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Bound on approximating non-Markovian dynamics by tensor networks in the time domain
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The spin-boson (SB) model plays a central role in studies of dissipative quantum dynamics, due to bothits
conceptual importance and relevance to a number of physical systems. Here, we provide rigorous bounds of the
computational complexity of the SB model for the physically relevant case of a zero temperature ohmic bath.
We start with the description of the bosonic bath via its Feynman-Vernon influence functional (IF), which is a
tensor on the space of the trajectory of an impurity spin. By expanding the kernel of the IF via a sum of decaying
exponentials, we obtain an analytical approximation of the continuous bath by a finite number of damped bosonic
modes. We bound the error induced by restricting bosonic Hilbert spaces to a finite-dimensional subspace with
small boson numbers, which yields an analytical form of a matrix-product state (MPS) representation of the IF.
We show that the MPS bond dimension D scales polynomially in the error on physical observables as well as in
the evolution time T, D ∝ T 4/ε2. This bound indicates that the SB model can be efficiently simulated using a
polynomial in time-computational resources.
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I. INTRODUCTION

Every quantum system, irrespective of its nature, interacts
with an environment. While in some cases environment dy-
namics can be described in the Markovian approximation,
there is a broad class of problems where this is not suf-
ficient, and non-Markovian effects are essential. Examples
of such phenomena range from nonequilibrium transport in
quantum dots [1,2] to micromechanical resonators [3] and
light-harvesting complexes [4,5].

An archetypical model of non-Markovian quantum dynam-
ics is the spin-boson (SB) model, describing a spin- 1

2 coupled
to a harmonic bosonic bath. As discussed in the seminal work
of Leggett et al. [6], this model exhibits a rich variety of
dynamical regimes, including a dissipative phase transition.
Despite a variety of analytical results obtained in various
limits, the exact description of the dynamics of a system in
the strong coupling limit, which is needed to model realistic
physical systems, remained an outstanding challenge.

To address this challenge, a variety of numerical methods
has been developed. In one direction, Chin et al. [7] used a
chain mapping of a continuous bosonic bath, afterward mod-
eled by tDMRG techniques. Another family of approaches
is based on truncating the Feynman-Vernon influence func-
tional (IF) or a related object, augmented reduced density
tensor. While an early quasiadiabatic propagator path inte-
gral (QUAPI) algorithm [8] had exponential scaling with
the memory time, more recently, efficient schemes based on
tensor-networks compression have been introduced [9–14],
see also Ref. [15] for the improved QUAPI algorithm. In
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another direction, it was argued [16–18] that the IF can be
approximated by a bath of a finite number of auxiliary bosons
or by a finitely many hierarchical equations of motion, which
also leads to a drastic boost of computational efficiency [19].
It was concluded that the system can be simulated efficiently.
We note in passing that related ideas were developed in the
context of fermionic quantum impurity models [20–25] and
for interacting environments [26,27].

Despite these remarkable developments, no theoretical
bounds on the complexity of simulating the SB model exist,
and the goal of this paper is to fill this gap. Focusing on the
case of azero-temperature ohmic bath, we introduce a number
of (damped) auxiliary bosons approximating the original bath.
As a main result, we show that the Feynman-Vernon IF, as
well as the evolution of the system are efficiently simulated
by the auxiliary modes. We provide an analytical expression
for the matrix-product state (MPS) approximation of the IF
and prove that the bond dimension scales polynomially with
time:

D ∼ (ωcT )4

ε2
, (1)

where ε is the error for the physical observables, i.e., the
density matrix of the spin at time T .

Finding a representation in terms of the auxiliary modes
is equivalent to approximating certain correlation functions in
terms of a finite sum of decaying exponents. Each exponent
leads to a single bosonic mode, which then can be truncated to
a finite dimensional subspace. The decomposition of an arbi-
trary function in terms of decaying exponents is a well-known
problem in the theory of signal processing and mathematical
physics, which can be efficiently solved numerically with the
help of Prony’s method [28]. For our purposes, we use another
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approach by Beylikin and Monzon [29], which allows for
analytical estimates, see the Supplemental Material [30] for
the review.

II. IF DESCRIPTION OF THE SB MODEL

The main object of our interest will be a SB model con-
sisting of a spin impurity coupled to a bosonic bath at zero
temperature. Its Hamiltonian reads

H = Hb + Hint + Hs, (2)

with

Hb =
∑

k

ωka†
kak, (3)

Hint = ck (a†
k + ak )σz. (4)

Our method is suitable for arbitrary spin Hamiltonian Hs(t ),
which is not specified.

We consider discrete time dynamics, obtained by the Trot-
terization of the original model. Theevolution operator over a
small time step �t is approximately given by

Utotal = exp[i�t (Hb + Hint )]exp[i�tHs(tk )] + O(�t2). (5)

As we are interested in continuous dynamics, we assume
�t ∼ ε1 = ε

T . It is useful to introduce shorthand notation for
the exponentials in the above expression:

exp[i�t (Hb + Hint )] = Ub(a, a†|σz ), (6)

exp[i�tHs(tk )] = U (k). (7)

For a fixed evolution time T = N�t , we can integrate out the
bosonic degrees of freedom defining a discrete analog of the
Feynman-Vernon IF for the fixed trajectory of a spin:

IsN ,s̄N ,...,s1,s̄1 = bath〈0|
N−1∏
k=1

U †
b,s̄k

ρ

N−1∏
k=1

Ub,sk |0〉bath, (8)

where Ub,sk

def= 〈sk|Ub(a, a†|σz )|sk〉. Then we rewrite the time-
evolved density matrix in terms of IF:

ρ̃sN ,s̄N =
∑

sk ,s̄k=1,2

IsN ,s̄N ,...,s1,s̄1

N−1∏
k=1

[
U (k)

sk ,sk+1
U (k) †

s̄k+1,s̄k

]
ρs1,s̄1 . (9)

The IF of the spin trajectories IsN ,s̄N ,...,s1,s̄1 ≡ I{s,s̄} can be
computed explicitly [8]:

I{s,s̄} = exp

⎧⎨
⎩−

∑
i� j

[(si − s̄i )(s jηi, j − η�
i, j s̄ j )]

⎫⎬
⎭, (10)

where ηi, j = κi, j + iφi, j is a known function:

ηi, j = ηi− j = 4
∫ ∞

0
dωJ (ω)

sin2
(

ω�t
2

)
ω2

exp(iωti− j ),

i > j (11)

ηi,i = 2
∫ ∞

0
dωJ (ω)

sin2
(

ω�t
2

)
ω2

, (12)

with ti− j = (i − j)�t . We note in passing that our analysis is
applicable to the case of a finite �t , but we will mostly be

interested in the limit �t → 0. Below, we will concentrate on
the case of an ohmic bath, for which the spectral density takes
the following form:

J (ω) = αωexp

(
− ω

ωc

)
. (13)

III. MPS REPRESENTATION FOR THE IF VIA
AUXILIARY BOSONS

To represent the IF as an MPS, we will use the approach of
Ref. [31], which we briefly review below. This approach pro-
vides an MPO representation of an exponent of a quasilocal
Hamiltonian. For our needs, we will apply it to the exponent of
an action, considering the variables as commuting operators.
We introduce the action functional I = eS :

S = −
∑
i� j

[(si − s̄i)(s jηi, j − η�
i, j s̄ j )], (14)

where the function ηi, j decays polynomially, as 1
[�t (i− j)]2 for

the ohmic case. Let us fix site i and split the action S into a
sum of three different terms:

S = SL
i + SR

i +
K∑

m=1

hL
i,mhR

i,m, (15)

where {SL
i , hL

i,m} depend only on the variables to the left of site
i, and {SR

i , hR
i,m} depend on the variables to the right of site i.

Suppose the existence of the following relation [31]:⎛
⎜⎝
SR

i−1

hR
i−1

1i−1

⎞
⎟⎠ =

⎛
⎜⎝

1 Ci Di

0 Ai Bi

0 0 1

⎞
⎟⎠
⎛
⎜⎝
SR

i

hR
i

1i

⎞
⎟⎠. (16)

Here, hR
i is a row of numbers hR

i,m, Ai is a K × K matrix,
Ci and Bi are a1 × K column and aK × 1 row, respectively,
and Di is a scalar. First, the above relation yields an MPS
representation for the action S . We start from the site N + 1,
for which SR

N+1 = 0. Then we move to the left, using the
recurrence relationin Eq. (16),

hR
i−1 = AihR

i + Bi, (17)

SR
i−1 = SR

i + CihR
i + Di. (18)

SR
0 is nothing but the total action S .

To represent an exponent of the total action eS = exp(SR
0 )

in terms of MPS, we introduce n bosonic modes:

a = {a1, . . . aK}T , (19)

a† = {a†
1, . . . a†

K}, (20)

with the standard commutation relations:

[ai, a†
j ] = δi, j . (21)

We also introduce coherent states:

∣∣hR
i

〉 = exp

(
K∑

m=1

hR
i,ma†

m

)
|0〉. (22)
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The operationsin Eqs. (17) and (18) can be written in terms of
the operator:

Mi = exp(Di )exp[(a† · Bi )]exp{[a† · ln(Ai )a]}
×exp[(Ci · a)], (23)

which implicitly depends on si, s̄i. Indeed, this operator can
be equivalently defined by its action on the coherent states:

Mi|h〉 = exp[Di + (Ci · h)]|Bi + Aih〉. (24)

Applying it to the state exp(SR
i )|hR

i 〉, we get

Miexp
(
SR

i

)∣∣hR
i

〉 = exp
(
SR

i−1

)∣∣hR
i−1

〉
. (25)

Finally, the MPS representation of the IF is provided by the
formula:

Is,s̄ = 〈0|M1
s1,s̄1

, . . . MN
sN ,s̄N

|0〉. (26)

Formally, this yields an MPS representation of the IF. Next,
we will show that the IF of an ohmic bath can be well ap-
proximated by choosing a finite K . We will further truncate
operator Mi

si,s̄i
to a finite-dimensional boson subspace which

will give rise to an MPS with a finite bond dimension. Due to
the rapid decay of matrix elements with the growing number
of excited bosons, this will introduce a controlled error.

IV. EXPONENTIALLY DECAYING INTERACTION

Applying this approach to the IF in Eq. (10), we introduce
two species of bosonic operators a, ā as well as the second
set of Ai, Bi, Ci matrices: Āi, B̄i, C̄i, corresponding to forward
and backward variables of the IF.

For our purposes, it is sufficient to assume that the matrix
Ai does not depend on i or s variables. We also assume it to
be diagonalizable:

A = Diag[exp(−
1�t ), . . . , exp(−
K�t )], (27)

Ā = Diag[exp (−
�
1�t ), . . . , exp (−
�

K�t )], (28)

with 
k = γk + iωk , γk > 0. Furthermore, we choose B, C to
be linear in s:

Ci = (si − s̄i ){λ1�t, . . . , λK�t}, (29)

C̄i = −(si − s̄i ){λ�
1�t, . . . , λ�

K�t}, (30)

Bi = si{λ1�t, . . . , λK�t}T , (31)

B̄i = s̄i{λ�
1�t, . . . , λ�

K�t}T
, (32)

Di = ηi,i(si − s̄i )
2. (33)

This will lead to the following ansatz for the IF:

Ĩ{s,s̄} = exp

⎧⎨
⎩−�t2

∑
0�i� j�N

(si − s̄i )[s j η̃i− j − (η̃)�i− j s̄ j]

⎫⎬
⎭,

(34)

with

η̃i− j =
K∑

k=1

λ2
kexp[−(i − j)�t
k]. (35)

Each term in the expansion in Eq. (35) gives rise to two
bosonic modes, yielding an infinite-dimensional MPS approx-
imation of the IF. We emphasize that, despite the polynomial
decay in time of the kernel η in Eq. (11), it can be ap-
proximated by a sum of exponentials, some of which have
sufficiently small decay rates. Below, we provide an ex-
plicit decomposition with alogarithmically growing number
of terms K in Eq. (43).

We note that, for a real λ = |λ|, the same MPS could be
generated by an auxiliary quantum channel, see the Supple-
mental Material [30]. For a complex λ, the corresponding IF
does not describe any physical bath. However, our methods to
estimate the errors for the observables do not require λ to be
real and positive; therefore, we keep it arbitrary.

Truncation of the infinite-dimensional MPS in Eq. (26) to
a finite-dimensional one involves two types of errors. First,
errors occur due to the truncation of the bosonic modes to a
finite-dimensional subspace. The second type of error appears
due to the inaccuracy of approximating function ηi− j by the
finite sum in Eq. (35). Before discussing the approximation by
a finite sum of exponentials, let us briefly explain the intuition
behind the estimate of the errors of the first kind, see the
Supplemental Material [30] for a rigorous analysis.

Let us change perspective for a moment and consider the
dynamics of bosons in the environment of the spin mode. The
evolution of bosons is a competition between the driving force
λksia

†
k + λ�

ksiā
†
k , which creates the bosons with rate λ and

the overall decay −γk (a†
kak + ā†

k āk ), which damps the wave
function component with n bosons with rate γ n. As a result,
processes that involve significantly more than |λk |2

γ 2
k

bosons in

the system are strongly suppressed. In fact, below, we derive
expressions for λk, γk and prove (see the Supplemental Mate-
rial [30]) that the amplitude to have n bosons is suppressed
as 4ν

n/2
� , with some ν� < 1. This in turn explains why the

states with ahigh number of excitations could be neglected.
We conclude that the problem of approximating of the IF
in Eq. (10) in terms of an MPS is equivalent to expanding
function ηi− j in Eq. (11) in terms of a sum of exponentials in
Eq. (35).

V. MPS REPRESENTATION FOR THE BOSONIC BATH

To approximate a power-law function η by a finite sum of
exponentials, we follow the approach of Ref. [29]. Let us start
with an integral representation in the continuous time limit:

η0(t ) = α

∫ ∞

0
ωexp

(
− ω

ωc

)
eiωt dω, (36)

η0
i, j = η0[�t (i − j)], (37)

with t = �t (i − j). In the Supplemental Material [30], by
performing a change of variables followed by discretization,
we show that this integral is well approximated by a sum:

η0(t ) → αχ

∞∑
k=−∞

ω2
k exp

(
−ωk

ωc

)
exp(iωkt ), (38)

where points ωk are situated on a contour in the complex
plane ωk = ωcexp(kχ + iπ

4 ). This sum may be restricted to
a finite number of terms because of the fast decay of the tails.

205126-3



ILYA VILKOVISKIY AND DMITRY A. ABANIN PHYSICAL REVIEW B 109, 205126 (2024)

We prove in the Supplemental Material [30] that η0(t ) may
be approximated by a sum of ∼ln2( αωcT

ε
) exponentials of the

form:

η0(t ) =
Mε1∑

k=−Nε1

λ2
kexp(−
kt ) + δη(t ), (39)

with

λ2
k = iαω2

cχexp

{
−1 + i√

2
exp

[(
k + 1

2

)
χ

]}

×exp

[
2

(
k + 1

2

)
χ

]
, (40)


k = ωcexp

[(
k + 1

2

)
χ

]
1 − i√

2
. (41)

Thanks to the fact that the function is smooth enough,
the discretization step χ grows logarithmically with epsilon
χ ∼ 1

ln( αωcT
ε

)
. The discrepancy δη(t ) is given by

∫ T

t=0
|δη(t )| < ε1 = ε

T
. (42)

The total number of modes K = Mε + Nε scales as

K ∼ ln2

(
αωcT

ε

)
, (43)

see the Supplemental Material [30] for details.
For finite but small �t , the IF can be approximated in an

MPS form in Eq. (26):

Msi,s̄i = exp[−�(si − s̄i )
2]

Mε∏
k=−Nε

exp
(
Mk

si,s̄i
�t

)
, (44)

Mk
si,s̄i

= − 
k

[
a†

k + (si − s̄i )√
2

λk


k

](
ak −

√
2si

λk


k

)

− 
�
k

[
ā†

k − (si − s̄i )√
2

λ�
k


�
k

](
āk −

√
2s̄i

λ�
k


�
k

)
. (45)

� = η0,0 +
Mε∑

k=−Nε

Re

(
λ2

k


k

)
�t . (46)

Thus, operator Ms,s̄ is a product of a bosonic MPS and an
operator exp[−�(si − s̄i )2] acting on a single site. The value
of � may be estimated via the Euler-Maclaurin formula, and
it is important to note that it remains positive and of the order
of ε [32].

VI. BOUND ON THE ERROR FOR SPIN DYNAMICS

To estimate the effects of the inaccuracy in Eq. (39), let
us examine the dynamics provided by the MPS in Eqs. (44)–
(46). We fix spin dynamics, specified by unitary operators U (i)

acting on the two-dimensional space. The system dynamics
may be computed in terms of a product of operators acting on
both bosonic and spin degrees of freedom:

U (i)
si+1,s̄i+1|si,s̄i

= Msi,s̄i ⊗ {
U (i)

si+1,si
⊗ [U (i)]�s̄i+1,s̄i

}
. (47)

The density matrix at time T = N�t reads

ρsN ,s̄N (T ) = bosons〈0|
[

N∏
i=1

U (i)

]
|0〉bosons ρs1,s̄1 . (48)

An important property of the operator U (i) is that it does not
increase the norm of the vectors. Indeed, let us note that
the eigenvalues of quadratic operators exp(Mk

si,s̄i
) are <1.

Consequently, the eigenvalues of M†
s,s̄Ms,s̄ are also <1. One

can conclude that any bounded vector |v〉 propagating in time
remains bounded: ∣∣∣∣∣∣

n2∏
i=n1

U (i)|v〉
∣∣∣∣∣∣
2

� 〈v|v〉. (49)

Now we are in a position to estimate the error induced by
the inaccuracy of approximation of the quadratic kernel ηi, j =
η(i − j) for the IF of the formin Eq. (10). Suppose that we
have found an MPS representation for a kernel ηε1 such that it
is close to the actual kernel in the L1 norm:

N∑
j=0

|η( j) − ηε1 ( j)| = |δη|L1 �
ε1

4
= ε

4T
. (50)

The first-point correlator:

δρT =
∑
i< j

〈(si − s̄i )(s jδηi, j − δη�
i, j s̄ j )〉, (51)

where we define the correlators as〈∏
i∈I

si

∏
j∈J

s̄ j

〉
def=

∑
sa,s̄a

∏
i∈I

si

∏
j∈J

s̄ j

N−1∏
k=1

U (k)
sk+1,s̄k+1|sk ,s̄k

ρs1,s̄1 .

(52)

The property in Eq. (49) guarantees that each correlator is
bounded by 1, and so the total error is bounded as

|δρT | � 4T |δη|L1 � ε. (53)

A similar analysis, for a slightly more general case, was pro-
vided in Ref. [33].

To sum up, there are two sources of errors. One type of
error is due to an inaccuracy in the approximation of the
function ηi, j in Eq. (39). This error is related to the number
of bosonic modes K in Eq. (43). Another source of errors
stems from the truncation of the bosonic modes to a finite-
dimensional subspace. We show in the Supplemental Material
[30] that, due to the decay of bosonic modes, the bosonic
wave function decays with the number of bosonic excita-
tions n as νn

� . This allows us to restrict the total number of

bosonic excitations as n� ∼ ln[ (ωcT )2
ε ]

ln(ν−1
� )

. Combining these two re-
sults, after some combinatorics, we arrive at the main result in
Eq. (1).

VII. CONCLUDING REMARKS

In this paper, we develop a nonperturbative approach to the
SB model, by introducing an analytical method to approxi-
mate a zero-temperature ohmic bosonic bath by a number of
damped oscillators, with a decay rate in Eq. (41) that controls
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the memory of the corresponding mode and the coupling
strength in Eq. (46). For a fixed error ε, the required number of
bosonic modes scales polylogarithmically in ε and evolution
time T. This explicit construction enables a homogeneous
MPS approximation for the Feynman-Vernon functional. We
prove that the bond dimension scales at most polynomially
with ε and T in Eq. (1). Previous numerical results of Ref.
[9] also suggest the polynomial scaling of bond dimension
D ∼ T q, with non universal q ∈ [1, 2]. Note that our MPS
description of the Feynman-Vernon IF provides an accurate
description of the dynamics of the system independent of local
spin dynamics and coupling strength; thus, it is natural to
expect that the bond dimension required for a specific choice
of the dynamics of the spin may exhibit a better scaling.
Apart from theoretical interest, our construction may have a
practical applications: It can be used as a starting point for
numerical calculations, as our analytic MPS can be further
compressed using singular value decomposition.

Although we proved the bounds for the errors, there are
general mathematical constraints on the IF. One way to for-
mulate the restriction is to say that the spin dynamicsin
Eq. (9) should provide a completely positive trace-preserving
(CPTP) map [34], for any unitaries U (k). It seems that our

MPS approximation does not in general satisfy this require-
ment, but it has a sufficiently small deviation from it. It is still
unclear to us whether it is possible to provide a physical MPS
approximation with the same bond dimensions.

An interesting future direction is to provide estimates for
the IF of a finite-temperature bath with generic spectral func-
tions, including cases of subohmic and superohmic baths.
For instance, our analysis may be carried over [30] to the
case of a finite-temperature bath, yielding the same bound in
Eq. (1). Finally, let us note that our analysis can be extended
to a wider class of IFs, including anon-Gaussian one. This
can be achieved by including spin dependence of A matrices
in Eq. (23).
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