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Many-body higher-order topological invariant for Cn-symmetric insulators
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Higher-order topological insulators in two spatial dimensions display fractional corner charges. While frac-
tional charges in one dimension are known to be captured by a many-body bulk invariant, computed by the Resta
formula, a many-body bulk invariant for higher-order topology and the corresponding fractional corner charges
remains elusive despite several attempts. Inspired by recent work by Tada and Oshikawa [arXiv:2302.00800], we
propose a well-defined, many-body bulk invariant for Cn-symmetric higher-order topological insulators that is
valid for both noninteracting and interacting systems. Instead of relating them to the bulk quadrupole moment as
was previously done, we show that in the presence of Cn rotational symmetry, this bulk invariant can be directly
identified with quantized fractional corner charges. In particular, we prove that the corner charge is quantized as
e/n with Cn symmetry, leading to a Zn classification for higher-order topological insulators in two dimensions.
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I. INTRODUCTION

Protected by crystalline symmetries, higher-order topologi-
cal insulators (HOTIs) exhibit nontrivial gapless or degenerate
states at the higher-order boundaries of a sample, such as
corners in two spatial dimensions and hinges in three spa-
tial dimensions [1–19]. As a paradigmatic example, the
Benalcazar-Bernevig-Hughes (BBH) model [1,2], defined on
a square lattice, is fully gapped in the bulk and at the boundary
but exhibits fractional charges ±e/2 at the corners. More
generally, in the presence of C2, C3, and C6 symmetries, by
directly constructing lattice models, it has been shown that
HOTIs exhibit richer patterns of quantized fractional corner
charges [20]. Beyond HOTIs, the concept of higher-order
topology has since been extended to superconductors [21–31],
semimetals [32–37], and intrinsically interacting bosonic sys-
tems in two and three spatial dimensions [38–45].

Via the bulk-boundary correspondence, the nontrivial
boundary states for HOTIs should be naturally captured by
topological invariants in the bulk. In the BBH model, multiple
topological invariants have been proposed, such as the nested
Wilson loop in the presence of mirror symmetries [1,2] and
eigenvalues of the rotation operator at high-symmetry points
in the Brillouin zone. However, these invariants are based on
band structures, and there is no straightforward generaliza-
tion to interacting systems. Furthermore, as pointed out in
Refs. [2,46], the nested Wilson loop is not protected by a
bulk gap but rather the surface gap, thus making it difficult
to interpret as a bulk topological invariant. A Z4 Berry-phase
topological invariant was proposed in Ref. [47] for the BBH
model, but a bulk-boundary correspondence was not generally
established, and it is not clear how to generalize to different
models.

*yuxuan.wang@ufl.edu

For topological insulators in one spatial dimension (1D)
hosting ±e/2 fractional charges at the ends, a bulk many-body
topological invariant applicable in the presence of interactions
has been long known as the Resta formula, which captures the
quantized electric polarization density in the bulk. By analogy,
it has been proposed [48,49] that C4-symmetric 2D HOTIs are
characterized by a quantized bulk quadrupole density related
to the phase of the expectation value of the operator,

Ûxy = exp

⎛
⎝2π i

L2

∑
j

n̂ jx jy j

⎞
⎠, (1)

where L is the system size, and n̂ j is the electron density
operator at site j.

However, such a straightforward generalization of the
Resta formula has been shown to be problematic [46], as it
violates the periodic boundary condition and does not always
lead to quantized values. The authors of Ref. [48] showed that
this pathology is related to the nonzero dipolar fluctuations
of the system and is resolved if one instead considers a limit
in which the system has an additional dipole conservation
symmetry. Unfortunately, for a generic system, especially in
the presence of interactions, there is no generic procedure to
take such a dipolar symmetric limit without closing the bulk
gap. Finally, it is unclear how a bulk quadrupole density can
account for various quantization patterns for Cn-symmetric
HOTIs, particularly since the crystalline symmetries do not
play any role in the construction of the proposed many-body
invariant.

In a recent work, Tada and Oshikawa [50] proposed
a new many-body invariant for C4-symmetric HOTIs. The
authors noted that when the system is subject to a 2π

flux, under the Landau gauge, while Ĉ4 is no longer
a symmetry, ˆ̃C4 ≡ Ĉ4Ûxy is. It was then suggested that

e2π iq ≡ 〈�2π | ˆ̃C4|�2π 〉/〈�0|Ĉ4|�0〉, in which |�2π,0〉 are the
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ground-state wave functions with or without a 2π flux, can
serve as a many-body topological invariant of the system.
The authors argued that this invariant is related to the bulk
quadrupole moment captured by Ûxy but is a well-defined
quantum number and free from the aforementioned issues.
The authors further argued that a nontrivial value taken by
this invariant indicates ground-state degeneracy caused by
the corner states. However, the direct relation between the
quantized fractional corner charge and the bulk invariant was
not established.

A natural question is whether a similar many-body invari-
ant can be defined by generalizing this idea, and whether there
exists a direct correspondence between the bulk invariant and
the fractional corner charge. As we mentioned above, this
may require going beyond the paradigm of bulk multipolar
density. For example, it has been shown that for C6-invariant
HOTI, the fractional part of corner charges can take values
of multiples of ±e/6 [20]. Depending on the arrangement
of the charges on the six corners, it is not clear how a
single bulk multipolar moment can adequately account for
the corner charge patterns. In fact, we show in Sec. II that
while the corner charges can lead to a planar electric oc-
tupole moment for a macroscopic hexagonal sample, this total
moment cannot come from integrating over a bulk octupolar
density.

In this paper we address these two issues for a Cn-
symmetric HOTI. By modifying and extending the results in
Ref. [50], we provide a many-body bulk topological invariant
q satisfying nq ∈ Zn defined under periodic boundary condi-
tions (topologically equivalent to a torus). Defined in Eq. (3),
the topological invariant q is obtained via the ratio of Cn

eigenvalues of the ground state with or without a background
2π magnetic flux through the macroscopic sample. As the
associated magnetic field is infinitesimal, this invariant probes
the property of the ground state, protected by a finite energy
gap. For n = 4, in the Landau gauge, our invariant reduces to
that proposed in Ref. [50].

Compared with Ref. [50], our result and its interpretation
do not rely on the connection with a bulk multipolar moment.
In fact, we argue that the resemblance of the many-body
invariant proposed in Ref. [50] with that in Refs. [48,49] based
on an electric quadrupole moment is an artifact of choosing
the Landau gauge. Instead, our work establishes directly a
relation between q and the fractional part of the corner charge
ν for a Cn-symmetric HOTI in 2D. To that end, the physical
meaning of the bulk invariant becomes clear as we adiabati-
cally turn the hopping amplitudes t ′ across boundaries of the
system to be parametrically weaker than the bulk, which is
∼t . As long as t ′ remains nonzero, the bulk gap remains open
and the quantized value q cannot change. We show that in the
spirit of the renormalization group (RG), the effective low-
energy Hamiltonian is captured by the hopping and interaction
among localized states near the corners of the system. By
matching the low-energy (IR) and high-energy (UV) data of
the theory, we show that q effectively represents the fractional
part of the electron filling per corner. As one sets t ′ = 0, the
boundaries become open, and the system host degenerates
localized corner states. Under open boundary conditions, we
obtain the fractional part of the electric charge ν at each
corner, which also accounts for the ionic contribution, and

relate it to q via ν = q mod 1 (in units where the electron
charge e = 1).

Importantly, the many-body invariant and the bulk-
boundary correspondence remain well defined in the presence
of interaction effects. Thus, we conclude that Cn-symmetric
second-order topological insulators are classified by Zn. For
crystalline systems, n can only take values of 2,3,4,6, but
for noncrystalline systems (e.g., quasicrystals), n can take all
integer values. Unlike previous attempts, by generalizing bulk
multipolar moments, our construction does not rely on transla-
tion symmetry, and thus we expect our many-body invariant to
be applicable to quasicrystals with a generic n. Interestingly,
corner charges of e/4 have been obtained in a twisted bilayer
graphene structure with a twist angle of θ = π/6 [51]. Such a
system has a C12 symmetry, and our topological invariant with
n = 12 is indeed compatible with an e/4 corner charge.

Recently, classification of Cn-symmetric topological
phases in 2D has been studied by several authors [52–62] from
the perspective of generalized Wen-Zee effects [63], which
describe the mixed anomaly between charge symmetry and
spatial rotational symmetry. We show that our bulk invariant is
proportional to the generalized Wen-Zee shift S , and thus the
classification results from the two approaches are consistent.
Compared with these field-theoretic or topological quantum
chemistry [61] approaches, our proof from UV-IR mapping
directly relating the bulk invariant to the second-order topol-
ogy and corner charge is novel.

We demonstrate the results for our many-body invariant
for several lattice models on square and honeycomb lattices.
These lattice models have been shown [20] to exhibit vari-
ous fractional corner chargers within some certain parameter
range. Indeed, the corner charge agrees with a direct calcula-
tion of the many-body invariant, which can only change upon
a gap closing in the bulk. We expect the agreement to hold
quantitatively, even in the presence of interaction effects.

The rest of this paper is organized as follows. In Sec. II
we argue that in general the corner charges in a Cn-symmetric
higher-order topological insulator cannot be described by a
bulk electric multipolar moment. In Sec. III we define our
many-body topological invariant via the change of Cn eigen-
value upon adding a flux quantum. In Secs. IV and V we
provide two different proofs directly relating our topological
invariant to the fractional corner charge of the system un-
der open boundary conditions. In Sec. VI we show several
examples in which we numerically compute the topologi-
cal invariant as well as their corresponding fractional corner
charges, which remain consistent across topological phase
transitions.

II. INADEQUACY OF A BULK MULTIPOLAR MOMENT
FOR CORNER CHARGES

Before we discuss the many-body invariant, let us begin
by explaining why a bulk multipolar density is inadequate to
account for the corner charges in a C6-symmetric HOTI.

As was shown in Ref. [20] by a concrete lattice model
(see Sec. VI for more details), a C6-symmetric HOTI can
host ±e/2 charges at the six corners. When the charges
alternate in sign every π/6 (see Fig. 1), the system displays
a macroscopic electric octupole moment. According to basic
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FIG. 1. The charge distribution of a higher-order topological in-
sulator protected by C6 with alternating ±e/2 charges on a hexagonal
sample. Trying to understand the charge distribution as a direct
consequence of an octupole moment in the bulk is not possible, as
the corner charges do not scale with the system size.

electrodynamics, the octupolar moment is expressed as

O =
∫

dr ρ(r)(3x2 − y2)y = − e

2
× 6L3, (2)

where ρ(r) is the electric charge density, and L is the length
of the side of the hexagon.

Note that O ∼ L3 for the 2D system in consideration. This
immediately indicates that a bulk octupole density, which
is an intensive quantity, cannot account for the macroscopic
octupolar moment. Indeed, a bulk density can only lead to an
octupolar moment ∼L2 and thus a vanishingly small corner
charge in the thermodynamic limit.

Therefore, we conclude that in general quantized corner
charges of a Cn-symmetric HOTI do not correspond to the
multipolar density in the bulk.

III. DEFINITION OF THE MANY-BODY BULK INVARIANT

The system is defined on a macroscopic ñ-sided regular
polygon (ñ-gon) with opposite sides identified. With Cn sym-
metry, ñ � 4 is chosen to be a multiple of n. For example,
for n = 3 we can choose ñ = 6. As can be checked from its
Gauss character, this is topologically equivalent to a torus for
all m. Under periodic boundary conditions, due to the Dirac
quantization condition, the magnetic flux through the torus
can only be integers of 2π , which we choose to be either 0
and 2π here.

Under symmetric gauge A ∝ (y,−x) in the bulk, as shown
in Fig. 2, the system remains Cn symmetric with or without
the 2π flux. The topological invariant is then defined as

exp(2π iq) = 〈�2π |Cn|�2π 〉
〈�0|Cn|�0〉 , (3)

where �0,2π are the ground states of the Hamiltonian in the
absence/presence of a uniform 2π flux through the torus. In
the thermodynamic limit, this represents a vanishingly weak
magnetic field, and the ground states belong to the same phase
protected by the insulating gap. The many-body Hamiltonian

FIG. 2. Adding a magnetic field perpendicular to a Cn-symmetric
system using the symmetric gauge does not spoil the Cn symmetry.

in the presence of the 2π flux is obtained via Peierls substi-
tution to the background gauge field A. Since the 2π flux can
be viewed as coming from a magnetic monopole inside the
torus, the A field cannot be covered by a single gauge choice.
In particular, the hopping terms across the boundary of the
ñ-gon need to be determined separately.

Here we introduce a consistent way to directly determine
the phases of hopping amplitudes across the boundaries that
gives the correct value for flux through loops across a bound-
ary and preserves the Cn rotation symmetry. As shown in
Fig. 3 (with n = ñ = 6), the destination of hopping across the
boundary is determined by the periodic boundary condition
of the ñ-gon (the torus). The phase of the complex hopping
amplitude is determined by the line integral of the gauge po-
tential A on a path that involves a counterclockwise circulation
around the boundary. By construction, the system remains
Cn symmetric, and as can be seen in Fig. 4, any loop across
the boundary encloses the same flux as it would in the bulk,
modulo 2π .

Since (Cn)n is proportional to the identity operator, the
eigenvalues of Cn are quantized as λm = exp(2π im/n)λ0. As
a result, we conclude that Cn-symmetric HOTIs in 2D are
classified by

nq ∈ Zn. (4)

(a) (b)

FIG. 3. We calculate the invariant on a finite system defined on
a torus. In the C6 case, we obtain the torus by identifying opposite
sides of the hexagon, defining the boundaries of the system as shown
in (a). This identification means that hopping is allowed between unit
cells on opposite boundaries. An example of such hopping is shown
in red in (a). In the presence of the vector potential, hoppings crossing
the boundary obtain a phase θ that is the line integral of the vector
potential on the contour shown in (b). For other values of n, the values
of hopping amplitudes across boundaries can be obtained similarly.
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FIG. 4. The modified boundary hoppings are designed to ensure
the flux inside the boundary plaquettes is the same as the bulk
plaquettes φ.

We note that the Z4 classification for C4-symmetric HOTI in
2D has been shown using a Berry-phase topological invariant
in Ref. [47] specifically for the BBH model.

IV. BULK-BOUNDARY CORRESPONDENCE
FROM UV-IR MAPPING

In this section we prove that the topological invariant in
Eq. (3) directly corresponds to the fractional charge local-
ized at the corners of a Cn-symmetric 2D insulator. To be
precise, throughout this work, by “corners” we refer to a
set of n elements related by Cn symmetry that form its reg-
ular representation. This includes cases with ñ 	= n, where
the combination of ñ/n neighboring vertices of the ñ-gon
is viewed as a proper corner. Indeed, these vertices can ge-
ometrically merge into one single corner without breaking
Cn symmetry. We also emphasize that our proof in this sec-
tion is limited to insulators with trivial first-order topology (no
protected gapless edge modes). While q can generally be cal-
culated even for, e.g., a Chern insulator or a weak topological
insulator, the corner charge is only well defined when the edge
is gapped. We demonstrate one such example in Sec. VI A for
the model at quarter filling.

The corner excitations can be made energetically distinct
from the bulk by setting all hopping amplitudes across edges
and corners t ′ to be much smaller than their bulk counterpart
t [64], as shown in Fig. 5. In the process of decreasing t ′ the
energy gap is kept open and thus the value of e2π iq cannot
change, whose nth power must be 1. In an RG sense, as
the energy scale of the system flows from t to t ′ 
 t , the
system can be described by an effective IR Hamiltonian. In
the absence of gapless edge states, when t ′ = 0, we expect
the Hilbert space of the IR Hamiltonian to be supported on
the corners. The IR Hamiltonian describes hopping among n
sites, forming a ring (see Fig. 5; the exact hopping pattern
depends on n and is not important for our purposes). The
Cn symmetry for the entire system gets mapped to discrete
translation symmetry Tn of the ring.

Now, the bulk invariant (3) computed using the UV Hamil-
tonian can be expressed purely by physics in the IR, which
ultimately describes the same ground state. The IR physics

FIG. 5. Let the magnitudes of hoppings crossing boundaries be
|t ′| and those in the bulk be |t | as shown in the figure on the left. We
can take open boundary conditions by setting |t ′| = 0. In this limit
we expect the system to host corner charges. Studying the system
with |t ′| 
 |t |, the model representing the low-energy physics is
that of particles hopping on a ring, as shown in the figure on the
right. If the original system has a flux 	 = 0, 2π piercing the bulk,
the low-energy ring also has the same flux going through it. The
ground state of the low-energy model after threading the flux is
related to the ground state before threading the flux by a large gauge
transformation.

is much simpler—in particular, adding a 2π flux to the bulk
is simply captured by a large gauge transformation to the
n-site ring. Matching UV with IR, we have the following
identification:

Cn ∼ Tne2π iL[A]/n, |�0〉 ∼ |ψ0〉, |�2π 〉 ∼ U |ψ0〉, (5)

where Tn is the translation operator of the n-site boundary
system, L[A] is an integer c number corresponding to the total
angular momentum from UV (bulk) fermionic modes, |ψ0〉 is
the ground state of the IR Hamiltonian with and without the
2π flux, and U is the large gauge transform operator given by

Û = e
2π i
n

∑n
j=1 n̂ j j, (6)

where n̂ j is the electron number operator at corner j, 1 � j <

n, and we have set e = 1.
First, we show that in the thermodynamic limit, the angular

momentum from the bulk L[A] is independent of A, i.e., it
does not change upon on the insertion of the 2π flux. We
express the bulk operator L̂[A] as

L̂[A] = 1

n

∑
r∈bulk

n−1∑
�=0

� c†
� (r)c�(r), (7)

where c�(r) is an annihilation operator that transforms as a 1D
irreducible representation of the Cn group:

c�(r) = 1√
n

n∑
j=1

exp
2π i� j

n
c[(Cn) jr], (8)

where c(r) is the annihilation operator at r comprising only
bulk modes, and (Cn) jr is the coordinate of a site at r subject
to j consecutive Cn rotations. The expectation value L[A] can
be obtained using Green’s function. We have

L[A] = 〈L̂[A]〉 =
∑

r∈bulk

n−1∑
�=0

n∑
j=1

�

n
e2π i� j/nGA[r, (Cn) jr], (9)
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where

GA(r, r′) ≡ 〈�A|c†(r)c(r′)|�A〉. (10)

For any bulk sites r, it is straightforward to see that GA(r, r) =
n(r), i.e., the electron density at site r, which is independent
of the magnetic flux and A. For j 	= 0 we have for a bulk
insulator

GA[r, (Cn) jr] ∝ δξ [r − (Cn) jr] exp

(
i	A

r2

nL2

)
. (11)

Here L is the system size, 	A is the magnetic flux through the
system, and δξ (r) is a wave packet rapidly decaying beyond a
characteristic length ξ . The decaying behavior of GA follows
from the fact that the system is an insulator in the bulk with a
correlation length ξ 
 L. Importantly, since the fermions are
projected to only include bulk modes, the correlation function
has no “shortcuts” across the corners, and thus GA[r, (Cn) jr]
is significant only for r near the origin. The presence of a mag-
netic flux 	A introduces an additional phase via (the shortest)
path connecting r and (Cn) jr. However, in the thermodynamic
limit L � ξ , δξ (r) can be replaced by δ(r) for the summation
in Eq. (9). We have

LA ∝ N (n − 1)

2
, (12)

where N is the total number of electrons. We see that the A
dependence vanishes. For this reason, using the identification
in Eq. (5), we can rewrite the topological invariant e2π iq in
terms of IR quantities as

exp(2π iq) = 〈ψ0|U †TnU |ψ0〉
〈ψ0|Tn|ψ0〉 . (13)

Effectively, we have deformed the system in consideration
from a 2D sample to a ring with n sites, with or without a
2π flux penetrating it, shown in Fig. 5. As we explained, the
main advantage is that the wave functions of the ground state
with or without the 2π flux simply differ by a large gauge
transformation U .

The operators for the n-site ring have the following algebra,

Tnn̂ jT
−1

n = n̂ j+1, (14)

which leads to

U †TnUT −1
n = e−2π i

∑
j n̂ j/n ≡ e−2π iρ̂ , (15)

where ρ̂ ≡ ∑
j n̂ j/n is the average electron number operator

for each corner. Thus the topological invariant evaluates to

exp(2π iq) = 〈ψ0|UTnU †|ψ0〉
〈ψ0|Tn|ψ0〉 = 〈ψ0|e−2π iρ̂ |ψ0〉. (16)

Notice that since there are nonvanishing hopping amplitudes
between the corners (t ′), the ground state |ψ0〉 is not an eigen-
state of the particle number n̂ j on each site. However, since
UV and IR degrees of freedom decouple in the t ′ 
 t limit,
the state |ψ0〉 involving only IR degrees of freedom (the corner
electrons) should conserve particle number. Therefore

∑
j n̂ j

is a good quantum number, and so is ρ̂. We can thus equate the
right-hand side of Eq. (16) with e2π iρ , where ρ = 〈ρ̂〉 mod 1
is the fractional part of the average electron number at the
corners.

We see that our topological invariant defined in Eq. (3)
satisfies

q = −ρ mod 1, (17)

i.e., captures the fractional filling of the ring formed by n
corner states. Incidentally, we note that this derivation us-
ing the braiding algebra between translation and large gauge
transformation is quite similar to the nonperturbative deriva-
tion of Luttinger’s theorem in 1D [65,66], which formally
corresponds to the n → ∞ limit.

The corner charge for a HOTI is computed under open
boundary conditions, i.e., t ′ = 0. To this end, we note that
the ground state |ψ0〉 can be written as a superposition of
localized states |ϕi〉 without entanglement among the corners,
all of which have the same total corner electron number nρ.
When t ′ = 0, all |ϕi〉 states become degenerate ground states.
However, for all |ϕi〉, the electron occupation numbers for
each corner can only take integer values, e.g., either 0 or 1.
In a HOTI, the corner charge comes from the combination
of both electrons and ions when t ′ = 0. We know that for a
tight-binding model with periodic boundary conditions and
t ′ 	= 0, each corner is electrically neutral, even if the electrons
contribute a fractional charge ρ to each corner. After all, the
electronic charge is compensated by ions in a tight-binding
model. This indicates that when corner electron filling be-
comes integer valued under open boundary conditions, there
must be a fractional net charge ν, which amounts to the ad-
ditional electronic contribution between integer and fractional
filling. We have

ν = −ρ = q mod 1, (18)

where the charge of an electron is set to e = 1. This completes
our proof that the bulk topological invariant in Eq. (3) directly
captures the fractional part of the corner charge under open
boundary conditions. Just like q, the fractional charge ν is
quantized by 1/n of the electron charge.

We emphasize that our proof applies to both interacting and
noninteracting cases. Indeed, our proof only used the local na-
ture of the single-particle Green’s function in the bulk and the
algebraic relations between Tn and U , none of which relies on
the noninteracting limit. Finally, we note that our proof above
does not rely on translation symmetry in the bulk either. This
indicates that the Zn invariant can be extended to noncrys-
talline systems with a generic value of n. As we mentioned in
the Introduction, it has been obtained that a model defined
in a twisted bilayer graphene structure with a twist angle
θ = π/6 and a C12 rotation symmetry displays an e/4 corner
charge. From Eqs. (4) and (18), indeed this is compatible with
our topological invariant. It would be interesting to directly
compute it for the C12-symmetric model in Ref. [51], although
it remains to be seen how such a noncrystalline system may
be placed on a torus.

V. RELATION TO THE WEN-ZEE TERM

Recently, several works [52–62] have studied 2D Cn-
symmetric topological phases using a topological responses
which include the crystalline generalization of the Wen-Zee
term. Here we briefly summarize the key results and then
demonstrate the complete agreement between our approach
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of UV/IR mapping for Eq. (3) and the approach from a
generalized Wen-Zee effect.

The low-energy physics of a 2D symmetry-protected topo-
logical crystalline insulator (TCI) is described by the Abelian
Chern-Simons theory [52,60,63,67,68]:

Lbulk = − εμνλ

4π
KI,JaI

μ∂νaJ
λ

+ εμνλ

2π
tI Aμ∂νaI

λ + εiμν

2π
sIωi∂μaI

ν, (19)

where Aμ is the external electromagnetic gauge field and ωi

is the spin connection, i.e., the gauge-field-associated spatial
rotational symmetry U (1)r in 2D. We have followed the Ein-
stein convention to sum over repeated indices. The K matrix
of a 2D TCI has the following general form [67,68],

K = 1̂N×N ⊗
(

1 0
0 −1

)
, (20)

where 1̂N×N is the identity matrix of N dimensions. The 2N-
dimensional vector �t = (t1, . . . , t2N )T is known as the charge
vector, while �s = (s1, . . . , s2N )T is known as the spin vec-
tor of a rotational-symmetric Abelian topological order [63].
After integrating out the dynamical gauge fields aI

μ, which
describe the low-energy topological excitations of the system,
we achieve an effective field theory for quantized responses of
the TCI,

Leff = σxy

4π
εμνλAμ∂νAλ + S

2π
εμνλAμ∂νωλ

+ �s

4π
εμνλωμ∂νωλ, (21)

where the Hall conductance σxy (in unit of e2/h) and the Wen-
Zee shift S [63] are given by [69]

σxy = tT K−1t ; S = sT K−1t ; �s = sT K−1s. (22)

In particular, the last term LWen-Zee = S
2π

Adω of the response
theory (21), known as the Wen-Zee term [63], describes
the quantized response from the mixed anomaly between
global charge symmetry U (1)c and spatial rotational symme-
try. Initially proposed for systems with continuous rotation
symmetry, the Wen-Zee term has been extended to crystalline
systems with discrete Cn rotation symmetries [52,53,55]. The
key feature with discrete Cn rotation is that the shift S is de-
fined modulo n, i.e., S ∈ Zn, leading to the same classification
as ours.

The Wen-Zee term can be interpreted in two ways as
follows:

(i) In terms of orbital angular momentum (in units of h̄)
carried by a fluxon excitation (i.e., a flux quantum) in the TCI
phase [55],

Lz(	) =
∫

∂LWen-Zee

∂ω0
=

∫
S ∂xAy − ∂yAx

2π
= S 	

2π
. (23)

Specifically, a single fluxon (	 = 2π ) carries an orbital an-
gular momentum of Lz(2π ) = S . As we mentioned, our
topological invariant (3) precisely measures this angular mo-
mentum, and thus

q = Lz(2π )

n
= S

n
. (24)

(ii) In terms of quantized charge (in units of e) localized as
a disinclination [52,56,62],

ρdis(�) =
∫

∂LWen-Zee

∂A0
=

∫
S ε0i j∂iω j

2π
= −S �

2π
, (25)

since a disclination can be regarded as a curvature flux of the
spin connection ω that is equal to −�, where � is the Frank
angle.

Reference [62] has recently shown that for an Abelian
topological order with both charge conservation and Cn ro-
tational symmetry, when the system is placed on an n-gon,
the corner charge q is the same as a disclination with Frank
angle � = 2π/n. This can be easily understood from the
disclination charge formula (25): for a finite sample to create a
� = 2π

n disclination on an n-gon, one has to remove a slice of
the n-gon with a corner. As the slice removed from the sample
must have integer charge, the fractional charge hosted on the
corner of the slice now must be trapped at the disclination. We
then have

ρ = ρdis = −S
n

. (26)

Combining Eqs. (24) and (26), and noting that S is a defined
modulo n, we immediately obtain the bulk-boundary corre-
spondence (17).

VI. EXAMPLES

In this section we numerically demonstrate the capa-
bility of our invariant to capture the topology of various
Cn-symmetric insulators. For numerical simplicity we focus
on noninteracting cases, while we leave the numerical verifi-
cation for interacting systems to future work.

For the fourfold-symmetric case, we calculate the invariant
for the BBH model at half and quarter filling. The half-filling
case has e/2 corner charges, and the quarter-filling case has
3e/4 corner charges. For the sixfold-symmetric case, we cal-
culate the invariant for the two models that can generate all
possible C6-symmetric higher-order phases [20]. For a macro-
scopic hexagonal sample, these models host e/2 and 2e/3
charges on the vertices. In the following we introduce all the
models and present the numerical evaluation of the proposed
topological invariant in Eq. (3).

All tight-binding models we study have the following
structure:

H (A) = − w
∑

R

c†
R,α hαβ

RR(A) cR,β

− t
∑
〈R,R′〉

c†
R,α hαβ

RR′ (A) cR′,β , (27)

where cR,α is the annihilation operator for an electron at site
R and orbital α, and 〈R, R′〉 indicates a sum over nearest-
neighbor sites. The models are all similar in that there are
two competing hopping terms, an intraunit cell hopping term
whose magnitude is given by |w| and an interunit-cell hopping
term whose magnitude is given by |t |. The different models
are characterized by the different number of orbitals per unit
cell, number of nearest neighbors, and hopping patterns en-
coded in the hopping matrices hRR′ .
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(a) (b)

(c) (d)

FIG. 6. Tight-binding model for a quadrupole insulator. In (a) the hopping terms are defined. We use a π/2 flux per plaquette to study the
model at both half and quarter filling. Panel (b) shows the topological invariant evaluated for the model at half filling, and the insets show the
local density of states (LDOS) for the two phases of the model. The invariant correctly captures the phases and its value predicts the correct
corner charges as in Eq. (18). At quarter filling with open boundary conditions, the model has gapless edge modes, which we get rid of by
applying a staggered potential on the edges in a fourfold-rotation symmetric way as shown in (c). Orbitals on the edge marked by red have
a positive on-site potential energy. Such a staggered potential is physically equivalent to inducing a charge density wave on the edge to make
sure it is gapped. In panel (d) we calculate the invariant at quarter-filling and also show the corner modes for the gapped phases. Again, the
value of the invariant correctly corresponds to the corner charges.

A. Fourfold-symmetric model with 3e/4 and e/2 corner charges

The prototypical example of an insulator hosting e/2 cor-
ner charges is the BBH model, which is a four-band model
defined on a square lattice. Originally the model was defined
with a π flux per plaquette [2]. This leads to the bottom two
bands being degenerate, and when filled the model has e/2
corner charges. We modify the model in a way that makes
filling just one band of the model more natural by threading
a π/2 flux instead of π per plaquette, putting all four bands
of the model at different energies. A C4-symmetric version is
shown in Fig. 6(a), where every gray circle represents a unit
cell and the black nodes represent the different orbitals. We
take the positions of the orbitals to be at the centers of the
unit cells, but draw them at different positions in Fig. 6(a) for
better visual representation.

The hopping matrices for the π/2 BBH model can be
written explicitly as

hRR(A) =

⎡
⎢⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 −i
1 0 i 0

⎤
⎥⎥⎥⎦,

hR+e1,R(A) = h†
R−e1,R

(A)

= exp [iφR+e1,R(A)]

⎡
⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 −i
0 0 0 0

⎤
⎥⎥⎥⎦,

hR+e2,R(A) = h†
R−e2,R

(A)

= exp [iφR+e2,R(A)]

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦, (28)

where the primitive lattice vectors e1 and e2, and the orbital
numbering are defined on the right in Fig. 6(a). The phases
φR′R(A) are calculated using the Peierls substitution in the
case of bulk hopping terms and through the prescription de-
scribed in Fig. 3 in the case of hopping terms crossing the
boundary of the sample.

The model here has a fourfold rotation symmetry C4 : R =
ae1 + be2 → −be2 + ae1 with its action on the orbitals given
by

c4 =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 i 0

⎤
⎥⎥⎦. (29)
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(a) (b)

(c) (d)

FIG. 7. We calculate our topological invariant for two different C6 models that host corner charges. The model shown in (a) has a filling of
three electrons per unit cell to ensure the bulk and edges are neutral. This model hosts ±e/2 charges at the corners for w/t > 1. The model in
(b) has a filling of two electrons per unit cell to achieve charge neutrality in the bulk and edges. This model hosts −2e/3, e/3 corner charges
for w/t > 1.

We note that since we use the symmetric gauge to add the
magnetic field, this form of symmetry is the same even for
nonzero A.

At half filling, the model has two phases. For |w/t | < 1
it is in the topological phase, and for |w/t | > 1 it is in the
trivial phase [2]. In Fig. 6(b), we numerically evaluate our
invariant q using a periodic boundary condition as discussed
in Sec. III. The results show that the invariant does capture
the topological phase transition of the model by suddenly
changing value at the phase transition. According to Eq. (18),
the value q = 1/2 in the topological phase predicts that the
system under open boundary conditions exhibits fractional
corner charge e/2 mod e.

In the insets of Fig. 6(b), we plot the local density of states
(LDOS) using open boundary conditions for a representa-
tive point in each phase of the model. Working in a basis
where there is no entanglement between different corners,
we pick one ground state and plot the LDOS. The values of
the LDOS confirm that the model indeed hosts ±e/2 corner
charges.

We also solve the model and its invariant at quarter filling.
The invariant along with the corner charges are calculated in
Fig. 6(d). From the results we see that the model has three
phases as we increase the ratio |w/t |. For |w/t | 
 1, the
model is in the topological phase and host corner charges. In
particular, q = −1/4, which predicts corner charges ν = 3e/4
mod e. As |w/t | is increased, the bandwidths increase and the
lower two bands overlap, leading to a gapless phase at quarter
filling. For |w/t | � 1 the bandwidths decrease once more,
and we obtain a gapped phase that is trivial with no corner
charges.

We compute the fractional corner charges from LDOS
under open boundary conditions. One subtlety here is that
at quarter filling the bulk has a nonzero polarization that
leads to gapless edges. This can be resolved by adding a
staggered potential on the edge unit cells while still pre-
serving the C4 symmetry in such a way as to open the
edge gap and make it neutral. As shown in Fig. 6(c), the
orbitals on the edge marked in red have an additional pos-
itive potential energy shift. Physically, this can be thought
of as inducing an edge charge density wave (CDW) in a
fourfold-symmetric way that cancels the edge charges due
to the bulk polarization. In the insets of Fig. 7(c) we plot
the LDOS under open boundary conditions in the topological
and trivial phases. The LDOS for a ground state confirms
that the model has 3e/4 corner charges in the topologi-
cal phase which are captured by the invariant as expected
from Eq. (18).

B. Sixfold-symmetric models with e/2, 2e/3,
and e/6 corner charges

The sixfold-symmetric models are defined on a triangu-
lar lattice. They have a similar structure to the BBH model
with intraunit-cell hopping terms that are proportional to w

and interunit-cell hopping terms that are proportional to t .
Specific models hosting e/2 and 3e/2 corner charges were
proposed in Ref. [20], and are defined in Figs. 7(a) and 7(b),
respectively.

The sixfold rotation symmetry is C6 : R = ae1 + be2 →
(a − b)e1 + ae2 with the orbitals transforming as the
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following:

c6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

As discussed in Sec. III, we calculate the invariant on a
hexagonal sample under periodic boundary conditions imple-
mented by identifying opposite sides of the hexagon. This
treatment is essential for maintaining C6 in the presence of
a nonzero vector potential. We consider the model in Fig. 7(a)
at half filling and the one in Fig. 7(b) at 1/3 filling, both of
which can be straightforwardly expressed in the form of a
tight-binding Hamiltonian in Eq. (27). The invariants and the
resulting corner charges under open boundary conditions are
calculated for both models as shown in Figs. 7(c) and 7(d).
Similar to the BBH model at half filling, the models have
two phases that are determined by the ratio between intra-
and interunit-cell hoppings |w/t |. For |w/t | < 1 the models
are in the topological phase with different corner charges. As
shown in Figs. 7(b) and 7(c), the invariant captures the phase
transition of both models and takes different values for the
topological phases of the two models, reflecting the different
corner charges consistent with Eq. (18).

Finally, by simply combining the tight-binding models in
Fig. 7(a) at half filling and in Fig. 7(b) at 1/3 filling, we see
straightforwardly the topological invariant in the topological
phase has q = 1/6 and exhibits e/6 corner charge.

VII. CONCLUSION

In this work we proposed a Zn many-body topological
invariant for 2D second-order topological insulators with Cn

rotation symmetry. Our construction does not rely on multi-
polar moments in crystalline systems, which we argued to be

inadequate to capture the second-order topology for a general
n. Via a UV-IR matching, we directly demonstrated the corre-
spondence between the topological invariant in the bulk and
the fractional electric charges at the corners quantized to be
multiples of e/n. We also clarified the connection between our
invariant with the generalized Wen-Zee shift for Cn-symmetric
systems.

Compared to the various topological invariants proposed
for higher-order topological insulators, our result readily ap-
plies in the presence of interactions for a generic Cn rotation
symmetry, and even in the absence of translation symmetry.
In particular, it will be interesting to compute the topological
invariant in this work for quasicrystal systems, some of which
has been recently shown to exhibit fractional corner charges.

It will be interesting to extend the topological invariant
here to other higher-order topological phases, such as higher-
order topological superconductors or higher-dimensional
systems. For a higher-order topological superconductor, the
magnetic flux is trapped in vortices, and it has been shown
recently for noninteracting systems there exists a correspon-
dence [70] between corner Majorana modes and the Majorana
bound states in the vortex. An extension of our topological in-
variant for superconductors may generalize the vortex-corner
correspondence beyond the noninteracting limit [71]. We
leave these interesting issues to future work.
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