jφk . The Nk

i j are the number of “dis-
tinct ways” field φi and φ j can fuse to field φk . If a field J can
only have one result when fusing with any other field (i.e.,
J × φ = φ′) then J is said to be a simple current.

As usual, the correlation function of a set of primary fields
can be expressed as

〈
φ j1 (w1, w̄1)φ j2 (w2, w̄2) · · ·〉 = ∑

a

|Fa(w1,w2, . . . )|2, (3)

where Fa(w1,w2, . . . ) is a conformal block. Every possible
way the fields can fuse to the identity are in one-to-one corre-
spondence with the Fa. For example, in the Ising model, we
have the fields σ and ψ with the fusion rules σ × σ = 1 + ψ ,
ψ × σ = σ , and ψ × ψ = 1. Thus, a correlation function of
four σ can have two conformal blocks corresponding to the
fusion channels (σ (σ (σσ ))) → (σ (σψ )) → (σσ ) → 1 and
(σ (σ (σσ ))) → (σ (σ1)) → (σσ ) → 1.

In general, the conformal blocks are not single-valued.
Under a monodromy transformation, where the paths of the

zi form a braid, the conformal blocks transform as

Fa(w1,w2, . . . ) →
∑

b

BbaFb(w1,w2, . . . ), (4)

where Bba only depends on the primary fields that are in
the correlation function and the topology of the braid. This
follows from the fact that the correlation function of Eq. (3)
must be single valued. Thus, the action of these monodromy
transformations on the conformal blocks gives a representa-
tion of the braid group.

Let Vi(z) be a set of fields that belong to the chiral algebra,
Vi(z) ∈ A. In general, a correlation function involving some
primary fields φ j (w, w̄) and some Vi(z) takes the form〈

φ j1 (w1, w̄1)φ j2 (w2, w̄2) · · ·φ jm (wm, w̄m)V1(z1)V2(z2) · · ·〉
=
∑

a

Fa(w1,w2, . . . ,wm; z)Fa(w1,w2, . . . ,wm), (5)

where we refer to Fa(w1,w2, . . . ,wm; z) as the modified
conformal blocks, z = z1, z2, . . . and Fa(w1,w2, . . . ,wm)
are the same conformal blocks appearing in Eq. (3).
We can then see that the Fa(w1,w2, . . . ,wm; z) are in
one-to-one correspondence with Fa(w1,w2, . . . ,wm). Fur-
thermore, under monodromy transformations involving the
w the Fa(w1,w2, . . . ,wm; z1, z2, . . . ) transform the same
way as the conformal blocks Fa(w1,w2, . . . ,wm), and
Fa(w1,w2, . . . ,wm; z) are single valued in z. In other words,
the presence of the fields of A does not affect the “topologi-
cal” properties of the conformal blocks.

B. Conformal field theory approach to fractional quantum Hall
trial wave functions and the generalized screening hypothesis:

A review

As given in previous works, [16,22–24,29,72,73], many
FQHE trial wave functions can be expressed as a CFT cor-
relation function of an operator 	(z). In each case, the CFT in
question is that defined by the chiral algebra A generated by
OPEs of 	(z) and its conjugate 	†(z), CFTA. Furthermore,
each CFTA can be represented by fields in CFTU (1) ⊗ CFTχ ,
where CFTU (1) is a chiral boson CFT and CFTχ is a CFT
referred to as the statistics sector. With this representation
	(z) can be expressed as

	(z) =: eiϕ(z)/
√

ν : χ (z), (6)

where ϕ(z) is the chiral boson field, : ∗ : denotes normal
ordering, χ (z) is a primary field of CFTχ , and ν is the
filling fraction of the wave function that will be generated.
We would like to emphasize to the reader that CFTA and
CFTU (1) ⊗ CFTχ are not, in general, equivalent. CFTA can
be conformally embedded in CFTU (1) ⊗ CFTχ in that their
energy-momentum tensors are equivalent and all primaries of
CFTA correspond to primaries of CFTU (1) ⊗ CFTχ . However,
not all primaries of CFTU (1) ⊗ CFTχ correspond to primaries
of CFTA.

We now summarize how, given such a CFT, the ground,
edge and quasiparticle state Ansätze can be generated. The
generalized screening hypothesis is then detailed along with
how the topological properties of the trial wave function can
be extracted from the properties of the CFT if this holds.

205128-5



HENDERSON, SREEJITH, AND SIMON PHYSICAL REVIEW B 109, 205128 (2024)

Constructions involving explicit antisymmetrization or sym-
metrization of correlation functions will not be discussed here.

1. Conformal field theory construction of ground, edge,
and quasiparticle state Ansätze

Starting from the 	(z) defined in Eq. (6), we can write the
ground-state wave function of N particles as

�〈0|(z) = 〈0|C(N )
N∏

i=1

	(zi )|0〉, (7)

where z denotes z1, z2, . . . , zN and 〈0|C(N ) =
limz→∞ z−N2/ν〈0|e−iNϕ(z)/

√
ν is a background charge that

is used so that the correlator has a net zero U(1) charge
(which is required for it to be nonzero). In each case, 〈0|C(N )
can also be expressed as the Hermitian conjugate of a product
of modes of 	(z) applied on 〈0|. Strictly speaking, this
correlation function is computed within the Hilbert space of
the vacuum representation of A, H0.

As detailed in Ref. [27], we can generate edge-state excita-
tions by replacing 〈0| in the correlation function with another
state 〈v| ∈ H∗

0, where the resulting state is given by

�〈v|(z) = 〈v|C(N )
N∏

i=1

	(zi )|0〉. (8)

Clearly, this will be nonzero only if 〈v| has zero U(1)
charge. We can, however, modify this construction so that 〈v|
with nonzero U(1) charge will generate a wave function of a
different number of particles. We first write the wave function
in second-quantized notation,

|�〈v|〉〉 = 1

N!

∫ N∏
i=1

d2zie
−|zi|2/4〈v|C(N )

N∏
i=1

	(zi )|0〉

×
N∏

i=1

c†(zi, z̄i )|0〉〉, (9)

where c†(z, z̄) are the creation operators and |0〉〉 is vacuum
state with no particles. The modified construction is defined
by expressing Eq. (9) as

|�〈v|〉〉 ≡ 〈v|C(N ) exp

[∫
d2ze−|z|2/4	(z) ⊗ c†(z, z̄)

]
× |0〉 ⊗ |0〉〉. (10)

As the CFT correlation function must have net zero U(1)
charge the only term that contributes from the exponential
is one which has the opposite U(1) charge as 〈v|C(N ). This
construction allows us to generate edge excitations with a
variable number of particles.

Roughly speaking, states with quasiparticles at positions
w1,w2, . . . can be generated by inserting primary fields at the
quasiparticle positions into the correlation function,

�(w1,w2, . . . ; z) ∼ 〈0|C(N )φ1(w1)φ2(w2) · · ·
N∏

i=1

	(zi )|0〉.

(11)

In general, this expression is only well defined when the way
in which the primaries φi fuse to the identity is specified, with

the resulting expression being given by a modified conformal
block [see Eq. (5)],

�a(w1,w2, . . . ; z) = Fa(w1,w2, . . . ; z), (12)

where a labels the ways the primaries fuse to the identity.
These quasiparticle states are only valid wave functions if

there are no singularities with respect to the particle positions
zi. In each case, we can define the primaries for each repre-
sentation of A, H j , such that the primaries have a completely
regular OPE with 	(z), 	(z)φ j (w) ∼ 0. These primary fields
will then generate valid quasiparticle wave functions.

2. The generalised screening hypothesis

In Laughlin’s plasma analogy, one maps the inner products
of wave functions to expectation values of observables of
a one-component plasma. A field-theoretic generalization of
this involves mapping wave function inner products to corre-
lation functions of a field theory that is a “perturbation” of
CFTA. To express inner products in terms of just the CFT we
first need to be able to generate the complex conjugate of these
wave functions. To this end, we denote the antichiral copy of
	(z) as 	(z̄). Complex-conjugate wave functions can then be
expressed with correlation functions within H0, which is the
antichiral copy of the vacuum representation of A.

The squared norm of the ground state trial wave function
can then be expressed as

ZN ≡ 〈〈�〈0||�〈0|〉〉

= 1

N!

∫
D2z|�〈0|(z)|2

= 1

N!

∫
D2z

〈
C(N )

N∏
i=1

	(z̄i )C(N )
N∏

i=1

	(zi )

〉
= 〈

C(N )C(N )e
∫

D2z	(z̄)	(z)〉. (13)

One should note that when 	(z) has half-integral conformal
dimension then one can pick up certain minus signs in re-
arranging the 	 as we should enforce that 	 anticummutes
with 	 to be consistent with the spin statistics theorem. We
suppress such minus signs for ease of exposition. Once again,
as the correlator must have no net U(1) charge the back-
ground charges ensure that only one term contributes from the
exponential. We have thus expressed the ground-state norm
as the partition function of a perturbed CFT. As 〈v| can be
expressed as modes of local field acting on 〈0|, edge-state
inner products can be mapped to correlation functions of
this field theory. Furthermore, inner products of quasiparticle
states can be mapped to correlation functions involving the
primary fields φi. We denote correlation functions of this field
theory by 〈. . .〉∗ ≡ 〈C(N )C(N )R · · · e

∫
D2z	(z̄)	(z)〉/ZN , where

R indicates radial ordering.
In the large-N limit the partition function of Eq. (13) will

be dominated by configurations of the N 	(z̄)	(z) fields
insertions where the density of these insertions, on length
scales much larger than the magnetic length, is given by one
particular ρ(z, z̄). As each configuration of the 	(z̄)	(z) cor-
responds to a configuration of the actual N particles, with the
contribution to the partition function being proportional to the
probability density of that configuration, ρ(z, z̄) is the density
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FIG. 1. Typical configurations of the 		 insertions that appear
in the partition functions of these “generalized plasmas” for (a) the
ground-state wave function and (b) with the insertion of a quasihole
operator in the case of a Laughlin wave function.

of particles in the ground-state trial wave function �〈0|(z).
As pointed out in Ref. [27], ρ(z, z̄) can be computed from
a saddle-point approximation, with the density being entirely
determined by the U(1) sector. The density profile one finds is
that of a droplet of radius R = √

2N/ν with a uniform density
of ν/2π l2

B inside the droplet, precisely what one would expect
for a fractional quantum Hall ground-state wave function. See
Fig. 1(a) for an example of a typical configuration of the
	(z̄)	(z) insertions that can appear in the partition function
in the case of a Laughlin wave function.

The generalized screening hypothesis is that under
renormalization-group (RG) transformations, the field theory
flows to a massive infrared fixed point inside the droplet
and flows back to CFTA outside the droplet. Flow towards
a massive infra-red fixed point, inside the droplet, implies that
there must only be short-range correlations inside the droplet
(i.e., connected correlation functions decay exponentially).

We now wish to point out in what sense screening is occur-
ring. Consider now some disk D inside the droplet, with the
distance from any point in the disk to the edge of the droplet
being much larger than the magnetic length. Within CFTA we
have the OPE i∂ϕ(z)	(w) ∼ √

ν
−1

	(w)/(z − w). We must
then have

√
ν

2

〈 ∮
∂D

dz

2π i
i∂ϕ(z) +

∮
∂D

dz̄

2π i
i∂ϕ(z̄)

〉
∗

= (Average number of particles in D) = νAD

2π l2
B

, (14)

where AD and ∂D is the area and boundary of D, respectively.
Let 〈φ(w)φ̄(w̄) · · ·〉∗ be a correlation involving the fields
φ(w)φ̄(w̄) and some other fields, where w ∈ D and all the
other field insertions are outside D at distances away from
∂D much larger than the magnetic length. This correlation
function could represent, for example, the norm squared of
some quasiparticle state. Just as for the partition function,
the dominant contributions to this correlation function will
be from 	(z̄)	(z) insertions with a particular density profile,
where the number of these insertions in D given by this den-
sity profile will be denoted by ND. Let the U(1) charge of φ(w)

be written as QU (1). We then have

√
ν

2

〈(∮
∂D

dz

2π i
i∂ϕ(z) +

∮
∂D

dz̄

2π i
i∂ϕ(z̄)

)
φ(w)φ̄(w̄) · · ·

〉
∗

= (
√

νQU (1) + ND)〈φ(w)φ̄(w̄) · · ·〉∗. (15)

Provided the distance from w to ∂D is much larger than
the magnetic length then short-range correlation within the
droplet implies

√
ν

2

〈(∮
∂D

dz

2π i
i∂ϕ(z) +

∮
∂D

dz̄

2π i
i∂ϕ(z̄)

)
φ(w)φ̄(w̄) · · ·

〉
∗

=
√

ν

2

〈 ∮
∂D

dz

2π i
i∂ϕ(z) +

∮
∂D

dz̄

2π i
i∂ϕ(z̄)

〉
∗

× 〈φ(w)φ̄(w̄) · · ·〉∗
= νAD

2π l2
B

〈φ(w)φ̄(w̄) · · ·〉∗. (16)

Equating Eq. (15) with Eq. (16), we find

ND = νAD

2π l2
B

− √
νQU (1). (17)

In words, the dominant configurations of the 	(z̄)	(z) inser-
tions that contribute to the correlation function have

√
νQU (1)

fewer insertions in D compared with the number in D in the
partition function. See Fig. 1(b) for an example of these typi-
cal 	(z̄)	(z) insertions that appear in the case of a Laughlin
quasihole. Thus, the 	(z̄)	(z) insertions behave analogously
to a screened plasma, where field insertions such as φ(w)φ(w̄)
can be thought of as fixed charges with an electric charge
given by the U(1) charge of the field.

In the case where the correlation function 〈φ(w)φ̄(w̄) · · ·〉∗
corresponds to the norm squared of a quasiparticle wave func-
tion, the density of the configurations of 	(z̄)	(z) insertions
that are the dominant contributions to the correlation function,
will be equal to the particle density in the quasiparticle wave
function. Therefore, the physical charge of the quasiparticle
generated by φ(w) is simply given by −√

νQU (1) [i.e., it is
completely determined by the U(1) sector].

3. Edge-state inner products and the real-space
entanglement spectrum

In Ref. [27], by slightly modifying the edge-state mapping
of Eq. (10) to

|�〈v|〉〉 ≡ 〈v|C(N ) exp

[
λ

1/2
N

∫
d2ze−|z|2/4	(z) ⊗ c†(z, z̄)

]
× |0〉 ⊗ |0〉〉, (18)

where λN is a real number adjusted so that
limN→∞〈〈�〈0|(	−h )† |�〈0|(	−h )†〉〉/ZN ∼ R2h, it was shown that
the generalized screening hypothesis implied the edge-state
inner products could be expressed as

〈〈�〈w||�〈v|〉〉/ZN = 〈v|R2L0 eS|w〉, (19)
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where L0 is the zeroth Virasoro mode, and S is an operator
referred to as the inner product action that takes the form

S =
∑

j

α j√
N

hj−1

∮
|z|=1

dz

2π i
zh j−1φ j (z), (20)

where α j are constants and φ j (z) fields belonging to A with
corresponding scaling dimension h j such that h j > 1.

From this, it could then be shown that the RSES is given
by the spectrum of an operator SES called the entanglement
action that takes the form

S =
∑

j

β j√
N

hj−1

∮
|z|=1

dz

2π i
zh j−1φ j (z). (21)

That is, it takes the same form as an inner-product action. This
allows one to understand the structure of the RSES at large but
finite system sizes.

In Sec. IV we show how this result can be generalized to
composite fermion and parton states using the same methods
as DRR.

4. Adiabatic quasiparticle braiding statistics

Consider now a state, |�(w)〉〉, with quasiparticles located
at positions w = (w1,w2, . . . ) and some path w(τ ), such that
w(0) = w(1) and the distance between any wi(τ ) and w j (τ ),
for i �= j, is much larger than the magnetic length. We assume
that there exists a Hamiltonian Ĥ (w) for which |�(w)〉〉 is a
ground state and which is gapped in the bulk of the system
with the quasiparticles not coupling the edge of the system
(see Ref. [24] for further details). If there is only one state for
a given set of quasiparticle positions, then if the quasiparticles
are moved adiabatically along the path w(τ ) then up to a
time dependant phase factor the wave functions transforms
as |�(w)〉〉 → eiγ |�(w)〉〉, where γ is the time-independent
Berry phase [74]. If there are multiple states corresponding to
quasiparticles located at w then we use |�a(w)〉〉 to denote
an orthonormal basis for this space of states. In this case,
after adiabatically moving the quasiparticles along the path
w(τ ) the wave function will, up to a time dependant phase
factor, transform as |�a(w)〉〉 → ∑

b Uba|�b(w)〉〉, where Uba

is a time independent unitary matrix, which we refer to as
the Wilczek-Zee matrix [75]. In Ref. [24] Read argues that
if the generalized screening hypothesis holds, then both the
Berry phase and the Wilczek-Zee matrix are given by the
monodromy of the quasiparticle wave functions along the path
w(τ ), up to an area dependant multiplicative phase factor
(i.e., the usual phases for adiabatically moving charges in a
magnetic field). We now summarize Read’s argument.

First, let us consider the Abelian case where there is only
one conformal block for a given set of quasiparticles. We write
the normalized wave function as

�(w; z) = 〈0|C(N )φ1(w1)φ2(w2) · · ·
N∏

i=1

	(z)|0〉/ZN . (22)

The norm squared of this wave function is then given by

Z (w, w̄) = 〈φ1(w̄1)φ(w1)φ2(w̄2)φ(w2) . . .〉∗. (23)

The wave function is not, in general, single valued in
the quasiparticle coordinates. Furthermore, as we require

|�(w(τ ))〉〉 to be a smooth function of τ , we must have that
|�(w(1))〉〉 is a monodromy transformation of |�(w(0))〉〉.
In the Abelian case, this can be expressed as |�(w(1))〉〉 =
eiα|�(w(0))〉〉, where α ∈ R. Thus, the total phase picked up
by the wave function after the adiabatic transformation is a
combination of this phase and the standard Berry phase,

γ = α +
∑

j

∮
w(τ )

(
dw jAw j + dw̄Aw̄ j

)
, (24)

where

Aw j = i
√

Z (w, w̄)
−1〈〈�(w)|∂w j [

√
Z (w, w̄)

−1|�(w)〉〉]
(25)

As the unnormalized |�(w)〉〉 is holomorphic in w j we can
simplify this expression to

Aw j = i
√

Z (w, w̄)
−1

∂w j [〈〈�(w)|�(w)〉〉
√

Z (w, w̄)
−1

]

= i
√

Z (w, w̄)
−1

∂w j [
√

Z (w, w̄)]

= i

2
∂w j ln Z (w, w̄). (26)

Similarly, for Aw̄ j we have

Aw̄ j = i
√

Z (w, w̄)
−1〈〈�(w)|∂w̄ j [

√
Z (w, w̄)

−1|�(w)〉〉]

= − i

2
∂w̄ j ln Z (w, w̄). (27)

Short-range correlation, combined with the fact that the
distance between any two quasiparticles is much larger than
the magnetic length, implies that

Z (w, w̄) =
∏

j

Z j (w j, w̄ j ), (28)

where each Zj (w j, w̄ j ) cannot depend in any way on the
presence of the other quasiparticles. We thus have that

γ = α + i

2

∑
j

∮
w(τ )

dw j∂w j ln Zj (w j, w̄ j )

− dw̄ j∂w̄ j ln Zj (w j, w̄ j ). (29)

As each Zj (w j, w̄ j ) does not depend on the presence of the
other quasiparticles, each term in this sum must be the usual
phase for moving charge adiabatically in a magnetic field.
That is, each term in the sum must be 2πn jq j , where n j is the
number of flux quanta passing through the loop w j completes
in w(τ ) and q j is the charge of quasiparticle j:

γ = α +
∑

j

2πn jq j . (30)

Thus, up to an area-dependent n jq j part, the phase γ is given
by the phase α of the monodromy transformation of the quasi-
particle wave function.

For the non-Abelian case there are multiple conformal
block wave functions for a given set of quasiparticle posi-
tions. Let |�a(w)〉〉 denote an unnormalized basis for the
space of these conformal block wave functions. We first focus
on the case when this basis can be picked such that under
monodromy transformations, |�a(w)〉〉 → ∑

b Bba|�b(w)〉〉,
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where the matrices B form an irreducible unitary represen-
tation of the braid group. When the CFT is itself unitary, then
there always exists a basis for the conformal blocks where the
matrices B form a unitary representation of the braid group.

We denote the inner product between these wave functions
as,

Zab(w, w̄) = 〈〈�a(w)|�b(w)〉〉. (31)

Clearly, under a monodromy transformation we have Zab →∑
cd B†

acZcd Bdb. However, as the distance between any two
quasiparticles is much larger than the magnetic length, the
short-range correlations inside the droplet imply that Zab must
be invariant under these monodromy transformations. Thus,
Zab must commute with all the braid matrices B. By Schur’s
lemma it follows that Zab(w, w̄) = δabZ (w, w̄).

As with the Abelian case, the wave function at the end
of the path w(τ ) must be a monodromy transformation of
the initial wave function, |�a(w(1))〉〉 = ∑

b Bba|�b(w(0))〉〉
(i.e., the wave function at the end of the path is an ana-
lytic continuation along the path of the wave function at the
start). If the quasiparticles are moved along this path adiabat-
ically then the wave function will transform as |�a(w)〉〉 →∑

b Uba|�b(w)〉〉. As the basis
√

Z (w, w̄)
−1|�a(w)〉 is or-

thonormal, U is a unitary matrix given by

U = BP exp

⎛⎝∑
j

i
∮

w(τ )

(
dw jAw j + dw̄Aw̄ j

)⎞⎠, (32)

where P denotes path ordering, and Aw j and Aw̄ j are now
matrices given by

Aw j ,ab = i
√

Z (w, w̄)
−1〈〈�a(w)|∂w j [

√
Z (w, w̄)

−1|�b(w)〉〉],
Aw̄ j ,ab = i

√
Z (w, w̄)

−1〈〈�a(w)|∂w̄ j [
√

Z (w, w̄)
−1|�b(w)〉〉].

(33)

Recalling that the unnormalized wave functions are holomor-
phic in the quasiparticle coordinates allows A to be simplified
to

Aw j ,ab = δab
i

2
∂w j ln Z (w, w̄),

Aw̄ j ,ab = − δab
i

2
∂w̄ j ln Z (w, w̄). (34)

Once again, the short-range correlations in the bulk imply that
Z (w, w̄) = ∏

j Z j (w j, w̄ j ), with each Zj not depending on
the presence of the other quasiparticles. Repeating the same
arguments from the Abelian case, we find that,

U = ei
∑

j 2πn j q j B. (35)

Thus, up to an area-dependent phase factor, the transformation
of the wave function after adiabatically moving the quasipar-
ticles along w(τ ) is simply given by the monodromy of the
quasiparticle wave function along the path.

In the case where the representation of the braid group
formed by the matrices B is not irreducible, one can split the
reducible representation into a direct sum of irreducible ones.
The above argument can then be repeated for each irreducible
representation separately.

It should be noted that these arguments only rely on the
generalized-screening hypothesis (i.e., short-range correla-
tions in the droplet) and that the unnormalized quasiparticle
wave functions are holomorphic in the quasiparticle coordi-
nates.

5. Example: Laughlin wave functions

We now give a detailed example of this CFT formalism in
the case of the Laughlin wave functions. This example should
clarify some points made earlier in this background section.
We only focus on the fermionic Laughlin states where ν =
1/m with m being an odd integer with m > 1.

As is now well known, one can generate the ν = 1/m
Laughlin trial wave function with the correlation function of
the operator,

	(z) =: ei
√

mϕ(z) :, (36)

where ϕ(z) is the usual free chiral boson field. Indeed, one can
explicitly show that

〈0|C(N )
N∏

j=1

e
√

miϕ(z j )|0〉 =
N∏

i< j

(zi − z j )
m. (37)

The conjugate field of 	(z) is 	†(z) =: e−i
√

mϕ(z) :. As
the Hermitian conjugate of the operator 	(z) is given by
[	(z)]† = z̄−2h	†(z̄−1), where h = m/2 is the scaling dimen-
sion of 	(z), the modes of these fields are related by (	n)† =
	

†
−n with n ∈ Z + m/2.
In addition, the OPE between 	(z) and its conjugate is

given by

	(z)	†(w) = 1

(z − w)m : ei
√

mϕ(z)−i
√

mϕ(w) :

∼ 1

(z − w)m + i
√

m∂ϕ(w)

(z − w)m−1 + · · ·

+ 1

(m − 1)!

: e−i
√

mϕ(w)∂m−1ei
√

mϕ(w)) :

(z − w)
. (38)

As 	(z) has half-integral conformal spin (recalling that m
is odd); this OPE gives the anticommutation relations of the
form

{	l ,	
†
k} =

⎡⎣m−1∏
j=1

l + h − j

j

⎤⎦δ0,l+k

+ (normal-ordered polynomial in an), (39)

where an (n ∈ Z) are the modes of the field i∂ϕ(z). Further-
more, as 	(z)	(w) ∼ 0 we have {	k,	l} = 0.

Consider now the set of fields generated by repeated OPEs
of 	(z) and 	†(z). The OPE between any two such fields
must still belong to this set. This set of these fields along
with their OPEs defines a chiral algebra A. Given that the
OPEs are closed, anticommutation or commutation relations
(depending on the conformal spin) between the modes of
these fields must be expressible in terms of modes of fields
belonging to this set. We can also think of A as formal linear
combinations of products of modes of these fields with the ad-
ditional equivalence relation imposed by the requirement that
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the commutation, anticommutations and any other relations
between the modes dictated by the OPEs must be satisfied.
Representations of A can be defined as the representation
of the algebra of these modes. In the particular case we are
considering here, this algebra is the fermionic version of the
Moore-Seiberg algebra. Importantly, A contains the Heisen-
berg algebra [ak, al ] = kδk+l,0 and, thus, the Virasoro algebra.

We can further define CFTA purely in terms of uni-
tary irreducible representations of A. In Appendix A we
show how these representations can be deduced by ele-
mentary methods, under certain assumptions. Here we give
a summary. Each possible irreducible representation is la-
beled by a U(1) charge q∗, which can take values q∗ =
0, 1/

√
m, 2/

√
m, . . . , (m − 1)/

√
m. The Hilbert space of

each irreducible representation, Hq∗, can be generated by
polynomials in 	k and 	

†
k applied to a state |q∗〉, where

a0|q∗〉 = q∗|q∗〉 and an|q∗〉 = 0 for n > 0. A useful basis
of Hq∗ takes the form

∏
ni

a−ni |q∗ + p
√

m〉, where p ∈ Z
(with p taking all integer values for a given irreducible rep-
resentation), a0|q∗ + p

√
m〉 = (q∗ + p

√
m)|q∗ + p

√
m〉 and

an|q∗ + p
√

m〉 = 0 for n > 0. In each case, we can use the
U(1) chiral boson to reproduce Hq∗ , by using the chiral boson
representation of 	k and 	

†
k and applying polynomials in the

modes of these fields on the state : eiq∗ϕ(0) : |0〉. Thus, the
primary field φq∗ (z) corresponding to |q∗〉 can be represented
by the chiral boson field φq∗ =: eiq∗ϕ(z) : and so we can calcu-
late all the conformal blocks of CFTA using this conformal
embedding in CFTU (1).

We can now see that the irreducible representations of A
are in one-to-one correspondence with the Laughlin quasi-
particles. The quasiparticle wave functions can be generated
by the insertion of the φq∗ (z) into the correlator in Eq. (37).
Let us now consider the specific case of m insertions of the
φ1/

√
m field at positions w = w1,w2, . . . ,wm. For the corre-

lation function to be overall U(1) neutral, the resulting wave
function must be for N − 1 particles and be be written as

�(w; z) ∝〈0|C(N )
m∏

l=1

φ1/
√

m(wl )
N−1∏
j=1

e
√

miϕ(z j )|0〉

=
[

m∏
l<k

(wl − wk )
1
m

]⎡⎣ m∏
l=1

N−1∏
j=1

(z j − wl )

⎤⎦
×
⎡⎣N−1∏

i< j

(zi − z j )
m

⎤⎦. (40)

From the generalized-screening hypothesis, we know that
each quasiparticle must have a physical charge −q∗/

√
m =

−1/m. Suppose we now move w2 around a loop that en-
closes w1 and no other quasiparticle. Clearly, the nontrivial
monodromy of the wave functions along this path comes
from (w1 − w2)

1
m , where it transforms as (w1 − w2)

1
m →

e
2π i
m (w1 − w2)

1
m . Assuming the generalized screening hypoth-

esis, if we physically move these quasiparticles adiabatically
along this path then the wave function transforms as
�(w; z) → e

2π i
m �(w; z) up to the usual area dependant phase

factor. Thus, we can now see how one can obtain the, now

well-established, fractional adiabatic statistics of the Laughlin
quasiparticles using this CFT formalism.

To generate edge states we replace the state vacuum with
some state 〈v| on the left end of the correlator, where |v〉 ∈
H0, that 〈v| is in the vacuum representation of A (i.e., q∗ = 0).
Under this edge-state mapping, the states of H0 that generate
edge excitation that keep the number of particles the same,
are the states with zero U(1) charge. Such states take the form∏

ni
a−ni |0〉 (ni > 0) and they will generate the wave functions

of the form

�〈0|∏ni
ani

(z) = 〈0|
∏

ni

aniC(N )
N∏

j=1

	(z j )|0〉

=
∏

ni

√
mPni (z)

N∏
j<k

(z j − zk )m, (41)

where Pn(z) = ∑N
i=1 zn

i .
To figure out which edge states the charged states of

H0 generate we can use the general edge-state mapping
of Eq. (10). States of H0 with U(1) charge p

√
m (p ∈ Z)

are expressed as linear combinations of states of the form∏
ni

a−ni |p
√

m〉 (n > 0). These basis elements generate edge
states with N + p total particles with the wave function

�〈p
√

m|∏ni
ani

(z) = 〈p
√

m|
∏

ni

aniC(N )
N+p∏
j=1

	(z j )|0〉

=
∏

ni

√
mPni (z)

N+p∏
j<k

(z j − zk )m, (42)

where now we have Pn(z) = ∑N+p
i=1 zn

i .
Now by adjusting this edge state by using a parameter

λN , where we replace 	(z) → √
λN	(z), and assuming the

generalized-screening hypothesis, the arguments of DRR give
the edge inner products at large system size to be given by
Eq. (19). As shown in Ref. [29], in the case of the Laughlin
wave functions the inner product action, S, takes a very simple
form to leading order,

S = 1

6
√

mN

∮
dz

2π i
z2 : (i∂ϕ(z))3 : . (43)

In the numerical tests of Ref. [29], this leading order form of
S was found to reproduce the edge-state inner products to a
high degree of accuracy even at smaller system sizes.

C. Composite fermion and parton trial wave functions

Viewed as just trial wave functions, the set of parton wave
functions actually includes the composite fermion ones. How-
ever, their motivating microscopic models are seemingly quite
different. We now give very brief summaries of these micro-
scopic models and detail the resulting trial wave functions
for the composite fermion and parton trial wave functions. In
each case, we also define the space of trial edge states, which
naturally arises from a given trial wave function’s respective
motivating microscopic model.
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1. Composite fermions

A wave function is said to have a vortex at a particular loca-
tion if moving any one of the underlying particles’ coordinates
around that location makes the phase of the wave function
change by an integer number of 2π . As is well known, the
wave function must go to zero when any particle approaches
that point. Thus, a possible mechanism for electrons to lower
their energy is for wave function vortices to move with the
electrons, which would reduce the probability for two elec-
trons to be near each other. The combination of an electron
and an even number of vortices is a quasiparticle known as a
composite fermion [36,76].

The composite fermion theory starts by assuming that
in the FQHE setting electrons do indeed form composite
fermions. At the mean-field level, the effective number of
magnetic flux quanta experienced by the composite fermions,
for large N , is N∗

φ = Nφ − N p, where p is the number of
vortices each electron is attached to (p is even), Nφ is the
actual number of flux quanta and N is the number of particles.
If the effective filling fraction ν∗ = N/N∗

φ is an integer n, then
one may expect the composite fermions to form an integer
quantum Hall state. We would thus have a gapped state at
fractional filling ν = n/(pn + 1).

One can then construct a trial wave function from this
picture by first including the Jastrow factor

∏N
i< j (zi − z j )p in

the wave function, which attaches the wave-function vortices.
The remaining factor is then interpreted as the wave function
of the composite fermions. This naturally gives us

�(z, z̄) = �n(z, z̄)
N∏

i< j

(zi − z j )
p, (44)

where �n(z, z̄) is the usual ν = n integer quantum Hall
ground state (i.e., the state where all single orbitals in the n
lowest Landau levels with angular momenta below a given
Fermi level are occupied). This state is not in the lowest Lan-
dau level (LLL), and to produce a LLL trial wave function one
typically projects this by hand, which gives the wave function

�(z) = PLLL�n(z, z̄)
N∏

i< j

(zi − z j )
p, (45)

where PLLL is LLL projection operator.
Keeping within this mean-field picture, one would expect

that the low-energy edge excitations of this state correspond to
integer quantum Hall edge states of the composite fermions.
Hence, the (unprojected) edge-state trial wave functions take
the form

�(z, z̄) = �edge,n(z, z̄)
N∏

i< j

(zi − z j )
p, (46)

where �edge,n(z, z̄) is a ν = n integer quantum Hall edge-state
wave function. We define a ν = n integer quantum Hall edge
state to be a state with all particles in the lowest n Landau
levels and such that only the single-particle orbitals with an-
gular momenta m in the range mF − p < m < m f + p have
occupations that differ from the ν = n ground state, where m f

is the Fermi level and p is such that p/mF � 1.

To produce an LLL edge-state trial wave function from
the wave function of Eq. (46) one simply applies the PLLL

operator. The vector space of wave functions of the form
of Eq. (46) then defines the space of unprojected edge-state
trial wave functions for the composite fermion case and the
space of wave functions that are LLL projections of the wave
function of the form of (46) defines the space of LLL projected
edge-state trial wave functions.

2. Partons

In the parton theory, one splits the electron into m fictitious
partons by mapping the system to that of mN particles, with
each parton species having a charge that is a rational multiple
xi of the electron charge, where the electron operator maps as
c(z) = f1(z) f2(z) · · · fm(z) and fi(z) are the operators of each
parton species [77]. Clearly, we must restrict the partons to
move in groups of m (i.e., as an electron). This constraint can
be imposed by adding a dynamical gauge field [56].

As the parton species i has fractional charge xi, the effective
number of magnetic flux quanta for the parton species i must
be N∗

φ,i = xiNφ . Forgetting about the dynamical gauge field
for now, if the effective filling factor for each species is an
integer ν∗

i = N/N∗
φ,i is an integer ni, then one may expect

each individual parton species to form a ν∗
i = ni integer quan-

tum Hall state. Typically, it is then assumed that adding this
gauge field back does not change this fact. This then gives a
gapped state of the electrons at filling factor ν−1 = Nφ/N =∑m

i=1 xiNφ/N = ∑m
i=1(ν∗

i )−1.
As the electron operator is composed of a product of parton

operators, the resulting trial wave function should be a product
of the individual parton species’ wave functions. We then have
the ground-state trial wave function,

�(z, z̄) =
m∏

i=1

�ni (z, z̄), (47)

where, again, �n(z, z̄) is the ν = n integer quantum Hall
ground state.

Furthermore, one would also expect the edge states of this
system to correspond to integer quantum Hall edge states of
the partons (again forgetting about the dynamical gauge field).
The edge-state trial wave functions are then

�edge(z, z̄) =
m∏

i=1

�i,ni (z, z̄), (48)

where �i,ni (z, z̄) is some integer quantum Hall edge state of
the ith parton species. The space of edge-state trial wave func-
tions is the space of linear combinations of these edge-state
trial wave functions.

As for the composite fermion case one can produce LLL
trial wave functions by simply projected the above wave func-
tions to the LLL.

A short-hand notation is typically used for parton wave
functions. For example, φ2

2φ1 is a product of two ν = 2 wave
functions and one ν = 1 wave function and φ3

2 would be a
ν = 2 wave function raised to the third power. Another no-
tation of parton states involves labeling them with a series
of integers, where φ3

2 would be labeled 222, φ2
2φ1 would be

labeled 221, etc.
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D. Integer quantum Hall wave functions as conformal field
theory correlators and edge excitations

In both the composite fermion and parton theories one
understands a particular state as arising from the formation of
integer quantum Hall states of certain quasiparticles. Hence,
to generalize the CFT formalism, outlined in Sec. II B, to
these wave functions we begin by discussing the, seemingly
esoteric, task of constructing integer quantum Hall ground
and edge-state wave functions using CFT. Quasiparticles will
not be discussed here, as they are topologically trivial in the
integer quantum Hall case. We first discuss the ν = 1 wave
functions, then show how ν = 2 wave functions can be written
as CFT correlation functions without any explicit antisymme-
terization, and then the generalization to ν = n, n ∈ Z.

1. ν = 1

The CFT that will be used here is that of the U(1) chiral
boson with a compactification radius of one. Within the CFT
the chiral boson field, ϕ(z), has the mode expansion

ϕ(z) = −ia0 ln z + i
∑

n∈Z/{0}

1

n
anz−n, (49)

where

[an, am] = nδn+m,0. (50)

Note that we do not include the usual ϕ0 operator here. This
is because we are dealing with a compactified boson and so
the eigenvalues of the a0 operator belong to a discrete set (not
a continuum). Instead, we use a Klein factor F which is a
unitary operator satisfying

[an, F ] = δn,0F. (51)

The Hilbert space of this theory is defined as follows: There
exists the vacuum state |0〉, which is the unique state satisfying
an|0〉 = 0 for n � 0. Any state in the Hilbert space can be
generated by applying polynomials in an, F , and F † on |0〉.
Hence, from Eq. (51), the eigenvalue of a0 are integers, which
reflects the fact the boson compactification radius is one. The
inner product of the Hilbert space is defined by the fact that
F is unitary, the Hermitian conjugates of the field modes are
given by (an)† = a−n, and 〈0|0〉 = 1.

The energy-momentum tensor of this theory is given by

T (z) = 1
2 : [i∂ϕ(z)]2 : (52)

We define the vertex operators as

V (z) ≡ F : eiϕ(z) :

= Fe
∑

n>0
1
n a−nzn

ea0 ln ze−∑
n>0

1
n anz−n

,

V †(z) ≡ F † : e−iϕ(z) :

= F †e−∑
n>0

1
n a−nzn

e−a0 ln ze
∑

n>0
1
n anz−n

. (53)

From the above expansions, one can show that V (z)V †(w) =
(z − w)−1 : eiϕ(z)−iϕ(w) : for |z| > |w|, and V †(w)V (z) =
(w − z)−1 : eiϕ(z)−iϕ(w) : for |z| < |w|. Hence, at |z| = |w|,
w �= z, we have V (z)V †(w) = −V †(w)V (z) (i.e., they anti-
commute). By similar arguments we have {V (z),V (w)} =
{V †(z),V †(w)} = 0 for |z| = |w|, w �= z. Hence, the fields

V (z) and V †(w) are fermionic, with an OPE given by

V (z)V †(w) = 1

z − w
+ i∂ϕ(w) + · · · . (54)

The modes of these fields are defined by Vk =∮
dz

2π i z
k+1/2−1V (z) and V †

k = ∮
dz

2π i z
k+1/2−1V †(z) for k ∈ Z +

1/2. From the OPE we have

{Vk,V †
l } = δk+l,0. (55)

Furthermore, from Eq. (53) one can directly show that
[V (z)]† = z̄−2V †(z̄−1) ⇒ (Vk )† = V †

−k and Vk|0〉 = V †
k |0〉 =

0 for k > 0. Hence, these vertex operators represent free
complex fermions, where V−k and V †

−k for k > 0 are creation
operators for particles and holes, respectively. The corre-
sponding annihilation operators are V †

k and Vk for k > 0 for
particles and holes, respectively.

The modes of these fields can further be used to express the
modes of the boson fields. From the OPE it follows that,

an =
∑

k

: V−kV
†

k+n :, (56)

where : ∗ : refers to fermionic normal ordering.2 We also
have that F †V (z)F = zV (z) and, hence, VkF = FVk+1. Fi-
nally, F |0〉 = V−1/2|0〉 and F †|0〉 = V †

−1/2|0〉. These relations
allow us to express a polynomial of an, F , and F † applied
on |0〉 as a polynomial of Vk and V †

k applied on |0〉. Hence,
the Hilbert space can be generated by the fermion modes.
This is merely one way of expressing the usual bosonization
relations [78].

Using standard methods, we have that

〈0|(F †)N
N∏

i=1

V (zi)|0〉 =
N∏

i< j

(zi − z j )

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zN−1
1 zN−1

2 · · · zN−1
N

zN−2
1 zN−2

2 · · · zN−2
N

...
...

. . .
...

z1 z2 · · · zN

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (57)

We have generated the ν = 1 (noninteracting) ground-state,
with 	(z) = V (z) and C(N ) = (F †)N . The chiral algebra that
we have then used to generate the integer quantum Hall state
is that generated by V (z) and V †(z). This chiral algebra only
has one irreducible representation (given by the free fermion
Hilbert space) provided we keep periodic boundary conditions

2To see this we first note that

i∂ϕ(w) =
∮

w

dz

2π i

R[V (z)V †(w)]

z − w

=
∮

|z|>|w|

dz

2π i

V (z)V †(w)

z − w
+
∮

|z|<|w|

dz

2π i

V †(w)V (z)

z − w
.

One then expands the 1/(z − w) factors to express this as a sum of
VkV †(w) products. Finally, one can integrate over w to obtain the an

modes.
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as we encircle the origin with any of the particles in this ν = 1
state, which is consistent with the topological triviality of the
integer quantum Hall state.

Let us now consider the edge-state mapping. Edge states,
〈v|(F †)N

∏N
i=1 V (zi )|0〉, with a fixed number of particles

are generated with a 〈v| that are sums of states of the
form 〈0|∏ni

ani with ni > 0. From the fact that [an,V (z)] =
znV (z), [an, F ] = 0, and an|0〉 = 0 (for n > 0) it follows that

〈0|
∏

ni

ani (F
†)N

N∏
j=1

V (z j )|0〉 =
∏

ni

Pni (z)
∏
j<k

(z j − zk ). (58)

Hence, this mapping from the CFT can generate the entire
lowest Landau level Hilbert space.

Given this, we must have that for any Slater determinant
state there exists a CFT state 〈v| that will generate it. Let 〈v|
be a state that generates the Slater determinant,

�〈v|(z) =

∣∣∣∣∣∣∣∣∣∣∣

zm1
1 zm1

2 · · · zm1
N

zm2
1 zm2

2 · · · zm2
N

...
...

. . .
...

zmN
1 zmN

2 · · · zmN
N

∣∣∣∣∣∣∣∣∣∣∣
. (59)

Now we consider the state generated by 〈v|Vk . First, we note
that this state will generate a wave function with N − 1 parti-
cles (as the correlation function must be U(1) charge neutral).
We then have that

�〈v|Vk (z) = 〈v|Vk (F †)N
N∏

i=2

V (zi )|0〉

= 〈v|(F †)NVk−N

N∏
i=2

V (zi )|0〉

=
∮

dz1

2π i
z−(N−k−1/2)−1

1 �〈v|(z), (60)

where we should recall that �〈v|(z) is an N-particle wave
function. If (N − k − 1/2) ∈ {m1, m2, . . . , mN } with mj =
N − k − 1/2, then we have (by expanding the Slater deter-
minant along the first column)

�〈v|Vk (z) = (−1) j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zm1
2 . . . zm1

N

...
. . .

...

z
mj−1

2 . . . z
mj−1

N

z
mj+1

2 . . . z
mj+1

N

...
. . .

...

zmN
2 . . . zmN

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (61)

Otherwise, if (N − k − 1/2) /∈ {m1, m2, . . . , mN } we have
�〈v|Vk (z) = 0.

Now consider the state �〈v|V †
k

(z) with N + k > 0. By U(1)
charge conservation this is an (N + 1)-particle wave function.
From the anticommutation relation {V †

k ,V (z)} = zk−1/2 and

V †
k |0〉 = 0 for k > 0 we have that

�〈v|V †
k

(z) = 〈v|V †
k (F †)N

N+1∏
i=1

V (zi )|0〉

= 〈v|(F †)NV †
k+N

N+1∏
i=1

V (zi )|0〉

=
N+1∑
j=1

(−1) j−1zN+k−1/2
j 〈v|(F †)N

N∏
i �= j

V (zi )|0〉

=

∣∣∣∣∣∣∣∣∣∣∣

zN+k−1/2
1 . . . zN+k−1/2

N+1

zm1
1 . . . zm1

N+1

...
. . .

...

zmN
1 . . . zmN

N+1

∣∣∣∣∣∣∣∣∣∣∣
. (62)

As �〈0|(z) is a Slater determinant, we can then see, induc-
tively, that all Slater determinant states are generated by CFT
states of the form 〈0|∏i V †

ki

∏
j Vl j with ki, l j > 0.

This mapping is best summarized in the second
quantized notation. First, we note that |�〈0|〉〉/

√
ZN =

c†
N−1c†

N−2 · · · c†
1c†

0|0〉〉. Then, for N − k − 1/2 > 0 we have

|�〈v|Vk 〉〉 =
√
N (N − k − 1/2)

−1
cN−k−1/2|�〈v|〉〉, (63)

and for N + k − 1/2 > 0 we have,

|�〈v|V †
k
〉〉 =

√
N (N + k − 1/2)c†

N+k−1/2|�〈v|〉〉, (64)

where N (m) = ∫
D2z|zm|2 = 2π2mm!. This direct relation-

ship between the Vk and particle creation and annihilation
operators indicates this edge-state mapping can generally be
interpreted as a finite system size nonunitary bosonization.
We call this nonunitary bosonization as the map from the
boson Hilbert space to the Hilbert space of the actual system
is nonunitary.

From Eqs. (63) and (64) we can clearly see that this map-
ping from CFT states to edge states does not preserve inner
products. In Appendix B 1 we show that the CFT generated
edge states have inner products given by

〈〈�〈w||�〈v|〉〉/ZN = 〈v|R2L0 eS|w〉, (65)

where R = √
2N (i.e., the radius of the droplet) and

S = {N ln N − N + ln[2π
√

π ] − 1/(12N )}a0

+ 1

6N

∮
dz

2π i
z2 : [i∂ϕ(z)]3 : (66)

for large N only, which agrees with the more general result
of Fern et al. [29]. We can remove the a0 term by replacing
V (z) → √

λNV (z) in the generating correlation function, with
ln λN = −{N ln N − N + ln[2π

√
π ] − 1/(12N )}.

For any mapping from CFT states to some space of edge-
state wave functions it is useful to be able know what will be
the angular momentum of the wave function a particular CFT
state maps to. In general, this is particularly useful for obtain-
ing upper bounds on the number of edge-state wave functions
at a given angular momentum. For the integer quantum Hall

205128-13



HENDERSON, SREEJITH, AND SIMON PHYSICAL REVIEW B 109, 205128 (2024)

(IQH) cases being considered here these upper bounds are
always saturated.

We show in Appendix C 1 that the angular-momentum
operator can be mapped to the CFT, in this particular case,
as

N∑
i=1

zi∂i�〈v|(z) = �〈v|(L0+(2N−1)a0/2+N (N−1)/2)(z), (67)

with L0 being the zero mode of T (z) (which one should recall
has scaling dimension two). We can then see that for a fixed
number of particles (corresponding to eigenstates of a0 in the
CFT), all the eigenstates of L0 with a particular eigenvalue will
map to wave functions all with the same angular momentum.

2. ν = 2

For ν = 2 the ground-state wave function is no longer
purely holomorphic (up to Gaussian factors) and, hence, we
cannot write it purely as a chiral CFT correlation function.
However, for ν = 2 the highest power of any z̄ that appears is
one. We can then easily separate the antiholomorphic depen-
dence from the holomorphic dependence, with the latter given
by some chiral CFT correlation functions.

We know that the edge theory must contain two branches
of excitations, and so the CFT that we use is that of two
independent chiral bosons, ϕ(i)(z) for i = 1, 2, both with com-
pactification radius one and the following mode expansions:

ϕ( j)(z) = −ia( j)
0 ln z + i

∑
n∈Z/{0}

1

n
a( j)

n z−n, (68)

with [
a(i)

n , a( j)
m

] = nδn+m,0δi j . (69)

The corresponding Klein factors Fj F †
j have the following

anticommutation relations,

{Fi, Fj} = 0 (i �= j),

{Fi, F †
j } = 2δi j, (70)

and the following commutation relations with the field modes:[
a(i)

n , Fj
] = δn,0δi jFj . (71)

As for the single boson field case, the vacuum state, |0〉, is
the unique state defined by, a( j)

n |0〉 = 0 for n � 0. The Hilbert
space is then generated by applying polynomials in a( j)

n , Fj ,
and F †

j on |0〉. The energy-momentum tensor is simply a sum
of the individual energy-momentum tensors of the two chiral
boson species.

Finally, the vertex operators are defined by

Vj (z) = Fj : eiϕ( j) (z) :,

V †
j (z) = F †

j : e−iϕ( j) (z) :, (72)

where the modes Vj,k = ∮
dz

2π i z
k−1/2Vj (z) and V †

j,k =∮
dz

2π i z
k−1/2V †

j (z) have the anticommutation relations

{Vi,k,Vj,l} = 0,

{Vi,k,V †
j,l} = δi jδk+l,0. (73)

Furthermore, the Hilbert space can also be generated by poly-
nomials in Vi,k and V †

i,k applied on |0〉. Hence, this system
is also equivalent to two independent species of complex
fermions.

To generate the ground-state wave function, the 	(z) oper-
ator will now have to have some antiholomorphic dependence
	(z, z̄). We consider the operator,

	(z, z̄) = V1(z) + z̄V2(z). (74)

In the following, we only consider the case when N is odd
(so that the lowest angular momentum ν = 2 state is unique).
Now consider the wave function

�〈0|(z) = 〈0|(F †
2 )(N+1)/2(F †

1 )(N−1)/2
N∏

i=1

	(zi, z̄i )|0〉. (75)

By expanding out the 	(zi, z̄i ), this correlation function can
be expressed as a sum of correlation functions of products
of V1(z) and V2(z). As the U(1) charge of each boson field
is separately conserved, the only terms that will contribute
are those with (N − 1)/2 V1 and (N + 1)/2 V2. Let P(n)
be a permutation of {1, 2, . . . , N} such that P(i) < P( j) for
0 < i < j � q or q < i < j � N with q being a fixed integer
(0 < q � N). Let the set of such permutations be denoted
by PN,q. Further letting C(N ) = (F †

2 )N1 (F †
1 )N2 and N1 = (N −

1)/2, N2 = (N + 1)/2, we can express our wave function as

�〈0|(z, z̄) =
∑

P∈PN,N1

sgn(P)〈0|C(N )
N1∏

i=1

V1(zP(i) )

×
N∏

j=N1+1

z̄P( j)V2(zP( j) )|0〉

=
∑

P∈PN,N1

sgn(P)

∣∣∣∣∣∣∣∣∣∣∣

zN1−1
P(1) zN1−1

P(2) · · · zN1−1
P(N1 )

...
...

. . .
...

zP(1) zP(2) · · · zP(N1 )

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣

z̄P(N1+1)z
N2−1
P(N1+1) · · · z̄P(N )z

N2−1
P(N )

...
. . .

...

z̄P(N1+1)zP(N1+1) · · · z̄P(N )zP(N )

z̄P(N1+1) · · · z̄P(N )

∣∣∣∣∣∣∣∣∣∣∣
, (76)

where sgn(P) appears because the Vj (z) anticommute. One
can interpret this as a sum over wave functions involving two-
particle species, where we sum over all the possible ways of
allocating the particles into these two species with N1 particles
in species 1 and N2 particles in species 2. These permutations
P(n) are in one-to-one correspondence with each allocation.
When we move onto the edge-state map we see that the
number of particles in these species can be varied.

This sum, over permutations, of products of Slater deter-
minants can be simplified to one Slater determinant, with the
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resulting wave function given by

�〈0|(z, z̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zN1−1
1 zN1−1

2 · · · zN1−1
N

...
...

. . .
...

z1 z2 · · · zN

1 1 · · · 1

z̄1zN2−1
1 z̄2zN2−1

2 · · · z̄N zN2−1
N

...
...

. . .
...

z̄1z1 z̄2z2 · · · z̄N zN

z̄1 z̄2 · · · z̄N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (77)

This is the noninteracting ν = 2 ground-state wave function
of N particles (with N odd). Hence we have expressed this
wave function using a CFT correlation function without any
explicit antisymmetrization in Eq. (75) from the fact that
Vj (z) anticommute with each other, which follows from the
spin-statistics theorem because these fields have half-integral
conformal spin.

The associated chiral algebra of this state is that generated
by repeated operator product expansions of Vj (z) and V †

j (z).
Note that now the chiral algebra is generated by four fields
rather than just 	(z) and 	†(z), which was discussed earlier

in this section. As with ν = 1, there is only one irreducible
representation of this chiral algebra (i.e., the free complex
fermion representation), which reflects the fact that the ν = 2
state has no topologically nontrivial excitations.

We now consider the edge-state mapping. Assume 〈v| to
be a state that generates the Slater determinant,

�〈v|(z, z̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z
m(1)

1
1 z

m(1)
1

2 · · · z
m(1)

1
N

z
m(1)

2
1 z

m(1)
2

2 · · · z
m(1)

2
N

...
...

. . .
...

z
m(1)

N1
1 z

m(1)
N1

2 · · · z
m(1)

N1
N

z̄1z
m(2)

1
1 z̄2z

m(2)
1

2 · · · z̄N z
m(2)

1
N

z̄1z
m(2)

2
1 z̄2z

m(2)
2

2 · · · z̄N z
m(2)

2
N

...
...

. . .
...

z̄1z
m(2)

N2
1 z̄2z

m(2)
N2

2 · · · z̄N z
m(2)

N2
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (78)

By U(1) charge conservation the state 〈v|V2,k , with N2 − k −
1/2 = m(2)

j must generate an (N − 1)-particle wave function
with

�〈v|V2,k (z, z̄) = 〈v|V2,kC(N )
N−1∏
i=1

	(zi, z̄i )|0〉 =
∑

P∈PN−1,N1

sgn(P)〈v|V2,kC(N )
N1∏

i=1

V1(zP(i) )
N−1∏

l=N1−1

z̄P(l )V2(zP(l ) )|0〉

= (−1) j−1
∑

P∈PN+1,N1

∣∣∣∣∣∣∣∣∣∣∣

z
m(1)

1
P(1) · · · z

m(1)
1

P(N1 )

...
. . .

...

z
m(1)

N1
P(1) · · · z

m(1)
N1

P(N1 )

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z̄P(N1+1)z
m(2)

1
P(N1+1) · · · z̄P(N−1)z

m(2)
1

P(N−1)

...
. . .

...

z̄P(N1+1)z
m(2)

j−1

P(N1+1) · · · z̄P(N−1)z
m(2)

j−1

P(N−1)

z̄P(N1+1)z
m(2)

j+1

P(N1+1) · · · z̄P(N−1)z
m(2)

j+1

P(N−1)

...
. . .

...

z̄P(N1+1)z
m(2)

N2
P(N1+1) · · · z̄P(N−1)z

m(2)
N2

P(N−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1) j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z
m(1)

1
1 · · · z

m(1)
1

N

...
. . .

...

z
m(1)

N1
1 · · · z

m(1)
N1

N

z̄1z
m(2)

1
1 · · · z̄N−1z

m(2)
1

N−1

...
. . .

...

z̄1z
m(2)

j−1

1 · · · z̄N−1z
m(2)

j−1

N−1

z̄1z
m(2)

j+1

1 · · · z̄N−1z
m(2)

j+1

N−1

...
. . .

...

z̄1z
m(2)

N2
1 · · · z̄N−1z

m(2)
N2

N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (79)
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Clearly, if N2 − k − 1/2 /∈ {m(2)
1 , m(2)

2 , . . . , m(2)
N2

} then
�〈v|V2,k (z, z̄) = 0.

By the same argument, we also have

�〈v|V †
2,k

(z, z̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z
m(1)

1
1 · · · z

m(1)
1

N

z
m(1)

2
1 · · · z

m(1)
2

N

...
...

...

z
m(1)

N1
1 · · · z

m(1)
N1

N

z̄1zN2+k−1/2
1 · · · z̄N zN2+k−1/2

N

z̄1z
m(2)

1
1 · · · z̄N z

m(2)
1

N

z̄1z
m(2)

2
1 · · · z̄N z

m(2)
2

N

...
. . .

...

z̄1z
m(2)

N2
1 · · · z̄N z

m(2)
N2

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (80)

One can also easily find analogous expressions for
�〈v|V1,k (z, z̄) and �〈v|V †

1,k
(z, z̄).

We summarize this edge-state mapping in second quan-
tized notation as∣∣�〈v|Vi,k

〉〉 = (−1)N−Ni d̃i,N1−k−1/2|�〈v|〉〉,∣∣�〈v|V †
i,k

〉〉 = (−1)N−Ni c̃†
i,N1+k−1/2|�〈v|〉〉, (81)

where c̃†
1,m and c̃†

2,m are the creation operators for orbitals zm

and z̄zm+1, respectively, and d̃†
i,m are creation operators for

single-particle orbitals such that {d̃i,m, c̃†
j,m′ } = δi jδmm′ . These

operator mappings are strictly only valid for Ni − k − 1/2 �
0 for Vi,k and Ni + k − 1/2 � 0 for V †

i,k .
In Appendix B 2 we show what form the inner products

of the CFT generated edge-state inner products take for large
N . To express these inner products in a form that gener-
alizes to other states, we first define the currents, J3(z) =
[i∂ϕ(2)(z) − i∂ϕ(1)(z)]/2, J+(z) = V2(z)V †

1 (z), and J−(z) =
V1(z)V †

2 (z). These fields have the OPEs

J3(z)J3(w) ∼ 1/2

(z − w)2 ,

J3(z)J±(w) ∼ ±J±(w)

z − w
,

J+(z)J−(w) ∼ 1

(z − w)2 + 2J3(w)

z − w
, (82)

which is precisely the OPEs for ŝu(2)1 WZW model cur-
rents. Finally, we also define �(z) = [ϕ(1) + ϕ(2)]/

√
2 with its

corresponding modes ãn. Using these currents the edge-state
inner products can be expressed as

〈〈�〈w||�〈v|〉〉/ZN = 〈v|R2L0 eS|w〉, (83)

where the radius of the droplet is R = √
2N1 and

S =
√

2[N1 ln N1 − N1 + (1/2) ln N1 + ln(2π
√

2π )]ã0

+ 3 ln(2N1)

[
J3

0 − J1
0

N1

]
, (84)

where J1(z) = [J+(z) + J−(z)]/2. One should note that the
currents i∂�(z), J3(z), and J±(z) form a basis of the space of
neutral fields with scaling dimension one in this theory. Thus,
we can see that for ν = 2 we have other divergent terms in S
that are zero modes of these extra currents, where we cannot
cancel these terms with a simple 	 → √

λN	. As will be seen
later in this work, this is a generic feature.

Finally, in Appendix C 2 we show that the angular-
momentum operator maps over to the CFT as∑

i

zi∂i − z̄i∂ i → [L0 + (2N1 − 1)ã0/
√

2 + N1(N1 − 1) − 1].

(85)

As for the ν = 1 case, we can see that all CFT states with the
same ã0 (which map to states of a fixed number of particles)
and L0 eigenvalues will map to wave functions with the same
angular momentum.

3. ν = n

We can now easily generalize from the ν = 2 case. To
generate the ground state we require n independent free chiral
boson fields ϕ(i)(z) along with their Klein factors Fi. The
corresponding vertex operators are defined as Vj (z) = Fj :
eiϕ( j) (z) : with the generating 	 operator given by

	(z, z̄) =
n∑

j=1

z̄ j−1Vj (z). (86)

Let N1 be a positive integer. Then, for systems of N = nN1 +
n(n − 1)/2 particles, we can show, using a simple extension
of the method used for ν = 2, that

�〈0|(z, z̄) = 〈0|(F †
n )N1+n−1(F †

n−1)N1+n−2 . . . (F †
1 )N1

×
N∏

i=1

	(zi, z̄i )|0〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zN1−1
1 · · · zN1−1

N

...
. . .

...

z1 · · · zN

1 · · · 1

z̄1zN1
1 · · · z̄N zN1

N

...
. . .

...

z̄1z1 · · · z̄N zN

z̄1 · · · z̄N

...
. . .

...

z̄1
n−1zN1+n−2

1 · · · z̄n−1
N zN1+n−2

N

...
. . .

...

z̄1
n−1z1 · · · z̄n−1

N zN

z̄1
n−1 · · · z̄n−1

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (87)

Thus we can generate the noninteracting ν = n ground-state
wave function.
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For the edge-state mapping, one can show, again using a
simple generalization of the ν = 2 case, that∣∣�〈v|Vi,k

〉〉 = (−1)N−Ni d̃i,N1−k−1/2|�〈v|〉〉,∣∣∣�〈v|V †
i,k

〉〉 = (−1)N−Ni c̃†
i,N1+k−1/2|�〈v|〉〉, (88)

where c̃†
j,m is the creation operator for the orbital z̄ j−1zm+ j−1

and d̃†
j,m is the creation operator for a single-particle orbital

such that {d̃i,m, c̃†
j,m′ } = δi jδmm′ . These operator mappings are

strictly only valid, once again, for Ni − k − 1/2 � 0 for Vi,k

and Ni + k − 1/2 � 0 for V †
i,k . Hence, the edge state mapping

will generate the entire edge space for general ν = n with
states of the form 〈0| (product of Vi,k and V †

i,k) generating
the Slater determinant wave functions. In principle, one can
calculate the large-N edge-state inner products, however, this
will not be discussed here.

Finally, the angular-momentum operator maps over as∑
i

zi∂i − z̄i∂ i → L0 + 2N1 − 1

2

(
n∑

i=1

a(i)
0

)

+ nN1(N1 − 1)

2
− n(n − 1)

2
. (89)

III. CONFORMAL FIELD THEORY CONSTRUCTION
OF TRIAL WAVE FUNCTIONS AND

EDGE-STATE MAPPINGS

In Sec. II B we discussed how previous works had written
certain FQHE trial wave functions using a correlation function
of a CFT defined by some chiral algebra A, which was de-
noted CFTA. Assuming the generalized screening hypothesis,
CFTA contains the information on the corresponding wave
functions’ topological properties. For any such wave func-
tion, one would never work directly with CFTA. Instead, one
would embed CFTA in another CFT for which we know how
to calculate the correlation functions, and then, the correla-
tion functions of CFTA would be computed using this other
CFT. It should be emphasized that throughout this section we
are assuming that, for all the chiral algebras A considered,
CFTA exists. This is a mathematical question well beyond
the scope of this paper, which we elaborate on further in
Sec. III B 5.

In the following section, we show how both unprojected
and projected composite fermion and parton ground and edge
state trial wave functions, as defined in Sec. II C, can be
written as CFT correlation functions without explicit antisym-
metrization. In each case, we first detail the CFT that will
actually be used to compute the correlation functions, which
we denote CFTL. The CFTs that are used are directly moti-
vated by either the composite fermion or parton edge theories.
Within each CFTL we define a subchiral algebra A which is
generated by the possible “electron” operators, and their con-
jugates, in the given edge theory. This gives an embedding of
CFTA in CFTL. We then demonstrate how CFTL can be used
to generate the corresponding wave function, where it will
then be demonstrated that the generating correlation function
is actually a correlation function of CFTA, which generally
follows from the fact that the wave function is generated by
these “electron” operators. This is important when formu-

lating a generalized screening hypothesis, as there generally
exist operators of CFTL which do not change the wave func-
tion when inserted into the generating correlation function.
The degrees of freedom corresponding to such fields would
then remain gapless in the perturbed field theory used to
formulate the generalized screening hypothesis, which would
complicate matters.

We then go on to discuss the edge-state mapping, in each
case. These edge-state mappings can always be understood
in two ways: a linear map from CFTL to the space of wave
functions or a linear map from CFTA to the space of wave
functions. The map from CFTL will be such that the states
orthogonal to the space of CFTA states embedded in CFTL,
will map to zero. We also demonstrate, in certain specific
cases, that the existence of these states that map to zero can
be shown without any reference to CFTA and can be under-
stood as a “gauge” symmetry that naturally arises in the CFT
formalism, which is the same gauge symmetry imposed on the
usual corresponding edge theory.

Importantly, we also show for each edge state map how one
can determine the angular momentum of the wave function
a given CFT state will map to. This then allows us to give
rigorous upper bounds for edge state counting in terms of state
counting in the corresponding CFTA.

A more detailed breakdown of the following section is as
follows:

We give two detailed examples of these CFT constructions.
The first is the ν = 2/5 composite fermion state (see
Ssc. III A), where the construction used here is directly
inspired by that of Kvorning [40]. The second example
is the ν = 1 bosonic φ2

2 parton state (see Sec. III B). The
symmetric parton states of the form φm

n are also discussed in
Sec. III B, where it is shown that the corresponding ground
and edge-state wave functions can be expressed using the
û(1) ⊕ ŝu(n)m WZW model.

The general construction for the chiral composite fermion
states is detailed in Sec. III A 4. In Sec. III B 5 the general
chiral parton case is discussed where it is shown that all chiral
LLL projected and unprojected parton ground- and edge-state
trial wave functions can be generated using CFT correlation
functions with each state having a corresponding chiral alge-
bra A. Finally, in Sec. III A 4 we discuss the general structure
that the parton wave functions point towards for generating
trial ground and edge states using CFT, which potentially
could be used to generate new trial wave functions beyond
the parton states.

A. Composite fermions

1. ν = 2/5 example: Conformal field theory

We begin with three chiral boson fields on the complex
plane, ϕ̃(1)(z), ϕ̃(2)(z), and φ(z), with the following mode
expansions:

ϕ̃( j)(z) = − iã( j)
0 ln z +

∑
n �=0

1

n
ã( j)

n z−n,

φ(z) = − ia(φ)
0 ln z +

∑
n �=0

1

n
a(φ)

n z−n, (90)
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where [
ã(i)

n , ã( j)
m

] = nδi jδn+m,0,[
a(φ)

n , a(φ)
m

] = nδn+m,0, (91)

with all other commutation relations being trivial.
The ϕ̃(i)(z) are the same chiral bosons used to construct the

ν = 2 wave functions in Sec. II D, with their corresponding
Klein factors denoted by F̃i. The φ(z) is different because
its a(φ)

0 eigenvalues are quantized to be multiples of
√

2 (as
opposed to one) with its corresponding Klein factor denoted
by Fφ , with the following commutation relations:

[Fφ, F̃i] = 0,[
ã(i)

n , Fφ

] = 0,[
a(φ)

n , Fφ

] =
√

2δn,0Fφ. (92)

One should note that, because a(φ)
0 eigenvalues are quantized

to multiples of
√

2, its corresponding vertex operator Vφ (z) =
Fφ : ei

√
2φ(z) : will have scaling dimension one and so must

be a bosonic field. This is why Fφ commutes with F̃i. The
corresponding vertex operators of the ϕ̃(i)(z) fields will be
written as Ṽj (z) ≡ F̃j : eiϕ̃( j) (z) :.

The vacuum state |0〉 is defined by ã(i)
n |0〉 = a(φ)

n |0〉 = 0 for
n � 0. All states of the Hilbert space HCFT can be expressed
as polynomials in ã(i)

−n, a(φ)
−n , F̃i, F̃ †

i , Fφ , and F †
φ acting on the

vacuum state (where we only need to use the field modes with
n > 0). This then defines the CFTL that will later be used for
the ν = 2/5 wave function.

In terms of a possible edge theory for the ν = 2/5 state,
one can think of ϕ̃(i)(z) as the bosonized composite fermions
and φ(z) as the edge mode resulting from the flux-attaching
Chern-Simons theory of the bulk, where i

√
2∂φ(z) represents

the density of flux quanta on the edge. From this perspective,
we know that once flux attachment has been enforced the only
allowed fluctuations will be in the fields

ϕ(1)(z) =
√

2φ(z) + ϕ̃(1)(z),

ϕ(2)(z) =
√

2φ(z) + ϕ̃(2)(z), (93)

whose modes we denote as a(i)
n . One can easily check that

[a(i)
n , a( j)

m ] = nKi jδn+m,0, where Ki j is the K matrix of the
ν = 2/5 state, with Ki j given by

K =
(

3 2

2 3

)
. (94)

The corresponding Klein factors for these fields are

F1 ≡ FφF̃1, F2 ≡ FφF̃2. (95)

Hence, as an edge theory, the space of physical states Hphys ⊂
HCFT is generated by polynomials in Fi, F †

i and the modes of
ϕ(i)(z) applied on the vacuum state.

Within the physical CFT, the fields that create and annihi-
late composite fermions are the vertex operators given by

Vj (z) ≡ Fj : eiϕ( j) (z) :,

V †
j (z) ≡ F †

j : e−iϕ( j) (z) : . (96)

The operator product expansion (OPE) of these fields is
given by

V †
j (z)Vj (w) ∼ 1

(z − w)Kj j
+ i∂ϕ( j)(w)

(z − w)Kj j−1 + · · · . (97)

It follows from the OPE that we can generate all the modes
of i∂ϕ( j)(z) through anticommutations between the modes
of V †

j (z) and Vj (w). In addition, it can also be shown that

a given polynomial in Fj and F †
j applied on the vacuum is

equivalent to some polynomial in the modes of Vj (z) and
V †

j (z) applied on the vacuum. We thus see that all the states of
Hphys can be generated by polynomials in the modes of these
fields.

We then identify the chiral algebra generated by repeated
OPEs of Vj (z) and V †

j (z) as the chiral algebra A corresponding
to this ν = 2/5 state. The physical edge Hilbert space Hphys

then forms the vacuum representation of A.
Another way of defining Hphys is through a gauge-invari-

ance condition. Let J (z) =
√

2
5 [i∂ϕ̃(1)(z) + i∂ϕ̃(2)(z)] −

1√
5
i∂φ(z). We can then define Hphys as the states invari-

ant under transformations generated by J (z), |v〉 ∈ Hphys ⇔
Jn|v〉 = 0 for n � 0. As we can write the modes ã(i)

m and a(φ)
n

in terms of a(i)
n and Jn, we can choose a basis of HCFT with el-

ements of the form
∏

ni
a(1)

−ni

∏
n j

a(2)
−n j

∏
nk
J−nk F̃1

p1 F̃2
p2 F pφ

φ |0〉
with ni, n j, nk > 0 and p1, p2, pφ ∈ Z. The condition J0|v〉 =
0 implies that |v〉 must be a linear combination of basis ele-
ments with p1 + p2 = pφ . Next, the condition Jn|v〉 = 0 for
n � 0 implies that |v〉 must be a linear combination of ba-
sis elements of the form

∏
ni

a(1)
−ni

∏
n j

a(2)
−n j

F̃1
p1 F̃2

p2 F p1+p2
φ |0〉,

which are themselves gauge invariant and so must span Hphys.
Hence, this gauge invariance definition of Hphys is equivalent
to our earlier definition.

Within an edge theory for these composite fermions there
should be operators that generate SU(2) rotations of the com-
posite fermion orbitals [i.e., ψ i

n → Ui1ψ
1
n + Ui2ψ

2
n for U ∈

SU(2)]. One then expects there to be SU(2) currents within
the edge theory. To this end, consider the fields

J3(z) ≡ i∂ϕ(2)(z) − i∂ϕ(1)(z)

2
,

J±(z) ≡ (F2F †
1 )±1 : e±i[ϕ(2) (z)−ϕ(1) (z)] :,

�(z) ≡ 1√
10

[ϕ(1)(z) + ϕ(2)(z)]. (98)

We write the modes of i∂�(z) as an. The OPEs of these fields
are given by

J3(z)J3(w) ∼ 1/2

(z − w)2 ,

J3(z)J±(w) ∼ ±J±(w)

z − w
,

J+(z)J−(w) ∼ 1

(z − w)2 + 2J3(w)

z − w
,

i∂�(z)i∂�(w) ∼ 1

(z − w)2 , (99)
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with all other OPEs between these fields being regular. Thus,
in a similar way to the ν = 2 case in Sec. II D, we then
see that this theory contains a û(1) ⊕ ŝu(2)1 Kac-Moody al-
gebra, with i∂�(z) representing the û(1) current and the J
being the ŝu(2)1 currents. From its definition, the U(1) charge
of � is related to the total number of composite fermions
by (number of composite fermions) = √

ν × [U(1) charge of
�]. In other words,

√
νi∂�(z) would represent the density

of composite fermions as an edge theory. We also have that
Ji(z)Vj (w) ∼ (1/2)

∑
k σ i

p( j),p(k)Vk (w)/(z − w), where σ i are
the usual Pauli spin matrices and p is a permutation with
p(1) = 2 and p(2) = 1. Hence, the Vj (z) transform as a spin-
1/2 representation under these SU(2) transformations. This
can be interpreted as the J generating SU(2) transformations
of the composite fermion orbitals. The construction used here
is the free field representation of the SU(2)1 WZW model
[64,79]. In terms of the û(1) ⊕ ŝu(2)1 WZW model, we can
represent the fields Vj (z) as V1(z) =: ei

√
5/2�(z) : φ1/2,−1/2(z)

and V2(z) =: ei
√

5/2�(z) : φ1/2,1/2(z), where φ1/2,m(z) are the
spin- 1

2 ŝu(2)1 WZW primary fields. To simplify notation, the
Klein factor for �(z) is implicit. We would like to emphasize
that this is one way of representing the chiral algebra A
and CFTA is not strictly equivalent to û(1) ⊕ ŝu(2)1 WZW
model.

The space of states with a fixed number of composite
fermions, NCF , can be generated by sums of states of the form
[polynomial in modes of ϕ( j)(z)] × [product of (F2F †

1 )±1] ×
(F2F1)NCF −δNCF F

δNCF
2 |0〉, where δNCF = NCF (mod 2). One can

show that the product of (F2F †
1 )±1 can be replaced by a prod-

uct of the modes of J±(z). In addition, by their definitions
the polynomial in the modes of ϕ( j)(z) can be replaced by a
polynomial in the modes of J3(z) and �(z). Consequently, the
space of states of fixed NCF forms an irreducible representa-
tion of the û(1) ⊕ ŝu(2)1 algebra. For even NCF there is only
one state with the lowest L0 eigenvalue, and hence this space
of states will give a spin-0 representation of ŝu(2)1. For an odd
NCF there are two states with the lowest L0 eigenvalue and so
these spaces of fixed NCF will form a spin-1/2 representation
of ŝu(2)1. Viewing Hphys from the perspective of this algebra
is useful in that it allows us to more easily understand the
effect of redefining the composite fermion orbitals via some
SU(2) rotation. This is the main idea behind Witten’s non-
Abelian bosonization [80].

2. ν = 2/5 example: Ground-state wave function

We now show how the ν = 2/5 ground-state trial wave
function can be generated using the above CFT without ex-
plicit antisymmetrization. The unprojected composite fermion
wave function will be considered first and then the projected
one. In the following, we only consider the case where the
ground-state trial wave functions contain an odd number N of
fermions.

We first define the background charge operator as C(N ) =
(F †

2 )N2 (F †
1 )N1 , where N1 = (N − 1)/2 and N2 = (N + 1)/2.

We then define the generating 	 operator as

	(z, z̄) = V1(z) + z̄V2(z). (100)

We now consider the wave functions,

�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(zi, z̄i )|0〉

= 〈0|C(N )
N∏

i=1

[Ṽ1(zi ) + z̄iṼ2(zi)]Vφ (zi )|0〉

= 〈0|(F̃ †
2 )N2 (F̃ †

2 )N2

N∏
i=1

[Ṽ1(zi ) + z̄iṼ2(zi )]|0〉

× 〈0|(F †
φ )N

N∏
j=1

Vφ (z j )|0〉, (101)

where the correlation functions factorize as the Ṽj (z) are inde-
pendent of Vφ (z). From Sec. II D we know that the first factor
will generate the ν = 2 ground state. The second factor will
generate the ν = 1/2 bosonic Laughlin wave function. Hence,
the wave function is given by

�〈0|(z, z̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zN1−1
1 zN1−1

2 · · · zN1−1
N

...
...

. . .
...

z1 z2 · · · zN

1 1 · · · 1
z̄1zN2−1

1 z̄2zN2−1
2 · · · z̄N zN2−1

N
...

...
. . .

...

z̄1z1 z̄2z2 · · · z̄N zN

z̄1 z̄2 · · · z̄N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N∏
i< j

(zi − z j )
2,

(102)

which is the unprojected ν = 2/5 composite fermion trial
ground-state wave function.

To project this wave function to the lowest Landau level
we move the z̄ to the left and replace them with 2∂ . Hence,
to generate the projected wave function we simply replace
	(z, z̄) with 	(z) = V1(z) + 2∂V2(z). In full we have,

PLLL�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(zi )|0〉

= 〈0|C(N )
N∏

i=1

[V1(zi ) + 2∂iV2(zi )]|0〉. (103)

We now show that these correlation functions can be
entirely computed within the vacuum representation of the
chiral algebra A generated by Vi(z) and V †

i (z). First of
all as [C(N ),J (z)] = 0 then for any |v〉 ∈ Hphys we have
C(N )|v〉 ∈ Hphys. Hence, because Hphys is entirely equivalent
to the vacuum representation of A, C(N ) can be redefined as
purely an operator within this vacuum representation. Thus,
the state |x〉 ≡ C(N )

∏N
i=1[V1(zi ) + z̄iV2(zi)]|0〉 belongs to this

vacuum representation. The final correlation function can be
compactly written as 〈0|x〉 and because |0〉 belongs to the
vacuum representation this inner product can be entirely com-
puted within the vacuum representation of A. As we have
seen here, however, it can be easier to compute the correlation
function via embedding in a “larger” CFT.

Finally, we would like to point out, from the discussion
of Sec. III A 1, we can see that, in principle, we could have
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generated this wave function with the û(1) ⊕ ŝu(2)1 WZW
model. This is merely another way of computing the correla-
tion functions of the chiral algebra A.

3. ν = 2/5 example: Conformal field theory to edge-state mapping

Throughout this section, we focus on the unprojected wave
functions. For any unprojected edge state that is generated
by the following mapping, we can generate its projected
wave function by the simple replacement 	(z, z̄) → 	(z) =
V1(z) + 2∂V2(z).

The edge-state mapping is defined in second quantization
notation as

|�〈v|〉〉 ≡ 〈v|C(N )e
∫

d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)|0〉 ⊗ |0〉〉. (104)

When 〈v| has a definite U(1) charge q with respect to the
current i∂�(z), this mapping will produce a state with a defi-
nite number of particles because the CFT correlation function
must be U(1) charge neutral. The resulting state will have
N + √

νq particles with the wave function

�〈v|(z, z̄) = 〈v|C(N )
N+√

νq∏
i=1

	(zi, z̄i )|0〉. (105)

Because C(N )
∏N+√

νq
i=1 	(zi, z̄i )|0〉 ∈ Hphys, all the states

in the orthogonal complement of Hphys must map to zero.
Hence, if we restrict this map to Hphys we do not change the
image of the resulting map. In other words, we can really think
of this edge-state mapping as being from the vacuum repre-
sentation of A (i.e., Hphys) to the space of wave functions. It
is, however, instructive to also consider this as a map from
HCFT to the space of wave functions, as we now do.

From the discussion of Sec. II D and from the fact that
any correlation function can be factorized in terms of Ṽi(z)
and Vφ (z), all states of the form ψedge(z, z̄)

∏N+n
i< j (zi − z j )2,

where ψedge is a Slater determinant in the zm and z̄zm or-
bitals, can be generated from CFT states of the form 〈v| =
〈0|(F †

φ )n
∏2

i=1[
∏

k(i)
j

V †
i,k(i)

j

∏
l (i)

j
Vi,l (i)

j
], where the number of V †

minus the number of V must equal n and all k(i)
j , l (i)

j > 0.
Thus, this image of this map must contain the composite
fermion edge space defined in Sec. II C.

We now show that the entire image of this map is in fact
the composite fermion edge space. First, we note that from
standard constructive bosonization (see Sec. II D) there must
exist an invertible basis transform from the states of the form
〈v| = 〈0|(F †

φ )n
∏2

i=1[
∏

k(i)
j

V †
i,k(i)

j

∏
l (i)

j
Vi,l (i)

j
], with all k(i)

j , l (i)
j >

0, to the states of the form 〈0|(F †
2 )n2 (F †

1 )n1
∏2

i=1[
∏

m(i)
j

ã(i)
m(i)

j

],

with all m(i)
j > 0. Such states can also be expressed as

〈0|(F †
2 )n2 (F †

1 )n1

⎡⎢⎣∏
m(1)

j

(
αa(1)

m(1)
j

+ βa(2)
m(1)

j

+ γJm(1)
j

)⎤⎥⎦

×

⎡⎢⎣∏
m(2)

j

(
αa(2)

m(2)
j

+ βa(1)
m(2)

j

+ γJm(2)
j

)⎤⎥⎦,

where α, β, γ ∈ R with α �= β. As [Jn,	(z, z̄)] = 0 and
Jn|0〉 = 0, the above state must map to the same wave func-
tion as

〈0|(F †
2 )n2 (F †

1 )n1

×

⎡⎢⎣∏
m(1)

j

(
αa(1)

m(1)
j

+ βa(2)
m(1)

j

)⎤⎥⎦
⎡⎢⎣∏

m(2)
j

(
αa(2)

m(2)
j

+ βa(1)
m(2)

j

)⎤⎥⎦.

(106)

In addition, as α �= β there must exist an invertable basis
transformation between the modes (αa(1)

m + βa(2)
m ), (αa(2)

m +
βa(1)

m ) and a(1)
m , a(2)

m . Hence, the states in Eq. (106) must form
a basis of Hphys. This then implies that the image of the
edge-state map is, in fact, equivalent to the composite fermion
edge space.

The fact that [J (w),	(z, z̄)] = 0 and Jn|0〉 = 0 for n > 0
can be interpreted as an emergent gauge redundancy in that
the correlation function that generates a given wave function
must be invariant under any transformations generated by this
current J (z). As we have seen above, only mapping from
the gauge-invariant states, Hphys, is sufficient to reproduce
the entire image of the map. As discussed in Sec. III A 1, the
gauge-invariance condition that can be used to define Hphys

is equivalent to flux attachment (in the edge theory). Hence,
in some sense, one can think of the gauge redundancy of the
edge-state map as enforcing flux attachment.

Finally, as the angular momentum is the sum of the angular
momenta of the ν = 2 and the Jastrow factor components
and using the fact that in Hphys

√
2/5a0 = (ã(1)

0 + ã(2)
0 ) =√

1/pa(φ)
0 , the angular-momentum operator maps over to the

CFT as

N∑
i=1

(zi∂i − z̄i∂i )�〈v|(z, z̄)

→ L0 +
[

2N1 − 1

2
+ 2N − 1

]√
2

5
a0

+ N1(N1 − 1) − 1 + N (N − 1). (107)

As for the integer quantum Hall cases, the angular-momentum
mapping implies that for a fixed number of particles the edge-
state mapping will map states with the same L0 eigenvalue to
wave functions with the same angular momentum.

4. General case

The discussion of Secs. III A 1, III A 2, and III A 3 can be
straightforwardly generalized to generate the ν = n/(np + 1)
composite fermion wave function, with n, p ∈ Z+, where
even and odd p corresponds to fermionic and bosonic com-
posite fermion states, respectively. One expects to use the
CFT involving n independent chiral boson fields, ϕ̃(i)(z), with
compactification radius one and corresponding Klein factors
F̃i, along with another independent chiral boson field φ(z)
with a(φ)

0 eigenvalues quantized to multiplies of
√

p and
corresponding Klein factor Fφ with [a(φ)

n , Fφ] = √
pδn,0Fφ .

The corresponding vertex operators are defined by Ṽj = F̃j :
eiϕ̃( j) (z) : and Vφ (z) = Fφ : ei

√
pφ(z) :.
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One can think of this CFT as a possible edge theory for
the corresponding composite fermion state, with ϕ̃( j)(z) being
the bosonized jth Lambda level and

√
pi∂φ(z) representing

the density of flux quanta on the edge. Of course, a proper
composite fermion edge theory must have flux attachment,
with the space of flux attached states denoted by Hphys.
This space can be defined because the gauge-invariant
states, from the transformations generated by the current
J (z) = √

p/(np + 1)[
∑n

j=1 i∂ϕ̃( j)(z)] − √
np + 1−1

i∂φ(z),
|v〉 ∈ Hphys ⇔ Jn|v〉 = 0 for n � 0. By a simple extension of
argument for ν = 2/5, Hphys can be generated by polynomials
in the modes of Vj (z) ≡ Ṽj (z)Vφ (z) and their conjugates ap-
plied on the vacuum state |0〉. The chiral algebra A generated
by repeated OPEs of Vj (z) and V †

j (z) is then identified
with the corresponding composite fermion state. Con-
sequently, Hphys must form the vacuum representation of A.

This edge theory also contains the currents �(z) ≡√
n(np + 1)−1[

∑n
j=1 ϕ̃( j)(z) + √

pφ(z)] and Ja(z) = ∑
i j t a

i j :

Vi(z)V †
j (z) :, where t a are the generators of SU(n). These

fields have the OPEs of the currents of the û(1) ⊕ ŝu(n)1

WZW model. Any space of states with a fixed number of com-
posite fermions in Hphys can be generated by polynomials in
the modes of the fields Ja(z) and i∂�(z) applied on some state
within that subspace, with this result following from a simple
extension of non-Abelian bosonization. Furthermore, the chi-
ral algebra A can be represented by fields of the û(1) ⊕ ŝu(n)1

WZW model, with Vj (z) =: ei�(z)/
√

ν : φ j (z) where φ j (z) are
WZW primaries corresponding the fundamental representa-
tion of SU(n).

One can define a background charge operator as C(N ) =
Cn(N )(F †

φ )N , where Cn(N ) is the background charge used
to generate the ν = n integer quantum Hall wave function
using the Ṽj (z) fields, which is given in Sec. II D. We have
[C(N ),J (z)] = 0, so Hphys is an invariant subspace under
the action of the background charge operator, which means
C(N ) can be defined purely as an operator that acts within
the vacuum representation of A. The generating 	 for the
unprojected wave function is given by

	(z, z̄) =
n∑

j=1

z̄ j−1Vj (z), (108)

where the ground-state wave function is given by the usual
form �〈0|(z, z̄) = 〈0|C(N )

∏N
i=1 	(zi, z̄i )|0〉. As we can also

write 	(z, z̄) = [
∑n

j=1 z̄ j−1Ṽj (z)]Vφ (z) this correlation func-
tion will factorize into a correlation function that generates
the ν = n noninteracting integer quantum Hall ground state
and another which generates the ν = 1/p Laughlin trial wave
function. Hence, �〈0|(z, z̄) = �n(z, z̄)

∏
i< j (zi − z j )p, where

�n(z, z̄) is the noninteracting ν = n integer quantum Hall
ground state. Thus, we can generate the general unprojected
composite fermion ground trial wave function. To generate
the projected composite fermion ground-state wave func-
tion one can simply use the replacement 	(z, z̄) → 	(z) =∑n

j=1(2∂ ) j−1Vj (z).
As for the ν = 2/5 case, the fact that

C(N )
∏N

i=1 	(zi, z̄i )|0〉 ∈ Hphys implies that the generating
correlation function 〈0|C(N )

∏N
i=1 	(zi, z̄i )|0〉 can be com-

puted entirely within the vacuum representation of A.

The edge-state mapping is given by the obvious general-
ization of Eq. (104). From the discussion of Sec. II D and
from the factorization of the resulting correlation function,
all composite fermion edge states can be generated by CFT
states of the form 〈v| = 〈0|(F †

φ )m
∏n

i=1[
∏

k(i)
j

V †
i,k(i)

j

∏
l (i)

j
Vi,l (i)

j
].

Hence, the space of composite fermion edge-state trial wave
functions generally belongs to the image of the edge-state
map. Furthermore, as [Jn,	(z, z̄)] = 0 and Jn|0〉 = 0 for
n � 0, the edge-state map is invariant under transformations
generated by J (z). By a simple generalization of the argu-
ment given for ν = 2/5, this implies that the image of the
edge-state map is equivalent to the composite fermion edge
space.

Finally, by a simple generalization of the calculation for the
ν = 2/5 case, the angular-momentum operator can be mapped
to the CFT as∑

i

zi∂i − z̄i∂ i → L0 +
[

(2N1 − 1)

2
+ p(2N − 1)

2

]√
νa0

+ pN (N − 1)

2
+ nN1(N1 − 1)

2
− n(n − 1)

2
.

(109)

Once again, the main point that is emphasized by this mapping
is that the edge-state counting at fixed angular momentum,
and a fixed number of particles, has a rigorous upper bound
given by the number of linearly independent Hphys states with
the corresponding a0 and L0 eigenvalues.

B. Parton states

1. φ2
2 example: Conformal field theory

Let ϕ̃(i j)(z) denote four independent chiral boson fields
(i, j = 1, 2) with corresponding Klein factors F̃i j , where each
boson field has compactification radius 1 (i.e., [ã(i j)

0 , F̃kl ] =
δikδ jl F̃i j). The Hilbert space of this theory, HCFT , is generated
by polynomials of the field modes and Klein factors (both F̃i j

and F̃ †
i j ) applied on the vacuum state |0〉. We also denote the

corresponding vertex operators as, Vjk (z) ≡ F̃jk : eiϕ̃( jk) (z) : and
V †

jk (z) ≡ F̃ †
jk : e−iϕ̃( jk) (z) :. Polynomials in the modes of these

vertex operators applied on the vacuum state can also generate
the Hilbert space.

As a possible edge theory for this parton state, we take the
first index i in Vi j (z) to denote the parton species and j as a
Landau-level index. Within this theory, there are two actions
of an SU(2) algebra: the first rotates the Landau orbitals,
Vi j → ∑

k UjkVik and the second rotates between the parton
species Vi j → ∑

k VikWk j with U,W ∈ SU(2). Furthermore,
we have the usual U(1) transformations Vjk → eiαVjk . As
for the composite fermion case, these transformations have
corresponding currents,

J a(z) ≡
∑
i jk

t a
i j : Vik (z)V †

jk (z) :,

Ja(z) ≡
∑
i jk

t a
i j : Vki(z)V †

k j (z) :,

i∂�(z) ≡ 1

2

∑
jk

i∂ϕ̃( jk)(z), (110)
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where t a ≡ σ̃ a/2, σ̃ a
i j = σ a

p(i),p( j), σ a are the Pauli spin matri-
ces and p is a permutation with p(1) = 2 and p(2) = 1. We
denote the modes of J a(z), Ja(z), and i∂�(z) as J a

n , Ja
n , and

an, respectively. We use these σ̃ a so that higher parton Landau
levels correspond to higher J3

0 eigenvalues. The OPEs of these
currents are given by

J a(z)J b(w) ∼ δab

(z − w)2 + i f abcJ c(w)

z − w
,

Ja(z)Jb(w) ∼ δab

(z − w)2 + i f abcJc(w)

z − w
,

i∂�(z)i∂�(w) ∼ 1

(z − w)2 , (111)

where f abc are the structure constants of su(2) and all other
OPEs between these currents are regular. It then follows that
the modes of these currents must form a û(1) ⊕ ŝu(2)2 ⊕
ŝu(2)2 Kac-Moody algebra. Furthermore, it was demonstrated
by Affleck [81] that the energy-momentum tensor T (z) can be
expressed as a quadratic form of these currents and so this
is a conformal embedding of û(1) ⊕ ŝu(2)2 ⊕ ŝu(2)2 within
HCFT. This then allows us to express L0 as L0 = Lû(1)

0 +
Lŝu(2)2

0 + L̃ŝu(2)2
0 , where Lû(1)

0 , Lŝu(2)2
0 , and L̃ŝu(2)2

0 are the ze-
roth modes of the energy-momentum tensors of the i∂�(z),
Ja(z), and J a(z) currents respectively.

As argued by Wen [56], on a physical edge we should
consider the transformations induced by J a(z) as gauge
transformations. Thus, we define the space of physical states
Hphys to be the space of gauge invariant states, |v〉 ∈ Hphys ⇔
J a

n |v〉 = 0 for n � 0. To understand the structure of Hphys we
must first decompose HCFT into the irreducible representa-
tions of the Kac-Moody algebra of these currents.

Let HNp be the space of states with Np total partons.
As the currents defined above do not change the number
of partons when applied to a given state, HNp must decom-
pose into irreducible representations of the û(1) ⊕ ŝu(2)2 ⊕
ŝu(2)2 algebra, HNp = ⊕

λ Mλ. Each Mλ must be a highest
weight irreducible representation, as the eigenvalues of L0

are bounded from below. Hence, within each Mλ there is a
space of states with basis |λ; i〉 such that J a

n |λ; i〉 = Ja
n |λ; i〉 =

an|λ; i〉 = 0 for n > 0. Such states are referred to as WZW
primaries. Moreover, for a given Mλ the states |λ; i〉 must
all be eigenstates of L0 each with the same eigenvalue, with
all other states in Mλ being expressible as polynomials in
the modes of these currents applied to these WZW primaries.
Hence, we can understand how HNp is decomposed by un-
derstanding the space of WZW primaries within HNp . We
can see that the gauge invariance condition J a

n |v〉 = 0 for
n � 0, already implies that |v〉 must be a WZW primary of the
J a(z) currents. Moreover, |v〉 must be a spin-0 as J a

0 |v〉 = 0.
Hence the only Mλ that contain gauge-invariant states are
those whose primary state is spin-0 with respect to J a(z). The
only states that are gauge invariant in Mλ are those that are
expressed as polynomials only in Ja

n and an applied on the
primary state of Mλ.

In Appendix D we show that Hphys has the decomposi-
tion Hphys = ⊕

Np=2n,n∈ZMλ(Np), where Mλ(Np) are highest
weight irreducible representations of the modes an and Ja

n .
When Np is and is not a multiple of four, Mλ(Np) has primary

states that are spin 0 and spin 1 in Ja
0 , respectively. The U(1)

charge of all states in Mλ(Np) is Np/2.
Following Wen [21], the space of possible operators that

create or annihilate the underlying bosons at the edge have a
basis

V1(z) ≡ V12(z)V22(z),

V0(z) ≡ [V12(z)V21(z) + V11(z)V22(z)]/
√

2,

V−1(z) ≡ V11(z)V21(z), (112)

where it should be noted that these operators are all gauge
invariant.

It is also shown in Appendix D that all the states of Hphys

can be generated by repeated application of the modes of
Vm(z) and V †

m (z) on |0〉. We then identify the chiral algebra
A generated by repeated OPEs of Vm(z) and V †

m (z), with this
parton state.

The chiral algebra A can also be represented by fields from
the û(1) ⊕ ŝu(2)2 WZW model. Under this representation we
can express the fields Vm(z) as Vm(z) =: ei�(z) : φ1,m(z), where
φ1,m(z) are the spin-1 ŝu(2)2 WZW primary fields. The spin-1
representation of su(2) corresponds to the totally symmetric
rank two tensor representation of su(2).

2. φ2
2 example: Ground-state wave function

We now show how the CFT defined above can be used to
generate the ν = 1, φ2

2 parton ground-state trial wave function.
As this is the square of the ν = 2 ground state, we focus
on the case where the number of bosons N is odd. We first
demonstrate this for the unprojected wave function and then
show how to generate the projected wave function.

We first define the background charge operator as C(N ) =
(F̃ †

22)N2 (F̃ †
21)N1 (F̃ †

12)N2 (F̃ †
11)N1 , with N1 = (N − 1)/2 and N2 =

(N + 1)/2. Then the generating 	 operator is defined by

	(z, z̄) =
2∏

i=1

[Vi1(z) + z̄Vi2(z)]. (113)

Now consider the wave function

�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(zi, z̄i )|0〉

= (−1)N (N−1)/2〈0|

× (F̃ †
12)N2 (F̃ †

11)N1

N∏
i=1

[V11(zi) + z̄iV12(zi)]

× (F̃ †
22)N2 (F̃ †

21)N1

N∏
i=1

[V21(zi) + z̄iV22(zi)]|0〉

= (−1)N (N−1)/2

× 〈0|(F̃ †
12)N2 (F̃ †

11)N1

N∏
i=1

[V11(zi) + z̄iV12(zi)]|0〉

× 〈0|(F̃ †
22)N2 (F̃ †

21)N1

N∏
i=1

[V21(zi) + z̄iV22(zi)]|0〉,

(114)
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where the (−1)N (N−1)/2 appears from rearranging the
fermionic Vi1(z) + z̄Vi2(z) operators, and the correlation func-
tion factorizes in the last line as V1i(z) are independent of
V2i(z). From Sec. II D, we can clearly see that these two
factors are in fact the noninteracting ν = 2 ground-state wave
functions. Hence, this wave function is given by

�〈0|(z, z̄) = (−1)
N (N−1)

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zN1−1
1 zN1−1

2 · · · zN1−1
N

...
...

. . .
...

z1 z2 · · · zN

1 1 · · · 1
z̄1zN2−1

1 z̄2zN2−1
2 · · · z̄N zN2−1

N
...

...
. . .

...

z̄1z1 z̄2z2 · · · z̄N zN

z̄1 z̄2 · · · z̄N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

,

(115)

which is the φ2
2 parton ground-state trial wave function.

To generate the projected ground-state wave function, we
first note that the 	 operator can be expressed as

	(z, z̄) = [V11(z) + z̄V12(z)][V21(z) + z̄V22(z)]

=V−1(z) +
√

2z̄V0(z) + z̄2V1(z). (116)

Thus, the projected wave function will be generated by

	(z) = V−1(z) + 2
√

2∂V0(z) + (2∂ )2V1(z), (117)

with

PLLL�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(zi )|0〉. (118)

From Eq. (116) one can see that 	 is expressed entirely in
terms of the generators of the chiral algebra A corresponding
to this state. As [J a(z),C(N )] = 0, for any state |v〉 ∈ Hphys

we must have C(N )|v〉 ∈ Hphys. Hence, we can define C(N )
within Hphys, which is the vacuum representation of the chi-
ral algebra A. So the state |x〉 ≡ C(N )

∏N
i=1 	(zi, z̄i )|0〉 must

belong to Hphys. Thus, the correlation function that defines
the wave function 〈0|x〉 must be computable entirely in the
vacuum representation of A. However, in a similar way to the
composite fermion case in Sec. III A 2, it is far more efficient
to compute the correlation functions using the larger CFT.

3. φ2
2 example: Conformal field theory to edge-state mapping

In line with our presentation for the composite fermion
example in Sec. III A 3, we discuss this mapping for the
unprojected wave functions. Once again, the projected edge-
state mapping can be easily understood from the following
discussion by the 	 replacement of Eq. (117):

The edge-state mapping is defined in second-quantized
notation as

|�〈v|〉〉 ≡ 〈v|C(N )e
∫

d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)|0〉 ⊗ |0〉〉 (119)

with states 〈v| having a definite U(1) charge q, with respect to
the current i∂�(z), generating an N + √

νq particle state with

a wave function

�〈v|(z, z̄) = 〈v|C(N )
N+√

νq∏
i=1

	(zi, z̄i )|0〉. (120)

As C(N )
∏N+√

νq
i=1 	(zi, z̄i )|0〉 ∈ Hphys we must have that all

states in the orthogonal complement of Hphys must map to
zero. Hence, restricting this map to the vacuum representation
of A (i.e., Hphys) does not change the image of the map.
So, one can also think of this map as being purely from this
vacuum rep to the space of wave functions.

To understand the image of this map, however, it is easier
to consider it over the full HCFT. From Sec. II D we know how
to generate all the ν = 2 edge-state wave functions. Further-
more, from the independence of the fields V1i(z) from V2i(z),
we know that up to a minus sign we can factorize any correla-
tion function which can be expressed as a product of operators
of these two parton species. Hence, any wave function of the
form �1,edge(z, z̄)�2,edge(z, z̄), where �i,edge(z, z̄) are Slater
determinants of the orbitals zm and z̄zm, can be generated by
states of the form

〈0|
2∏

i, j=1

⎡⎢⎣∏
m(i j)

l

V †
i j,m(i j)

l

∏
n(i j)

l

Vi j,n(i j)
l

⎤⎥⎦. (121)

The image of this edge-state mapping must then be equivalent
to the parton edge space defined in II C.

As the Vi j (z) operators transform as spin-1/2 WZW pri-
maries for transformation generated by J a(z), with the
transformation only acting on the species index, it can be eas-
ily shown that [J a

n ,	(z, z̄)] = 0. We also have that J a
n |0〉 = 0

for n � 0. It then follows that the correlation functions of the
edge-state mapping must be invariant under transformations
generated by J a(z). As for the composite fermion case, this
can be interpreted as a gauge redundancy, where we know that
we only need the gauge-invariant states (Hphys) to reproduce
the image of the edge-state map.

As the image of this map has an over complete basis which
are products of ν = 2 edge wave functions, we must have that
the angular-momentum operator when mapped to the CFT is
simply the sum of the ν = 2 CFT angular-momentum opera-
tors from each parton species. The ν = 2 result in Sec. II D
then gives

∑
i

zi∂i − z̄i∂ i → L0 + 2N1 − 1

2

⎛⎝ 2∑
i, j=1

a(i j)
0

⎞⎠
+ 2[N1(N1 − 1) − 1]

= L0 + (2N1 − 1)a0 + 2[N1(N1 − 1) − 1].
(122)

As for all other cases considered so far, we see that states
of the CFT with the same L0 eigenvalues will map to wave
functions with the same angular momentum. As we know
that just mapping from Hphys can generate the full image
of the map, we can then give rigorous upper bounds on the
dimension of each angular-momentum eigenspace within the
parton edge space.
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4. The φm
n symmetric parton states

Another example of particular interest is that of the sym-
metric parton states that take the form φm

n . We only consider
the case where N = nN1 + n(n − 1)/2 for some positive inte-
ger N1. This is so that the lowest angular momentum ν = n
integer quantum Hall state of N particles is unique, which
implies that there is a unique densest parton ground trial wave
function. To generate this wave function we simply need m
copies of the CFT that generates the ν = n wave function.
That is, nm copies of chiral boson CFT (with compactification
radius one) with each vertex operator denoted by Vi j (z), where
i = 1, 2, . . . , m is the species index and j = 1, 2, . . . , n is
the “Landau-level” index. The generating 	 is simply given
as 	(z, z̄) = ∏m

i=1[
∑n

j=1 z̄ j−1Vi j (z)], with the wave function
being expressed as

�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(zi, z̄i )|0〉, (123)

where C(N ) = ∏m
i=1 Ci(N ) with Ci(N ) being the background

charge operator used to generate the ν = n ground state with
the ith chiral boson species. By the factorization of the result-
ing correlation function, the wave function can be expressed
as the ν = n integer quantum Hall ground state raised to the
mth power thus giving the desired parton trial ground state.

One can expand 	 as

	(z, z̄) =
mn∑

l=m

z̄l−mVl (z), (124)

where

Vl (z) =
n∑

i1,i2,...,im=1

δ∑m
j=1 im,lV1i1 (z)V2i2 (z) · · ·Vmim (z). (125)

The chiral algebra we associate with this state, A(n)m, is
generated by repeated OPEs of Vl (z) and their conjugates.
Let Hphys be the space of states generated by the modes
of Vl (z) and V †

l (z) applied on the vacuum state, which will
then form the vacuum representation of A(n)m. From the
general result of Appendix F it follows that if |v〉 ∈ Hphys

then C(N )|v〉 ∈ Hphys [i.e., Hphys is an invariant subspace of
C(N )]. This then implies that C(N )

∏N
i=1 	(zi, z̄i )|0〉 ∈ Hphys.

Because |0〉 ∈ Hphys (by definition) it follows that the cor-
relation function 〈0|C(N )

∏N
i=1 	(zi, z̄i )|0〉 can be computed

entirely within the vacuum representation of A(n)m (because
the correlation function is simply an inner product within
Hphys).

In Appendix E we show that all the U(1) neutral fields of
A(n)m form the vacuum representation for the û(1) ⊕ ŝu(n)m

WZW current algebra. This is what one would expect based
on previous work by Wen [56]. Consequently, the Vl (z) oper-
ators can be represented by the U(1) ⊗ SU(n)m WZW model
with the form Vl (z) =: exp[i

√m
n �(z)] : φl (z) where φl (z) are

SU(n)m WZW primaries corresponding to the totally symmet-
ric rank-m tensor representation of SU(n). Thus, the φm

n parton
ground-state trial wave function can be expressed using the
U(1) ⊗ SU (n)m WZW model conformal blocks.

Another way of showing correlation functions of Vl (z) are
the same as those of : exp[i

√m
n �(z)] : φl (z), for the φm

n case,

is by using the general results of Refs. [82–84]. We first note
that, within the CFT of nm chiral bosons, which we denote
CFTL for the remainder of this section, we can define the
currents,

J a(z) ≡
∑
i jk

t a
i j : Vik (z)V †

jk (z) :,

Ja(z) ≡
∑
i jk

T a
i j : Vki(z)V †

k j (z) :,

i∂�(z) ≡ 1√
mn

∑
jk

i∂ϕ̃( jk)(z), (126)

where t a are the generators of SU(m) and T a are the
generators of SU(n). As demonstrated in Ref. [81] these
Ja(z) and J a(z) form an ŝu(n)m and ŝu(m)n current alge-
bra, respectively, with J ai∂�(w) ∼ 0, J a(z)Jb(w) ∼ 0, and
Ja(z)i∂�(w) ∼ 0. We can thus organize the fields of CFTL

into representations of the û(1) ⊕ ŝu(n)m ⊕ ŝu(m)n current
algebra. Let φq,λ,λ′ (z) be a field which is a WZW primary rela-
tive to the currents i∂�(z), Ja(z), and J a(z), which has a U(1)
charge q, transforms under the action of Ja(z) as a field in the
su(n) representation labeled by λ and transforms under the
action of J a(z) as a field in the su(m) representation labeled
by λ′. As shown discussed in Refs. [82–84], the correlation
function 〈0|∏i φqi,λi,λ

′
i
|0〉 has the decomposition

〈0|
∏

i

φqi,λi,λ
′
i
(zi )|0〉 =F û(1)(z1, z2, . . . )

×
∑

ab

[
CabF ŝu(n)m

a (z1, z2, . . . )

× F ŝu(m)n
b (z1, z2, . . . )

]
, (127)

where Cab are constants, F û(1)(z1, z2, . . . ) is a conformal
block of the U(1) vertex operators 〈0|∏ j : eiq j�(z j ) : |0〉,
F ŝu(n)m

a (z1, z2, . . . ) is a conformal block of the ŝu(n)m WZW
model related to the correlation function 〈0|∏i φλi (zi, z̄i )|0〉,
and F ŝu(m)n

b (z1, z2, . . . ) is a conformal block of the
ŝu(m)n WZW model related to the correlation function
〈0|∏i φλ′

i
(zi, z̄i )|0〉. The Vl (z) field has a U(1) charge q =√

m/n and is a WZW primary relative to the i∂�(z), Ja(z),
and J a(z), where under the action of Ja(z) it transforms
according to the su(n) representation formed by totally sym-
metric rank m tensors, which we denote λm, and under the
action of J a(z), Vl (z) transforms as the identity field 1(z).
The conjugate fields V †

l (z) are also WZW primaries relative
to these currents, where they have U(1) charge q = −√

m/n,
transform under the action of Ja(z) according to the repre-
sentation of su(m) which is the conjugate of λm (λ†

m), and
transform under the action of J a(z) as the identity field 1(z).
Let φl (z) and φ

†
l (z) be fields of the ŝu(n)m WZW model that

transform under the action of Ja(z) the same way as Vl (z) and
V †

l (z), respectively. These φl (z) and φ
†
l (z) are simple currents,

which is to say their fusion rule with any other field can only
have one result. Hence, any correlation function involving just
the φl and φ

†
l fields must have only one corresponding con-

formal block. Clearly, any correlation function of 1(z) in the
ŝu(m)n WZW has only one corresponding conformal block
which is trivially a constant 〈∏i 1(zi )〉 = 1. From Eq. (127),
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we then have〈∏
j

Vl j (z j )
∏

k

V †
lk

(wk )

〉

=
〈∏

j

: ei
√

m
n �(z j ) :

∏
k

: e−i
√

m
n �(wk ) :

〉

×
〈∏

j

φl j (z j )
∏

k

φ
†
lk

(wk )

〉
. (128)

Hence, any correlation functions involving only the Vl (z)
and V †

l (z) are equivalent to the correlation functions of the
fields : exp[i

√m
n �(z)] : φl (z) and : exp[−i

√m
n �(z)] : φ

†
l (z)

in the û(1) ⊗ ŝu(n)m WZW model. This implies that the chiral
algebra generated by repeated OPEs of Vl (z) and V †

l (z) is
equivalent to the chiral algebra generated by repeated OPEs
of : exp[i

√m
n �(z)] : φl (z) and : exp[−i

√m
n �(z)] : φ

†
l (z).

Let us now consider the edge-state map which can be
expressed in second quantization in the usual form

|�〈v|〉〉 ≡ 〈v|C(N )e
∫

d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)|0〉 ⊗ |0〉〉. (129)

Once again, if 〈v| has a definite amount of total U(1) charge
q the resulting wave function will have a definite number of
particles N + q

√
ν with the resulting wave function being

�〈v|(z, z̄) = 〈v|C(N )
N+q

√
ν∏

i=1

	(zi, z̄i )|0〉. (130)

Now consider the state 〈v| = 〈v1| ⊗ 〈v2| ⊗ · · · ⊗ 〈vm|, where
〈vi| is a state of the ith parton species. From the factoriza-
tion of the resulting correlation function, the wave function
�〈v|(z, z̄) must be expressible as a product of m ν = n integer
quantum Hall edge states. Hence, the image of this edge-state
map is spanned by wave functions that are expressible as
products of m wave functions which are all ν = n integer
quantum Hall wave functions.

From the definition of the edge-state map, we must have
that all the states that belong to the orthogonal complement of
Hphys must map to zero. Hence, if we restrict the edge-state
map to Hphys we do not alter the image of the map. In other
words, as for all other cases presented, the edge-state map can
be considered a map from the vacuum representation of A(n)m

to the space of wave functions.
Finally, the angular-momentum operator can be expressed

in the CFT as a sum of the angular-momentum operators of the
ν = n integer quantum Hall edge-state map for each parton
species. This mapping of the angular-momentum operator can
then be expressed as∑

i

zi∂i − z̄i∂ i → L0 +
√

nm(2N1 − 1)

2
a0

+ m
nN1(N1 − 1)

2
− m

n(n − 1)

2
, (131)

where a0 is the zeroth mode of i∂�(z) and is proportional
to the total number of particles added to the edge. Thus, for
a fixed number of particles and angular momentum, in the
actual wave function, the edge-state counting must have a

rigorous upper bound given by the state counting in Hphys for
the corresponding L0 and a0 eigenvalues.

5. General case

The above discussion can be expanded to general parton
states by the following observation: Suppose we know how to
generate some trial wave functions �1 and �2 using the oper-
ators 	1(z, z̄) and 	2(z, z̄) from CFT1 and CFT2, respectively.
We can then generate the trial wave function �1�2 using
the CFT CFT2 ⊗ CFT1 as follows: Let C(N ) = C1(N )C2(N ),
where Ci(N ) is the background charge operator used to gener-
ate �i, and 	(z, z̄) = 	1(z, z̄)	2(z, z̄). We then have

�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(zi, z̄i )|0〉

∝ 〈0|
[

C2(N )
N∏

i=1

	2(zi, z̄i )

]
|0〉

× 〈0|
⎡⎣C1(N )

N∏
j=1

	1
(
z j, z̄ j

)⎤⎦|0〉

= �1(z, z̄)�2(z, z̄), (132)

where ∝ appears as, depending on the conformal spin of
the 	i, we may obtain an additional minus one factor from
rearranging the 	i. Thus, simply by the fact the resulting cor-
relation function will factorize, we can generate �1�2 from a
CFT correlation function.

One can expand 	(z, z̄) = ∑
j z̄ jφ j (z) where each φ j (z)

can be expressed in terms of CFT1 ⊗ CFT2. We identify the
chiral algebra A generated by repeated OPEs with φ j (z) and
their conjugates, with the new wave function �1�2. The sub-
space of CFT1 ⊗ CFT2 that is generated by the modes of the
fields in A, we denote Hphys. This Hphys forms the vacuum
representation of A. In Appendix F, we show that Hphys is
an invariant subspace of C(N ) provided the densest (or lowest
angular momentum) parton trial wave function is unique at the
fixed number of particles N . Hence, the correlation function
that generates �1�2 can be computed entirely in the vacuum
representation of A. For the remainder of this section, we
assume that the densest parton trial wave function at the fixed
number of particles N is unique. We briefly consider the case
when this is not so at the end of the section.

An important point in formulating a CFT from A is
whether it contains an energy-momentum tensor T (z). We
also show in Appendix F that A has an energy-momentum
tensor. A more general proof of this can be seen in Ref. [85].
This is a necessary condition for CFTA to exist. We further
emphasize that we are assuming that a CFT with the chiral
algebra A exists, preferably satisfying the axioms set out by
Moore and Seiberg for rational conformal field theory [68].
There do exist certain results in the mathematical literature
on vertex operator algebras in relation to this question [86],
however it is not clear if these results apply in all cases
considered in this paper.

The edge-state map is defined by the obvious gener-
alization of Eq. (119). Consider the state |v〉 ∈ CFT1 ⊗
CFT2 with, |v〉 = |v1〉 ⊗ |v2〉 and |vi〉 ∈ CFTi. By the
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factorization of the resulting correlation function we
must have that, �〈v1|⊗〈v2|(z, z̄) ∝ �

(1)
〈v1|(z, z̄)� (2)

〈v2|(z, z̄), where

�
(i)
〈vi|(z, z̄) is the wave function resulting from the edge-state

map of CFTi (i.e., the edge-state map associated with �i).
Thus, the image of the edge-state map must be spanned by
wave functions which are products of wave functions from
the images of the edge-state maps of CFT1 and CFT2. Fur-
thermore, we know, from the discussion of Appendix F, that
C(N )

∏N
i=1 	(zi, z̄i )|0〉 ∈ Hphys, which implies all states of the

orthogonal complement of Hphys must map to zero. Hence,
restricting this map to the states of the vacuum representation
of A must preserve the image of the map. Thus, one can view
the map as being from the vacuum representation of A to the
space of wave functions.

In Appendix F 2 show that, for these cases where the
densest state is unique for the fixed number of particles N
and when restricting the edge-state map to be from Hphys, the
angular-momentum operator can be mapped over to the CFT
as ∑

i

zi∂i − z̄i∂ i → L0 + v(N )a0 + u(N ), (133)

where L0 is the zeroth Virasoro mode, a0 is the total U(1)
charge operator, which is proportional to the number of
particles added to the edge, and v(N ) and u(N ) are some
real-valued functions. Thus, for a fixed number of particles
and angular momentum, in the actual wave function, the
edge-state counting must have a rigorous upper bound given
by the state counting in the vacuum representation of A for
the corresponding L0 and a0 eigenvalues.

In Appendix F 4 we give the φ2
2φ1 state as an example of

this process.
Finally, let us now briefly consider the case where the dens-

est parton trial ground state at the fixed number of particles
N is not unique. More precisely this occurs when there does
not exist a number of particles N such that each integer quan-
tum Hall component of the parton state has a unique lowest
angular-momentum state at the given number of particles N .
An example of this is the φ4φ2 state. For ν = 2 there is only
a unique lowest angular-momentum state when the number of
particles is odd (where for N even we get two lowest angular-
momentum states). For ν = 4 the lowest angular-momentum
state is unique when N can be expressed as N = 4N1 + 6
with N1 being some non-negative integer. Thus, in this case,
there is no number of particles N where both the ν = 2 and
the ν = 4 components of this parton state have unique lowest
angular-momentum states.

In such cases, it is not clear if the background charge oper-
ator can be defined in a simple way. One can however proceed
without a background charge operator. Suppose we can write a
ground-state wave function in the form 〈N |∏i 	(zi, z̄i )|0〉 for
some state 〈N | (which can clearly be done for all cases that
do have a well-defined background charge operator), where
we can then, once again, expand 	(z, z̄) = ∑

j z̄ j−1φ j (z). The
correlation function 〈N |∏i 	(zi, z̄i )|0〉 can then be expressed
within the vacuum representation of the chiral algebra A gen-
erated by φ j (z) and their conjugates. One can then define the
edge-state map as before simply with the background charge
operator omitted, which will be a linear map from the vacuum

representation of A to the space of wave functions. One can
then reapply all the inductive steps discussed here to show
this structure exists for all chiral parton states even when the
background charge operator is perhaps less well defined. It
should be noted, however, that in these more general cases,
the lack of a background charge operator makes edge-state
counting less straightforward.

C. General structure

The discussions of Secs. III A 2 and III B point towards a
general structure for constructing wave functions from CFT.
Suppose we wish to construct a wave function using some
chiral algebra A that is generated by repeated OPEs of n fields
φl (z) and their conjugates φ

†
l (z), with l = 0, 1, . . . , n − 1. We

can then define the operator,

	(z, z̄) =
n−1∑
l=0

z̄lφl (z), (134)

along with an appropriately chosen background charge opera-
tor C(N ), to generate the trial wave function

�〈0|(z, z̄) = 〈0|C(N )
N∏

i=1

	(z, z̄)|0〉. (135)

To generate the projected wave function one can then simply
use the generating operator 	(z) = ∑n−1

l=0 (2∂ )lφl (z).
One can then construct edge-state trial wave functions us-

ing the general edge-state mapping

|�〈v|〉〉 ≡ 〈v|C(N ) exp

[∫
d2ze−|z|2/4	(z, z̄) ⊗ c†(z, z̄)

]
× |0〉 ⊗ |0〉〉. (136)

This gives a linear map from the vacuum representation of A
to the space of wave functions.

In all the cases described in Sec. III A and for the sym-
metric parton wave functions in Sec. III B, we showed the
chiral algebra A could be represented using a CFT of the
form CFTU (1) ⊗ CFTχ , where CFTU (1) is the chiral boson
CFT and CFTχ is another CFT which can be referred to as
the “statistics” sector. With this representation the fields φl (z)
take the form

φl (z) =: eiϕ(z)/
√

ν : χl (z), (137)

where ϕ(z) is the U(1) chiral boson, χl (z) are primaries of
CFTχ all with the same scaling dimension, and ν is the filling
fraction of the resulting trial wave function. This construction
can then be seen as a natural generalization of formalism
discussed in Sec. II B.

Importantly, the χl (z) are simple currents of CFTχ . A
simple current is a field whose fusion with any other field
can only have one result. As shown by Schoutens and Wen,
the conformal blocks from various simple current algebras
can be used to model the statistics of a large class of anyon
theories [63] (also see Ref. [87] and references therein for
further discussion of these simple current constructions in the
FQHE context).

Of course, this is not the only way of generating
a trial wave function, and edge states, from the given
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chiral algebra A. For example, we could instead use
	(z, z̄) = ∑n−1

l=0 (a†)lφl (z), where a† = (z̄ − 2∂ )/
√

2. This
construction has the added feature that the index l in φl (z)
is directly related to the Landau-level index, which could be
of some use in the description of multilayer systems (such
as multilayer graphene [47–51]) where the layer index is
taken as a pseudo-Landau level. Defining 	(z, z̄) this way
does, however, have the disadvantage that projecting the wave
function will in general alter the topological order of the wave
function. This is because it would only be φ0(z) that would
generate the projected wave function and, thus, one would
expect the corresponding topological order would be encoded
in the chiral algebra generated only by φ0(z) and φ

†
0 (z). In

fact, provided the background charge operator is chosen such
that the unprojected ground-state wave function has a definite
number of particles in each Landau level, then clearly the
projection would simply give a zero wave function in general
(which would be the case for all the φm

n parton states, for
example). Numerical computation of such unprojected wave
functions may also be inefficient due to the extra derivatives
in their definition, although these unprojected wave functions
may be amenable to certain MPS methods.

IV. GENERALISED SCREENING
AND THE INNER-PRODUCT ACTION

We now formulate the generalized screening hypothesis for
trial wave functions constructed using some chiral algebra A
according to the general structure outlined in Sec. III C. We
then go on in Sec. IV B to discuss the form edge-state inner
products of parton states take given generalized screening.
Finally, in Sec. IV C we show how the arguments of DRR [27]
can be easily extended to understand the structure of the RSES
of these CFT-constructed wave functions.

Throughout this section, we only consider unprojected
wave functions. The discussion of this section does not rely
on these wave functions being unprojected. One can formu-
late a generalized screening hypothesis and repeat the same
arguments given here for the projected wave functions by a
simple replacement 	(z, z̄) → 	(z) = ∑n−1

l=0 (2∂ )lφl (z).

A. Generalized screening

Consider now a ground-state trial wave function generated
by the general construction of Sec. III C. The full CFT defined
by this chiral algebra A, which we denote CFTA, will also
contain the antichiral copy of this algebra A, where these
two algebras are independent (i.e., correlation functions of
just the fields of A and A will factorize into a correlation
function of just the A operators times a correlation function
of just the A operators). The matching of φ j (z) ∈ A with its
antichiral copy φ̄ j (z̄) ∈ A is such that a correlation function of
a number of φ j (z) is the complex conjugate of the correlation
function of the corresponding φ̄ j (z̄). Let the antichiral version
of the generating operator 	(z, z̄) be with respect to ten as
	(z, z̄) = ∑

l zl φ̄l (z̄). Furthermore, let C(N ) be the antichiral
copy of the background charge operator C(N ). The complex
conjugate of the ground-state wave function can be expressed
as �〈0|(z, z̄) = 〈0|C(N )

∏N
i=1 	(zi, z̄i )|0〉. One can then repeat

the calculation shown in Sec. II B to show that the norm of the

ground-state wave function is given by

ZN ≡ 〈〈�〈0||�〈0|〉〉
= 〈

C(N )C(N )e
∫

D2z	(z,z̄)	(z,z̄)〉, (138)

where it should be noted that, when the φl (z) have half-
integral conformal dimension this is true up to an N-
dependant −1 factor that can appear from rearranging the φl

and φ̄l [as mentioned before under Eq. (13)]. We omit such
factors for clarity. Once again, only the term in the expansion
involving N insertion of 	(z, z̄)	(z, z̄) actually contribute by
U(1) charge conservation.

We then interpret ZN as the partition function of a field
theory which is a perturbation of CFTA. Of course, there
is no sense in which we can say the term 	(z, z̄)	(z, z̄) is
small and so we mean this in a rather loose sense of the word
“perturbed.” The correlation functions of this field theory are
given by

〈φ1(w1, w̄1)φ2(w2, w̄2) · · ·〉∗
≡ 〈

C(N )C(N )Rφ1(w1, w̄1)φ2(w2, w̄2) · · · e
∫

D2z	(z,z̄)	(z,z̄)〉,
(139)

where R denotes radial ordering and φi(wi, w̄i ) are fields of
CFTA. There are operators of CFTA that will have singular
OPEs with the φl (z) operators. Correlation functions involv-
ing these operators will then require some regularization and
subsequent renormalization, which is briefly discussed in
Refs. [24,27] and is of no conceptual concern here.

As discussed in Sec. II B and in Ref. [27], the con-
figurations of the 	(z, z̄)	(z, z̄) which are the dominant
contributions to the partition function are such that the long-
distance (or course-grained) density profile of these insertions
are the same for each configuration, with this density profile
being the same as the density of particles in the corresponding
ground-state trial wave function. One can use a saddle-point
approximation, where we are looking for saddle points of
ln |�〈0|(z, z̄)|2, to determine this density profile (the case of
the Laughlin wave functions is discussed in Ref. [88]). As the
parton wave functions are constructed as products of integer
quantum Hall wave functions, an obvious solution, in these
cases, is a density profile of a disk with a uniform density of
ν/2π l2

B, where ν−1 = ∑
i n−1

i and ni is the filling fraction of
the ith integer quantum Hall factor of the trial wave function.
We will not discuss the more general case here, although one
would expect, based on the discussion in Ref. [27], that when
the generators of A take the form of Eq. (137) the resulting
density profile of the trial wave function will also be a disk
with uniform density ν/2π l2

B. Thus, up to exponentially small
corrections, the 	(z, z̄)	(z, z̄) insertions are confined to the
droplet of radius R = √

2N/ν.
Let SFQH denote the action of the perturbed theory. This

can be expressed as SFQH = SCFTA + �S, where SCFTA is
the action of CFTA and �S is the perturbation of the ac-
tion. �S is composed of two terms: one which generates
the 	(z, z̄)	(z, z̄) insertions and another which is a perturba-
tion localized out at infinity that comes from the background
charge term C(N )C(N ). From the discussion of the previous
paragraph, the term in �S that generates the 	(z, z̄)	(z, z̄)
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FIG. 2. Generalized screening is when the given “perturbed”
CFT under RG flows to a gapped field theory inside the droplet and
back to the unperturbed field theory outside the droplet. Here L and
L′ denote the lengths of the droplet before and after a certain amount
of RG flow.

insertions is localized to the droplet (up to exponentially small
corrections).

We then take the generalized screening hypothesis to be
that under RG transformations the action inside the droplet
flows to a massive infrared fixed point (see Fig. 2). In other
words, this perturbed field theory has short-range correlations
inside the droplet. Outside the droplet, the action is that of
SCFTA plus the background charge term at infinity (up to
exponentially small corrections) and, hence, the action outside
the droplet should be invariant under any RG transformation.

We now wish to discuss a slightly different formulation
that will be useful when discussing edge-state inner products
in the Sec. IV B. In the formulation above we have placed
the background charge operators at the left of the correlation
function and so they are equivalent to some field being placed
at infinity. As discussed in Appendix F the operator C(N ) has
the property C(N )φl (z)C†(N ) ∝ zk(N )+lφl (z), with k(N ) ∈ Z.
One can use this property to move the background charge to
the right of the correlation function and, thus, we can express
ZN as

ZN = 〈
e
∫

D2z	̃(z,z̄)	̃(z,z̄)C(N )C(N )
〉
, (140)

where

	̃(z, z̄)	̃(z, z̄) = C(N )C(N )	(z, z̄)	(z, z̄)C†(N )C
†
(N ).

(141)

Having the background charge operator at the right of the
correlation function is equivalent to some local field placed
at z = 0. Simply moving the background charge like this will
not affect the configurations of the 	̃(z, z̄)	̃(z, z̄) which are
the dominant contributions to the partition function. Hence,
the 	̃(z, z̄)	̃(z, z̄) should still be confined to the droplet of
radius R. We now have a perturbed field theory with an action
S̃FQH = SCFTA + �S̃, where �S̃ is entirely localized to the
droplet (up to exponentially small corrections). Moreover, as
the transformation of any field φ(z, z̄) from the background
charge C(N )C(N )φ(z, z̄)C†(N )C

†
(N ) is expressible as a sum

of local fields at the same position as φ(z, z̄) (with coefficients
that may depend on this position), we must have that if the
field theory with action SFQH has short-range correlations in
the droplet, then the field theory with action S̃FQH must also
have short-range correlations in the droplet. Hence, if general-

ized screening holds for the field theory with the action SFQH

then it must hold for the field theory with the action S̃FQH .

B. Edge-state inner products

We now generalize the result of DRR [27] to the wave
functions considered here. That is, we now discuss what form
edge-state inner products of parton states take given gener-
alized screening. We follow a line of argument similar to
DRR. Throughout this section, we will be using concepts and
techniques from boundary-critical phenomena [89,90] and
boundary conformal field theory (bCFT) [91–96]. Other than
the use of these standard methods, the following argument
relies on an additional assumption, which was eluded to in the
introduction. This assumption is that the matrix of Eq. (144)
is invertible.

In this section, we only apply these arguments to the parton
states where there always exists a unique densest (i.e., low-
est angular momentum for a given number of particles) trial
wave function. In these cases, the resulting boundary critical
problem has full rotational invariance. For other parton states,
one can still apply the arguments we use here. However, care
must be taken when considering what form the fixed-point
boundary condition and boundary action will take for the
resulting boundary-critical problem (due to the loss of full
rotational invariance).

In what follows we are only interested in inner products
that correspond to the “scaling region.” Roughly speaking,
these are inner products between edge states where the fluc-
tuation of the radius of the droplet δR for either state is such
that δR/R � 1. For a more precise definition of this, we refer
the reader to Sec. III C of Ref. [27].

First, we note that we can use the antichiral 	(z, z̄) to gen-
erate the complex conjugate of the wave function �〈v|(z, z̄)
[with this wave function being defined by the general edge-
state mapping of Eq. (136)],

�〈v|(z, z̄) = 〈v|C(N )
N∏

i=1

	(zi, z̄i )|0〉 (142)

where 〈v| is the antichiral copy of 〈v|. The edge-state inner
products can then be expressed as

〈〈�〈w||�〈v|〉〉 = 〈w|〈v|e
∫

D2z	̃(z,z̄)	̃(z,z̄)C(N )C(N )|0〉. (143)

As the state 〈w|〈v| can be written as a polynomial in the
modes of φl (z), φ

†
l (z), φ̄l (z̄), and φ̄

†
l (z̄) applied on 〈0|, this

inner product can be expressed as contour integrals of correla-
tion functions of this perturbed field theory, with the partition
function of Eq. (140), where these contours are outside the
droplet.

Thus, to understand these edge-state inner products we
need to understand the structure of correlation functions of
this field theory with the action S̃FQH , where all field inser-
tions are outside the droplet. To this end, one can, in principle,
“integrate out” the droplet. We are then left with a field theory
that lives on the complex plane with a disk of radius R cut
out of it. Assuming short-range correlations inside the droplet,
the action of this new field theory ŜFQH can be written as
ŜFQH = SCFTA + Sb(R), where SCFTA is the action of CFTA
outside the droplet and Sb(N ) is a boundary action that is
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localized on the edge of the droplet (i.e., an integral of local
operators along the droplet). We note that, because the pertur-
bation in the partition function of Eq. (140) has explicit radial
dependence, one would expect that the boundary action Sb(N )
has some dependence on the number of particles in the droplet
(because R ∝ √

N).
If the number of particles in the droplet N is large, then,

in principle, we can perform an RG transformation of ŜFQH .
Such an RG procedure would shrink the radius of the droplet
edge; however, if N is large enough then one can perform
a sufficient amount of RG flow while keeping the radius of
the droplet edge much larger than the magnetic length. Under
the usual assumptions in the study of boundary critical phe-
nomena, one expects that under RG flow the action outside
the droplet, SCFTA , will remain invariant, because this is the
action of a CFT, and only the boundary action (on the edge
of the droplet) Sb(N ) will change. After a sufficient amount of
RG flow, one would expect Sb(N ) to be close to some fixed-
point boundary action S∗

b (N ), Sb(N ) → S∗
b (N ). As Sb(N ) may

have some N dependence, the fixed-point boundary action
that it flows towards S∗

b (N ) may also have some N depen-
dence. Thus, edge-state inner products which correspond to
long-wavelength modes of the correlation functions of this
field theory should be accurately described by the fixed-point
boundary action S∗

b (N ).
In bCFT, these fixed-point boundary actions are described

by fixed-point boundary conditions [93–96]. Such boundary
conditions typically take the form where some field of A
inserted at the boundary, with a scaling dimension h, can
be replaced by some linear combination of fields of A with
the same scaling dimension h (inside correlation functions).
Thus, one would expect S∗

b (N ) to be described by a boundary
condition (on the edge of the droplet) of the form

φ
†
l (z) =

(
z̄

z

)h ∑
l ′

M(N )ll ′ φ̄l ′ (z̄), (144)

where, by U(1) charge conservation, φ
†
l (z) can only be re-

placed with φ̄l ′ (z̄), h is the scaling dimension of φ
†
l (z), and

M(N ) is a matrix that may depend on the number of particles
in the droplet. The (z̄/z)h factor appears as φ

†
l (z) has the

opposite conformal spin of φ̄l ′ (z̄). We assume that M(N )ll ′ is
invertible, which is the additional assumption eluded to in the
abstract and introduction of this paper.

One can argue more directly, although not rigorously, that
this boundary condition should occur. As we discussed in
Sec. II B, the 	̃(z, z̄)	̃(z, z̄) insertions behave analogously to
a screening plasma. Let the “electric” charge of 	̃(z, z̄)	̃(z, z̄)
be one, which then gives the electric charge of φl (z) and
φ

†
l (z) to be 1/2 and −1/2, respectively. Now consider a

correlation function with φ
†
l (z) inserted very close (i.e., on

the order of a magnetic length) to the droplet edge with all
other field insertions of the correlation function outside the
droplet. By the screening property, the configuration of the
	̃(z, z̄)	̃(z, z̄) insertions that are the dominant contributions
to the correlation function, are such that their density profile
is uniform over the droplet except near φ

†
l (z) where there must

be a 1/2 charge excess to screen the charge of φ
†
l (z). In any

such configuration there must be a 	̃(z, z̄)	̃(z, z̄) insertion
which is closest to φ

†
l (z). One can then take an OPE with

this 	̃(z, z̄)	̃(z, z̄) insertion and φ
†
l (z), where one expects the

most singular of which to be the dominant contribution to
the long wavelength properties of this correlation function.
This leaves some linear combination of the φ̄l (z̄) where φ

†
l (z)

was and a configuration of the 	̃(z, z̄)	̃(z, z̄) insertions with a
uniform density throughout the droplet except at the location
where φ

†
l (z) was where there is now a −1/2 charge deficit.

Repeating this process for all other contributing 	̃(z, z̄)	̃(z, z̄)
insertion configurations and then averaging, we then have, on
long length scales, a φ

†
l (z) insertion at the droplet edge can

be replaced with some linear combination of φ̄l ′ (z̄) insertions
at the same location. This then leads us to the boundary
condition of Eq. (144).

Among these possible boundary conditions is one that
takes the form

φ
†
l (z) =

(
z̄

z

)h

φ̄l (z̄) (145)

on the droplet edge. Let 〈. . .〉1 denote the correlation func-
tion of the boundary CFT which is CFTA on the complex
plane with a disk of radius R centered at the origin, re-
moved, with this boundary condition at the edge of the
disk. Such correlation functions can be computed by in-
ner products in CFTA on the full complex plane. That
is the correlation function of some field insertions, φi(zi )
and φ̄ j (z̄ j ), can be expressed as 〈∏i φi(zi)

∏
j φ̄ j (z̄ j )〉1

=
〈0|∏i φi(zi)

∏
j φ̄ j (z̄ j )RL0+L̄0 |B〉 for some state |B〉. We have

included a factor of RL0+L̄0 so that |B〉 is a state that satis-
fies the condition [φ†

l (z) − (z̄/z)hφ̄l (z̄)]|B〉 = 0 where |z| = 1
(which enforces the required boundary condition for the 〈. . .〉1
correlation functions). Written in terms of the modes of the
fields this reads,

[φ†
l,n − φ̄l,−n]|B〉 = 0. (146)

As we require 〈1〉1 = 1, one also has 〈0||B〉 = 1. Furthermore,
as we are only interested in correlation functions of fields of A
and A, one can take |B〉 ∈ H0 ⊗ H0, where H0 is the vacuum
representation of A which is irreducible. One can show, using
Schur’s lemma, that the state |B〉 is completely determined by
the condition of Eq. (146) and 〈0||B〉 = 1 (which is a standard
result in bCFT). Such a state |B〉 is referred to as an Ishibashi
state [93]. It can also be shown from these conditions that the
state |B〉 has the property 〈w|〈v||B〉 = 〈v|w〉.3 Note that when

3As pointed out in Ref. [27] this can be seen directly by express-
ing the states as modes of the φl fields applied on the vacuum.
For example, consider the case of just a chiral boson where the
modes of the field have the boundary condition an|B〉 = ā−n|B〉.
Now compute 〈0|a1a2ā1ā2|B〉 = 〈0|a1a2ā1a−2|B〉 = 2〈0|a1ā1|B〉 =
2〈0|a1a−1|B〉 = 2〈0|B〉 = 2 = 〈0|a1a2a−1a−2|0〉. One can generalize
this approach to see that in the case where the φl have half-integral
conformal dimension, which implies that the modes of the φl and φ̄l

must anticommute, one can generally obtain an overall minus sign
that depends on the number of φl modes in either of the states |v〉
or |w〉.
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the φl have half-integral conformal spin 〈w|〈v||B〉 = 〈v|w〉 is
true up to an overall minus sign that depends on the U(1)
charges of |v〉 and |w〉. Finally, as every field of A is gen-
erated by repeated OPEs of φl (z) and φ

†
l (z), the boundary

condition of Eq. (145) implies that any field of A inserted at
the boundary can be replaced by some linear combination of
insertions of fields of A at the same point. We can then take
A as the set of boundary operators.4 It can also be shown that
[Ln − L̄−n]|B〉 = 0, which means the boundary condition of
Eq. (145) is conformal.

We can use the 〈. . .〉1 theory to describe the correlation
functions of the theory on the complex plane with the disk
of radius R removed around the origin with the boundary
action S∗

b (N ) on the edge of the disk, which enforces the
boundary condition of Eq. (144). Let the correlation functions
of this theory be denoted by 〈. . .〉2,N . Now define the
operator M̂ that only acts on the chiral sector by φ

†
l (z)M̂ =

M̂
∑

l ′ M(N )ll ′φ
†
l ′ (z), φl (z)M̂ = M̂

∑
l ′ [M(N )−1]∗ll ′φl ′ (z)

(with ∗ denoting the complex conjugate) and M̂|0〉 = |0〉.
Using this the correlation functions of the 〈. . .〉2,N
theory can be expressed as 〈∏i φi(zi)

∏
j φ̄ j (z̄ j )〉2,N

=
〈0|∏i φi(zi )

∏
j φ̄ j (z̄ j )M̂RL0+L̄0 |B〉, where one can check

that the defining properties of M̂ reproduces the boundary
condition of Eq. (144).

We can normalize the φl fields such that φl (z)φ†
l ′ (w) =

δll ′ (z − w)−2h + · · · , where h is the scaling dimension of
φl (z). With this normalization we then have that for large N ,
〈〈�〈0|φ†

l,h
|�〈0|φ†

l′ ,h
〉〉 ∝ M(N )ll ′ , which implies that M(N ) must

be a Hermitian positive semidefinite matrix. Furthermore, as
we have already assumed M(N ) is invertible, it follows that
M(N ) must a Hermitian positive-definite matrix. This then
implies that we can express M̂ as M̂ = eδS∗

b (N ), where δS∗
b (N )

is another operator that only acts on the chiral sector. As M̂
implements a local scale-invariant boundary condition at the
edge of the disk, we must have that, by analytic continuation
from the boundary, for any φ(z) ∈ A, M̂−1φ(z)M̂ must be
expressible as a sum of fields from A at the same location
z all having the same scaling dimension as φ(z). From this,
it follows that δS∗

b (N ) must be a conserved charge of CFTA.
Hence, δS∗

b (N ) must be expressible as a one-dimensional in-
tegral of local fields in A, as is implied by Noether’s theorem.

We can now express the correlation functions
of the 〈. . .〉2,N theory as 〈∏i φi(zi)

∏
j φ̄ j (z̄ j )〉2,N

=
〈∏i φi(zi )

∏
j φ̄ j (z̄ j )eδS∗

b (N )〉
1
, where in this expression

the integral in δS∗
b (N ) can be taken to be along the

edge of the droplet. Hence, the 〈. . .〉2,N theory can
be interpreted as a local boundary perturbation of
the 〈. . .〉1 theory. Thus, these correlation functions
can also be expressed as 〈∏i φi(zi)

∏
j φ̄ j (z̄ j )〉2,N

=
〈0|∏i φi(zi )

∏
j φ̄ j (z̄ j )eδS∗

b (N )RL0+L̄0 |B〉.

4Strictly speaking, we can have boundary operators which belong
to other representations of A; however, in the present case we are
only interested in correlation functions in this bCFT that only involve
fields of A and A.

The operators in δS∗
b (N ) must be U(1) neutral, by U(1)

charge conservation, and must have scaling dimension one,
for this to be a marginal boundary perturbation. Thus,
δS∗

b (N ) = ∑
a

∮
|z|=R

dz
2π i fa(N ; θ )Ja(z), where Ja(z) form a ba-

sis of U(1) neutral fields of A with scaling dimension
one, θ is the usual polar coordinate around the edge of
the disk and fa(N ; θ ) are some complex-valued functions.
By rotational invariance, however, fa(N ; θ ) must take the
form fa(N ; θ ) = fa(N ). Hence, we are left with δS∗

b (N ) =∑
a fa(N )

∮
|z|=R

dz
2π i J

a(z) = ∑
a fa(N )Ja

0 . This then implies
that [δS∗

b (N ), Ln] = 0, as δS∗
b (N ) is composed of zero modes

of scaling dimension one fields, which means the boundary
condition for the 〈. . .〉2,N theory is conformal. As the φl (z)
do not generally form a basis of the space of fields with the
same scaling dimension and U(1) charge of the φl (z) fields,
to obtain a boundary condition of the form of Eq. (144) one
may need to impose some constraints on fa(N ) such that
[δS∗

b (N ), φ†
l (z)] is expressible as a sum of φ

†
l ′ (z) fields. Such

constraints will not be required for the cases considered later
in this paper.

Thus, assuming generalized screening, one expects the in-
ner products that correspond to long wavelength modes of
correlation functions of the field theory with the action ŜFQH ,
for large N , to take the form,

〈〈�〈w||�〈v|〉〉
ZN

≈〈w|〈v|eδS∗
b (N )RL0+L̄0 |B〉

= 〈v|eδS∗
b (N )R2L0 |w〉

= 〈v|R2L0 eδS∗
b (N )|w〉, (147)

where in going from line one to line two one should recall
δS∗

b (N ) only contains operators of A and in going from line
two to line three one should also recall [δS∗

b (N ), L0] = 0. Note
that in the case when φl have half-integral conformal dimen-
sion the minus signs that can appear in 〈w|〈v||B〉 = 〈v|w〉
cancels the other minus signs that can appear as mentioned
under Eq. (13) and (138). From the discussion of Sec. II D, one
can easily see that the edge-state inner products in the ν = 1
and ν = 2 cases take this form for large N , where the fa(N )
terms diverge as N increases. By modifying the edge-state

map by the replacement 〈v| → 〈v|e− δS∗
b (N )

2 R−L0 then we have,
for large N ,〈〈

�〈w|e−δS∗
b (N )/2R−L0

∣∣�〈v|e−δS∗
b (N )/2R−L0

〉〉
ZN

≈ 〈v|w〉 (148)

Hence, given generalized screening, there exists a simple
modification of the edge-state map which becomes an iso-
metric isomorphism in the thermodynamic limit, where an
isometric isomorphism (i.e., an invertible linear map that pre-
serves the inner product). In the cases considered by DRR
the only possible term in δS∗

b (N ) involved the zero modes
of the i∂�(z) current, a0, which could simply be canceled
by the replacement 	(z) → √

λN	(z) (with an appropriately
chosen λN ).

For intermediate system sizes N , one must consider the RG
irrelevant terms in the boundary action Sb(N ). This can also be
described as a perturbation of the boundary action enforcing
the Eq. (145), which we denote δSb(N ), that includes the
exactly marginal δS∗

b (N ) term and boundary RG irrelevant
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terms. This can be expressed in the form, δSb(N ) = δS∗
b (N ) +∑

h j>1 α j (N )(2π )−1
∫
|z|=R |dz|eih jθφ j (z), where φ j (z) are

fields of A with corresponding scaling dimension hj , α(N )
are numbers, and the eih jθ is required by rotational invarience.
In principle, the α j (N ) can depend on the number of particles
in the droplet, because of the explicit radial dependence in the
perturbation in the partition function of Eq. (140), however,
previous works show that they do not, at least for the first
smallest scaling dimension terms [27,29]. This then gives the
following form for edge-state inner products at intermediate
system sizes,

〈〈�〈w||�〈v|〉〉
ZN

= 〈v|R2L0 eδSb(N )|v〉, (149)

with

δSb(N ) =
∑

a

fa(N )Ja
0 +

∑
h j>1

α j (N )

Rhj−1

∮
dz

2π i
zh j−1φ j (z),

(150)

where we have used

|dz|ehjθ = dz

iRhj−1
zhj−1

at |z| = R. We would like to emphasize to the reader that
in principle α j (N ) can depend on N . From the RG analysis
above, however, we do expect that α j (N )/Rhj−1 → 0 in the
thermodynamic limit in such a way that the less relevant
terms fall to zero faster than the more relevant terms. When
modeling the inner products this property would allow for the
expansion of the inner product action to be truncated to terms
below some low scaling dimension. In the numerical tests of
Sec. V we show that the α j for the h j = 2 terms do not appear
to have any N dependence for the cases tested.

C. Real-space entanglement spectra

We now will briefly discuss the structure of the real-space
entanglement spectrum (RSES) for trial wave function that
can be constructed from CFT in the way outlined in Sec. III C.
This is a rather straightforward extension of the calculation
in DRR’s work. We merely wish to point out that DRR’s
result can be extended to more general CFT constructions.
For a precise definition of the RSES we refer the reader to
Refs. [12,15–17,27,97–100].

Now consider a system of N particles whose wave function
can be expressed in the form given by Eq. (135). We then
take a circular real-space cut centered at the origin with radius
Rc = R/

√
2, so that the average number of particles inside

the cut is N/2 (with R again being the radius of the droplet).
We have chosen this particular radius merely for simplicity
of exposition and is of no conceptual significance. Let the
region inside the real-space cut be A and the region outside
be B.

We now define two edge-state maps for these two subsys-
tems. For subsystem A we have∣∣�A

〈v|
〉〉 ≡ 〈v|R−2L0

c C(N/2)e
∫

A d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)|0〉 ⊗ |0〉〉
(151)

and for subsystem B we have∣∣�B
|w〉
〉〉 ≡〈0|C(N )e

∫
B d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)

× C†(N/2)R2L0
c |w〉 ⊗ |0〉〉 (152)

We further assume that N is such that the edge-state maps
for A and B have the property that any two CFT states with
the same L0 eigenvalues and U(1) charge will map to wave
functions with the same angular momentum (so that for a fixed
particle number the L0 and angular-momentum operators are
equivalent up to an additive constant). In the integer quantum
Hall case and by extension both the symmetric parton and
composite fermion cases, this is simply the condition that for
N/2 particles confined to the lowest n Landau levels the lowest
angular-momentum state is unique. When N/2 does not fulfill
this condition one will need to consider the mapping of the
angular-momentum operator more carefully.

For subsystems A and B the edge-state inner products can
be expressed in the form 〈〈�A

〈w||�A
〈v|〉〉 = 〈v|eδSA

b (N/2)|w〉 and

〈〈�B
|w〉|�B

|v〉〉〉 = 〈w|eδSB
b (N/2)|v〉, respectively. We absorbed the

ZA
N and ZB

N factors into δSA
b (N ) and δSB

b (N ), respectively (to
keep the notation simple). Assuming generalized screening
holds then we expect δSA

b (N ) and δSB
b (N ) to take the local

form of Eq. (150).
Now define the entanglement action SES by

e− SES
2 = e

δSB
b (N )

2 e
δSA

b (N )

2 .

We write the singular value decomposition e−SES/2 =∑
i e−ξi |ui〉〈vi|, where |vi〉 form an orthonormal basis and |ui〉

form another orthonormal basis. We can then perform the
following resolution of the identity,

1 =C†(N/2)R2L0
c e− δSB

b (N )

2 e− SES
2 e− δSA

b (N )

2 R−2L0
c C(N/2)

=
∑

i

e−ξiC†(N/2)R2L0
c e− δSB

b (N )

2 |ui〉〈vi|

× e− δSA
b (N )

2 R−2L0
c C(N/2). (153)

We can then express the ground-state trial wave function in
the following form:

|�〈0|〉〉 = 〈0|C(N )e
∫

d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)|0〉 ⊗ |0〉〉
= 〈0|C(N )e

∫
B d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)

× e
∫

A d2ze−|z|2/4	(z,z̄)⊗c†(z,z̄)|0〉 ⊗ |0〉〉. (154)

Then inserting the resolution of the identity in the middle, we
have

|�〈0|〉〉 =
∑

i

e− ξi
2

∣∣∣∣�B

e− δSB
b (N )
2 |ui〉

〉〉∣∣∣∣�A

〈vi|e− δSA
b (N )
2

〉〉
. (155)

This then provides a Schmidt decomposition, which implies
that the set of ξi, which are the eigenvalues of SES , forms the
entanglement spectrum.

As both the particle number and the angular momentum
are good quantum numbers in this entanglement spectrum
(from the rotational invariance of the real-space cut), the states
|vi〉 must be eigenstates of the a0 and L0 operators. Hence,
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the number states with a given L0 and a0 in the vacuum
representation of A must give a rigorous upper bound for
the entanglement level state counting at the corresponding
particle number and angular-momentum sector of the entan-
glement spectrum.

If the generalized screening hypothesis holds, then from

e− SES
2 = e

δSB
b (N )

2 e
δSA

b (N )

2

and through the Baker-Cambell-Housdorf formula one can
show SES will take the form of Eq. (150). In such an expan-
sion we again could in principle have some N dependence in
the coefficients α j (N ), however, numerical evidence suggests
they do not [101]. This form of SES then implies that for
states within the scaling region, the entanglement level state
counting will match the state counting of the vacuum rep-
resentation of A (i.e., the aforementioned upper-bound must
now be saturated in the scaling region).

In principle then, one can use this result to explain some
of the observations of Ref. [59] regarding the RSES of parton
wave functions. However, this will not be discussed here.

V. NUMERICAL TESTS

We now present our numerical tests of whether the edge-
state inner products can be expressed in the general form
given in Eqs. (149) and (150), which one expects if gener-
alized screening holds, in the case of the unprojected ν = 2/5
composite fermion state and the unprojected φ2

2 parton state.
In Sec. V A we first present a model of the inner product
action for each state, where we only include terms up to and
including scaling dimension two. Next, we present how these
models can be fitted to the actual inner products. Finally,
in Sec. V C the result of this fitting procedure and how the
fitted model parameters scale with the system size, where we
find the edge inner products are consistent with generalized
screening.

A. The models

The following models for the inner product action only
contain terms which are integrals of fields up to scaling
dimension two, for simplicity. In each case, there are, in
principle, many fields from the corresponding chiral algebra
at scaling dimension two that could appear. The models we
present here contain far fewer fields than otherwise could be
included, as we empirically find them to be sufficient to model
the inner product action. One may be able to constrain the
possible inner product action using translational symmetry of
the droplet [27,29] and thereby give an explanation as to why
these simpler models work. However, we not pursue this here.

For the ν = 2/5 composite fermion case the model inner-
product action is given by

δŜb = αJ3
0 + βJ1

0 +
∮

dz

2π i

× z{γ : [J3(z)]2 : +
√

2δJ3(z)i∂�(z)}, (156)

where the ŝu(2)1 currents, Ja(z), are defined in Eq. (98), and
α, β, γ , and δ are model parameters that require fitting. The
zero mode of i∂�(z), a0, is not included as we only fit the

inner product action using inner products for a fixed number
of particles and so the presence of such a term would not be
detectable. From the result for ν = 2 in Eq. (84), we expect
that α ∼ ln N and β ∼ (ln N )/N . Furthermore, from previ-
ous works [27,29] we expect γ , δ ∼ 1/

√
N (i.e., under the

assumption that the αi(N ) of Eq. (150) do not depend on N).
As mentioned at the start of this section, terms in the model

of Eq. (156) are not all the possible terms that could appear
up to scaling dimension two. At scaling dimension one the
other possible term that could have been there is the zero mode
of J2(z). At scaling dimension two the other possible terms,
which produce linearly independent terms when integrated,
are : (i∂�(z))2 :, : J3(z)J1(z) :, : J3(z)J2(z) :, i∂�(z)J2(z),
and i∂�(z)J1(z). We find that not including these terms in
the model reproduces the numerically estimated inner-product
action matrix elements with sufficient accuracy (after fitting).

For the φ2
2 state the model inner product action is

δŜb =αJ3
0 + βJ1

0 +
∮

dz

2π i
z

{
γ

2
: [J3(z)]2 :

+ δ

2
[: [J2(z)]2 : + : [J3(z)]2 :] + εJ3(z)i∂�(z)

}
,

(157)

where the Ja(z) and �(z) fields are defined in Eq. (110). As
for the composite fermion case we do not include the zeroth
mode of i∂�(z) and we expect α ∼ ln N , β ∼ (ln N )/N , and
γ , δ, ε ∼ 1/

√
N .

As for the ν = 2/5 there are other terms that could appear
in this model. At scaling dimension one the other possi-
ble term that could have been there is the zero mode of
J2(z). At scaling dimension two the other possible terms,
which produce linearly independent terms when integrated,
are : [i∂�(z)]2 :, : J3(z)J1(z) :, : J3(z)J2(z) :, i∂�(z)J2(z),
and i∂�(z)J1(z). Again we find that not including these terms
in the model reproduces the numerically estimated inner-
product action matrix elements with sufficient accuracy (after
fitting).

B. Fitting procedure

We first detail the general fitting procedure for some CFT
to edge-state mapping. Let |M; i〉 be an orthonormal basis of
states in the given CFT which have L0 eigenvalue M and are
all U(1) neutral (i.e., a0|M; i〉 = 0) so that these states map to
edge-state wave functions of N particles. We assume that the
background charge operator, C(N ), has been chosen such that
these the wave functions |�〈M;i|〉〉 all have angular momentum
M relative to the ground-state trial wave function |�〈0|〉〉.
This then gives 〈〈�〈M;i||�〈M ′; j|〉〉 = 〈M ′; j|R2L0 eδSb |M; i〉 = 0
for M �= M ′. Thus, 〈M ′; j|δSb|M; i〉 = 0 for M �= M ′, which
means the operator δSb must be a block-diagonal matrix
relative to the |M; j〉 basis. We then define the series of
matrices G(M )i j ≡ 〈〈�〈M; j||�〈M;i|〉〉/R2M = 〈M; i|eδSb |M; j〉.
We then see that the log of these matrices must be given
by [ln G(M )]i j = 〈M; i|δSb|M; j〉. Hence, if one can compute
G(M )i j then the matrix elements of δSb can be determined.

To fit the model entanglement action we first compute the
G(M )i j using Monte Carlo integration and then the logarithm
of these matrices is taken to give estimates for the matrix
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elements of δSb. The parameters of the model inner product
action are then determined by minimizing the sum of squared
differences between the model and estimated matrix elements
of δSb, over the M = 1, 2 subspaces where each matrix ele-
ment is equally weighted.

For the ν = 2/5 composite fermion state
the chosen basis takes the form |λ1; λ2; p〉 ≡∏

n1∈λ1
a−n1

∏
n2∈λ2

J3
n2

(F2F †
1 )p|0〉/√N , where λi are

partitions and N is a normalization factor. From the
gauge invariance of the edge-state map the |λ1; λ2; p〉
state will map to the same edge-state as

∏
n1∈λ1

√
5/2(ã(1)

−n1
+

ã(2)
−n1

)
∏

n2∈λ2

√
2

−1
(ã(2)

n2
− ã(1)

n2
)(F2F †

1 )p|0〉/√N . Using the
usual bosonization relations, which we discuss in Sec. II D,
such states can be expressed as polynomials in the modes of
the Ṽj (z) fields applied on the vacuum, which then ultimately
allows for the �〈λ1;λ2;p|(z, z̄) wave functions to be expressed
as a sum of Slater determinants of the zm and z̄zm orbitals,
times the flux attaching Jastrow factor. By expressing the
�〈λ1;λ2;p|(z, z̄) wave function in this form the G(M ) matrices
can then be computed using Monte Carlo integration.
To find the matrix elements of the model δSb we first
note that J3

0 and ([J3]2)0 ≡ ∮
dz

2π i z : [J3(z)]2 : are diagonal
in the |λ1; λ2; p〉 basis with J3

0 |λ1; λ2; p〉 = p|λ1; λ2; p〉
and ([J3]2)0|λ1; λ2; p〉 = [p2 + (

∑
n∈λ2

n)]|λ1; λ2; p〉. The
matrix elements of J1

0 can be computed by first noting
that J1

0 = (J+
0 + J−

0 )/2. Then define the chiral boson field
η(z) ≡ −i

√
2 ln zJ3

0 + i
∑

n J3
n z−n/n, which can be used to

express the J±(z) fields as J±(z) = (F2F †
1 )±1 : e±i

√
2η(z) :

[i.e., the free field representation of ŝu(2)1 [64] ]. The matrix
elements of J±

0 operators are then equivalent to the matrix
elements of modes of chiral vertex operators of a chiral
boson. We discuss the computation of such matrix elements
in Appendix G.

For the φ2
2 parton case the basis we used has a some-

what more involved definition. The space of states in the
vacuum representation of A(2)2 (i.e., the chiral algebra cor-
responding to this state) that are U(1) charge neutral form
the vacuum representation of û(1) ⊕ ŝu(2)2. The û(1) part
is generated by the modes of i∂�(z) and the ŝu(2)2 part
can be represented using a Majorana field ψ (z) and a chiral
boson ϕ(z) with compactification radius one and correspond-
ing Klein factor denoted by Fϕ (where this Klein factor
should anticommute with the Majorana field) [102]. We dis-
cuss this in more detail in Appendix H and will give a
summary here. We denote the chosen basis for the sys-
tem containing the �(z), ψ (z), and ϕ(z) as |λ1; μ, λ2; p〉 =∏

n1∈λ1
an1

∏
n3∈λ3

a(ϕ)
−n3

F p
ϕ

∏
n2∈μ ψ− n2

2
|0〉/√N , where a(ϕ)

n are
the modes of ϕ(z), λi are partitions, μ is a partition with no
repeated elements and where all elements are odd, p ∈ Z,
and N is used to normalize the state. The vacuum repre-
sentation of û(1) ⊕ ŝu(2)2 is spanned by the basis elements
|λ1; μ; λ2; p〉, such that the parity of the number of elements
in μ is equal to the parity of p (i.e., if p is odd μ will have
an odd number of elements and if p is even then μ must have
an even number of elements). We further detail how this basis
of the û(1) ⊕ ŝu(2)2 can be mapped back to states of HCFT

(defined in Sec. III B 1) with the given states being expressed
as modes of the Ṽi j (z) and Ṽ †

i j (z) fields applied on the vacuum.

Expressing the basis this way allows the corresponding edge-
states, |�〈λ1;μ;λ2;p|〉〉, under the edge-state map, to be expressed
as a sum of products of Slater determinants of the zm and
z̄zm orbitals from the discussion of Sec. III B 3. By expressing
|�〈λ1;μ;λ2;p|〉〉 this way we then computed the G(M ) matrices
using Monte Carlo integration. The computation of the matrix
elements of the model inner product action is also discussed
in Appendix H.

C. Results

1. ν = 2/5 composite fermion

Figure 3 shows a comparison of the resulting fitted model
[Eq. (156)] inner-product action matrix elements and the
Monte Carlo (MC) estimated inner product action matrix el-
ements for the U(1) neutral CFT states with L0 eigenvalues
M = 1, 2, 3, in the case where the ground-state trial wave
function contains N = 55 fermions. We use the shorthand no-
tation [δSb]M,i j ≡ 〈M; i|δSb|M; j〉 for the inner product action
matrix elements, where the basis reference for the index i is
given in Tables I, II, and III in Appendix I for M = 1, 2, 3,
respectively. The first two rows show a color map of the
log10 of the absolute value of the MC matrix elements and
fitted model matrix elements, where we have introduced a
cutoff such that any matrix element with an absolute value
below 10−2 is replaced with 10−2, for clarity. The third row
shows a color map of the absolute values of the errors of
the matrix elements (i.e., the difference between the MC and
model matrix elements), where no cutoff is used. We find the
model matrix elements to be in good agreement with the MC
matrix elements with errors �3 × 10−2.

Figure 4 shows the fitted α and β parameters, model of
Eq. (156), for various system sizes N , along with a fit to a
particular functional form for the N dependence of each pa-
rameter. By extrapolating the fitted functions from Fig. 4, we
expect that for large N α ≈ 2.3 ln N and β ≈ −0.5(ln N )/N .
This is the same functional forms for the corresponding α and
β in the result of ν = 2 in Eq. (84).

Figure 5 shows the fitted γ and δ parameters, for various
system sizes N , where the N dependence of each parameter
was fit to the functional form ∼N−a with a ∈ R. We can
then see that γ can be fit very well to the form γ ∼ 1√

N
, as

expected. The δ parameter, however, has a fitted N depen-
dence of the form δ ∼ 1

N . In Eq. (156) δ is the coefficient
of the term

∮
dz

2π i zJ3(z)i∂�(z). By integration by parts, we
can see that

∮
dz

2π i zJ3(z)i∂�(z) = − 1
2

∮
dz

2π i z
2∂[J3(z)i∂�(z)].

Thus, we can get the same term from the integral of a scaling
dimension-three operator [29,72], for which we expect the
leading N dependence to be ∼ 1

N .5 We can then interpret δ as
being the coefficient of this scaling dimension-three term with
the scaling dimension-two term being absent.

2. φ2
2 parton

Figure 6 shows the same comparison between the MC
estimated and model inner product action [Eq. (157)] matrix

5This is assuming that the α(N ) of Eq. (150) have no N dependence.
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FIG. 3. Comparison between the Monte Carlo (MC) estimated and model (Eq. (156) inner product action matrix elements, for the case of
ν = 2/5 composite fermion state where the ground-state wave function contains N = 55 fermions. We use the shorthand notation [δSb]M,i j ≡
〈M; i|δSb|M; j〉, where the basis reference for the index i can be found in Appendix I. Note that when presenting the log10 of the absolute value
of the matrix elements, we have used a cutoff where any matrix elements whose absolute value is below 10−2 have been replaced by 10−2, for
clarity. No cutoff has been used for the matrix element errors, |[δSb(MC) − δSb(Model)]M,i j |. Some sample matrix elements can be found in
Appendix I.

elements that was done for the composite fermion case, but
now for the φ2

2 parton case where the ground-state trial wave
function contains N = 31 bosons. We find the MC estimated
matrix elements to be in good agreement with the fitted model
matrix elements with errors �8 × 10−2.

Figure 7 shows the fitted α and β parameters, model of
Eq. (157), for various system sizes N , along with a fit to
a particular functional form for the N dependence of each
parameter. Based on the functional form these parameters
can be fit to, we expect that, for large N , α ≈ 3 ln N and
β ≈ −3.2(ln N )/N . These are the same functional forms as
the result for ν = 2 in Eq. (84), where, interestingly, the coef-
ficients of the ln N and (ln N )/N terms are almost the same as
those of Eq. (84).

Figure 8 shows the fitted γ , δ, and ε parameters, for various
system sizes N , where the N dependence of each parameter
was fit to the functional form ∼N−a with a ∈ R. Despite
significant noise compared with the composite fermion case,

we can then see that both γ and δ roughly have an N depen-
dence of the form γ , δ ∼ 1√

N
, as expected. The ε parameter

has an N dependence of the form ε ∼ 1
N , which is the same

N dependence for the corresponding term in the composite
fermion case. As discussed above for the composite fermion
case, this is consistent with interpreting ε as the coefficient
of an integral of a scaling dimension-three operator, which is
related to the original term in Eq. (157) through integration by
parts.

VI. QUASIPARTICLES AND BRAIDING FROM THE
GENERALISED SCREENING HYPOTHESIS

As summarized in Sec. II B, previous works have shown
that if a wave function can be written as a correlation function
of a particular CFTA, then there exist quasiparticle excita-
tions of this wave function corresponding to representations
of the chiral algebra A, whose braiding statistics are given
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FIG. 4. Shows the fitted ν = 2/5 composite fermion inner prod-
uct action model parameters α and β, of Eq. (156), for various system
sizes N , along with a fit to a particular functional form for the N
dependence of each parameter.

by monodromy of conformal blocks of CFTA, provided the
generalized screening hypothesis holds and assuming there
exists a trapping Hamiltonian for which these quasiparticle
states have the lowest energy (see Sec. II B and Ref. [24] for
further details). In the previous works discussed in Sec. II B
the chiral algebra A was generated by a 	(z) and 	†(z). We
now show how this can be generalized to the cases consid-
ered in this work. We first discuss the general quasiparticle
construction in Sec. VI A, and how this can be applied to
cases where A can be represented using a simple current
algebra, as detailed in Sec. III C, where we conclude that the
symmetric parton wave functions φm

n can host quasiparticles
whose braiding statistics can be described by the monodromy
of conformal blocks of the ŝu(n)m WZW model, provided
the generalized screening hypothesis holds and assuming the
existence of the aforementioned quasiparticle trapping Hamil-
tonian. Then in Sec. VI C we consider the φk

2 series of parton
wave functions, where we show that the quasiparticles of
these states are related to those of the Read-Rezayi series
wave functions. We not explicitly discuss the quasiparticles
of the composite fermion wave functions here as this has been
detailed at length in other works (see Ref. [41] and references
therein). Throughout this section, we only discuss the un-
projected wave functions, with corresponding results for the
projected wave functions being obtained by the replacement
z̄ → 2∂ .

A. General construction

Now consider a ground-state trial wave function which
is generated by an 	(z, z̄) = ∑

l z̄lφl (z) operator belonging
to a given CFTA. Let φ j (z) be a field which belongs to

FIG. 5. Shows the fitted ν = 2/5 composite fermion inner prod-
uct action model parameters γ and δ, of Eq. (156), for various system
sizes N , along with a fit to a particular functional form for the N
dependence of each parameter.

the H j representation of the chiral algebra A. Schemat-
ically, quasiparticle states are generated by these fields
by inserting them into the generating correlation func-
tion �(w; z, z̄) ∼ 〈0|C(N )

∏m
i=1 φ ji (wi )

∏N−q
√

ν

k=1 	(zk, z̄k )|0〉,
where w = w1,w2, . . . ,wm and q is the total U(1) charge
of the fields φ ji (wi) [recall that the correlation function must
be U(1) neutral]. Just as in Sec. II B, this expression is only
well defined if the way in which the fields φ ji (wi ) fuse to
the identity field (or vacuum) is specified. For a given set
of φ ji (wi) there are multiple possible wave functions. More
formally, these are expressed as

�a(w; z, z̄) = Fa(w; z, z̄), (158)

where Fa(w; z, z̄) are the conformal blocks corresponding to
the correlation function of CFTA given by

〈0|C(N )C(N )
m∏

i=1

φ ji (wi, w̄i )
N−q

√
ν∏

k=1

	(zk, z̄k )	(zi, z̄i )|0〉

=
∑

a

|Fa(w; z, z̄)|2, (159)

with a labeling the way in which the fields φ ji (wi) fuse to
the identity. As mentioned in Sec. II A, the Fa(w; z, z̄) are
in one-to-one correspondence with the conformal blocks of
a correlation function just involving the φ ji (w) fields, where
Fa(w; z, z̄) has the same monodromy properties as its corre-
sponding conformal block. Note that the Fa(w; z, z̄) functions
will have some z̄ dependence, which arises from expressing 	

as 	(z, z̄) = ∑
l z̄lφl (z). For the Fa(w; z, z̄) to be valid wave
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FIG. 6. Comparison between the Monte Carlo (MC) estimated and model [Eq. (157)] inner-product action matrix elements, for the case
of φ2

2 parton state where the ground-state wave function contains N = 31 bosons. We use the shorthand notation [δSb]M,i j ≡ 〈M; i|δSb|M; j〉,
where the basis reference for the index i can be found in Appendix I. Note that when presenting the log10 of the absolute value of the
matrix elements, we have used a cutoff where any matrix elements whose absolute value is below 10−2 have been replaced by 10−2, for
clarity. No cutoff has been used for the matrix element errors, |[δSb(MC) − δSb(Model)]M,i j |. Some sample matrix elements can be found in
Appendix I.

functions we must choose the fields from H ji such that the
OPE of φ ji (w) and the φl (z) operators have no singular terms
φ ji (w)φl (z) ∼ 0. We will not elaborate on whether this can
be done in general. However, we show, later in this section,
this can be done in the case when A can be represented
by a simple current algebra (see Sec. III C). Note that as
the φl (z) operators belong to the chiral algebra A the re-
sulting �a(w; z, z̄) will be single-valued in the z coordinates
as the φl (z) will have trivial monodromy with the φ ji (wi )
fields.

If generalized screening holds, then the resulting short-
range correlations inside the droplet will imply that the
excitations created by the φ j (w) operators will be “pointlike”
on length scales much larger than the magnetic length. Fur-
thermore, the argument of Sec. II B can be reapplied to show
that the charge of the excitation created by φ j (w) is equal to
−q j

√
ν, where q j is the U(1) charge of φ j (w).

By construction, the Fa(w; z, z̄) are holomorphic in the wi

coordinates. We can then reapply the arguments of Read [24]
to show that if generalized screening holds, and, assuming a
quasiparticle trapping Hamiltonian exists, the transformation
of the wave function �a(w; z, z̄) after adiabatically moving
the quasiparticles along some path wi(τ ) is equivalent, up
to the usual magnetic Berry phase and the unphysical time-
dependent phase factor, to the monodromy transformation of
Fa(w; z, z̄) along this path wi(τ ). We assume the existence of
these quasiparticle trapping Hamiltonians for the remainder
of this section. We would like to emphasize that if φ j (z) and
φ′

j (z) belong to the same representation of A then a conformal
block involving φ j (z) will have the same monodromy prop-
erties as the conformal block with φ j (z) replaced by φ′

j (z).
Thus, the possible anyon types of the quasiparticles described
by these conformal blocks must correspond to the irreducible
representations of A.
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FIG. 7. Shows the fitted φ2
2 parton inner product action model

parameters α and β, of Eq. (157), for various system sizes N , along
with a fit to a particular functional form for the N dependence of each
parameter.

B. Simple current algebra constructions

We describe how this formalism can be applied to the case,
discussed in Sec. III C, when the φl (z) can be represented by
fields from a CFT of the form CFTU (1) ⊗ CFTχ with φl (z) =:
ei�(z)/

√
ν : χl (z) where χl (z) are simple currents of CFTχ .

A simple current χ of a given CFTχ is a field whose fusion
with any other field must only have one result. That is for
any primary field ξ of CFTχ (i.e., primary with respect to
the chiral algebra of CFTχ ) the fusion with χ takes the form
χ × ξ = ξ (1), where ξ (1) is another primary of CFTχ . Note
that regardless of which χl is fused with ξ the result must
be a primary field that is in the same representation, of the
chiral algebra of CFTχ , as ξ (1). The orbit of ξ are the set
of fields produced by repeated fusion with χ . We use ξ (n) to
denote the result of n fusions with ξ (i.e., ξ (n+1) = χ × ξ (n)).
Assuming CFTχ is rational, which we take as given, this
orbit must be finite. Let nξ be the smallest positive number
such that ξ (nξ ) = ξ . The size of the orbit is then given by nξ .
Note that the size of an orbit may be one in some cases (i.e.,
ξ (1) = ξ ).

As shown by Schellekens et al. in Ref. [103] the OPE of
the χl simple currents must take the form,

χl (z)χl ′ (w) ∝ (z − w)−r/nχ χ (1)(w) + · · · , (160)

where r is an integer known as the monodromy parameter and
nχ is the length of the orbit of χ . As φl (z) forms a well-defined
chiral algebra, we must have that the OPE φl (z)φl ′ (w) can
only contain integer powers of (z − w). Furthermore, as
φl (z) is used to generate a many-body wave function,
we must also require that the OPE φl (z)φl ′ (w) contains
only non-negative integer powers of (z − w). This OPE

FIG. 8. Shows the fitted φ2
2 parton inner product action model

parameters γ , δ, and ε, of Eq. (157), for various system sizes N along
with a fit to a particular functional form for the N dependence of each
parameter.

takes the form φl (z)φl ′ (w) =: ei�(z)/
√

ν : χl (z) : ei�(w)/
√

ν :
χl ′ (w) ∝ (z − w)(ν−1−r/nχ ) : ei2�(w)/

√
ν : χ (1)(w) + · · · .

Thus, ν−1 = m + r/nχ , where m is a non-negative
integer.

It is further shown by Schellekens et al. that the OPE of ξ

and χ must take the form,

χl (z)ξ (w) ∝ (z − w)−tξ /nχ ξ (1)(w) + · · · , (161)

where tξ is an integer, and that there exists a conserved charge
Q which takes the form Q(ξ (n) ) = tξ /nχ + nr/nχ (mod 1).
The existence of this charge Q then gives, Q(ξ (nξ ) ) = Q(ξ ),
which implies that nξ r/nχ ∈ Z.

The fields of CFTχ can be used to create representations of
the chiral algebra A, which is generated by φl (z) and φ

†
l (z).

Consider the field φ(z) =: eiq�(z) : ξ (z), where q is chosen
such that the OPE of φ(z) with φl (w) only contains integer
powers of (z − w). A representation of A can then be formed
by the space of states generated by polynomials in the modes
of φl (z) and φ

†
l (z) applied on the state φ(0)|0〉. We refer to the
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representation of A constructed in this way as χ reps. Now
consider the OPE,

: ei�(z)/
√

ν : χl (z)eiqφ(w)ξ (w)

∝ (z − w)q
√

ν
−1−tξ /nχ : ei(q+√

ν
−1 )�(w) : ξ (1)(w) + · · · .

(162)

For this to contain only integer powers of (z − w) we
then require qp = √

ν(p + tξ /nχ ) with p ∈ Z. We can la-
bel these irreducible representations by (ξ, p), where we
denote the actual representation by Hξ,p. From this OPE

we can see that the state : ei(q+√
ν

−1 )�(0) : ξ (1)(0)|0〉 must
belong to this representation and, by induction, so too
must the states : ei(q+n

√
ν

−1 )�(0) : ξ (n)(0)|0〉. Hence, the field
: ei(qp+xnξ

√
ν

−1 )�(z) : ξ (z) will generate the same representation
where x ∈ Z. Thus, Hξ,(p+xnξ ν−1 ) = Hξ,p. From the above
OPE we can then see that there must exist such an x so that
: ei(qp+xnξ

√
ν

−1 )�(z) : ξ (z) : ei�(w)/
√

ν : χl (w) ∼ 0 (i.e., the OPE
contains no singular terms). Such fields are then suitable rep-
resentatives from this representation to generate quasiparticle
wave functions. We can then choose qp such that the OPE
: eiqp�(z) : ξ (z) : ei�(w)/

√
ν : χl (w) contains only non-negative

integer powers of (z − w), wherein making such an additional
restriction does not miss any χ reps. In fact, such a restriction
simply amounts to choosing a p � 0. The primary fields of
CFTχ can be organized into the distinct orbits generated by χ .
For the jth orbit one can choose a particular ξ j , belonging to
that orbit, as its representative. The distinct χ reps can then be
labeled by an orbit j and an integer p such that H j,p ≡ Hξ j ,p.
For a given orbit j the distinct representations are given by
0, 1, 2, . . . , mj − 1 where mj = nξ j ν

−1.
The fusion rules of these representations are given by U(1)

charge conservation and the fusion rules of CFTχ .
These φ j,p(z) =: eiqp�(z) : ξ j (z) fields can then be used

to generate quasiparticle wave functions. Such conformal
blocks decompose into a product of a CFTU (1) conformal
block times a CFTχ conformal block. Thus, up to an Abelian
phase given by the U(1) factor, the braiding properties of
the resulting anyons will be given by monodromy proper-
ties of the CFTχ conformal blocks, provided generalized
screening holds and that there exists a quasiparticle trapping
Hamiltonian.

As discussed in Sec. III B 5 and in Appendix E, the sym-
metric parton wave functions, φm

n , have a chiral algebra A(n)m

which can be represented using this simple current construc-
tion with CFTχ = CFTŝu(n)m , where CFTŝu(n)m is the ŝu(n)m

WZW model. In these cases, the fields χl correspond to the
WZW primaries which transform as the rank-m symmetric
tensor representation of SU(n). One can compute the vari-
ous orbits generated by the χl (z) using the method given in
Ref. [103]. We can then generate quasiparticle wave functions
using the : eiqp�(z) : φλ(z) fields (with p � 0), where φλ is the
WZW primary which corresponds to the highest weight λ. As
for the general case, the resulting conformal block quasipar-
ticle wave functions will decompose into a U(1) conformal
block and an ŝu(n)m WZW conformal block. Hence, if gener-
alized screening holds and there exists a quasiparticle trapping
Hamiltonian, the symmetric parton trial wave function φm

n can
host quasiparticles whose braiding properties are described by

the conformal blocks of the ŝu(n)m WZW model, up to an
Abelian phase. This is precisely what one would expect based
on Wen’s arguments [56].

The monodromy properties of the ŝu(n)m conformal blocks
are described by the braid group representations given by
the corresponding quantum group, which is discussed in
Ref. [104].

C. The φk
2 series

The φk
2 parton trial wave function can be expressed as a

correlation function of the A(2)k chiral algebra, as detailed
in Sec. III B 5. In Appendix E 2 we show how the representa-
tions of A(2)k can be determined using elementary methods,
under certain assumptions which we take as given for the re-
mainder of this section. Under these assumptions (detailed in
Appendix E 2), these representations are uniquely labeled by
a pair ( j, p), where j can take values 0, 1/2, 1, 3/2, . . . , k/4
for k even and 0, 1/2, 1, 3/2, . . . , (k − 1)/4 for k odd. For a
given j, p can take values p = 0, 1, 2, . . . , k − 1 for j �= k/4
and p = 0, 1, 2, . . . , k/2 − 1 for j = k/4.

Every H j,p representation can be constructed from the
û(1) ⊕ ŝu(2)k WZW model. First, let φ j,m(z) be the spin- j
WZW primary with J3

0 eigenvalue m and is normalized such
that we have the two-point function 〈φ j,m(z)φ j,−m(w)〉 = (z −
w)−2h [with h being the conformal dimension of φ j,m(z)]. Un-
der this representation we can express 	(z, z̄) = ∑k

l=0 z̄lVl (z)

with Vl (z) = (k
l )

1/2
: ei

√
k/2�(z) : φk/2,−k/2+l (z). The H j,p rep-

resentation is then constructed by applying polynomials in the
modes of Vl (z) and V †

l (z) on the state ζ j,p(0)|0〉, where the
field ζ j,p(z) is given by

ζ j,p(z) =: eiq j,p�(z) : φ j, j (z), (163)

with

q j,p =
√

2

k
(p + j). (164)

The fusion rules for these representations are inherited from
the ŝu(2)k fusion rules [105,106]. These fusion rules are de-
tailed in Appendix E 3.

By construction ζ j,p(z)Vl (w) ∼ 0. Hence, the ζ j,p(z) fields
can be used to generate quasiparticle wave functions with
the resulting conformal block wave function taking the form
�a(w; z, z̄) ∼ 〈0|C(N )

∏
i ζ ji,pi (wi )

∏
r 	(zr, z̄r )|0〉. The con-

formal block wave functions �a(w; z, z̄) will then decompose
into a product of a û(1) conformal block and an ŝu(2)k con-
formal block. Assuming generalized screening, the braiding
properties of the ζ j,p quasiparticles will be given by the mon-
odromy properties of these conformal block wave functions,
up to the magnetic Berry phase, as usual. In other words, if
the ζ ji,pi (wi ) quasiparticles are adiabatically moved along a
braid wi(τ ) then the wave function will transform as �a →∑

b Bba�b where the matrix B is given by eiθ Bŝu(2)k (up to the
magnetic Berry phase) where Bŝu(2)k is the monodromy matrix
for the ŝu(2)k conformal block and eiθ is a phase given by the
monodromy of the û(1) conformal block. The relevant data
to compute the Bŝu(2)k matrices (i.e., the F and R matrices)
can be found in Ref. [107]. The monodromy properties of the
ŝu(2)k conformal blocks were first investigated by Tsuchiya
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and Kanie [61], where they found such properties are related
to the Jones polynomial.

As shown and detailed in Refs. [102,108] the ŝu(2)k

fields can be represented using fields of a CFT of the form
CFTû(1) ⊗ CFTψk , where CFTψk is the Zk parafermion theory
(of Ref. [108]). With this representation the fields φ j,m(z) can
be expressed as

φ j,m(z) = �
2 j
2m(z) : eim

√
2
k ϕ(z) :, (165)

where �l
2m(z) are the Zk parafermion primary fields and ϕ(z)

is the chiral boson of CFTû(1), with 〈ϕ(z)ϕ(w)〉 = − ln(z −
w). Thus, the �a(w; z, z̄) quasiparticle wave functions de-
compose further into a product of two û(1) factors times
a conformal block of CFTψk . Hence, up to Abelian phases,
the braiding properties of the ζ j,p quasiparticles are the same
as the braiding properties of the quasiparticles of the Read-
Rezayi series [23]. We would like to emphasize this is only
up to Abelian phases, which means the ζ j,p anyons are not
equivalent to the corresponding anyons of the Read-Rezayi
series, in that their corresponding braiding matrices differ by
an overall phase factor which is determined by the û(1) factors
of the conformal block wave functions.

It should also be noted that the Read-Rezayi states can be
directly understood in terms of the more general projective
parton construction, where the electron operator is not written
as just a product of parton operators but as a sum of prod-
ucts of parton operators [109,110]. Roughly speaking, these
projective constructions “mod out” the extra chiral boson
field that can be seen in Eq. (165). It is this removal of this
chiral boson degree of freedom that alters the phase factors
that occur when braiding the various anyonic excitations of
these states. More generally, there should also exist a similar
relationship between the symmetric parton states φm

n and the
SU(N − 1) singlet states of Ref. [111], which should be given
by the relationship between the SU(N ) WZW models and
Gepner’s generalized parafermion theories [112].

1. Example: φ2
2

The A(2)2 algebra has three irreducible representations
which are the vacuum 1 ≡ ζ0,0 and two other fields denoted by
ζ1 ≡ ζ 1

2 ,0 and ζ2 ≡ ζ0,1. The identity field has the usual fusion
rule with all other fields 1 × ζi = ζi, with the remaining fusion
rules being

ζ2 × ζ2 =1, ζ1 × ζ2 = ζ1, ζ1 × ζ1 = 1 + ζ2, (166)

which are the Ising anyon fusion rules. In this case, the
ŝu(2)2 fields can be represented by the fields of a chi-
ral boson theory ϕ(z) combined with the fields of the
Z2 parafermion. The Z2 parafermion theory is equiva-
lent to the Ising CFT which includes a Majorana field
ψ (z) and the spin field σ (z). With this representation we
have 	(z, z̄) =: ei�(z) : [: e−iϕ(z) : +√

2z̄ψ (z) + z̄2 : eiϕ(z) :],
ζ2(z) =: ei�(z) :, and ζ1(z) =: ei �(z)

2 :: ei ϕ(z)
2 : σ (z). Notice that

the ζ2 quasiparticle is a fermion, which we still treat
as topologically nontrivial as the underlying particles of
the φ2

2 wave function are bosons. Now consider the
wave functions of four ζ1 particles �a(w1, . . . ,w4; z, z̄) ∼
〈0|C(N )

∏4
i=1 ζ1(wi )

∏N−2
r=1 	(zr, z̄r )|0〉. From the representa-

tion in terms of the Ising CFT, we can immediately see that

there are two linearly independent conformal block wave
functions, �1 and �2, which can be factorized as �i =
F�FϕFσ,i, where F�, Fϕ , and Fσ,i are the conformal blocks
of the � and ϕ and σ fields, respectively. The basis of σ

conformal blocks can be chosen such that the monodromy
transformation of braiding quasiparticle 3 around quasipar-
ticle 2 is given by Fσ,1 → e

2π i
8 Fσ,2 and Fσ,2 → e

2π i
8 Fσ,1

[22]. The monodromy transformation of braiding quasiparti-
cle 3 around quasiparticle 2 for the F� → e

2π i
4 F� and Fϕ →

e
2π i
4 Fϕ . Hence, the full monodromy transformation of the

quasiparticle wave functions is given by(
�1

�2

)
→ e

5π i
4

(
0 1
1 0

)(
�1

�2

)
, (167)

which, assuming generalized screening and that there exists
a quasiparticle trapping Hamiltonian, is the same transforma-
tion induced by adiabatically braiding quasiparticle 3 around
quasiparticle 2, up to the area-dependent magnetic Berry
phase and the unphysical time-dependent phase factor. In the
case of the ν = 1 bosonic Pfaffian state, the corresponding
braiding of four σ particles will produce the same transfor-
mation except with the upfront phase factor being exp(3π i/4)
instead of exp(5π i/4). The difference between these upfront
phase factors then implies the anyons in the two cases are not
equivalent.

2. Example: φ3
2

The A(2)3 algebra has six irreducible representations, with
the corresponding fields being given by ζp ≡ ζ0,p for p =
0, 1, 2 and τp ≡ ζ 1

2 ,p for p = 0, 1, 2. Note that ζ0 corresponds
to the identity field ζ0 = 1. These have the following fusion
rules, where for simplicity of notation we take ζp+3 = ζp and
τp+3 = τp,

ζp1 × ζp2 = ζ(p1+p2 ),

ζp1 × τp2 = τ(p1+p2 ),

τp1 × τp2 = ζ(p1+p2+1) + τ(p1+p2+2). (168)

The third fusion rule is a modified form of the Fibonacci
anyon fusions rules [107]. The φ3

2 state has been detailed
elsewhere [58], where the quasiparticle braiding properties
were computed using alternative methods.

3. Example: φ4
2

We now give the φ4
2 state as a final example. The A(2)4

algebra has ten irreducible representations given by ζ0,p for
p = 0, 1, 2, 3, ζ 1

2 ,p for p = 0, 1, 2, 3 and ζ1,p for p = 0, 1. To
express the fusion rules we extend the labeling system so that
ζ0,p+4 = ζ0,p, ζ 1

2 ,p+4 = ζ 1
2 ,p, and ζ1,p+2 = ζ1,p. We can then

write the fusion rules as

ζ0,p1 × ζ j,p2 = ζ j,p1+p2 ,

ζ 1
2 ,p1

× ζ 1
2 ,p2

= ζ0,p1+p2+1 + ζ1,p1+p2 ,

ζ 1
2 ,p1

× ζ1,p2 = ζ 1
2 ,p1+p2+1 + ζ 1

2 ,p1+p2−1,

ζ1,p1 × ζ1,p2 = ζ0,p1+p2+2 + ζ1,p1+p2+1 + ζ0,p1+p2 . (169)
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Now consider the wave functions of two ζ 1
2 ,0 particles and two

ζ 1
2 ,1,

�a(w1, . . . ,w4; z, z̄) ∼ 〈0|C(N )ζ 1
2 ,1(w1)ζ 1

2 ,0(w2)ζ 1
2 ,0(w3)

× ζ 1
2 ,1(w4)

N−2∏
r=1

	(zr, z̄r )|0〉. (170)

From the above fusions rules, we can see there must be
two linearly independent wave functions for a given set
of wi positions, �1 and �2. Furthermore, as ζ 1

2 ,0(w) =:

ei�(w)/(2
√

2) : φ 1
2 , 1

2
(w) and ζ 1

2 ,1(w) =: ei3�(w)/(2
√

2) : φ 1
2 , 1

2
(w),

these wave functions must factorize as �i = F�Fŝu(2)4,i,
where F� is the conformal block of the � fields and
Fŝu(2)4,i are the conformal blocks of the ŝu(2)4 fields.
From the discussion of Refs. [104,113], we can see there
must exist a basis of the ŝu(2)4 conformal blocks such
that under the monodromy transformation of swapping
quasiparticle 2 with quasiparticle 3 in the clockwise
direction the conformal blocks transform as Fŝu(2)4,1 →
e

iπ
12 [(e

iπ
6 /

√
3)Fŝu(2)4,1 − (e

−iπ
6

√
2/3)Fŝu(2)4,2] and

Fŝu(2)4,2 → e
iπ
12 [−(e

−iπ
6

√
2/3)Fŝu(2)4,1 + (e

iπ
2 /

√
3)Fŝu(2)4,2].

Also under this monodromy transformation, we have
F� → e

π i
8 F�. Hence, under this monodromy transformation,

the quasiparticle wave functions transform as

(
�1

�2

)
→ e

5π i
24

⎛⎜⎝ e
iπ
6√
3

−e
−iπ

6

√
2
3

−e
−iπ

6

√
2
3

e
iπ
2√
3

⎞⎟⎠(�1

�2

)
, (171)

which, assuming generalized screening and the existence
of a quasiparticle trapping Hamiltonian, is the same trans-
formation of the wave functions induced by adiabatically
swapping quasiparticle 2 and quasiparticle 3 in the clock-
wise direction, up to the magnetic Berry phase and the
unphysical time-dependent phase factor. As shown by Fern
et al. [113] the braid group representations formed by the
monodromy transformation of ŝu(2)4 conformal blocks can
be constructed using the Z3 parafermion operator algebra
(of the Fradkin-Kadanoff-Fendley [114] type and not the
Zamalodchikov-Fateev type [108]).

VII. CONCLUSION

A. Summary

In this work, it has been demonstrated, by first considering
how IQH ground and edge-state wave functions can be ex-
pressed using CFT, that all chiral parton LLL projected and
unprojected ground and edge-state trial wave functions, in the
planar geometry, (as defined in Sec. II C) can be expressed
using CFT correlation functions where to each parton state
we can associate a chiral algebra A such that the CFT defined
by A, CFTA, is, in some sense, the smallest CFT than can
generate all the ground and edge-state trial wave functions
of the corresponding parton state, where we are assuming
there exists a CFT with the chiral algebra A. We then for-
mulated a field-theoretic generalization of Laughlin’s plasma
analogy, known as generalized screening [24,27], where if
this holds for a given parton state then various topological

properties of the state can be directly related to properties of
the corresponding chiral algebra A. In particular, if general-
ized screening holds, along with one other mild assumption
(see Sec. IV B), then for parton states where the densest trial
wave function is unique the edge-state trial wave-function
state counting and the entanglement level counting in the real-
space entanglement spectrum of a given parton wave function
can be directly related to the state counting in the vacuum
representation of the corresponding chiral algebra A. We have
further discussed how one can use the conformal blocks of
CFTA to generate quasiparticle trial wave functions for the
given parton state, where if generalized screening holds the
adiabatic braiding statistics of the quasiparticles is given, up
to the magnetic Berry phase, by the monodromy properties
of the corresponding conformal block. This then allows one
to relate the various possible anyonic types of the given par-
ton state, that can be generated by these conformal blocks,
to the irreducible representations of the corresponding chiral
algebra A.

More specifically, we gave two detailed examples of how
these ground and edge-state trial wave functions can be gener-
ated using CFT in the case of the ν = 2/5 composite fermion
state and the ν = 1 bosonic φ2

2 parton state. We further dis-
cussed how all chiral composite fermion states (i.e., those
with no reverse flux attachment or negative effective magnetic
field) trial ground and edge-state wave functions, as defined in
Sec. II C, can be constructed from CFT correlation functions
without any explicit antisymmetrization or symmetrization of
the correlation functions. The symmetric parton states of the
form φm

n were also discussed where it was shown that the
corresponding ground and edge-state wave functions could be
expressed using the conformal blocks of the û(1) ⊕ ŝu(n)m

WZW model. This had the consequence that, even without
generalized screening holding, the state counting of the edge-
state trial wave functions have rigorous upper bounds given
by the state counting in the û(1) ⊕ ŝu(n)m WZW model.

We further discussed how given we know how to gener-
ate two wave functions �1 and �2 using CFT we can then
generate the product wave function �1�2 using CFT where
the chiral algebra corresponding to �1�2 can be understood
in terms of the chiral algebras corresponding to �1 and �2.
As we discussed how all IQH ground and edge-state wave
functions can be generated using CFT, it is precisely this
inductive step that shows that all chiral parton ground and
edge-state trial wave functions can be expressed using CFT
correlation functions. The general construction for generating
trial wave functions using CFT that these parton states point
towards was then discussed. In short, the general construction
allows one to generate trial wave functions for a rational CFT
whose chiral algebra A is generated by multiple fields φl (z)
and their conjugates φ

†
l (z). This includes the chiral algebras

A that can be understood as simple current constructions,
see Ref. [63], where the simple current algebras (not to be
confused with the chiral algebra) are generated by one simple
current representation.

The generalized screening hypothesis was also detailed
for these CFT constructions. Provided this holds, we were
then able to map the problem of computing edge-state trial
wave-function inner products to a boundary critical problem,
as done in Ref. [27], where, under an additional mild as-
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sumption, edge-state inner products can be expressed as the
matrix elements of an exponentiated CFT operator, called the
inner-product action, that takes the form of a sum of integrals
of local operators, where we gave this argument in full for
parton states where the lowest angular-momentum trial wave
function (i.e., densest wave function), for a fixed number
of particles, is unique. This then generalizes the result of
Ref. [27]. The additional mild assumption that was required
was that the matrices that define the fixed-point boundary
conditions seen in the boundary critical problems are invert-
ible. Notably, using standard renormalization-group methods
it could be argued that the scaling of the coefficients of the
various terms in the inner product action scale with the system
size in such a way that in the thermodynamic limit, there exists
a simple modification of edge-state map such that it preserves
the inner product in the thermodynamic limit. This then allows
one to equate edge-state counting with state counting in the
vacuum representation of the corresponding chiral algebra.
It was then shown that the calculations of Ref. [27] can be
easily extended to these CFT constructions where, assuming
generalized screening and the additional assumption, the real-
space entanglement spectrum of a given ground-state trial
wave function can be expressed as the spectrum of a CFT
operator known as the entanglement action which takes the
same form as the inner product action. This implied that in
the thermodynamic limit, the entanglement level counting will
match the state counting in the vacuum representation of the
corresponding chiral algebra.

Explicit numerical tests of this edge-state inner-product
result were presented in the case of the unprojected ν = 2/5
composite fermion state and the unprojected bosonic ν = 1 φ2

2
parton state. In each case, by estimating the edge-state inner
products using Monte Carlo methods, we were able to obtain
estimates for matrix elements of the inner product actions.
These were then fitted to model inner product actions that
take the local form implied by generalized screening. It was
found that the model inner product action matrix elements
could be fit very well to the numerically estimated matrix
elements, where the scaling of the model parameters with the
system size were also found to be consistent with generalized
screening.

In addition, the general construction, for a state with a
corresponding chiral algebra A, of quasiparticle trial wave
functions in terms of conformal blocks of CFTA was detailed.
We pointed out that the arguments of Read [24] still applied
to these CFT constructions, which implies that if generalized
screening holds, and that there exists a quasiparticle trapping
Hamiltonian, the adiabatic braiding statistics of the quasiparti-
cle wave functions are given by the monodromy properties of
the corresponding conformal block, up to the usual magnetic
berry phase. It was then shown for chiral algebras that can be
understood by a simple current construction how certain rep-
resentations can be found in terms of a chiral boson CFT and
the CFT of the simple currents. In these cases, the conformal
blocks can then be expressed as a product of a chiral boson
conformal block and a conformal block of the simple current
CFT. More specifically, as the chiral algebras of the symmetric
parton states φm

n can be understood as simple current con-
structions, this implied that there exist quasiparticle trial wave
functions of these states that can be expressed as a product

of a chiral boson conformal block and a conformal block of
the ŝu(n)m WZW model. Thus, if generalized screening holds
and there exists a corresponding quasiparticle trapping Hamil-
tonian, the adiabatic braiding of certain quasiparticles of the
φm

n states can be directly related to the monodromy properties
of the conformal blocks of the ŝu(n)m WZW models. Finally,
we then considered the φk

2 series in detail, where the relation
to the Read-Rezayi series was discussed and several examples
of computing quasiparticle adiabatic statistics were given.

B. Outlook

It should be emphasized that the work presented here only
considered the chiral parton states (i.e., those that do not
contain a complex conjugated IQH wave function). It is not
at all obvious if the formalism presented here can be extended
to understand nonchiral states, with the main obstacle being
that one would need to understand what mathematical object
can replace the chiral algebra as the encoder of the topological
data of the corresponding state. Some progress has already
been made in this direction in the case of the CFT-generated
hierarchy wave functions [39,41,115].

Furthermore, we have only considered these wave func-
tions in the planar geometry. As a matter of completeness, it
would be interesting to understand how these constructions
can be extended to other geometries such as the sphere, cylin-
der, and torus. In particular, if this can be well understood
for the cylinder geometry, then one may be able to extend the
methods of Refs. [33–35] to obtain analytically computable
arbitrarily precise matrix product state representations of the
parton wave functions using their corresponding CFTs. Im-
portantly, this could allow for direct tests of the implications
of generalized screening in these trial wave functions [30].

Although we have shown that there corresponds a chiral
algebra to each parton state which encodes the state’s topo-
logical properties, we have not detailed this correspondence
for all parton states. It would then be interesting to mathe-
matically classify the chiral algebras that correspond to parton
wave functions, which would allow one to determine precisely
what topological orders can be described by chiral parton
trial wave functions. Indeed it would also be interesting to
understand if for each such chiral algebra there exists math-
ematically well-defined rational CFT with that chiral algebra.

We have also only considered parton states where the
electron operator is written as a product of parton operators
(see Sec. II C). There exists a more general projective parton
construction where the electron operator is expressed as a
sum of products of parton operators, which has been useful in
understanding many FQHE states that can be expressed this
way [109,110,116]. In principle, one should be able to extend
the formalism presented here to include these projective con-
structions, where the resulting parton trial wave function does
not entirely reside within the lowest Landau level.

Finally, we also do not discuss the issue of special parent
Hamiltonians, with the parton trial wave function being exact
zero energy states, in this work. Using a formalism which is
a generalization of the root partition description of fractional
quantum Hall states centered around the so-called “entangled
Pauli principle,” it has been shown that such parent Hamil-
tonian do indeed exist for certain unprojected parton states
[57,58,117]. As well as allowing one to find special parent
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Hamiltonians, this formalism also allows for the extraction
of various topological properties such as edge-state counting,
and quasiparticle fusion and adiabatic statistics. It would, per-
haps, therefore be enlightening to understand the connection
between this formalism and the CFT formalism presented in
this work.

ACKNOWLEDGMENTS

G.J.H. would like to thank B. Yang, Y. Fukusumi, G.
Ji, Y. Wang, Z. Nussinov, A. Seidel, M. Barkeshli, and M.
Yutushui for useful comments, feedback and typographical
corrections. G.J.H. would also like to thank B. Yang’s re-
search group at Nanyang Technological University Singapore
for their kind hospitality during his visit, where some of
this work was completed. S.G.J. thanks TIFR Mumbai and
JQI and CMTC, University of Maryland for their hospitality
during the completion of this work. We also thank National
Supercomputing Mission (NSM) for providing computing
resources of “PARAM Brahma” at IISER Pune, which is
implemented by C-DAC and supported by the Ministry of
Electronics and Information Technology (MeitY) and Depart-
ment of Science and Technology (DST), Government of India.
S.H.S. and G.J.H. were partially funded by EPSRC Grant No.
EP/S020527/1.

Statement of compliance with EPSRC policy framework
on research data: This publication is theoretical work that does
not require supporting research data.

APPENDIX A: UNITARY IRREDUCIBLE
REPRESENTATIONS OF THE
MOORE-SEIBERG ALGEBRA

We demonstrate how the unitary representations of the
chiral algebra of Sec. II B 5 can be deduced by elementary
methods, under certain assumptions. Note that this is not fully
mathematically rigorous and we point out the assumption we
make. A fully mathematically rigorous exploration of these
representations would require a more precise definition of
these algebras and what constitutes a representation. We do
not require much information about this algebra to deduce
these representations. We only require Eq. (39), the fact that
A contains both the Heisenberg algebra, generated by an, and
the Virasoro algebra, generated by the modes Ln where L0 =
(a0 )2

2 +∑
n>0 a−nan, and the following further commutation

relations

[an,	k] = √
m	k+n,

[an,	
†
k] = − √

m	
†
k+n,

[L0,	k] = − k	k,

[L0,	
†
k] = − k	

†
k . (A1)

Furthermore, we use the fact that all the modes of fields in A
can be expressed in terms of the modes 	k and 	

†
k , as all the

fields of A are generated by OPEs of 	(z) and 	†(z).
Consider now some unitary representation of A, H j , where

the eigenvalues of L0 are bounded from below (or highest
weight representations in other words). By “unitary” we mean
that the inner product in H j is such that the modes of A

acting on this Hilbert space have Hermitian conjugates given
by (	k )† = 	

†
−k and (an)† = a−n.

A contains the Heisenberg algebra. We assume that H j

decomposes into irreducible representations (irr. rep.) thereof.
Any irr. rep. of the Heisenberg algebra can be defined by a
vector |q〉 such that an|q〉 = 0 for n > 0 and a0|q〉 = q|q〉,
q ∈ R, with all states of the rep. being linear combinations of∏

ni
a−ni |q〉 where ni > 0. We can thus understand H j through

what |q〉 vectors it contains. The Hilbert space of the irr. rep.
of the Heisenberg algebra defined by vector |q〉 is denoted Hq

We now show that for a given q such that there is at least
one |q〉 ∈ H j then the space of states satisfying an|q〉 = 0 for
n > 0 and a0|q〉 = q|q〉 (with q fixed) is one dimensional.
In other words, when decomposing H j into irr. reps. of the
Heisenberg algebra, then the multiplicity of any irr. rep. that
does appear is one, H j = ⊕possible qHq.

If this is not the case, then there must exist two states
|q; 1〉 and |q; 2〉 such that 〈q; 1|q; 2〉 = 0 and 〈q; 1|q; 1〉 =
〈q; 2|q; 2〉 = 1. One can easily show that the space of states of
the form (polynomial in 	k and 	

†
k )|q; 1〉 must be an invariant

subspace of the action of A on H j . As H j is an irr. rep. of
A, this space of states must, in fact, be H j . Thus, we must
have |q; 2〉 = (some polynomial in 	k and 	

†
k )|q; 1〉. Let X (p)

denote a generic term that could be in this polynomial which
is a product of p 	k and p 	

†
k , where there must be the same

number of 	k and 	
†
k as |q; 1〉 and |q; 2〉 have the same a0

eigenvalues.
We now show, inductively, that 〈q; 2|X (p)|q; 1〉 = 0 for

all X (p). First, consider 	k|q; 1〉. If this is nonzero then
by the commutation relations of Eq. (A1), it must be
an eigenvector of a0 with eigenvalue q + √

m and it
must be an eigenvector of L0 with eigenvalue q2/2 −
k. For an eigenvector of a0, with some eigenvalue Q,
that is also an eigenvector of L0, with eigenvalue M,
we must have M � Q2

2 [as L0 = (a0)2/2 +∑
n>0 a−nan].

Thus, if 	k|q; 1〉 �= 0 ⇒ (q + √
m)2/2 � q2/2 − k ⇒ k �

−q
√

m − m/2. Similarly, if 〈q; 2|	k �= 0 ⇒ (q − √
m)2/2 �

q2/2 + k ⇒ k � −q
√

m + m/2. As both inequalities can-
not be satisfied, 	k|q; 1〉 �= 0 ⇒ 〈q; 2|	k = 0. By similar
reasoning, if 	

†
k |q; 1〉 �= 0 ⇒ 〈q; 2|	†

k = 0. Now assume
〈q; 2|X (p)|q; 1〉 = 0 for all X (p) with p � P. Now take some
X (P + 1) and let the rightmost mode appearing in it be x
(i.e., x is either some 	k or some 	

†
k). If x|q; 1〉 = 0 then

〈q; 2|X (P + 1)|q; 1〉 = 0. If x|q; 1〉 �= 0 then we must have
〈q; 2|x = 0. Let Y be the product of modes in X (P + 1) that
does not include x, so X (P + 1) = Y x. Now we can write
〈q; 2|X (P + 1)|q; 1〉 = 〈q; 2|{Y, x}|q; 1〉. The anticommutator
{Y, x} must be a sum of terms where each term is a product
of modes and only one anticommutator between x and an-
other mode of opposite charge. As given by Eq. (39), such
anticommutators are normal-ordered polynomials in an. By
using Eq. (A1), the an can be moved around so that {Y, x}
is a sum of terms of the form [

∏
ni

a−ni ]X (P)
∏

n j
anj where

ni, n j � 0 (this may include some terms that involve no an

at all). Recalling that for n > 0 〈q; 2|a−n = 0 and an|q; 1〉 =
0, it follows that 〈q; 2|X (P + 1)|q; 1〉 = 〈q; 2|{Y, x}|q; 1〉 is
expressible as a sum of term of the form 〈q; 2|X (P)|q; 1〉
and thus, 〈q; 2|X (P + 1)|q; 1〉 = 0. The base case is trivial as
〈q; 2|X (0)|q; 1〉 = 〈q; 2|q; 1〉 = 0. Hence, 〈q; 2|X (p)|q; 1〉 =
0 for all X (p).
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From this we now must have 〈q; 2|(polynomial in 	k

and 	
†
k )|q; 1〉 = 0 for all such for all such (polynomial in

	k and 	
†
k ). However, we argued earlier that |q; 2〉 = (some

polynomial in 	k and 	
†
k )|q; 1〉 and, thus, 〈q; 2|q; 2〉 = 0,

which is a contradiction. We can then conclude that any
irr. rep. of the Heisenberg algebra in H j has multiplicity
one.

Now given some H j we figure out which q can appear in
it. First, if |q〉 ∈ H j then there must exist some k such that
	k|q〉 �= 0 and some l such that 	

†
l |q〉 �= 0, otherwise this

H j irr. rep. would be trivial. Thus, if |q〉 ∈ H j and |q′〉 ∈ H j ,
then there is some n ∈ Z such that q′ = q + n

√
m. So the

possible U(1) charges in H j forms a one-dimensional lattice
with lattice spacing

√
m. Hence, we can label each irr. rep. by

a charge q∗ � 0 which is the smallest such positive charge in
the given irr. rep., Hq∗ .

Now we consider the state |q∗ + √
m〉, which has L0

eigenvalue (q∗ + √
m)2/2. By the same arguments as before,

|q∗ + √
m〉 = (some polynomial in 	l and 	

†
l )|q∗〉. Hence,

there exists some odd integer k such that (q∗ + √
m)/2 =

q2
∗/2 + k/2 ⇒ q∗ = (k − m)/2

√
m.

In conclusion, the allowed q∗ are q∗ ∈
{0, 1/

√
m, 2/

√
m, . . . , (m − 1)/

√
m}. We have thus found all

the possible irr. reps. of this algebra, assuming that each irr.
rep. must decompose into irr. reps. of the Heisenberg algebra.
In each case, Hq∗ , one can take the state |q∗〉 is the primary
state, where the Hq∗ is generated by polynomials in the modes
	k and 	

†
k acting on this state.

APPENDIX B: INTEGER QUANTUM HALL EDGE-STATE
INNER PRODUCTS: FURTHER DETAILS

1. ν = 1

This simple mapping, given in Eqs. (63) and Eqs. (64),
from V †

k and Vk to c†
m and cm allows us to express edge-state

inner products in the CFT as

〈〈�〈w||�〈v|〉〉/ZN = 〈v|eS |w〉, (B1)

where

S =
∑
k>0

ln [N (N + k − 1/2)]V−kV
†

k

−
∑

0<k�N−1/2

ln [N (N − k − 1/2)]V †
−kVk

=
∞∑

k=−N+1/2

ln [N (N + k − 1/2)] : V−kV
†

k : . (B2)

For large N and |(k − 1/2)/N | � 1 we can use the Stirling
series to expand ln[N (N + k − 1/2)] ≈ N ln N − N +
(1/2) ln N + (3/2) ln(2π ) + 1/(12N ) + (k − 1/2) ln 2N +
[(k − 1/2)2 + (k − 1/2)]/(2N ). Then we note the fol-
lowing,

∑
k (k − 1/2) : V−kV

†
k := ∮

dz
2π i z : [∂V (z)]V †(z) :=∮

dz
2π i z[i∂2ϕ(z)+ : [i∂ϕ(z)]2 :]/2 = −a0/2 + L0 (where

we use fermionic normal ordering for products of
Vk and V †

k operators), and
∑

k (k − 1/2)2 : V−kV
†

k :=∮
dz

2π i z
2[: [∂2V (z)]V †(z) : +z−1 : [∂V (z)]V †(z) :] = ∮

dz
2π i z

2[:
[i∂ϕ(z)]3 : +(3/2)∂ : [i∂ϕ(z)]2 : +i∂3ϕ(z)]/3 + L0 −
a0/2 = ∮

dz
2π i z

2 : [i∂ϕ(z)]3 : /3 − L0 + (1/6)a0. These

relations can be derived by using V (z)V †(w) − 1/(z − w) =∑∞
n=1(n!)−1(z − w)n−1 : e−iϕ(w)∂neiϕ(w) :. We can then write

the inner products in the following form:

〈〈�〈w||�〈v|〉〉/ZN = 〈v|R2L0 eS|w〉, (B3)

where R = √
2N (i.e., the radius of the droplet), and

S = {N ln N − N + ln[2π
√

π ] − 1/(12N )}a0

+ 1

6N

∮
dz

2π i
z2 : [i∂ϕ(z)]3 : . (B4)

2. ν = 2

To express edge-state inner products in the CFT, we first
define R = √

2N1, M(m)i j = {c̃i,m, c̃†
j,m} [i.e., M(m)i j is the

inner-product matrix of the orbitals zm and z̄zm+1]. Then
the inner products take the usual form 〈〈�〈w||�〈v|〉〉/ZN =
〈v|eS |w〉, with

S =
∑

k

∑
i j

(−1)i+ j[ln M(N1 + k − 1/2)]i j : Vi,−kV
†
j,k :,

(B5)

with the sum of k having the obvious restriction.
By explicit diagonalization and keeping terms up to and

including 1/R, for large N we find

ln M(N1 + k − 1/2)

≈ 6 ln R

(− 1
2

1
R2

1
R2

1
2

)
+ [N1 ln N1 − N1 + ln N1

+ ln(4π
√

π ) + (k − 1/2) ln 2N1]12×2, (B6)

where 12×2 is the two by two identity matrix.
Using the ŝu(2)1 defined in Sec. II D 2, we can now express

the inner products as 〈〈�〈w||�〈v|〉〉/ZN = 〈v|R2L0 eS|w〉, where

S =
√

2[N1 ln N1 − N1 + (1/2) ln N1 + ln(2π
√

2π )]ã0

+ 3 ln(2N1)

[
J3

0 − J1
0

N1

]
, (B7)

where J1(z) = [J+(z) + J−(z)]/2.

APPENDIX C: ANGULAR MOMENTUM CALCULATIONS

1. ν = 1

Given that L0|0〉 = 0 and [L0,V (z)] = V (z)/2 + z∂V (z),
then

N∑
i=1

zi∂i�〈v|(z, z̄) = 〈v|(F †)N (L0 − a0/2)
N∏

i=1

V (zi )|0〉

= 〈v|[L0 + (2N − 1)a0/2 + N (N − 1)/2]

× (F †)N
N∏

i=1

V (zi )|0〉

= �〈v|(L0+(2N−1)a0/2+N (N−1)/2)(z). (C1)

Hence, we can see that the angular-momentum operator maps
to the CFT as

∑
i zi∂i → L0 + (2N − 1)a0/2 + N (N − 1)/2.

Other operator mappings can be found in Ref. [29].
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2. ν = 2

The angular-momentum operator
∑

i zi∂i − z̄i∂ i can be mapped over using the same method for the ν = 1 case to give,[
N∑

i=1

zi∂i − z̄i∂ i

]
�〈v|(z, z̄) = 〈v|(F †

2 )N2 (F †
1 )N1

(
L0 − (1/2)a(1) − (3/2)a(2)

0

) N∏
i=1

	(z, z̄)|0〉

= 〈v|[L0 + (2N1 − 1)ã0/
√

2 + N1(N1 − 1) − 1](F †
2 )N2 (F †

1 )N1

N∏
i=1

	(z, z̄)|0〉. (C2)

APPENDIX D: FURTHER DETAILS FOR φ2
2 CONFORMAL

FIELD THEORY

Now let us find the decomposition of Hphys into the ir-
reducible representations of û(1) ⊕ ŝu(2)2. As the primaries
of the gauge invariant Mλ are spin 0 with respect to J a(z),
we must have L̃ŝu(2)2

0 |λ; i〉 = 0. So, the L0 eigenvalue of |λ; i〉
must take the form hλ = hû(1) + hŝu(2)2 where hû(1) and hsu(2)2

are the eigenvalues of Lû(1)
0 and Lsu(2)2

0 , respectively. Fur-
thermore, as |λ; i〉 is a WZW primary of i∂�(z), we must
have Lû(1)

0 |λ; i〉 = (a0 )2

2 |λ; i〉 = hû(1)|λ; i〉. For all states |v〉 ∈
HNp we have a0|v〉 = (Np/2)|v〉. Hence, hû(1) = (Np)2/8. As
the number of partons must be exactly double the number
of underlying bosons, Np must be an even number. For a
spin- j primary of Ja(z) we have hŝu(2)2 = j( j + 1)/4, where
the allowed j are 0, 1/2, and 1 [64]. One can also directly
check that for even Np all L0 eigenvalues with HNp must be
integers.

Hence, when Np is a multiple of four, hû(1) must be an even
positive integer and we can only have spin-0 primary states of
Ja(z), with such a primary having hλ = (Np)2/8. Within HNp

there is only one state with this L0 eigenvalue and it is the
unique state with the lowest L0 eigenvalue in HNp . So when
Np is a multiple of four there is only one gauge-invariant Mλ

and so all gauge-invariant states of HNp can be expressed as
polynomials of the modes of i∂�(z) and Ja(z) applied on the
state with lowest L0 eigenvalue in HNp .

When Np is not a multiple of four then hû(1) must be half
integral. Hence, the only allowed gauge-invariant Mλ must be
such that its primary states are spin 1 with respect to Ja(z). In
this case, the gauge-invariant primaries of HNp now must have
hλ = (Np)2/8 + 1/2, which corresponds to lowest eigenvalue
of L0 within HNp . Within HNp the space of states with the
lowest L0 eigenvalue can be decomposed into representations
of the Ja

0 and J a
0 as 1 ⊗ 0 ⊕ 0 ⊗ 1. Only the states in 1 ⊗ 0,

which are spin 1 with respect to Ja
0 can be gauge invariant.

Hence, there is again only one gauge-invariant Mλ with all
gauge-invariant states being expressed as polynomials in an

and Ja
n applied on the states of the 1 ⊗ 0 representation within

the space of states with lowest L0 eigenvalue.
Now we show that the modes of Vm(z) and V †

m (z) [see foot-
note6 for a definition of V †

m (z)] fields can be used to generate

6We have V †
1 (z) = V †

22(z)V †
12(z), V †

0 (z) = [V †
21(z)V †

12(z) +
V †

22(z)V †
11(z)]/

√
2, and V †

−1(z) = V †
21(z)V †

11(z).

Hphys. These fields have the following OPEs:

V±1(z)V †
±1(w) ∼ 1

(z − w)2 + i∂�(w) ± J3(w)

z − w
,

V±1(z)V †
0 (w) ∼ ± J±(w)/

√
2

z − w
. (D1)

From these OPEs it follows that we can express the modes
an and Ja

n in terms of the modes of Vm(z) and V †
m (z). Hence,

in any Mλ(Np), the states can be generated by the application
of the modes of Vm(z) and V †

m (z) on the primary states.
When Np is a multiple of four, we only need to consider one
primary state of Mλ(Np), which we denote |λ(Np); 0〉. Now
consider the states Vm,−(Np/2+1)|λ(Np); 0〉. If nonzero, these
states have a U(1) charge corresponding to the states with
Np + 2 partons and hence belong to HNp+2. Furthermore,
they have an L0 eigenvalue which is the lowest of HNp+2. We
also have that V †

m,Np/2+1|λ(Np); 0〉 = 0, as if it was nonzero
it would have an L0 eigenvalue lower than any state with
that U(1) charge and so we would have a contradiction.
It then follows 〈λ(Np); 0|V †

m,Np/2+1Vm,−(Np/2+1)|λ(Np); 0〉 =
〈λ(Np); 0|[V †

m,Np/2+1,Vm,−(Np/2+1)]|λ(Np); 0〉 = 〈λ(Np); 0|
(Np/2 + 1 − a0 − mJ3

0 )|λ(Np); 0〉 = 〈λ(Np); 0|(Np/2 + 1 −
Np/2)|λ(Np); 0〉 = 〈λ(Np); 0|λ(Np); 0〉 > 0. Thus, the states
Vm,Np/2+1|λ(Np); 0〉 are nonzero gauge invariant, linearly
independent (as they different J3

0 eigenvalues), and have
L0 eigenvalue corresponding to the lowest within HNp+2.
Hence, these states must correspond to the three primaries
|λ(Np); m〉 of Mλ(Np+2). Similarly, it can be shown that when
Np is a multiple of four the primaries |λ(Np − 2); m〉 can be
generated from |λ(Np); 0〉 by applying mode of V †

m (z). It can
also be shown (by the same method) that for Np not a multiple
of four, the primaries |λ(Np + 2); 0〉 and |λ(Np − 2); 0〉 can
be generated by applying the modes of Vm(z) and V †

m (z) on
|λ(Np); m′〉, respectively. Hence, all primaries |λ(Np); i〉 can
be generated by repeated application of the modes of Vm(z)
and V †

m (z) on |0〉.

APPENDIX E: A(n)m ALGEBRAS

We first detail the general structure of the A(n)m algebras
as defined in Sec. III B 5. Then we discuss the representations
of A(2)k .

1. General structure

As given in Sec. III B 4, A(n)m is defined as being a subchi-
ral algebra of a CFT of nm chiral bosons with vertex operators
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Vi j (z) where i = 1, 2, . . . , m and j = 1, 2, . . . , n. The gener-
ating fields of A(n)m are labeled by l = m, m + 1, . . . , nm,
where

Vl (z) =
n∑

i1,i2,...,im

δ(
∑m

j=1 )i j ,lV1i1 (z)V2i2 (z) · · ·Vmim (z). (E1)

The space of states generated by the modes of Vl (z) and V †
l (z)

applied on the vacuum state will be denoted as Hphys (as
usual). By operator-state correspondence, each state in Hphys

is in one-to-one correspondence with fields of A(n)m. We
denote the full space of states of the multiple chiral boson
theory as HF .

Within HF we have the currents defined in Eq. (126). In the
notation used in this section, t a are indexed by two numbers
a = kl with each in the range 1, 2, . . . , n. For k �= l we have
t kl
i j = δikδl j . The generators t ll only exist for l = 1, 2, . . . , n −

1 with t ll
i j = δi j (δli − δni ) being the convention used here. As

further demonstrated in Ref. [81] this is a conformal embed-
ding of these current algebras in that the energy-momentum
tensor of HF is a sum of the Suguwara energy-momentum
tensors of each set of currents i∂�(z), Ja(z), and J a(z). That
is T (z) = T û(1)(z) + T ŝu(n)m (z) + T ŝu(m)n (z).

As for the case discussed in Sec. III B 1, we define the
space of gauge invariant states HG by |v〉 ∈ HG ⇔ J a

q |v〉 = 0
for q � 0. One can easily verify that [J a

q ,Vl (z)] = 0 (q ∈ Z).
Hence, we must have Hphys ⊂ HG (because |0〉 ∈ HG).

Now consider the space of U(1) neutral states H0 [i.e.,
those states with a0|v〉 = 0 with a0 being the zeroth mode
of i∂�(z)]. This space must be an invariant subspace under
the action of the modes an, Ja

n , and J a
n . Thus, H0 must

decompose into a direct sum of irreducible representations
of the û(1) ⊕ ŝu(n)m ⊕ ŝu(m)n algebra, H0 = ⊕

λ Mλ. The
only Mλ that can contain gauge-invariant states are those
which take the form Mλ = M′

λ′ ⊗ V , where M′
λ′ is an

irreducible representation of û(1) ⊕ ŝu(n)m and V is the
vacuum representation of ŝu(m)n. As given by the branch-
ing rules given in Ref. [64,82] the only such Mλ is such
that M′

λ′ = V ′, where V ′ is the vacuum representation of
û(1) ⊗ ŝu(n)m. Furthermore, these branching rules indicate
that V ′ ⊗ V has multiplicity one in H0. This implies that all
the gauge-invariant states of H0 can be generated by applying
the modes of the i∂�(z) and Ja(z) on the vacuum.

Now consider the OPEs,

Vl (z)V †
l (w) = pm(l )

(z − w)m

+
∑n

j=1 pm−1(l − j)
∑m

k=1 i∂ϕ̃(k j)(w)

(z − w)m−1

+ · · · , (E2)

where pm(l ) is an integer which is the number column vectors
of m integers such that each member of the set is in the range
1, 2, . . . , n and their sum is l (note this can be zero if no such
sets exist). By first considering l = nm and then l = nm − 1
one can easily show that by suitable linear combinations of
these OPEs we can generate the currents i∂�(z) and Jii(z).

We also have the OPEs

Vnm(z)V †
nm−i(w) ∝ Jni(w)

(z − w)m−1 + · · · , (E3)

with i = 1, 2, . . . , n − 1 and

Vnm−i(z)V †
nm(w) ∝ Jin(w)

(z − w)m−1 + · · · . (E4)

Furthermore, we also have [Jin
0 , Jn j

0 ] = Ji j
0 with i �= j. Thus,

all the currents i∂�(z) and Ja(z) must belong to A(n)m. As
Hphys ⊂ HG, this implies that all gauge invariant states of H0

is the same space of states as all the U(1) neutral gauge-
invariant states of Hphys, as Hphys ⊂ HG. Thus, by operator
state correspondence, all the U(1) neutral fields of A(n)m form
the chiral algebra of the û(1) ⊕ ŝu(n)m WZW model.

When m is even, this implies the commutation relations

[Vl,r,V †
k,s] = δs+r,0δlk p(l )m

⎡⎣m−1∏
j=1

r + m/2 − j

j

⎤⎦
+ (

normal ordered polynomial in aq and Ja
q

)
,

(E5)

where q is meant to represent some integer. For odd m we have
anticommutators of the form [103]

{Vl,r,V †
k,s} = δs+r,0δlk p(l )m

⎡⎣m−1∏
j=1

r + m/2 − j

j

⎤⎦
+ (

normal ordered polynomial in aq and Ja
q

)
.

(E6)

We now comment very briefly on the representation
theory of general A(n)m algebras. We first note that the
Vl (z) fields are WZW primaries with respect to the Ja(z)
fields corresponding to the totally symmetric rank m tensor
representation. Such WZW primaries have fusion rules corre-
sponding to simple currents [103]. A simple current V has a
fusion rule V × φλ1 = φλ2 where φλ1 and φλ2 are two WZW
primaries (i.e., the fusion of J with any other field has only one
possible outcome). The orbit of a field φλ are all the WZW pri-
maries generated by repeated fusion with V . Any irreducible
representation of A(n)m, H j will decompose into irreducible
representations of û(1) ⊗ ŝu(n)m H j = ⊕

q,λ Mq,λ, where q
is the U(1) charge and λ labels an ŝu(n)m representation. H j

must be built up by applying the modes of Vl (z) and V †
l (z)

onto some state belonging to one of the Mq,λ. Clearly then,
the only possible other Mq′,λ′ must be such that q′ differs from
q by an integer number of the U(1) charge of Vl (z) and λ′
must belong to the orbit of λ. Thus, the possible irreducible
representations of A(n)m can be labeled by orbits of this
simple current in the set of possible λ. This labeling is not
one-to-one.

One can always construct representations of A(n)m us-
ing the û(1) ⊕ ŝu(n)m WZW model from the space of states
that are generated by repeated application of the modes of
: exp[i

√
m/n�(z)] : φl (z) and : exp[−i

√
m/n�(z)] : φ

†
l (z) on

the state : eiq�(0) : φλ(0)|0〉, where φλ(z) is an ŝu(n)m WZW
primary and q is chosen such that the OPE Vl (z)eiq�(w)φλ(w)
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only contains integer powers of (z − w). These representa-
tions have the property that each Mq′,λ′ has multiplicity one
and for a given q′ there is only one Mq′,λ′ in the decompo-
sition of the irreducible representation (i.e., if Mq′,λ1 ⊂ H j

and Mq′,λ2 ⊂ H j then λ1 = λ2). One can show that the con-
formal blocks involving primaries of these representations
directly correspond to the conformal blocks of û(1) ⊗ ŝu(n)m.
In other words, the conformal blocks of these representations
are equivalent to the conformal blocks of the fields : eiq�(z) :
φλ(z), with such conformal blocks transforming among them-
selves under monodromy transformations. This can be shown
by considering the possible chiral vertex operators [61,67,68]
that generate the conformal blocks of A(n)m, and from U(1)
charge conservation.

2. Representations of A(2)k

In the case of A(2)k , Vl (z) transforms as a WZW primary
under the action of Ja(z) corresponding to the totally sym-
metric rank k tensor representation of su(2). The possible
representations of ŝu(2)k are labeled by the usual j with
the possible values being j = 0, 1/2, 1, . . . , k/2 with corre-
sponding scaling dimension hj = j( j + 1)/(k + 2) [64]. The
totally symmetric rank k tensor representation corresponds to
j = k/2 and has the fusion rules φ j × φk/2 = φk/2− j .

We now show how the irreducible representations can be
determined assuming that each irreducible representation can
be decomposed into irreducible representations of the ŝu(2)k

algebra. As for the chiral algebra associated with the Laughlin
wave functions the discussion here is not fully mathematically
rigorous.

Let Ha denote an irreducible representation of A(2)k ,
where the labeling system a is yet to be determined. Let Mq, j

be an irreducible representation of û(1) ⊕ ŝu(2)k , where q is
the U(1) charge and j labels the ŝu(2)k representation. Now
by the discussion in the previous section, for any Ha we
know there must exist a j such that Ha = [⊕possible q1Mq1, j] ⊕
[⊕possible q2Mq2,k/2− j]. Let |q, j〉 denote the primary of Mq, j .

We know Vl,x|q, j〉 must have L0 eigenvalue q2

2 + j( j+1)
k+2 −

x. At the same time Vl,x|q, j〉 ∈ Mq+√
k/2,k/2− j and so if

Vl,x|q, j〉 �= 0 we must have

(q + √
k/2)2

2
+ (k − 2 j)(k − 2 j + 2)

4(k + 2)
� q2

2
+ j( j + 1)

k + 2
− x,

because all states of Mq+√
k/2,k/2− j must have an L0

eigenvalue larger than or equal to the eigenvalue of
|q + √

k/2, k/2 − j〉. This constraint simplifies to, x �
−q

√
k/2 − (k − 2 j)/2. Similarly, for 〈q, j|Vl,x �= 0 then x �

−q
√

k/2 + (k − 2 j)/2. Also for either V †
l,x|q, j〉 �= 0 or

〈q, j|V †
l,x �= 0 we must have x � q

√
k/2 − (k − 2 j)/2 and

x � q
√

k/2 + (k − 2 j)/2, respectively. Hence, we can reuse
the argument from Sec. A to show that any Mq, j can appear
at most once in the decomposition of Ha into irreducible
representations of the û(1) ⊕ ŝu(2)k algebra.

Furthermore, as we must be able to generate state
|q − √

k/2, k/2 − j〉 from state |q, j〉 by applying modes of
the Vl (z) and V †

l (z) fields (as this is an irreducible repre-
sentation), there must exist an integer x such that, x/2 =
q
√

k/2 − (k − 2 j)/2, where if k is odd or even x is odd or

even respectively. Hence, q = (x + k − 2 j)/
√

2k. As x + k
must be even this can be expressed more compactly as q =√

2/k(p + j) where p ∈ Z. For a Mq1, j ⊂ Ha and Mq2, j ⊂
Ha then q1 = q2 + κ

√
2k with κ ∈ Z. This follows as we

must be able to obtain a state of Mq2, j from a state in Mq1, j

by an even number of applications of modes of Vl (z) or V †
l (z).

Similarly, if Mq, j ⊂ Ha then Mq+√
k/2,k/2− j ⊂ Ha. Hence,

we must have the decomposition

H j,x =
⊕
κ∈Z

[
Mq j,p,0(κ ), j ⊕ Mq j,p,1(κ ),k/2− j

]
, (E7)

where we now can adopt the labeling system a = ( j, p) and

q j,p,r (κ ) =
√

2

k
[p + κk + r(k/2) + j]. (E8)

So we have the irreducible representations H j,p. with the
inequivalent ones labeled by j = 0, 1/2, 1, . . . , k/4 for even
k and j = 0, 1/2, 1, . . . , (k − 1)/4 for odd k, with p =
0, 1, 2, . . . , k − 1 for j �= k/4 and p = 0, 1, 2, . . . , k/2 − 1
for j = k/4. Thus, for a given j there are k possible inequiva-
lent representations with one exception when k is even: there
are only k/2 representations with j = k/4.

In each case, we can construct the H j,p using the U(1) ⊗
SU(2)k WZW model by applying modes of the Vl (z) and
V †

l (z) fields on the state : eiqp�(0) : φ j (0)|0〉, where �(z)
is the U(1) field, φ j (z) is a spin- j SU(2)k WZW primary
field qp = √

2/k(p + j), and Vl (z) is represented by Vl (z) =
(k

l )
1/2

ei
√

k/2�(z)φk/2,−k/2+l (z) with φk/2,m(z) is the spin-k/2

WZW primary with J3
0 eigenvalue m. From the discussion at

the end of Sec. E 1, we can then see that all the conformal
blocks of CFTA(2)k must correspond to conformal blocks of
the û(1) ⊕ ŝu(2)k WZW model. Where we emphasize that
the irreducible representation of this algebra can always be
decomposed into irreducible representation of ŝu(2)k .

3. Fusion rules of A(2)k

We now give the fusion rules for A(2)k , whose represen-
tations correspond to the fields ζ j,p as detailed in Sec. VI C.
So that the fusion rules can be expressed in a compact way
we extend the labeling system ( j, p) such that ζ j,p+nk = ζ j,p

for n ∈ Z and ζk/2− j,p+2 j = ζ j,p. Note that this then gives
ζk/4,p+k/2 = ζk/4,p. The fusions rules can then be expressed as

ζ j1,p1 × ζ j2,p2 =
min ( j1+ j2,k− j1− j2 )∑

j=| j1− j2|
( j1+ j2− j)=0 (mod 1)

ζ j,p1+p2+ j1+ j2− j . (E9)

APPENDIX F: FURTHER DISCUSSION FOR GENERAL
PARTON CONSTRUCTION

1. The background charge operator C(N)

We now show inductively that the correlation function
of Eq. (132) can be computed in the vacuum representation
of A, which was defined in Sec. III B 5. To do this we
merely need to show that C(N ) can be defined purely as
an operator in the vacuum representation of A, which we
denote Hphys. The following arguments apply when the
lowest angular-momentum parton state for a fixed number
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of particles N is unique. We assume that the base cases
are integer quantum Hall wave functions (i.e., we are only
taking products of parton wave function). It is trivially
the case that the integer quantum Hall wave functions are
generated by a chiral algebra as identified above (as can be
seen in Sec. II D). The inductive assumptions, which can be
easily shown for the integer quantum Hall base cases, are
as follows. First, we assume 	i(z, z̄) = ∑ni

j=0 z̄ jφ
(i)
j (z) with

ni ∈ Z+, with A(i) denoting the chiral algebra generated by
φ

(i)
j (z) and their conjugates, with the vacuum representation

H(i)
phys. It is assumed that Ci(N ) is defined within H(i)

phys,
so that the generating correlation function of �i can be
computed in H(i)

phys, with the property Ci(N )φ(i)
j (z)Ci(N )† ∝

zki (N )+ jφ
(i)
j (z) → Ci(N )φ(i)

j,mC(N )† ∝ φ
(i)
j,ki (N )+ j+m, where

ki(N ) ∈ Z. There also exists three Hermitian operators
a(i)

0 , L(i)
0 , and J (i)

0 within H(i)
phys that commute with each

other, with the properties [a(i)
0 , φ

(i)
j (z)] = qiφ

(i)
j (z) (qi ∈ R),

[L(i)
0 , φ

(i)
j (z)] = hiφ

(i)
j (z) + z∂φ

(i)
j (z) (hi ∈ R, hi > 0),

[J (i)
0 , φ

(i)
j (z)] = jφ(i)

j (z), and a(i)
0 |0〉 = L(i)

0 |0〉 = J (i)
0 |0〉 = 0.

Finally, we assume Ci(N )†|0〉 is a simultaneous eigenstate
of a(i)

0 , L(i)
0 , and J (i)

0 such that it is the unique state with the
lowest L(i)

0 − J (i)
0 eigenvalue of all other states with the same

a(i)
0 eigenvalue.

By explicitly expanding 	(z, z̄) we get φ j (z) =∑
j1 j2

δ j1+ j2, jφ
(1)
j1

(z)φ(2)
j2

(z). It then follows that
C(N )φ j (z)C(N )† ∝ zk1(N )+k2(N )+ jφ j (z). Within CFT1 ⊗
CFT2, we then define the operators a0 = a(1)

0 + a(2)
0 ,

L0 = L(1)
0 + L(2)

0 , and J0 = J (1)
0 + J (2)

0 . Clearly these
have the desired properties, [a0, φ j (z)] = (q1 + q2)φ j (z),
[L0, φ j (z)] = (h1 + h2)φ j (z) + z∂φ j (z), [J0, φ j (z)] = jφ j (z),
and a0|0〉 = L0|0〉 = J0|0〉 = 0. Hence, Hphys must be
an invariant subspace of the operators a0, L0, and J0.
Furthermore, [a(i)

0 , φ j (z)] = qiφ j (z), so Hphys is an invariant
subspace of a(i)

0 and, hence, within Hphys a(1)
0 ∝ a(2)

0 . Clearly,
C(N )†|0〉 must be the unique state in CFT1 ⊗ CFT2 with
the property that it is a simultaneous eigenstate of a(i)

0 ,
L0, and J0 with the property that it has the lowest L0 − J0

eigenvalue of all states with the same a(i)
0 eigenvalues because

〈0|C(N )
∏N

i=1 	(zi, z̄i )|0〉 �= 0 then PC(N )†|0〉 �= 0, where P
is the projector onto Hphys. Thus, C(N )†|0〉 = |x〉 + |y〉 where
|x〉 ∈ Hphys and P|y〉 = 0, with both |x〉 and |y〉 having the
same eigenvalues of a(i)

0 , L0, and J0. Given the uniqueness
properties given above, it must be the case that |y〉 = 0. So,
C(N )†|0〉 ∈ Hphys. So C(N ) is well defined within Hphys and
so we can write the wave function �1�2 using the vacuum
representation of A. As a(1) ∝ a(2) in Hphys then C(N )†|0〉
must the must be the unique state in Hphys, with the property
that it is a simultaneous eigenstate of a0, L0, and J0 with the
property that it has the lowest L0 − J0 eigenvalue of all states
with the same a0 eigenvalue.

2. Angular-momentum mapping

We now show what form the angular-momentum operator
generally takes in the CFT provided the lowest angular-
momentum parton ground-state trial wave function is unique
for a fixed number of particles, N .

We again consider the product wave function �1�2. We
then assume that the edge-state mapping for �i is such that the
angular-momentum operator can be expressed in the CFT as
L(i)

0 + vi(N )a(i)
0 + ui(N ) for some real-valued functions vi(N )

and ui(N ). This is true for the integer quantum Hall base cases
so long as N is such that the lowest angular-momentum state
is unique at this fixed number of particles.

For the product wave function �1�2 the angular-
momentum operator can mapped to the CFT simply as L(1)

0 +
L(2)

0 + v1(N )a(1)
0 + v2(N )a(2)

0 + u1(N ) + u2(N ). Then recall
that within Hphys a(1)

0 ∝ a(2)
0 . Thus within Hphys the angular-

momentum operator maps over as L0 + v(N )a0 + u(N ) for
some real-valued functions v(N ) and u(N ).

3. Energy-momentum tensor of A
We now show that A contains an energy-momentum ten-

sor, which is required for the construction of CFTA. Let
T (z) denote the energy-momentum tensor of CFT1 ⊗ CFT2

(which is simply the sum of the energy-momentum tensors
of CFT1 and CFT2). Its corresponding state is |T 〉 ≡ T (0)|0〉.
Once again, let P be the projector onto Hphys. We can then
define a new field T̃ (z) from state-operator correspondence
T̃ (0)|0〉 ≡ P|T 〉. As P|T 〉 ∈ Hphys we must have T̃ (z) ∈ A.

Let φ(z) be any field of CFT1 ⊗ CFT2, φ(z) ∈ CFT1 ⊗
CFT2. We then define (Lnφ)(z) ≡ ∮

z
dw
2π i (w − z)n+1T (w)φ(z).

This allows one to express the OPE T (z)φ(w) as

T (z)φ(w) =
∑

n

(Lnφ)(w)

(z − w)n+2 . (F1)

The corresponding state of (Lnφ)(z) is Ln|φ〉 where Ln are the
usual Virasoro generators, Ln = ∮

dz
2π i z

n+1T (z). For the field
T̃ (z) we also define (L̃nφ)(z) ≡ ∮

z
dw
2π i (w − z)n+1T̃ (w)φ(z),

where (L̃nφ)(0)|0〉 = L̃n|φ〉, with L̃n = ∮
dz

2π i z
n+1T̃ (z). As for

T (z), we can express the OPE T̃ (z)φ(w) as

T̃ (z)φ(w) =
∑

n

(L̃nφ)(w)

(z − w)n+2 . (F2)

We now show that, for any field φ(z) in the chiral algebra
A, φ(z) ∈ A, we have (Lnφ)(z) = (L̃nφ)(z) for n � −1. First,
we note that the fields that generate A, φ j (z), are primary
fields with some scaling dimension h, and so we must have
the OPE

T (z)φ j (w) ∼ hφ j (w)

(z − w)2 + ∂φ j (z)

z − w
. (F3)

This OPE can also be expressed as

φ j (z)T (w) ∼ hφ j (w)

(z − w)2 + (h − 1)∂φ j (w)

z − w
. (F4)

We can further convert this OPE to vector form using state-
operator correspondence,

φ j (z)|T 〉 ∼ z−2h|φ j〉 + z−1(h − 1)|∂φ j〉. (F5)

We know that |∂φ j〉 ∈ Hphys as φ j,−h−1|0〉 =∮
dz

2π i z
−2φ j (z)|0〉 = ∂φ j (0)|0〉 = |∂φ j〉. Furthermore, let

H⊥
phys be the orthogonal complement of Hphys. From the

definition of Hphys, if |v〉 ∈ Hphys then φ
†
j,−n|v〉 ∈ Hphys. So if
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|w〉 ∈ H⊥
phys then for any |v〉 ∈ Hphys we have 〈v|φ j,n|w〉 = 0

as φ
†
j,−n|v〉 ∈ Hphys and, hence, φ j,n|w〉 ∈ H⊥

phys. We then
have that [φ j (z), P] = 0. It then follows that

φ j (z)P|T 〉 = Pφ j (z)|T 〉
∼ P[z−2h|φ j〉 + z−1(h − 1)|∂φ j〉]
= z−2h|φ j〉 + z−1(h − 1)|∂φ j〉. (F6)

In OPE form we have

T̃ (z)φ j (w) ∼ hφ j (w)

(z − w)2 + ∂φ j (z)

z − w
. (F7)

Hence, [Ln − L̃n, φ(z)] = 0 for n � −1. We also have for
n � −1 L̃n|0〉 = ∮

dz
2π i z

n+1T̃ (z)|0〉 = 0 and Ln|0〉 = 0. Thus,
(Ln − L̃n)|0〉 = 0 for n � −1. As |v〉 ∈ Hphys must be a poly-
nomial in the modes of φ j (z) and φ

†
j (z) applied on the vacuum

|0〉, we must also have that (Ln − L̃n)|v〉 = 0 for n � −1.
Thus, for any φ(z) ∈ A (Lnφ)(z) = (L̃nφ)(z) for n � −1. This
then implies that for φ ∈ A the singular terms in the OPE
T (z)φ(w) are the same as the singular terms in the OPE
T̃ (z)φ(w). We then also have the property that for |v〉 ∈ Hphys

then Ln|v〉 ∈ Hphys for n � −1. A special case of this is L1,
where if |w〉 ∈ H⊥

phys and |v〉 ∈ Hphys then 〈v|L1|w〉 = 0 as
L−1|v〉 ∈ Hphys and so L1|w〉 ∈ H⊥

phys. This then implies that
[L1, P] = 0.

Now as [L0, φ j,n] = −nφ j,n we must have that Hphys is
an invariant subspace of L0. Also, as L0 is Hermitian, H⊥

phys
is also an invariant subspace of L0. Hence, [L0, P] = 0. So
L0P|T 〉 = 2P|T 〉, which implies T̃ (z) must be a field of scal-
ing dimension two. Thus, (L0T̃ )(z) = 2T̃ (z) and (L−1T̃ )(z) =
∂T̃ (z). Also, from the standard OPE of T (z)T (w) we know
that L1|T 〉 = 0. Thus, L1P|T 〉 = PL1|T 〉 = 0 ⇒ (L1T̃ )(z) =
0. L2P|T 〉 must be a state with L0 eigenvalue zero. Only the
vacuum state |0〉 has L0 eigenvalue zero. It then follows that
(L2T̃ )(z) = (c̃/2)1(z), where c̃ is some constant. For n > 2,
(LnT̃ )(z) = 0 as there are no fields with negative scaling
dimension (as CFT1 ⊗ CFT2 is assumed to be unitary). The
OPE T (z)T̃ (w) must then be

T (z)T̃ (w) ∼ c̃/2

(z − w)4 + 2T̃ (w)

(z − w)2 + ∂T̃ (w)

(z − w)
. (F8)

As argued earlier, T (z)T̃ (w) must have the same singular
terms as T̃ (z)T̃ (w) because T̃ (z) ∈ A. Thus,

T̃ (z)T̃ (w) ∼ c̃/2

(z − w)4 + 2T̃ (w)

(z − w)2 + ∂T̃ (w)

(z − w)
. (F9)

For any operator φ(z) of CFT1 ⊗ CFT2, we have that
the Hermitian conjugate of φ(z) is given by [φ(z)]† =
z̄−2hφ†(z̄−1), where φ†(z) is the conjugate of φ(z) and h is the
scaling dimension of φ(z). We can then define an anti-unitary
operator C which acts as C|φ〉 = |φ†〉. One can think of C is the
usual “charge” conjugation operator in quantum field theory.
By taking the Hermitian conjugate of the product φ1(z)φ2(w),
it can be seen that the fields in the OPE of φ

†
1 (z)φ†

2 (w) are
simply the conjugates of the fields that appear in the OPE
φ1(z)φ2(w). As φ

†
j (z) ∈ A and φ j (z) ∈ A, it inductively fol-

lows that for any φ(z) ∈ A then φ†(z) ∈ A. In vector form, if
|v〉 ∈ Hphys then C|v〉 ∈ Hphys. As C is an antiunitary operator,

it also follows that if |w〉 ∈ H⊥
phys then C|w〉 ∈ H⊥

phys. So,
CP = PC. We then have CP|T 〉 = PC|T 〉 = P|T 〉 [because
T (z) is self-conjugate]. Hence, T̃ (z) is self-conjugate T̃ †(z) =
T̃ (z). We then have the property (L̃n)† = L̃−n.

From the OPE of Eq. (F9) it follows that L̃n must form
a Virasoro algebra with central charge c̃. Furthermore, as
〈0|L̃2L̃−2|0〉 � 0 and 〈0|L̃2L̃−2|0〉 = c̃/2 then c̃ � 0. The field
T̃ (z) can be taken as a candidate energy-momentum tensor
for A.

Finally, we show that T̃ (z) is unique. Suppose we have
another candidate energy-momentum tensor T̂ (z). We must
require it to have the OPE T̂ (z)φ j (w) ∼ hφ j (w)/(z − w)2 +
∂φ j (w)/(z − w). Clearly then, the modes of T̂ must be such
that L̃n − L̂n must commute with all the modes of φ j (z) and
φ

†
j (z). We must further require that L̂n|0〉 = 0 for n � −1.

So (L̃n − L̂n)|0〉 = 0 for n � −1 and 〈0|(L̃n − L̂n) = 0 for
n � 1. As any two states, |a〉 and |b〉, of Hphys are poly-
nomials in the modes of φ j (z) and φ

†
j (z) applied on |0〉, it

then follows that 〈a|(L̃n − L̂n)|b〉 = 0 for all n. Hence, for any
|v〉 ∈ Hphys we must have (L̃n − L̂n)|v〉 = 0 for all n. Thus,
within Hphys, T̃ (z) = T̂ (z). T̃ (z) is then the unique candidate
energy-momentum tensor.

In conclusion, we have found an energy-momentum tensor
for A with the unique property that any Virasoro primary
field of CFT1 ⊗ CFT2 that is in A is also a Virasoro primary
relative to T̃ (z) with the same scaling dimension.

4. The φ2
2φ1 example

As another example to illustrate the general process of
generating a product wave function outlined in Sec. III B 5,
let us briefly consider the φ2

2φ1 state (or the 221 state in
another notation). This state is at filling fraction ν = 1/2 and
was, at one point, considered as a possible candidate wave
function for ν = 5/2 [118]. We already know how to produce
the φ2

2 from Sec. III B and we know how to construct the
ν = 1 wave function from Sec. II D. Let A1 be the chiral
algebra corresponding to φ2

2 with the wave function being
generated by a correlation function of CFTA1 . Let CFT2 be
the CFT that generates the ν = 1 wave function where we
use the same notation from Sec. II D. We can then generate
the φ2

2φ1 wave function in CFTA1 ⊗ CFT2 with 	(z, z̄) =
[V−1(z) + z̄

√
2V0(z) + z̄2V1(z)]V (z). The chiral algebra we

associate A with this state is that generated by repeated
OPEs of Ṽm(z) ≡ Vm(z)V (z) and their conjugates. Let Hphys

be space of states in CFTA1 ⊗ CFT2 that is generated by
applying the modes of Ṽm(z) and Ṽ †

m (z) on |0〉. Now define
the current J (z) = [i∂�(z) − i∂ϕ(z)]/

√
2 and the space of

gauge invariant states HG by |v〉 ∈ HG ⇔ Jn|v〉 = 0 for n >

0. Because [J (z), Ṽm(z)] = 0 we must have Hphys ⊂ HG. Fur-
ther define �̃(z) = [�(z) + ϕ(z)]/

√
2. One can easily show

that the space of states with a fixed number of partons and
fermions of CFT2 can be generated by the action of modes of
i∂�̃(z), Ja(z) and J (z) on a state with which has the lowest L0

eigenvalue of that space. The only such spaces that can contain
gauge-invariant states are those where the number of partons
is double the number of fermions. The states with the lowest
L0 eigenvalues in such spaces can be generated by modes
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of Ṽm(z) and their conjugates. One can also explicitly check
that the fields �̃(z) and Ja(z) can be generated by OPEs of
Ṽm(z) and Ṽ †

m (z). It then follows that all gauge-invariant states
can be generated by modes of the fields of A, which implies
HG = Hphys. By state operator correspondence, all neutral
fields of A correspond to fields that are descendants of the
identity in the û(1) ⊕ ŝu(2)2 WZW model. One should note,
however, that the compactification radius of �(z) is different
from �̃(z). For a fixed number of particles the edge-state
counting of φ2

2φ1 must have upper bounds given by the state
counting of the û(1) ⊕ ŝu(2)2 WZW model.

APPENDIX G: MATRIX ELEMENTS
OF MODES OF CHIRAL BOSON VERTEX OPERATORS

Consider the chiral boson ϕ(z) with a corresponding Klein
factor F such that [a0, F ] = √

rF , where r ∈ Z and r >

0. We denote the basis of its Hilbert space by |λ; m〉 ≡∏
n∈λ a−nF m|0〉/√N , where m is an integer, λ is a partition,

and N is used to normalize the state.

The matrix elements we are interested in take the form

〈λ′; m′|F l : eil
√

rϕ : |λ; m〉, (G1)

where l ∈ Z. This can be split up into several independent
sectors. From the F , a0 sector we simply get a δm′−m,l zlrm

factor. Furthermore, all momentum modes are decoupled and
we simply need to find matrix elements of the form (where we
let σ ≡ l

√
r)

〈0|(an)qe
σ
n a−nzn

e
−σ
n anz−n

(a−n)p|0〉

=
(

∂

∂y

)q

x,y=0

(
∂

∂x

)q

x,y=0

〈0|eyan e
σ
n a−nzn

e− σ
n anz−n

exa−n |0〉.
(G2)

We can then calculate

〈0|eyan e
σ
n a−nzn

e− σ
n anz−n

exa−n |0〉 = 〈0|eyan exa−n |0〉eyσ zn−xσ z−n

= eyσ zn+nxy−xσ z−n
. (G3)

Then,

(
∂

∂y

)q

x,y=0

(
∂

∂x

)q

x,y=0

eyσ zn+nxy−xσ z−n =
(

∂

∂y

)q

x,y=0

(yn − σ z−n)peyσ zn+nxy−xσ z−n

=
min (p,q)∑

i=0

(
q

i

)
ni p!

(p − i)!
(−σ z−n)p−i(σ zn)q−i

= z(q−p)n(−1)pσ q+p
min (p,q)∑

i=0

q!p!(−n)i

σ 2ii!(q − i)!(p − i)!
. (G4)

Now let pn(λ) be the multiplicity of n in the partition λ and let f (λ) be the set of distinct elements in λ. We can then express
the full matrix element as

〈λ′; m′|F l : eil
√

rϕ : |λ; m〉 = δm′−m,l z
lrm

∏
n∈ f (λ′ )∪ f (λ)

[
z(pn(λ′ )−pn (λ))n(−1)pn(λ)(l√r

)pn (λ′ )+pn (λ)

×
min (pn(λ),pn (λ′ ))∑

j=0

[pn(λ′)]![pn(λ)]!(−n) j

(l
√

r)2 j j![pn(λ′) − j]![pn(λ) − j]!

]
. (G5)

APPENDIX H: FREE-FIELD REPRESENTATION
OF ŝu(2)2 CURRENTS AND PARTON MAPPING

We first detail how a combination of a Majorana field ψ (z)
and a free chiral boson ϕ(z), with compactification radius one
and corresponding Klein factor Fϕ , can be used to generate
the vacuum representation of the ŝu(2)2 Kac-Moody algebra.
The computation of the matrix elements of the model inner
product action of Eq. (157), using this representation, will
then be discussed. It will then be detailed how this vacuum
representation can be mapped back to the one occurring in
HCFT (defined in Sec. III B 1).

The ψ (z) field has conformal dimension of 1/2 and the
following OPE:

ψ (z)ψ (w) = 1

z − w
+ (z − w)2T ψ (w) + · · · , (H1)

where T ψ (z) is the energy-momentum tensor of this Majorana
degree of freedom given by

T ψ (z) = − 1
2 : ψ (z)∂ψ (z) : . (H2)

The above OPE implies the following anticommutation rela-
tions:

{ψn, ψm} = δn+m,0, (H3)

where n and m are half-integral n, m ∈ Z + 1/2.
We then define the usual vertex operator for ϕ(z) as

Vϕ (z) ≡ Fϕ : eiϕ(z) :. Let the Hilbert space of this combined
system of ψ (z) and ϕ(z) be Hψ,ϕ . This Hilbert space can
be spanned by an orthonormal basis of the form |μ; λ; p〉 =∏

n2∈λ a(ϕ)
−n2

F p
ϕ

∏
n1∈μ ψ− n1

2
|0〉/√N , where λ is a partition, μ

is a partition with no repeated elements and with all elements
being odd, p ∈ Z, a(ϕ)

n are the modes of i∂ϕ(z), and N is used
to normalize the state.
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Now consider the following currents:

J+(z) ≡
√

2ψ (z)Vϕ (z),

J−(z) ≡
√

2V †
ϕ (z)ψ (z),

J3(z) ≡ i∂ϕ(z). (H4)

From the usual OPEs i∂ϕ(z)Vϕ (w) ∼ Vϕ (w)/(z − w),
i∂ϕ(z)V †

ϕ (w) ∼ −V †
ϕ (w)/(z − w), and i∂ϕ(z)i∂ϕ(w) ∼

1/(z − w)2, we have the OPEs

J3(z)J±(w) ∼ ± J±(w)

z − w
,

J3(z)J3(w) ∼ 1

(z − w)2 . (H5)

We also have the OPE

J+(z)J−(w) = 2ψ (z)Vϕ (z)V †
ϕ (w)ψ (w)

= 2ψ (z)ψ (w)Vϕ (z)V †
ϕ (w)

∼ 2

z − w

[
1

(z − w)
+ i∂ϕ(w)

]
= 2

(z − w)2 + 2J3(w)

z − w
. (H6)

Thus, the J3(z) and J±(z) currents have the OPEs correspond-
ing to the ŝu(2)2 Kac-Moody algebra (i.e., their modes will
form this algebra).

Let Hŝu(2)2 ⊂ Hψ,ϕ be the Hilbert space generated by poly-
nomials in the modes of the J3(z) and J±(z) fields applied on
the vacuum, |0〉. By definition Hŝu(2)2 will form the vacuum
representation of ŝu(2)2. Let P be an operator defined by
P|μ; λ; p〉 = |μ; λ; p〉 if p + (number of elements of μ) = an
even number, and P|μ; λ; p〉 = 0 if p + (number of elements
of μ) = an odd number. In words, P is the projector onto
the space of states with even fermion parity. As the J3(z) and
J±(z) currents carry even fermion parity, the modes of these
fields must commute with P . Furthermore, as |0〉 has even
fermion parity, all states of Hŝu(2)2 must have even fermion
parity. We now show that the space of states of even fermion
parity is equivalent to Hŝu(2)2 .

We first note that the Hilbert space of just the Majorana
field can be split up into irreducible representations of the
Virasoro algebra formed by the modes, Lψ

n , of T ψ (z) with
central charge c = 1/2. It is well known that there are only
three unitary irreducible representations of the Virasoro at
c = 1/2, with the conformal dimension of the corresponding
primary states being 0, 1/2, and 1/16. For the Majorana
system used here, with periodic boundary conditions on the
complex plane, only the 0 and 1/2 representation can occur,
as there are no states with L0 eigenvalue of 1/16 in the Hilbert
space. By matching the L0 eigenvalues, both of the 0 and
1/2 representation occur with multiplicity one with corre-
sponding primary states |0〉 and ψ− 1

2
|0〉, respectively. We can

then use the following overcomplete basis for Hψ,ϕ , with the
basis elements |0; λ1; λ2; p〉 = ∏

n1∈λ1
Lψ

−n1

∏
n2∈λ2

a(ϕ)
−n2

F p
ϕ |0〉

and |1/2; λ1; λ2; p〉 = (−1)pψ− 1
2
|0; λ1; λ2; p〉, where λi are

partitions and p ∈ Z. The space of states with even fermion

parity is spanned by the basis elements |0; λ1; λ2; p〉 with p
even and |1/2; λ1; λ2; p〉 with p odd.

Now note that J+
−1|0〉 = √

2ψ− 1
2
Fϕ|0〉 and J−

−1|0〉 =√
2F−1

ϕ ψ− 1
2
|0〉. Hence, ψ− 1

2
Fϕ|0〉, F−1

ϕ ψ− 1
2
|0〉 ∈ Hŝu(2)2 .

Furthermore, the OPEs

J+(z)J+(w) = − 2F 2
ϕ : e2iϕ(z) : + · · · ,

J−(z)J−(w) = − 2F−2
ϕ : e−2iϕ(z) : + · · · (H7)

imply by induction with repeated OPEs that the
F p

ϕ |0〉 ∈ Hŝu(2)2 for p even. Next, we have J±
−(1±p)F

p
ϕ |0〉 ∝√

2ψ− 1
2
F p±1

ϕ |0〉. It then follows that ψ− 1
2
F p

ϕ |0〉 ∈ Hŝu(2)2 for

p odd. By definition we have J3
n = a(ϕ)

n . Finally, including the
first nonsingular term in the OPE of J+(z)J−(w) gives

J+(z)J−(w) = 2

[
1

z − w
+ (z − w)2T ψ (w) + · · ·

]
×
[

1

z − w
+ i∂ϕ(w)

+ 1

2
(z − w)(i∂2ϕ(w)+ : (i∂ϕ(w))2 :) + · · ·

]
= 2

(z − w)2 + 2J3(w)

z − w
+ 4T ψ (w)

+ (∂J3(w)+ : [J3(w)]2 :) + · · · , (H8)

which implies that the Lψ
n modes can be expressed in terms of

the modes of J3(z) and J±(z). It then follows that the space of
states of even fermion parity is equivalent to Hŝu(2)2 .

Now let H�,ψ,ϕ be the Hilbert space of the combina-
tion of a chiral boson �(z) and the ψ (z) and ϕ(z) system
we discussed above. Let Hû(1)⊕ŝu(2)2 ⊂ H�,ψ,ϕ be the space
of states that are U(1) charge natural relative to �(z) (i.e.,
|v〉 ∈ Hû(1)⊕ŝu(2)2 ⇒ a0|v〉 = 0) and have even fermion par-
ity. Hû(1)⊕ŝu(2)2 then forms the vacuum representation of the
û(1) ⊕ ŝu(2)2 Kac-Moody algebra, with the û(1) current be-
ing i∂�(z) and the ŝu(2)2 currents being given by Eq. (H4).
A basis for this space, written as |λ1; μ; λ2; p〉, was given in
Sec. V B (with p + (number of elements of μ) = an even
number). We then define the extension of the overcomplete
|0; λ2; λ2; p〉 and |1/2; λ1; λ2; p〉 basis for the Hψ,ϕ system to
the H�,ψ,ϕ [where we only be interested in the U(1) neutral
states] as

|λ1 : 0; λ2; λ; p〉 ≡
∏

n1∈λ1

a−n1

∏
n2∈λ2

Lψ
−n2

∏
n3∈λ3

a(ϕ)
−n3

F p
ϕ |0〉,

|λ1 : 1/2; λ2; λ; p〉 ≡ (−1)pψ− 1
2
|λ1 : 0; λ2; λ; p〉. (H9)

Before moving on, we now briefly discuss how the matrix
elements of the model inner product action of Eq. (157)
can be computed using this representation of û(1) ⊕ ŝu(2)2.
We first note that 1

2 [: [J1(z)]2 : + : [J2(z)]2 :] = T ψ (z).
Now let Lϕ

0 ≡ 1
2

∮
dz

2π i z : [J3(z)]2 := 1
2

∮
dz

2π i z : [i∂ϕ(z)]2 :.

In the |λ1; μ; λ2; p〉 basis the operators Lψ

0 , Lϕ
0 , and J3

0 are
diagonal with Lψ

0 |λ1; μ; λ2; p〉 = [
∑

n∈μ n/2]|λ1; μ; λ2; p〉,
Lϕ

0 |λ1; μ; λ2; p〉 = [p2/2 + (
∑

n∈λ2
n)]|λ1; μ; λ2; p〉, and

J3
0 |λ1; μ; λ2; p〉 = p|λ1; μ; λ2; p〉. The matrix elements in

this basis of the operator (J3i∂�)0 ≡ ∮
dz

2π i zJ3(z)i∂�(z)
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can be computed by expressing it as (J3i∂�)0 = ∑
n a(ϕ)

−n an.
Finally, the matrix elements of J1

0 can be computed by
noting that J1

0 = [J+
0 + J−

0 ]/2 with J+
0 = √

2
∑

k ψ−kVϕ,k

and J−
0 = √

2
∑

k V †
ϕ,−kψk , where the matrix elements of the

Vϕ,k and V †
ϕ,k modes can be computed using the result of

Appendix G.
Now recall the system of four chiral bosons ϕ̃(i j)(z), all

with compactification radius one, and Hilbert space HCFT,
which was defined in Sec. III B 1. Within this system we have
the û(1) ⊕ ŝu(2)2 currents

i∂�̂(z) = 1
2 [i∂ϕ̃(11)(z) + i∂ϕ̃(12)(z)

+ i∂ϕ̃(21)(z) + i∂ϕ̃(22)(z)],

Ĵ±(z) =V ±
1 (z) + V ±

2 (z),

Ĵ3(z) = 1
2 [i∂ϕ̃(12)(z) − i∂ϕ̃(11)(z)

+ i∂ϕ̃(22)(z) − i∂ϕ̃(21)(z)], (H10)

where

V ±
j (z) = (F̃j2F̃ †

j1)±1 : e±i(ϕ̃( j2) (z)−ϕ̃( j1) (z)) : . (H11)

The space of states generated by applying polynomials of
modes of these fields to the vacuum state of HCFT forms
the vacuum representation of the û(1) ⊕ ŝu(2)2 Kac-Moody
algebra. We denote the vacuum representation formed this
way as Ĥû(1)⊕ŝu(2)2 .

We now construct the isomorphism that maps the
Hû(1)⊕ŝu(2)2 vacuum representation to the Ĥû(1)⊕ŝu(2)2 vac-
uum representation, where we write this linear map as M :
Hû(1)⊕ŝu(2)2→Ĥû(1)⊕ŝu(2)2

. This is the unique linear map with
the property

Man|v〉 = ânM|v〉,
MJ3

n |v〉 = Ĵ3
nM|v〉,

MJ±
n |v〉 = Ĵ±

n M|v〉,
M|0〉 = |0̂〉, (H12)

where |v〉 ∈ Hû(1)⊕ŝu(2)2 and |0̂〉 is the vacuum state of
Ĥû(1)⊕ŝu(2)2 .

By its defining property, we can immediately see that M
must have the property,

Ma(ϕ)
n |v〉 = 1

2

[
ã(12)

n − ã(11)
n + ã(22)

n − ã(21)
n

]
M|v〉

= Ĵ3
nM|v〉, (H13)

where we one should note that the ã(i j)
n modes can be ex-

pressed in terms of the modes of the Ṽi j (z) and Ṽ †
i j (z) fields

using Eq. (56). We also have the OPEs

Ĵ±(z)Ĵ±(w) = 2V ±
1 (w)V ±

2 (w) + · · · . (H14)

By matching these with the OPEs of Eq. (H7), it follows that

MF 2p
ϕ |v〉 = [−F̃12F̃ †

11F̃22F̃ †
21]pM|v〉, (H15)

where p ∈ Z. Let the two fields φ(1) and φ(2) be given by

φ(i)(z) ≡ 1√
2

[i∂ϕ̃(i2) − i∂ϕ̃(i1)]. (H16)

Now consider the OPE

Ĵ+(z)Ĵ−(w) = 2

(z − w)2 + 2Ĵ3(w)

z − w

+ V +
1 (w)V −

2 (w) + V −
1 (w)V +

2 (w)

+ 1√
2

[i∂φ(1)(w) + i∂φ(2)(w)]

+ : [φ(1)(w)]2 : + : [φ(2)(w)]2 : + · · ·

= 2

(z − w)2 + 2Ĵ3(w)

z − w

+ V +
1 (w)V −

2 (w) + V −
1 (w)V +

2 (w)

+ 1

2
: [φ(2)(w) − φ(1)(w)]2 :

+ ∂ Ĵ3(w)+ : [Ĵ3(w)]2 : + · · · . (H17)

By comparing this with the OPE of Eq. (H8), one can then
see that the Majorana energy-momentum tensor, T ψ (z), must
map over to Ĥû(1)⊕ŝu(2)2 as

T̂ ψ (z) = 1
4

[
V +

1 (w)V −
2 (w) + V −

1 (w)V +
2 (w)

+ 1
2 : [φ(2)(w) − φ(1)(w)]2 :

]
. (H18)

Let the modes of T̂ ψ (z) be L̂ψ
n . We can then write

MLψ
n |v〉 = L̂ψ

n M|v〉. (H19)

Finally, we also have

Mψ− 1
2
Fϕ|0〉 = M

1√
2

J+
−1|0〉

= 1√
2

Ĵ+
−1

∣∣0̂〉
= 1√

2

[
Ṽ12,− 1

2
Ṽ †

11,− 1
2

+ Ṽ22,− 1
2
Ṽ †

21,− 1
2

]|0̂〉,

Mψ− 1
2
F †

ϕ |0〉 = M
−1√

2
J−
−1|0〉

= −1√
2

Ĵ−
−1

∣∣0̂〉
= −1√

2

[
Ṽ11,− 1

2
Ṽ †

12,− 1
2

+ Ṽ21,− 1
2
Ṽ †

22,− 1
2

]|0̂〉. (H20)

By combining Eqs. (H12), (H13), (H19), and (H20), we
find that the basis of Eq. (H9) maps over to Ĥû(1)⊕ŝu(2)2 as

M|λ1 : 0; λ2; λ3; p〉 =
∏

n1∈λ1

â−n1

∏
n2∈λ2

L̂ψ
−n2

∏
n3∈λ3

Ĵ3
−n3

× [−F̃12F̃ †
11F̃22F̃ †

21]p/2|0̂〉 (H21)

for p even,

M|λ1 : 0; λ2; λ3; p〉 =
∏

n1∈λ1

â−n1

∏
n2∈λ2

L̂ψ
−n2

∏
n3∈λ3

Ĵ3
−n3

× [−F̃12F̃ †
11F̃22F̃ †

21](p−1)/2

× −1√
2

[
Ṽ12,− 1

2
Ṽ †

11,− 1
2

+ Ṽ22,− 1
2
Ṽ †

21,− 1
2

]|0̂〉
(H22)
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for p odd and p > 0, and

M|λ1 : 0; λ2; λ3; p〉 =
∏

n1∈λ1

â−n1

∏
n2∈λ2

L̂ψ
−n2

∏
n3∈λ3

Ĵ3
−n3

× [−F̃12F̃ †
11F̃22F̃ †

21](p+1)/2

1√
2

[
Ṽ11,− 1

2
Ṽ †

12,− 1
2

+ Ṽ21,− 1
2
Ṽ †

22,− 1
2

]|0̂〉
(H23)

for p odd and p < 0. Note that by using Eq. (56) along
with the fact that V +

i (z) = Ṽi2Ṽ
†

i1(z) and V −
i (z) = Ṽi1Ṽ

†
i2(z) the

modes ân, L̂n, and Ĵ3
n can be expressed in terms of the modes

of the Ṽi j (z) and Ṽ †
i j (z) fields. Furthermore, it was previously

discussed in Sec. II D how the Klein factors acting on the
vacuum can be expressed as the modes of corresponding
vertex operator acting on the vacuum state. Thus, putting
this altogether we can express the states M|λ1 : 0; λ2; λ3; p〉
and M|λ1 : 1/2; λ2; λ3; p〉 can be expressed as polynomials
in the modes Ṽi j,n and Ṽ †

i j,n acting on |0̂〉. By expressing
M|λ1 : 0; λ2; λ3; p〉 and M|λ1 : 1/2; λ2; λ3; p〉 this way, the edge
wave functions that these states map to can be straightfor-
wardly expressed as a sum of products of Slater determinants
in the orbitals zm and z̄zm from the discussions of Sec. II D and
Sec. III B 3.

Finally, we can then map over the |λ1; μ; λ2; p〉 basis by un-
derstanding how this can be expressed as linear combinations
of the overcomplete |λ1 : 0; λ2; λ3; p〉 and |λ1 : 1/2; λ2; λ3; p〉
basis. Note that the elements of both these bases are L0

eigenstates, so |λ1; μ; λ2; p〉 must be expressible in terms of
a finite number of elements from the overcomplete basis with
the same L0 eigenvalue. Thus, the basis transformation can be
expressed as a series of matrices, where each matrix performs
the basis transform for the states of a given L0 eigenvalue.
To find the matrix for the L0 eigenvalue M, which we write
Y (M ), one can first find the matrix X (M ) that transforms
the |λ1 : 0; λ2; λ3; p〉 and |λ1 : 1/2; λ2; λ3; p〉 states, with L0

eigenvalue M, to the |λ1; μ; λ3; p〉 states, also with L0 eigen-
value M, by expressing the Majorana Virasoro modes as Lψ

n =
(1/2)

∑
k (k + 1/2) : ψn−kψk :. If X (M ) is a square matrix

Y (M ) would then be the inverse of X (M ). However, as the
|λ1 : 0; λ2; λ3; p〉 and |λ1 : 1/2; λ2; λ3; p〉 basis is overcom-
plete, the matrix X (M ) will represent an underdetermined
system of linear equations, and so there does not exist a unique
Y (M ). One solution, that can be implemented numerically,
is to take Y (M ) = ([X (M )]T X (M ))−1[X (M )]T as the chosen
basis transformation matrix. Once Y (M ) has been calculated
the edge-state wave functions that the |λ1; μ; λ2; p〉 states map
to can be expressed as sums of products of Slater determinants
of the zm and z̄zm orbitals.

APPENDIX I: INNER-PRODUCT ACTION MATRIX
ELEMENT FITTING: CONTINUED

For the ν = 2/5 composite fermion case the basis refer-
ences used in Fig. 3 can be found in Tables I, II, and III, and
sample matrix elements have been provided in Tables IV and
V. For the φ2

2 parton case the basis references used in Fig. 6
can be found in Tables VI, VII, and VIII, and sample matrix
elements have been provided in Tables IX and X. Note that

TABLE I. Basis reference, used in Fig. 3, for the ν = 2/5 com-
posite fermion CFT U(1) neutral states with L0 eigenvalue M = 1
(i.e., states that map to trial edge-state wave functions with the same
particle number as the ground-state trial wave function and with
angular momentum M = 1 relative to the ground-state trial wave
function). The corresponding basis elements are defined in Sec. V B.

Index Basis element

0 |∅; ∅; 1〉
1 |1; ∅; 0〉
2 |∅; 1; 0〉
3 |∅; ∅; −1〉

TABLE II. Basis reference, used in Fig. 3, for the ν = 2/5 com-
posite fermion CFT U(1) neutral states with L0 eigenvalue M = 2
(i.e., states that map to trial edge-state wave functions with the same
particle number as the ground-state trial wave function and with
angular momentum M = 2 relative to the ground-state trial wave
function). The corresponding basis elements are defined in Sec. V B.

Index Basis element

0 |1; ∅; 1〉
1 |∅; 1; 1〉
2 |2; ∅; 0〉
3 |∅; 2; 0〉
4 |11; ∅; 0〉
5 |∅; 11; 0〉
6 |1; 1; 0〉
7 |1; ∅; −1〉
8 |∅; 1; −1〉

TABLE III. Basis reference, used in Fig. 3, for the ν = 2/5 com-
posite fermion CFT U(1) neutral states with L0 eigenvalue M = 3
(i.e., states that map to trial edge-state wave functions with the same
particle number as the ground-state trial wave function and with
angular momentum M = 3 relative to the ground-state trial wave
function). The corresponding basis elements are defined in Sec. V B.

Index Basis element

0 |2; ∅; 1〉
1 |∅; 2; 1〉
2 |11; ∅; 1〉
3 |∅; 11; 1〉
4 |1; 1; 1〉
5 |3; ∅; 0〉
6 |∅; 3; 0〉
7 |12; ∅; 0〉
8 |∅; 12; 0〉
9 |2; 1; 0〉
10 |1; 2; 0〉
11 |11; 1; 0〉
12 |1; 11; 0〉
13 |∅; 111; 0〉
14 |111; ∅; 0〉
15 |2; ∅; −1〉
16 |∅; 2; −1〉
17 |11; ∅; −1〉
18 |∅; 11; −1〉
19 |1; 1; −1〉
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we have only provided sample matrix elements for the CFT
states that map to edge-state trial wave functions at angu-
lar momentum �M = 1, 2 above the ground state trial wave
function, where only matrix elements for which the Monte
Carlo estimated values have absolute values greater than 0.05
have been shown.

TABLE IV. Monte Carlo estimated (MC) and the fitted model
[Eq. (156)] matrix elements of the inner product action δSb for
the ν = 2/5 composite fermion CFT states that are U(1) neutral
and have L0 eigenvalue M = 1, where we have only shown matrix
elements that have an MC estimated value with an absolute value
greater than 0.05. The basis elements used are defined in Sec. V B.

Matrix element MC Model

〈∅; ∅; 1|δSb|∅; ∅; 1〉 15.3244 15.3242
〈∅; ∅; 1|δSb|∅; 1; 0〉 0.0928 0.0928
〈∅; 1; 0|δSb|∅; 1; 0〉 −0.2330 −0.2326
〈∅; 1; 0|δSb|∅; ∅; −1〉 −0.0928 −0.0928
〈∅; ∅; −1|δSb|∅; ∅; −1〉 −15.7893 −15.7894

TABLE V. Monte Carlo estimated (MC) and the fitted model
[Eq. (156)] matrix elements of the inner product action δSb for
the ν = 2/5 composite fermion CFT states that are U(1) neutral
and have L0 eigenvalue M = 2, where we have only shown matrix
elements that have an MC estimated value with an absolute value
greater than 0.05. The basis elements used are defined in Sec. V B.

Matrix element MC Model

〈1; ∅; 1|δSb|1; ∅; 1〉 15.3253 15.3242
〈1; ∅; 1|δSb|1; 1; 0〉 0.0929 0.0928
〈∅; 1; 1|δSb|∅; 1; 1〉 15.0758 15.0916
〈∅; 1; 1|δSb|∅; 2; 0〉 0.0929 0.0928
〈2; ∅; 0|δSb|∅; 2; 0〉 0.0525 0.0521
〈∅; 2; 0|δSb|∅; 2; 0〉 −0.4676 −0.4652
〈∅; 2; 0|δSb|∅; 1; −1〉 0.0929 0.0928
〈∅; 11; 0|δSb|∅; 11; 0〉 −0.4656 −0.4652
〈1; 1; 0|δSb|1; 1; 0〉 −0.2327 −0.2326
〈1; 1; 0|δSb|1; ∅; −1〉 −0.0928 −0.0928
〈1; ∅; −1|δSb|1; ∅; −1〉 −15.7891 −15.7894
〈∅; 1; −1|δSb|∅; 1; −1〉 −16.0080 −16.0221

TABLE VI. Basis reference, used in Fig. 6, for the φ2
2 parton CFT

U(1) neutral states with L0 eigenvalue M = 1 (i.e., states that map to
trial edge-state wave functions with the same particle number as the
ground-state trial wave function and with angular momentum M = 1
relative to the ground-state trial wave function). The corresponding
basis elements are defined in Sec. V B.

Index Basis element

0 |∅; 1; ∅; −1〉
1 |∅; ∅; 1; 0〉
2 |∅; 1; ∅; 1〉
3 |1; ∅; ∅; 0〉

TABLE VII. Basis reference, used in Fig. 6, for the φ2
2 parton

CFT U(1) neutral states with L0 eigenvalue M = 2 (i.e., states that
map to trial edge-state wave functions with the same particle number
as the ground-state trial wave function and with angular momentum
M = 2 relative to the ground-state trial wave function). The corre-
sponding basis elements are defined in Sec. V B.

Index Basis element

0 |∅; ∅; ∅; −2〉
1 |∅; 3; ∅; −1〉
2 |∅; 1; 1; −1〉
3 |∅; 31; ∅; 0〉
4 |∅; ∅; 11; 0〉
5 |∅; ∅; 2; 0〉
6 |∅; 3; ∅; 1〉
7 |∅; 1; 1; 1〉
8 |∅; ∅; ∅; 2〉
9 |1; 1; ∅; −1〉
10 |1; ∅; 1; 0〉
11 |1; 1; ∅; 1〉
12 |11; ∅; ∅; 0〉
13 |2; ∅; ∅; 0〉

TABLE VIII. Basis reference, used in Fig. 6, for the φ2
2 parton

CFT U(1) neutral states with L0 eigenvalue M = 3 (i.e., states that
map to trial edge-state wave functions with the same particle number
as the ground-state trial wave function and with angular momentum
M = 3 relative to the ground-state trial wave function). The corre-
sponding basis elements are defined in Sec. V B.

Index Basis element

0 |∅; ∅; 1; −2〉
1 |∅; 5; ∅; −1〉
2 |∅; 3; 1; −1〉
3 |∅; 1; 11; −1〉
4 |∅; 1; 2; −1〉
5 |∅; 51; ∅; 0〉
6 |∅; 31; 1; 0〉
7 |∅; ∅; 111; 0〉
8 |∅; ∅; 12; 0〉
9 |∅; ∅; 3; 0〉
10 |∅; 5; ∅; 1〉
11 |∅; 3; 1; 1〉
12 |∅; 1; 11; 1〉
13 |∅; 1; 2; 1〉
14 |∅; ∅; 1; 2〉
15 |1; ∅; ∅; −2〉
16 |1; 3; ∅; −1〉
17 |1; 1; 1; −1〉
18 |1; 31; ∅; 0〉
19 |1; ∅; 11; 0〉
20 |1; ∅; 2; 0〉
21 |1; 3; ∅; 1〉
22 |1; 1; 1; 1〉
23 |1; ∅; ∅; 2〉
24 |11; 1; ∅; −1〉
25 |11; ∅; 1; 0〉
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TABLE VIII. (Continued.)

Index Basis element

26 |11; 1; ∅; 1〉
27 |2; 1; ∅; −1〉
28 |2; ∅; 1; 0〉
29 |2; 1; ∅; 1〉
30 |111; ∅; ∅; 0〉
31 |12; ∅; ∅; 0〉
32 |3; ∅; ∅; 0〉

TABLE IX. Monte Carlo estimated (MC) and the fitted model
[Eq. (157)] matrix elements of the inner product action δSb for the
φ2

2 parton CFT states that are U(1) neutral and have L0 eigenvalue
M = 1, where we have only shown matrix elements that have an MC
estimated value with an absolute value greater than 0.05. The basis
elements used are defined in Sec. V B.

Matrix element MC Model

〈∅; 1; ∅; −1|δSb|∅; 1; ∅; −1〉 −11.2950 −11.2950
〈∅; 1; ∅; −1|δSb|∅; ∅; 1; 0〉 −0.2631 −0.2643
〈∅; ∅; 1; 0|δSb|∅; 1; ∅; −1〉 −0.2631 −0.2643
〈∅; ∅; 1; 0|δSb|∅; ∅; 1; 0〉 −0.0999 −0.0999
〈∅; ∅; 1; 0|δSb|∅; 1; ∅; 1〉 −0.2656 −0.2643
〈∅; ∅; 1; 0|δSb|1; ∅; ∅; 0〉 0.0991 0.0991
〈∅; 1; ∅; 1|δSb|∅; ∅; 1; 0〉 −0.2656 −0.2643
〈∅; 1; ∅; 1|δSb|∅; 1; ∅; 1〉 11.1645 11.1645
〈1; ∅; ∅; 0|δSb|∅; ∅; 1; 0〉 0.0991 0.0991

TABLE X. Monte Carlo estimated (MC) and the fitted model
[Eq. (157)] matrix elements of the inner product action δSb for the
φ2

2 parton CFT states that are U(1) neutral and have L0 eigenvalue
M = 2, where we have only shown matrix elements that have an MC
estimated value with an absolute value greater than 0.05. The basis
elements used are defined in Sec. V B.

Matrix element MC Model

〈∅; ∅; ∅; −2|δSb|∅; ∅; ∅; −2〉 −22.6614 −22.6594
〈∅; ∅; ∅; −2|δSb|∅; 3; ∅; −1〉 0.2665 0.2643
〈∅; ∅; ∅; −2|δSb|∅; 1; 1; −1〉 0.2654 0.2643
〈∅; 3; ∅; −1|δSb|∅; ∅; ∅; −2〉 0.2665 0.2643
〈∅; 3; ∅; −1|δSb|∅; 3; ∅; −1〉 −11.3254 −11.3256
〈∅; 3; ∅; −1|δSb|∅; 31; ∅; 0〉 0.2647 0.2643
〈∅; 3; ∅; −1|δSb|∅; ∅; 11; 0〉 −0.1843 −0.1869
〈∅; 3; ∅; −1|δSb|∅; ∅; 2; 0〉 −0.1852 −0.1869

TABLE X. (Continued.)

Matrix element MC Model

〈∅; 1; 1; −1|δSb|∅; ∅; ∅; −2〉 0.2654 0.2643
〈∅; 1; 1; −1|δSb|∅; 1; 1; −1〉 −11.3928 −11.3949
〈∅; 1; 1; −1|δSb|∅; 31; ∅; 0〉 0.2669 0.2643
〈∅; 1; 1; −1|δSb|∅; ∅; 11; 0〉 −0.1851 −0.1869
〈∅; 1; 1; −1|δSb|∅; ∅; 2; 0〉 0.1878 0.1869
〈∅; 1; 1; −1|δSb|1; 1; ∅; −1〉 0.0633 0.0991
〈∅; 31; ∅; 0|δSb|∅; 3; ∅; −1〉 0.2647 0.2643
〈∅; 31; ∅; 0|δSb|∅; 1; 1; −1〉 0.2669 0.2643
〈∅; 31; ∅; 0|δSb|∅; 31; ∅; 0〉 −0.0640 −0.0611
〈∅; 31; ∅; 0|δSb|∅; 3; ∅; 1〉 −0.2625 −0.2643
〈∅; 31; ∅; 0|δSb|∅; 1; 1; 1〉 0.2601 0.2643
〈∅; ∅; 11; 0|δSb|∅; 3; ∅; −1〉 −0.1843 −0.1869
〈∅; ∅; 11; 0|δSb|∅; 1; 1; −1〉 −0.1851 −0.1869
〈∅; ∅; 11; 0|δSb|∅; ∅; 11; 0〉 −0.1987 −0.1999
〈∅; ∅; 11; 0|δSb|∅; 3; ∅; 1〉 0.1891 0.1869
〈∅; ∅; 11; 0|δSb|∅; 1; 1; 1〉 −0.1869 −0.1869
〈∅; ∅; 11; 0|δSb|1; ∅; 1; 0〉 0.1383 0.1402
〈∅; ∅; 2; 0|δSb|∅; 3; ∅; −1〉 −0.1852 −0.1869
〈∅; ∅; 2; 0|δSb|∅; 1; 1; −1〉 0.1878 0.1869
〈∅; ∅; 2; 0|δSb|∅; ∅; 2; 0〉 −0.2025 −0.1999
〈∅; ∅; 2; 0|δSb|∅; 3; ∅; 1〉 −0.1900 −0.1869
〈∅; ∅; 2; 0|δSb|∅; 1; 1; 1〉 −0.1895 −0.1869
〈∅; ∅; 2; 0|δSb|2; ∅; ∅; 0〉 0.1938 0.1982
〈∅; 3; ∅; 1|δSb|∅; 31; ∅; 0〉 −0.2625 −0.2643
〈∅; 3; ∅; 1|δSb|∅; ∅; 11; 0〉 0.1891 0.1869
〈∅; 3; ∅; 1|δSb|∅; ∅; 2; 0〉 −0.1900 −0.1869
〈∅; 3; ∅; 1|δSb|∅; 3; ∅; 1〉 11.1226 11.1339
〈∅; 3; ∅; 1|δSb|∅; ∅; ∅; 2〉 −0.2595 −0.2643
〈∅; 1; 1; 1|δSb|∅; 31; ∅; 0〉 0.2601 0.2643
〈∅; 1; 1; 1|δSb|∅; ∅; 11; 0〉 −0.1869 −0.1869
〈∅; 1; 1; 1|δSb|∅; ∅; 2; 0〉 −0.1895 −0.1869
〈∅; 1; 1; 1|δSb|∅; 1; 1; 1〉 11.0603 11.0646
〈∅; 1; 1; 1|δSb|∅; ∅; ∅; 2〉 0.2631 0.2643
〈∅; 1; 1; 1|δSb|1; 1; ∅; 1〉 0.1331 0.0991
〈∅; ∅; ∅; 2|δSb|∅; 3; ∅; 1〉 −0.2595 −0.2643
〈∅; ∅; ∅; 2|δSb|∅; 1; 1; 1〉 0.2631 0.2643
〈∅; ∅; ∅; 2|δSb|∅; ∅; ∅; 2〉 22.2554 22.2597
〈1; 1; ∅; −1|δSb|∅; 1; 1; −1〉 0.0633 0.0991
〈1; 1; ∅; −1|δSb|1; 1; ∅; −1〉 −11.2865 −11.2950
〈1; 1; ∅; −1|δSb|1; ∅; 1; 0〉 −0.2634 −0.2643
〈1; ∅; 1; 0|δSb|∅; ∅; 11; 0〉 0.1383 0.1402
〈1; ∅; 1; 0|δSb|1; 1; ∅; −1〉 −0.2634 −0.2643
〈1; ∅; 1; 0|δSb|1; ∅; 1; 0〉 −0.0956 −0.0999
〈1; ∅; 1; 0|δSb|1; 1; ∅; 1〉 −0.2657 −0.2643
〈1; ∅; 1; 0|δSb|11; ∅; ∅; 0〉 0.1381 0.1402
〈1; 1; ∅; 1|δSb|∅; 1; 1; 1〉 0.1331 0.0991
〈1; 1; ∅; 1|δSb|1; ∅; 1; 0〉 −0.2657 −0.2643
〈1; 1; ∅; 1|δSb|1; 1; ∅; 1〉 11.1640 11.1645
〈11; ∅; ∅; 0|δSb|1; ∅; 1; 0〉 0.1381 0.1402
〈2; ∅; ∅; 0|δSb|∅; ∅; 2; 0〉 0.1938 0.1982
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