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Recent experiments observed fractional Chern insulators (FCI) in twisted bilayer MoTe2 at zero magnetic
field, yet even the single-particle model of this material is controversial, leading to unreliable predictions of
the experimental phase diagram as discussed in [Yu et al., Phys. Rev. B 109, 045147 (2024)]. In this light, we
revisit the single-particle model of twisted bilayer MoTe2. Utilizing large-scale density functional theory, we
calculate the band structure of twisted AA-stacked bilayer MoTe2 at various twist angles relevant to experiment.
We find that a band inversion occurs near 4.41◦ between the second and third bands in one valley. Our ab initio
band structure is in qualitative agreement with [Wang et al., Phys. Rev. Lett. 132, 036501 (2024)], but shows
important differences in the remote bands and in the � valley. We incorporate two higher harmonic terms into
the continuum model to capture the highest three valence bands per valley. We confirm that the two highest
valence bands per valley have opposite Chern numbers with |C| = 1 for experimentally relevant angles, and also
use our model to predict a variety of Chern states in the remote bands accessible by displacement field. We also
perform DFT calculations and build models for the AB-stacking configuration. Our paper serves as a foundation
for accurate determination of the correlated phases in twisted bilayer MoTe2.

DOI: 10.1103/PhysRevB.109.205121

I. INTRODUCTION

Fractional Chern insulators (FCI) [1–3] were shown to
naturally appear in zero magnetic field when nearly flat
Chern bands [4,5] are fractionally filled. Over the last sev-
eral years, there have been extensive theoretical [6–33] and
experimental [34–38] studies on zero-field FCIs in moiré
materials [39,40], as well as studies of fractional quantum
Hall (FQH)-like states under nonzero external magnetic field
[41] (which were called FCIs because the Chern bands where
they appeared did not have flat Berry curvature and quantum
geometry), and small B-field-induced FCIs [42]. Remarkably,
FCIs without any external magnetic fields have recently been
observed in twisted bilayer MoTe2 (tMoTe2) [34–37] and in
the pentalayer-graphene/hBN moiré superlattice [38]. These
moiré fractional Chern insulator (mFCI) states provide the
best experimental platform to date for the physics proposed in
Refs. [1–3].

In this paper, we will focus on tMoTe2, where mFCIs are
observed at fractional fillings ν = −2/3,−3/5, as well as a
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Chern insulator (CI) at ν = −1. Throughout, ν is the electron
filling measured from the charge neutrality point. FCIs are
expected to appear [1–3] in the CI bands found in the tMoTe2

model first proposed in Ref. [43]. However, an accurate model
of the material is required to correctly reproduce the FCI
states and competing nontopological states. Otherwise serious
disagreement with experiment can occur, as has been some-
what overlooked in the flurry of recent literature. For example,
the spin polarization at ν = −1/3,−4/3 cannot be repro-
duced theoretically unless band mixing is taken into account
[32], showing that bands beyond the lowest valence manifold
play an integral part in the physics. Recent theoretical stud-
ies [20,21,23,24,27,29,30,32,33,44], some of which predicts
the existence of fractional states not seen in the experiment,
might then be subject to change when band mixing is prop-
erly included. Even interaction-driven band mixing beyond
the two-band Hilbert space considered in Ref. [32] could be
important if the single-particle bands are energetically close.
Hence it is of the utmost importance to obtain a continuum
model capturing the ab initio band structure over the range of
energies accessible by the Coulomb potential.

Most importantly, there are two different sets of ab initio
parameters Ref. [20,21] used [20,21,23,24,27,29,30,32,33,44]
for interacting calculations in the continuum model of
Ref. [43]. These sets of parameters give rise to different
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single-particle phase diagrams, many-body spin polarizations,
and stabilities of 2/3 and 1/3 mFCI states Ref. [32]. Settling
the single-particle model of tMoTe2 is the subject of this first
paper in the mFCI series.

We perform large-scale density functional theory (DFT)
calculations to study twisted bilayer MoTe2 at various twist
angles for AA stacking, which is the stacking configuration
relevant to the experiments [34–37]. To accurately capture the
impact of crystal structure relaxation, we rigorously test 19
different van der Waals (vdW) exchange-correlation function-
als, and determine that DFT-D2 yields the most reliable lattice
parameters when compared with experimental results. With
DFT-D2, we further use a highly efficient two-step method
to obtain the structure. Our first step is to use the DFT-D2
functional to train a machine learning algorithm that generates
relaxed structures for a set of twist angles. The second step
is to use these relaxed structures as the initial configurations,
and further perform the full DFT relaxation to obtain final,
accurate relaxed structures. The moiré bands are eventually
calculated with the final relaxed structures. Our DFT results
show that the ±K-valley valence bands dominate the low-
energy physics while the �-valley valence bands are about
80 meV away from the valence band maximum (VBM) for the
experimentally relevant angle 3.89◦. Furthermore, the second
and the third valence bands in K valley (or −K valley related
by time-reversal symmetry) undergo a gap closing around
4.41◦, changing the Chern number of the second valence band
from −1 at smaller angles to 1 at larger angles. Our ab initio
results for the ±K-valley bands are closer to those of Ref. [21]
than to those of Ref. [20], although our second and third band
per valley are closer to each other than those of Ref. [21] at
3.89◦, which shifts their gap closing to smaller angles. Our �-
valley band is also lower in energy than that of Ref. [21], and
hence will not contribute to many-body physics near ν = −1.
The band structure in Ref. [20] looks different from ours due
to the different selection of the vdW functionals.

We then use the moiré model to capture the low-energy
DFT bands. If we only keep the first harmonics (FH) as in
Ref. [43], we can only manage to capture the top two valence
bands in each valley. To capture the top three valence bands
in each valley, we add two extra second harmonic (SH) terms,
and obtain a good match with the DFT band structure and
symmetry representations (reps). We propose that this more
accurate model be used in many-body calculations. In our
model with SH terms, the gap closing between the second
and third top valence bands in one valley happens around
4.2◦ at zero displacement field, which is consistent with our
DFT calculation. We find that adding a displacement field
can change the Chern number of the top valence band from
1 to 0 in K valley, and can also achieve a variety of Chern
numbers (from –2 to 2) for the second and third top valence
bands in one valley. Accessing these bands provides another
route to integer Chern physics seen in twisted transition metal
dichalcogenides [45–49].

In addition to the experimentally relevant AA-stacking
configuration, we also study the AB-stacking configuration.
Our DFT results show that the �-valley bands in the AB-
stacking case is closer to the VBM (only about 30 meV away)
and are extremely flat. We build a FH model capturing these
�-valley bands, and show that they are extremely localized

atomic bands whose flatness comes from zero hopping among
atomic orbitals on the triangular lattice. We also used the
±K-valley model in Ref. [43] to match the top two valence
bands in each valley.

In the rest of this paper, we discuss the DFT calculations at
a range of twist angles and stacking configurations in Sec. II,
and the continuum models we employ to faithfully repro-
duce these calculations in Sec. III. We conclude the paper in
Sec. IV, and provide more details in a series of appendices.

II. DFT CALCULATIONS

In this section, we discuss the large-scale DFT calculations
on the tMoTe2 at various twist angles and different stacking
configurations. We will mainly discuss the results for 3.89◦,
which is the closest one to the structure in recent experiments
[34–37], as well as the topological phase transition from
large angle to 3.89◦. A complete discussion can be found in
Appendix A.

A. 3.89◦ tMoTe2

Utilizing the coincidence lattice method [50,51], we con-
struct twisted bilayer crystal structures of MoTe2 at various
commensurate angles: 13.2◦, 9.43◦, 7.34◦, 5.09◦, 4.41◦, 3.89◦,
and 3.48◦, considering both AA and AB stacking. Here, AA
(AB) stacking implies that, without any twist, the Mo/Te
atoms of the top layer respectively align with the Mo/Te
(Te/Mo) atoms of the bottom layer. Subsequently, large-scale
DFT calculations using the Vienna Ab Initio Simulation Pack-
age (VASP) [52–55] are performed on these structures.

To capture the van der Waals (vdW) interactions between
top and bottom layers, we test 19 exchange-correlation func-
tionals using the experimental bulk crystal structure [56] as
a benchmark (see Table III in Appendix A 1). Ultimately, we
find that DFT-D2 gives the lattice parameter closest to the ex-
perimental value [56], and we use this functional throughout
the paper. Secondly, different pseudopotential (PP) combi-
nations have also been tested. It has been found that the
energy differences between different PPs are negligible (see
Fig. 7 of Appendix A 1). Considering the computational cost,
we choose the PAW pseudopotential and PBE exchange-
correlation functional.

Based on these functionals, we develop a highly efficient
two-step relaxation scheme, which combines machine learn-
ing and DFT. First, we construct the machine-learned force
field (MLFF) using the relaxation data generated by DFT-D2.
The MLFF method has a much lower computational cost than
the direct relaxation with DFT since the moiré unit cells are
very large with 1302 atoms. MLFF can produce a relaxed
structure quickly. Using this structure as an initial guess, we
further perform the full DFT relaxation. It turns out that the
MLFF is reasonably good, making the DFT relaxation quite
fast. To achieve total-force convergence with an accuracy
of 5m eV/Å and energy convergence of 1 × 10−5 eV, the
DFT+MLFF method requires 17 ionic steps, which take
7.5 hours using 16 NVIDIA A100 GPUs. In contrast, direct
relaxation using DFT requires 178 ionic steps and take 55
hours when using eight NVIDIA A100 GPUs, demanding
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FIG. 1. Relaxation and band structure of 3.89◦ tMoTe2. (a) Re-
laxation of the 3.89◦ AA stacking. (b) Relaxation of the 3.89◦ AB
stacking. (c) and (d) show the band structure and density of states
(DOS) of the structures in (a) and (b) respectively, with red lines
indicating bands from the � valley and the green line marking the
Fermi level.The notations kv1, kv2, and kv3 represent the three highest
pairs of valence bands of the AA-stacked configuration in the ±K
valleys. The DOS is normalized per molybdenum atom.

approximately four times more resources than the DFT+
MLFF method.

The faster convergence of the DFT+MLFF method (com-
pared to the DFT direct relaxation) does not sacrifice precision
in the band structure. To show it, we present the band
structures obtained from three different approaches: MLFF
relaxation, DFT+MLFF relaxation, and DFT direct relax-
ation, as shown in Fig. 17 of Appendix A 3 d. The band
structures obtained from the DFT+MLFF and DFT relaxed
methods have qualitatively the same shapes, which is consis-
tent with the fact that the DFT relaxation upon the MLFF
structures is quite fast. In particular, the bands from the
DFT+MLFF and the direct DFT relaxation methods are ex-
tremely similar, verifying the validity of the DFT+MLFF
method. Moreover, the MLFF-initialized relaxation leads to
a more stable configuration, likely due to the maintenance of
C3z symmetry throughout the relaxation process. MLFF+DFT
relaxation results in an approximately 0.9 eV lower energy
compared to direct DFT relaxation, indicating the advantage
of MLFF initial guess of relaxed structure in finding the lowest
energy configurations. Therefore, we use the DFT+MLFF
method in this paper instead of the DFT direct relaxation.
The stacking-dependent corrugated moiré structures of AA
and AB configuration generated by the DFT+MLFF method
are shown in Figs. 1(a) and 1(b).

AA-stacked tMoTe2 has a twofold rotational symmetry
axis along y axis, C2y, and the C3 symmetry. The relaxed struc-
ture exhibits a maximum interlayer distance d = 7.62 Å in the
AA region, where the metal atoms in top layer is aligned with
metal atoms in bottom layer, while a minimum interlayer dis-
tance d = 7.0 Å in the MX (XM) region, where the top layer

metal (chalcogen) atoms are aligned with chalcogen (metal)
atoms of bottom layer, as shown in Fig. 6 of Appendix A 1.

For AA tMoTe2 at 3.89 degree, the VBM is located at the
KM point in the moiré Brillouin zone (BZ), which is folded
from the K point in the untwisted bilayer structure. The top
three pairs of valence bands, labeled as kv1, kv2, and kv3, origi-
nate from the ±K valleys, exhibiting bandwidths of 12.8 meV,
16.2 meV, and 16.5 meV, respectively. The combined effects
of lattice relaxation and SOC lead to the �-valley bands shift-
ing downward by about 80 meV from the VBM. The �-valley
bands, illustrated in Fig. 1(c) and marked by red-dashed lines,
contribute to two distinct peaks in the density of states (DOS).

The AB-stacking configuration has a twofold rotational
symmetry C2x with the axis along x as well as the threefold
rotation symmetry C3 with axis along z. For the twist angle
3.89◦, the top two pairs of valence bands also come from
±K valley with band width of 16 meV, while the first pair
of ultra-flat bands from � valley is only 30 meV below the
VBM. The charge density of these ultra-flat bands is highly
localized in the AB region of the moiré lattice (see Fig. 20 of
Appendix A 3 d).

B. Topological phase of valence bands from 5.09◦ to 3.89◦

In this part, we will discuss the topological phase transition
around 4.41◦ of the valence bands in AA-stacked tMoTe2.
Since the full DFT calculations are performed in huge unit
cells, it is impractical to calculate the Chern number directly,
and we turn to symmetry eigenvalues to efficiently deduce the
topology [57].

Figure 2 shows the band structure and the C3 eigenvalues at
the high-symmetry points �M and MM , as calculated using the
IRVSP software Ref. [58]. Our convention is to use the spinful
C3 eigenvalues, which are labeled by ω = eiπ/3, ω∗ = e−iπ/3,
and 1̄ = e−iπ . Since ±K-valley bands are valley-spin locked,
we distinguish two valleys by their spins (spin up/down for
K/−K valley).

For 5.09◦, we observe that there is a gap of 2.8 meV
between kv2 and kv3 bands at the moiré �M point. This gap is
closed around 4.41◦, and reopens at angle 3.89◦. From the C3

eigenvalues labeled in Fig. 2, we see that this band crossing
exchanges the symmetry representations at �M for kv2 and
kv3 bands. Explicitly, for 5.09◦, the kv2 band at �M has two
spin-polarized states: |↑, ω∗〉 and |↓, ω〉, while the kv3 band
has |↑, ω〉 and |↓, ω∗〉. When energy gap reopening occurs,
the symmetry representations of kv2 and kv3 at 3.89◦ switch in
comparison to those at 5.09◦.

The exchange of symmetry eigenvalues is proof of a
band inversion and causes a change in the spin/valley Chern
number. Specifically, recall that the Chern number can be
determined from symmetry via ei 2π

3 C = −ξ�M ξKM ξK′
M

where
ξk is the spinful C3 eigenvalue at high-symmetry point k
[57]. Since C2yT relates the moiré KM and K′

M points and is
antiunitary, ξKM = ξK′

M
. Thus for θ slightly larger than 4.41◦,

we find ei 2π
3 C = −(−1)(−1)ω∗ so that C = 1 mod 3 for the

second top spin-↑ band, but for θ slightly smaller than 4.41◦,
we find ei 2π

3 C = −(−1)(−1)ω so that C = −1 mod 3. This
topological phase transition is matched by the continuum
model as we will show in Sec. III.
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FIG. 2. Irreducible representations at high-symmetry points � and K of valence bands of monolayer and twist MoTe2 with twist angle
5.09◦, 4.41◦, and 3.89◦ for relaxed AA-stacking configuration with SOC. The eigenvalues of the C3 are denoted as ω = eiπ/3, ω∗ = e−iπ/3, and
1̄ = e−iπ . The critical point of band inversion between the second and third valence bands at γ point of moire BZ happens at around twist
angle 4.41◦.

C. Comparison with Ref. [20,21]

Two recent papers [20,21] have also studied the relax-
ation and band structure of tMoTe2. The band structures in
Ref. [20,21] are different from our result, mainly due to
the different relaxed structures. Reference [20] employed the
SCAN density functional with dDsC dispersion correction
to perform crystal structure relaxation using VASP, while
Ref. [21] used SIESTA with DFT-D2 functional to perform
the relaxation. The comparison of the relaxation results of
AA-tMoTe2 between this paper and Refs. [20,21] is shown
in Fig. 3. As shown in Fig. 3, the interlayer distance in
our relaxed structure has the qualitatively the same shape
as those in Refs. [20,21]—largest interlayer distance at MM
and the smallest interlayer distance at MX/XM. However,
the interlayer distance in our relaxed structure has smaller
spatial fluctuations than that in Ref. [20] as shown in Figs. 3(a)
and 3(b), while our relaxed structure has larger interlayer
distance than that of Ref. [21] [Fig. 3(c)]. The maximum
interlayer distances of this paper, Ref. [20], and Ref. [21] are
about 7.6Å, 7.8 Å, and 7.4 Å, respectively, and the minimum
interlayer distances are respectively about 7.0Å, 7.0Å, and
6.9Å.

Our relaxation result is consistent with the AA and AB
stacking untwisted bilayer structure. In the AA region, the
stacking configuration is close to that of AA untwisted bilayer
structure, and thus the maximum interlayer distance should
be close to but slightly smaller than (due to the corrugation
effect due to the connection to other stacking configurations
in the moiré structure) the interlayer distance of AA-stacking
untwisted bilayer (7.7 Å), which is consistent with our re-
sults but not with Ref. [20]. Furthermore, the MX region
has the stacking configuration akin to that of AB untwisted
bilayer structure. As a result, the smallest interlayer distance
in tMoTe2 structures should be close to but slightly larger
than (due to the corrugation) 7 Å, which is consistent with
our results but not with Ref. [21]. More details about the
relaxation and its influence on band structure are discussed
in Appendix A 3 e.

III. CONTINUUM MODELS

In this section, we use the continuum model to fit the DFT
results. Up to now, FCI states were only found for hole doping
experimentally [34–37]; thus, we will focus on the model for
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FIG. 3. Relaxation results of AA twisted structure. (a) Relaxation result of 4.41◦ AA MoTe2 from Fig. 2(a) of Ref. [20]. (b) Our relaxation
result of 4.41◦ AA MoTe2. (c) The interlayer distance of 3.89◦ AA MoTe2 along the black line in Fig. 1(a). The red curve is the result from
Fig. 1(d) from Ref. [21], and the blue curve is our result.
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the valence bands. We will first discuss the AA stacking and
then discuss the AB stacking.

A. AA-Stacking

According to the DFT results, the low-energy valence
bands mainly originate from the ±K valleys in the monolayer.
The symmetry group of AA-stacking tMoTe2 (AA-tMoTe2)
is generated by C3, C2y, and T , in addition to the moiré lattice
translations [43]. We pick a convention where the top layer
is rotated by −θ/2 and the bottom layer by θ/2. The moiré
lattice constant is

aM = a0

2 sin
(

θ
2

) , (1)

where a0 = 3.52 Å is the lattice constant of monolayer
MoTe2.

The continuum model for the monolayer ±K valleys in
general reads

HAA
η,0 =

∫
d2r(c†

η,b,r, c†
η,t,r)hAA

η,0(r)

(
cη,b,r

cη,t,r

)
, (2)

where c†
η,l,r labels the basis of the continuum model, η = ±

labels the ±K valleys (or equivalently spins), l = t, b labels
the layer, and r labels the position. Reference [43] proposed
a model with only the first harmonics (FH); however, here
we add the certain second harmonics (SH) terms in order
to accurately match the higher bands. [See the definition of
the first and second Harmonics in Eqs. (B17) and (B20) of
Appendix B 1.] Expanding the potential terms and using sym-
metry, we find the form

Vη,l (r) = Ve−(−)l iψ
∑

i=1,2,3

eigi·r + Ve(−)l iψ
∑

i=1,2,3

e−igi·r

+ 2V2

3∑
i=1

cos(g2i · r),

tη(r) = w
∑

i=1,2,3

e−ηiqi·r + w2

∑
i=1,2,3

e−ηiq2i·r , (3)

where l = t, b corresponds to l = 0, 1 for (−)l , re-
spectively, gi = Ci−1

3 bM,1, bM,1 = 4π√
3aM

(1, 0)T and bM,2 =
4π√
3aM

( 1
2 ,

√
3

2 )T are the basis moiré reciprocal lattice vectors,

q1 = 4π
3a0

2 sin( θ
2 )(0, 1)T , q2 = C3q1, q3 = C2

3 q1, g21 = bM,1 +
bM,2, g2i = Ci−1

3 g21, q21 = bM,1 + q
1
, and q2i = Ci−1

3 q21. V ,
ψ , and w characterize the FH terms, while V2 and w2 belong
to the SH. The AA-stacking FH ±K-valley model [Eq. (2)]
has effective inversion symmetry that makes the two bands
from the two valleys identical (in accord with the DFT results,
which show small splitting about 1.2 meV). The effective
inversion symmetry is natural with only FH terms, and we
only include the SH terms that preserve the effective inversion
symmetry. In total, the model [Eq. (2)] has six real parameters
m∗, V , ψ , w, V2, and w2.

We fit to the DFT band structure at θ = 3.89◦ in two ways.
(See Appendix B 1 for details.) First, we set V2 = w2 = 0,
which corresponds to the FH model. In this case, we manage
to fit the top four valence bands (two in each valley) with the
corresponding FH parameters in Table I, as shown in Fig. 4(a).

TABLE I. Values of the parameters in the ±K-valley continuum
model [Eq. (3)] for the AA-stacking tMoTe2. V, w,V2, w2 are in
meV. “FH” means we only include the first harmonics, whereas
“FH+SH” means that we include both the first harmonics and the
effective-inversion-invariant second harmonics.

Model m∗ (me) V ψ (deg) w V2 w2

FH 0.60 16.5 –105.9 –18.8 0 0
FH+SH 0.62 7.94 –88.43 –10.77 20.00 10.21

Then, we allow nonzero V2 and w2, i.e., adding the SH terms.
We are now able to fit the top six valence bands (three in each
valley) with the corresponding FH+SH parameters in Table I,
as shown in Fig. 4(b). The match is not only good along the
high-symmetry line but also good in the full BZ as shown in
Figs. 21(a) and 21(b) in Appendix B 3.

As shown in Figs. 22(a) and 22(b) in Appendix B 3, we
can see that the C3 eigenvalues for the top six valence bands
match the DFT calculation in both FH and FH+SH cases.
Furthermore, the Chern numbers of the top three bands (in
decreasing order of energy) in K valley are (1,–1,0) in both
cases, which are consistent with the C3 eigenvalues [57]. The
C3 eigenvalues and the Chern numbers of the top two bands
per valley are the same as those in Ref. [21]. It is clear that
adding the SH terms improves the reliability of the model
across a wider range of energies. We expect more remote
bands to be accessible in future experiments, and hence our
FH+SH model is an essential improvement.

At last, we discuss the evolution of the bands of the AA-
stacking moiré model in Eq. (2) with the FH+SH parameters
values in Table I as a function of the twist angle θ and the
displacement field ε. We will focus on the K valley. As shown
in Fig. 5(a), the gap between second top and third top bands
closes around 4.2◦ for zero-displacement field, which is close
the the DFT’s 4.41◦ in Fig. 2; the gap closing will change
the Chern numbers of the second and third top bands in K
valley from (–1,0) to (1,–2). Further increasing the angle at
zero displacement field will cause a band inversion between
the third and fourth top valence bands, which changes the
Chern number of the third top band from –2 to –1 as shown in
Fig. 5(d). Figure 5(b) shows that increasing the displacement
field can trivialize the top valence band, while a variety of
Chern numbers (ranging from –2 to 2) can arise for nonzero
displacement field for the second and third top bands as shown
in Figs. 5(c) and 5(d).

B. AB-Stacking

The generators of the symmetry group of AB-stacking
tMoTe2 (AB-tMoTe2), which can be thought of as twisting the
top layer of AA-tMoTe2 by another 180◦, are C3,C2x, and T .
Note that C2x is local to the monolayer K point (unlike C2y in
AA-tMoTe2), and thus it preserves the valley quantum num-
ber in the moiré model. This difference in the valley symmetry
group is important and, as we now show, leads to different
behavior with the potential for interesting many-body spin and
Hubbard physics [59–65].

The DFT results show that the low-energy valence bands
of AB-tMoTe2 come from both the ±K valleys and the �
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FIG. 4. The comparison between the valence bands from the DFT calculation (black dots) and from the continuum model (red/orange
line) for twist angle 3.89◦ for (a) (b) AA stacking and (c) AB stacking along the high-symmetry line. The red line comes from the ±K-valley
model, while the orange line comes from the �-valley model. Each red line is doubly degenerate [except along �M − MM in (c) where it is
fourfold degenerate]. The orange line in (c) has double degeneracy around −30 meV and fourfold degeneracy around −86 meV. The fitting in
(a) is done with only FH terms, while SH terms are added in (b).

valleys in the monolayer. The ±K-valley model was proposed
in Ref. [43], which reads

HAB
η,0 =

∑
l

∫
d2rc†

η,l,r

[
h̄2∇2

2m∗ + Vη,l (r) + (−)l ε

2

]
cη,l,r

+
[∫

d2rc†
η,b,rtη(r)cη,t,r + H.c.

]
, (4)

where c†
η,l,r labels the basis of the continuum model with η =

± labeling the ±K valleys (or equivalently spins), l = t, b
labels the layer, and r labels the position. Since AB-tMoTe2

is given by rotating the top layer of AA-tMoTe2 by an extra
180◦, the two layers in K or −K valley now have opposite
spin. With first harmonics, the forms of Vη,l (r) and tη(r) de-
rived from the symmetries read

Vη,l (r) = Ve−iψ
∑

i=1,2,3

eigi·r + Veiψ
∑

i=1,2,3

e−igi·r,

tη(r) = w
∑

i=1,2,3

eηi(i−1) 2π
3 e−ηiqi·r , (5)

where V is real, and w can made real by choosing the relative
phase between the two layers. For ε = 0, the minimal contin-
uum model has the effective TR symmetry within each valley
that flips layer (or equivalently spin), making the bands from
the two valleys identical.

On the other hand, the �-valley model has the following
form:

H� =
∫

d2r(ψ†
r,b ψ†

r,t )h
AB
� (r)

(
ψ

†
r,b

ψ
†
r,t

)
, (6)

where we choose the kinetic term in the continuum model as
the intralayer spin-independent ∇2 term,

hAB
� (r) = h̄2∇2

2m∗
�

+ E� +
(

V�,b(r) − ε/2 t� (r)
t†
� (r) V�,t (r) + ε/2

)
,

(7)

ψ
†
r,l = (ψ†

r,l,↑, ψ
†
r,l,↓) , (8)

t and b correspond to the top and bottom layers, respectively,
E� accounts for the energy difference between the �-valley
and ±K-valley bands, and V�,l (r) and t� (r) are 2 × 2 matrix
functions. For zero-displacement field, the �-valley model
has effective TR symmetry within each spin subspace, which
makes the bands from the two spins identical (resulting in at
least double degeneracy of each band).

We fit the low-energy bands at θ = 3.89◦, and the resulting
parameter values are summarized in Table II. As the illus-
tration, we show the good match between the DFT bands
and those from the models along the high-symmetry line in
Fig. 4(b). The bands match well also in the full BZ, and the
C3 eigenvalues also match the DFT calculation as discussed in
Appendix C 3.

For the ±K-valley model, we notice that the interlayer
coupling can be set to zero w = 0 in the ±K-valley model
while keeping the match of the bands good, which can be
understood as the follows. The two layers in one valley now
have opposite spins; owing to the spin U(1) symmetry for the
low-energy states near ±K valleys in monolayer MoTe2, we
expect the spin U (1) symmetry is approximately preserved in
tMoTe2, which means the interlayer coupling is very small
for the AB stacking. The zero interlayer coupling makes
the eigenstates have well-defined valley and layer/spin. As
a result, the two states with the same spin in the ±K-valley
model are degenerate at KM , since the combination of the
effective TR symmetry and the TR symmetry leaves the spin
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FIG. 5. Phase diagram of AA-stacking moiré model in Eq. (2)
with the FH+SH parameters values in Table I. In this plot, band
1,2,3 refer to the top, second top and third top valence bands in the
K valley. In (a), we show the Chern numbers of the three bands (blue
for 1, red for 2 and orange for 3) for zero-displacement field, which
shows a band inversion between the second and third top bands
around 4.2◦. In (b), (c), and (d), we show the direct gaps and the
Chern numbers of the top (a), second top (b). and third top (c) bands
in the ±K valley. Explicitly, the direct gaps are illustrated by the
color (the color bar is the same across plots) and the Chern numbers
are labeled in white.

invariant; this is consistent with DFT calculations as shown
in Fig. 19 of Appendix C 3. The top four valence bands are
in the A1@1a atomic limit, representing an atomic s orbital at
the MM stacking positions; the band structure can be thought
of as arising from hopping on this moiré triangular lattice.

The �-valley bands are extremely flat as shown in Fig. 4(c),

owing to the large m∗
� = 10me (− h̄2|q1|2

2m∗
�

= −2.49 meV) com-
pared to the potential V� = 72 meV. As a result, those flat
bands are extremely localized atomic states localized around
the minima of the intralayer potential (i.e., 1a positions due
to ψ = 0), and their energies can be approximately calculated
from an array of decoupled harmonic oscillators related by
moiré translations. (See Appendix C 3.)

At last, we discuss the effect of the displacement field. As
shown in Fig. 25 in Appendix C 3, the effect of the displace-

TABLE II. Values of the parameters in the ±K-valley continuum
model in Eq. (5) (first and second rows) and the �-valley continuum
model in Eq. (7) (third and fourth rows) for the AB-stacking tMoTe2.

m∗ (me) V (meV) ψ (deg) w (meV)

0.62 53 −56 0

m∗
� (me) V� (meV) ψ� (deg) w� (meV)

10 72 0 300

ment field on the ±K-valley bands is just to shift the bands
from different layers relative to each other, since the layer is a
good quantum number due to the zero interlayer coupling (see
Table II). On the other hand, the effect of the displacement
field on the low-energy �-valley bands is negligible, which is
consistent with the fact that the very large interlayer coupling
makes the eigenstates equally distributed between the two
layers (see Table II).

IV. CONCLUSIONS

Our extensive DFT study, accelerated by machine learning,
has confirmed (along with our continuum model analysis) that
that the lowest two bands in the K valley have Chern numbers
+1 and −1 respectively, at a twist angle of 3.89◦ for the
experimentally relevant AA stacking. A phase transition to
K valley have Chern numbers +1 and +1 occurs at slightly
larger angle 4.41◦. These Chern numbers mod 3 are acces-
sible directly from the DFT data, and we compute the exact
value from the continuum model fit to the DFT bands. The
Chern numbers are consistent with Ref. [21] but do not agree
with those computed by Ref. [20] at larger twist angles and
extrapolated by us to 3.89◦, although the phase boundaries are
relatively close.

We succeeded in matching the top three valence bands
(as well as much of the fourth band) per valley by adding
only two higher harmonic terms to the moiré Hamiltonian
[see Eq. (2)]. This Hamiltonian still preserves the effective
intravalley inversion symmetry, and will serve as a faithful
model of the dispersion and topology for a wide range of
electron fillings. The matching of the three bands (rather than
the previous matching of two bands) might be necessary as
the band mixing turns out to be an important characteristic
of these systems. Excitingly, our model predicts a rich topo-
logical phase diagram accessible through displacement fields
in the remote bands. Our forthcoming paper will study the
many-body physics of this model, contributing to the broader
study of correlations and topology [49,66–81] now accessible
in experiment.

Note: It’s worth mentioning our other work [82] that
performs first-principles calculations and builds continuum
models of rhombohedral graphene/h-BN moiré superlattices.
Focusing on the pentalayer case, we analytically explain
the robust |C| = 0, 5 Chern numbers seen in the low-energy
single-particle bands and their flattening with a displacement
field. We then predict nonzero valley Chern numbers at the
ν = 4, 0 insulators observed in experiments.
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APPENDIX A: DFT RESULTS

1. Atomic structures of tMoTe2

Bulk 2H-MoTe2, as sketched in Fig. 6(b), has a hexagonal
structure with space group 194 generated by the inversion P ,
a threefold symmetry C3 with axis along z axis, a twofold
symmetry C2x with axis along x axis, and lattice transla-
tions. Experimentally, the lattice constant is found to be a =
3.519 Å and c = 13.976 Å [56].

We used VASP with Perdew-Burke-Ernzerhof (PBE) func-
tionals to perform the DFT calculation. Before performing
DFT calculations for band structure, we need to choose
the suitable exchange-correlation functionals to describe the

electron-electron interaction and the suitable pseudopotentials
to deal with the interactions between electrons and nucleus. To
pick the best exchange-correlation functionals, we try 19 dif-
ferent ones to calculate the relaxed bulk crystal structure, and
show the results in Table III. Here, we choose the energy cut-
off of 300 eV and energy convergence condition of less than
1 × 10−6 eV in the self consistent calculation. The MoTe2

system is an insulator, so the smearing parameter for VASP
should be chosen as ISMEAR = 0 to use Gaussian smearing.
We find that the DFT-D2 functional (IVDW = 10) provides a
lattice constant of a = b = 3.518 Å and c = 13.976 Å for the
bulk MoTe2 primitive crystal structure, which is closest to the
experimental values in Ref. [56]. Therefore, we conclude that
the DFT-D2 functional (IVDW = 10) is the most appropri-
ate choice for the MoTe2 structural relaxation among the 19
functionals.

After selecting the exchange-correlation function-
als, we test the different projector augmented wave
pseudopotentials—Mo-Te, Mo_pv-Te, Mo_sv-Te—where the
pseudopotentials without suffices are general pseudopotential,
and the suffix “_sv” (“_pv”) means that the inner s
(p) electrons are considered as valence electrons. These
combinations show little difference in the relaxed lattice
parameters. This is consistent with experimental data. In
addition, we also test different pseudopotentials by calculating
the band structure of monolayer, bulk, AB-stacking bilayer
and AA-stacking bilayer MoTe2, as shown in Fig. 7. The band
structures calculated by different pseudopotentials coincides
with each other. Therefore, it is legitimate to choose any of
them. Besides, we also test these pseudopotentials by doing
the relaxation of bulk MoTe2, see in Table IV. The “Mo-Te”
combination gives the most closest lattice parameters to the
experimental result, meaning that the “Mo-Te” combination,
which containing six electronics for Mo atoms and Te
atoms, can capture the relaxation effect of bulk MoTe2 well.
Considering the balance of accuracy and computational cost,

FIG. 6. Rigid atomic structures of 13.2◦ tMoTe2. The purple one is Mo atom and yellow-brown one is Te atom. (a) Bilayer AA-stacking
configuration. (b) Bilayer AB-stacking configuration. (c) 13.2◦ tMoTe2 AA configuration with in-plane twofold rotational symmetry axis along
the y axis. (b) 13.2◦ tMoTe2 AB configuration with in-plane twofold rotational symmetry axis along the x axis. Both AA and AB have the C3

threefold rotation symmetry axis perpendicular to the plane. Mo atom is labeled by M, while chalcogen atom is labeled by X. MX represents
the top layer Mo atom is aligned with bottom layer chalcogen atom. Similarly with XM and MM.
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TABLE III. Relaxed lattice constant of bulk MoTe2 using different vdW functionals. The IVDW number corresponds to different vdW
functionals provided in VASP. Here IVDW=10 is the DFT-D2 method of Grimme (marked by gray). IVDW=11 is the DFT-D3 method of
Grimme with zero-damping function. IVDW=13 is the DFT-D4 method. IVDW=20 is the Tkatchenko-Scheffler method. IVDW=21 is the
Tkatchenko-Scheffler method with iterative Hirshfeld partitioning. IVDW=263 is the Many-body dispersion energy with fractionally ionic
model for polarizability method. IVDW=4 is the dDsC dispersion correction method. IVDW=3 is the DFT-ulg method. Experimental data is
from [56].

Experiment optB86 optB88 vdW-DF vdW-DF-cx

a,b(Å) 3.519 3.527 3.567 3.631 3.502
c(Å) 13.964 14.032 14.213 15.007 13.867

PBE optPBE-vdW rVV10 SCAN+rVV10 r2SCAN+rVV10
a,b(Å) 3.551 3.580 3.546 3.503 3.542
c(Å) 15.095 14.475 13.949 14.223 14.187

rev-vdW-DF2 vdW-DF2 IVDW=10 IVDW=11 IVDW=12
a,b(Å) 3.529 3.711 3.519 3.512 3.490
c(Å) 14.028 14.891 13.976 13.984 13.649

IVDW=20 IVDW=21 IVDW=263 IVDW=4 IVDW=3
a,b(Å) 3.514 3.516 3.490 3.515 3.531
c(Å) 13.923 13.826 13.709 14.047 14.222

here we choose the “Mo-Te” combination, which has the
smaller computational cost due to fewer electrons while has
the better accuracy.

Before studying the electronic structures of the tMoTe2

system, we first generated their crystal structures. We start
from both the AA and AB stacking [83]. As illustrated in
Fig. 6, AA stacking means that, when there is no twist, the
Mo/Te atoms of the top layer aligns with the Mo/Te atoms
of the bottom layer. AB stacking means that, when there
is no twist, the Mo/Te atoms of the top layer is directly
above the Te/Mo atoms of the bottom layer [see Fig. 6(a)].
The bilayer untwisted crystal structure relaxed by DFT-D2
functional gives lattice parameter a = 3.5228 Å, and thus
two primitive lattice vectors are a1 = a(1, 0, 0) and a2 =
a
2 (− 1

2 ,
√

3
2 ,0). For twisted homobilayer with both top and

bottom layer being MoTe2, a commensurate structure occurs
when the moiré lattice vector of top layer and bottom layer sat-
isfy the commensurate lattice condition aMb = n1a1 + n2a2 =
m1ar

1 + m2ar
2 = aMt for certain integers n1, n2, m1, m2, where

ar
1 is the primitive lattice vectors rotated by an angle θ . In

this way, we can obtain the rigid tMoTe2 structures with
different angles. All the rigid structures were generated using
a homemade software 2DTwist. In the DFT calculation for
tMoTe2, when the twist angle is smaller than 9.43◦, we use
� point sampling. While for 13.2◦ tMoTe2, we use 4 × 4 × 1
k-point sampling.

The moiré structures twisted from AA stacking has a
hexagonal structure in space group 150, with C3, C2y [see
Fig. 6(a)] as well as the time-reversal (TR) symmetry. Thus,
the little group in the K valley is generated by C3,C2yT , and

TABLE IV. Relaxed lattice constant of bulk MoTe2 using dif-
ferent pseudopotentials. Three pseudopotentials combinations show
little difference. Experimental data is from [56].

Experiment Mo-Te Mo_pv-Te Mo_sv-Te

a,b(Å) 3.519 3.519 3.521 3.523
c(Å) 13.964 13.976 13.985 13.997

±K valleys are exchanged by C2y and T . In contrast, Fig. 6(b)
shows the moiré structures twisted from AB stacking, which
has a hexagonal structure of space group 149, with C3, C2x,
and T . For the AB configuration, the little group in the K
valley is generated by C3 and C2x, and the two valleys are
exchanged by T .

As the twist angle becomes smaller but nonzero, a U(1)
valley symmetry emerges due to the exponential suppression
of intervalley scattering off the moiré potential. This will
enable us to build continuum models around the monolayer
±K points using the little group symmetries to constrain the
low-order terms.

2. Relaxation of tMoTe2

Since the relaxation will greatly affect the band structure,
it is necessary to perform relaxation on tMoTe2. However,
there are 1302 atoms for 3.89◦ and 1626 atoms for 3.48◦
in the moire cell of twisted structures, making the relax-
ation process difficult to converge. We decided to construct
a Machine Learning Force Field (MLFF) to obtain relaxed
structures in an efficient way (see below). MLFF is a machine
learning algorithm that will “learn” energies and forces of
atoms from ab initio calculation and can be applied to predict
forces and energies for similar systems. We note that MLFF
is not a relaxed structure—it is a function that maps structures
to forces/energies; it can be used to efficiently generate the
relaxed structures. We firstly constructed a MLFF and applied
it to obtain an MLFF-relaxed structure. Then, we performed
DFT relaxation on the MLFF-relaxed structures. It only took
around 20 DFT steps in relaxing the largest moire structure to
converge in this strategy. In comparison, the relaxation from
rigid 3.89◦ AA-tMoTe2 takes 178 steps to converge.

a. Construction of Machine Learning Force field

During the construction of MLFF, two software packages
are used. One is the VASP together with its integrated MLFF
module [84], and the second is NequIP [85], which is an
MLFF built on an E(3) equivariant neural network.
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(a) Monolayer (b) Bulk (c) AB Bilayer (d) AA Bilayer

FIG. 7. Band structure of bulk, monolayer, AA bilayer, and AB bilayer MoTe2 calculated with SOC and different pseudopotentials. The
crystal structures are relaxed with corresponding pseudopotentials and IVDW = 10(DFT-D2) functional.

We use the VASP MLFF module to generate the ab initio
data needed for training a high-precision MLFF. The VASP
MLFF module itself is a way to generate MLFF and accel-
erate the molecular dynamics (MD) simulation. It firstly runs
several ab initio MD steps, collects all the energies, forces and
structure data into a dataset, then trains a MLFF, and finally
estimates the error by doing MLFF-based MD calculations.
Here the MLFF-based MD calculation is based on Bayesian
linear regression, and the error is directly estimated by the
spread of the Gaussian distribution. If the estimated error
of MLFF is large, an additional ab initio MD step will be
performed to enlarge dataset, the MLFF is retrained with the
new dataset, and estimate the error again. The procedure will
be repeated until the total number of MD steps exceeds the
preset.

However, the MLFF algorithm in VASP is lightweight. It
helps accelerate the MD simulation, but the MLFF generated
by the algorithm is not accurate enough. Therefore, we will
not directly use the generated MLFF; instead, we just run the
VASP MLFF module for tens of thousands of steps to generate
a set of ab initio MD data.

With the set of ab initio MD data generated from the
VASP MLFF module, we use the NequIP software to train
an accurate MLFF. NequIP is based on an E(3) equivariant
neural network, meaning that the input and output of each
neural network layer are equivariant (in other words, covari-
ant) under the rotation, reflection and translation in 3D space.
The NequIP software is reported to outperform several other
MLFF algorithms in both data efficiency and accuracy [85].

The training process is summarized as the follows. We
started from small supercells of untwisted AA and AB bilayer
MoTe2 with different in-plane shift between top and bottom
layer. We ran MD simulation using VASP MLFF module on
those structures and collected the data from all ab initio MD
steps. We merged all the collected data and trained a NequIP
MLFF, which is then used in Atomic Simulation Environment
[86] to relax the tMoTe2 at various angles.

b. Relaxation results

The relaxation results of AA and AB MoTe2 in differ-
ent twist angles are listed in Figs. 8–10. As we mentioned

before, the DFT+MLFF-relaxed results are obtained by fur-
ther DFT relaxation based on the MLFF-relaxed structures.
In Figs. 8 and 9, the MLFF-relaxed structures are close to
the DFT+MLFF-relaxed structure. The extra DFT relaxation
in the DFT+MLFF method only modified the quantitative
details, keeping the qualitative shape of the MLFF-relaxed
structures unchanged. It indicates that the MLFF can re-
produce the main part of DFT relaxation, making the DFT
relaxation easier to converge.

In structures of smaller twist angles, the local conformation
is more similar to untwisted structures. Because our MLFF are
constructed from untwisted structures, more accurate results
in smaller angles are expected. Comparing Fig. 9 with Fig. 8,
the MLFF-relaxed results are indeed better at 3.89◦ than that
at 7.34◦. Figure 10 shows the relaxation results of AA and AB
tMoTe2 in different twist angles. In both AA and AB stacking,
interlayer distance comes to the lowest point in MX/XM/AB
region and becomes higher in MM/XX/AA region. In AA
stacking, the interlayer distance of MX region is the same as
XM region since MX and XM configurations are related by
C2 symmetry. In the case of AB stacking, however, the MM
region is different from XX region, as they are not symme-
try related. The interlayer distance of XX region is always
higher than MM region, which results in the asymmetry in
Figs. 10(b) and 10(d).

3. Electronic structures of tMoTe2

In this part, we discuss the electron band structures of
tMoTe2 obtained from the DFT+MLFF relaxed structure.

a. Energy bands of monolayer, AA bilayer and AB bilayer MoTe2

Before diving into electronic structure of the tMoTe2, we
first study the monolayer and bilayer structures. For the mono-
layer structure, the inclusion of SOC brings a clear splitting
for top valence band at K point. Additionally, at the � point,
SOC causes a downward shift of the top valence band by
70 meV in comparison to the scenario without SOC, as de-
picted in Fig. 11(a).

Figure 11(b) shows that lattice relaxation has negligible
influence on the band structure of AB stacking. The reason is
that the functional we used is optimized for the bulk MoTe2,
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FIG. 8. Relaxation results of 7.34◦ AA and AB tMoTe2. (a), (b), (c), and (d) are interlayer distances of MLFF-relaxed AA structure,
DFT+MLFF-relaxed AA structure, MLFF-relaxed AB structure, and DFT+MLFF-relaxed AB structure respectively. (e), (f), (g), and (h) are
intralayer displacements of MLFF-relaxed AA structure, DFT+MLFF-relaxed AA structure, MLFF-relaxed AB structure, and DFT+MLFF-
relaxed AB structure. Interlayer distance is the distance between the top and bottom layer, while the intralayer displacement indicates the
in-plane displacement from rigid positions to relaxed positions of a Mo atom in top layer. In the interlayer distance plots, rigid structures are
selected to have the same lattice constant as relaxed structures.

which is also AB stacked. Conversely, Fig. 11(c) demonstrates
that lattice relaxation significantly alters the band structure of
AA stacking. This is due to the fact that the relaxed interlayer
distance measures approximately 7.7 Å, which is around 10%

greater than the interlayer distance of the rigid structure at 7 Å.
Relaxation causes a downward shift of the first valence band
at the � point, resulting in an energy about 380 meV lower
at � compared to the K point. For conduction bands, upon
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FIG. 9. Relaxation results of 3.89◦ AA and AB tMoTe2. (a), (b), (c), and (d) are interlayer distances of MLFF-relaxed AA structure,
DFT+MLFF-relaxed AA structure, MLFF-relaxed AB structure, and DFT+MLFF-relaxed AB structure respectively. (e), (f), (g), and (h) are
intralayer displacements of MLFF-relaxed AA structure, DFT+MLFF-relaxed AA structure, MLFF-relaxed AB structure and DFT+MLFF-
relaxed AB structure respectively.
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FIG. 10. Relaxation results of different angles along black ar-
rows inFigs. 9(b) and 9(d). (a) and (b) interlayer distance of AA and
AB structures given by MLFF. (c) and (d) interlayer distance of AA
and AB structures given by DFT+MLFF.

relaxation, the bottom bands along �-K path are elevated to a
similar energy level as those at the K point.

b. 13.2◦ tMoTe2

We start from the 13.2◦ tMoTe2 and gradually decrease the
twist angle to follow the evolution of the band structure. In
Fig. 12(a), when spin-orbit coupling (SOC) is not considered,
there is an isolated narrow valence band (NVB) located at
the top of the valence bands for AA stacking 13.2◦ tMoTe2

without relaxation. A very similar band is also present for
the AB stacking with negligible difference [Fig. 12(d)]. After

considering the SOC, the NVB start to go down and entangle
with other bands. [See Figs. 12(b) and 12(e).] Further includ-
ing the relaxations, we obtain stacking-dependent corrugated
moiré structures. Relaxation pushes the NVB further below as
shown in Figs. 12(c) and 12(f).

By projecting the moiré bands into atoms’ orbitals as
shown in Figs. 12(l)–12(n), it is clear that the NVB is consist
of Mo atoms dz2 orbitals, which is the same band character
of the VBM at � point of monolayer MoTe2 [see Fig. 14(a)
below]. So we can identify the NVB as the �-valley band.
Using the orbital nature, we can see that upon considering
both SOC and lattice relaxation effects, the �-valley bands are
pushed down by 250 meV below the valence band maximum
(VBM) for AA configuration, while about 180 meV for AB
configuration. Then, the state around the VBM are composed
of molybdenum (Mo) dx2−y2 and dxy orbitals, which have the
same orbital characteristics as the VBM at the ±K points in
a monolayer MoTe2 [see Fig. 14(a)]. Therefore, the VBM
of the moiré energy bands primarily originates from the ±K
valley. We note that the downward shift of the � bands, caused
by the SOC and lattice relaxation effects, is consistent with
the lower �-valley bands after including the relaxation in the
AA-stacking untwisted case in Fig. 11(c).

c. AA stacking: Evolution of band structure from 9.43◦ to 3.48◦

We also calculate the band structures of several relaxed
AA-stacking tMoTe2 structure at 9.43◦, 7.34◦, 5.09◦, 4.41◦,
3.89◦, and 3.48◦ as shown in Fig. 13.

We discuss the valence bands first. The valence band max-
imum is at the KM points of the moire BZ. The top pair of
valence bands remains quasi degenerate in �M − KM − MM

high-symmetry line, suggesting the presence of an extra sym-
metry than TR symmetry, which would map −k to k. As
shown in Fig. 14 on the orbital natures of the bands at 9.43◦,

FIG. 11. Band structure of monolayer, AB bilayer, and AA bilayer MoTe2 with and without relaxation. (a) Band structure of monolayer,
the effective mass of the monolayer MoTe2 of the VBM at the � and K points, and the CBM at the K point, along two different directions,
are indicated in the orange boxes with units me. (b) Band structure of AB bilayer, where the rigid and relaxed) bands of AA and AB bilayer
MoTe2 are indicated by black and red lines, respectively. (c) Band structure of AA bilayer. All the effective masses are calculated for relaxed
structures with SOC.
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FIG. 12. Band structure and band character analysis (fatband) of 13.2◦ tMoTe2. (a) The band structure for rigid AA without SOC, showing
negligible difference with rigid AB without SOC in (d). Considering SOC, the top isolated valence band tangles with other valence bands both
for rigid AA and AB. SOC brings larger splitting in � − M k path for rigid AA in (b) while larger splitting around K point for rigid AB in (e).
After the relaxation, the bands from ±K valley are lifted up to the top of valence bands, both for relaxed AA in (c) and relaxed AB in (f).

the valence bands near the VBM mainly come from ±K
valleys, owing to their dx2−y2 and dxy nature, similar to the
discussion of Appendix A 3 b; the expectation is the bands
labeled by red dashed lines in Fig. 13, which comes form the
� valley owing to its dz2 orbital nature.

Analyzing the evolution of the valence bands in Fig. 13
from panels (g) to (l), it becomes evident that the band-
width of the top two pairs of valence bands narrows as the

twist angle decreases—a characteristic commonly observed in
twisted systems. The band width of first top pairs of valence
bands (Kv1) and second top pairs of valence bands (Kv2) are
shown in Table V. Moreover, there is a discernible indication
of band inversion between kv2 and kv3 at �M , occurring as
the twist angle decreases from 5.09◦ and 3.48◦. Specifically,
at the �M point for 5.09◦, there is a gap of approximately
2.8 meV separating the second and third pairs of top valence

FIG. 13. Evolution of band structures of AA-stacking configuration tMoTe2 with twist angles ranging from 9.43◦ to 3.48◦. The six band
structures are calculated from DFT+MLFF relaxed moiré structure with the consideration of SOC effects. The dashed-red lines show the flat
bands coming from � valley.
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FIG. 14. Orbital-projected band structure of monolayer layer MoTe2 and AA (AB) tMoTe2 with twisted angle 9.43◦. Bands are projected
on dxy, dx2−y2 and dz2 of Mo atoms. Figure obtained with the open-source code PYPROCAR [87].

bands. This gap closes at a twist angle of 4.41◦ and reopens
to about 1.2 meV at 3.89◦. This cycle of gap closing and
reopening suggests the possibility of a band inversion. To
investigate this, we calculated the irreducible representations
of the six highest valence bands at the KM and �M points for
twist angles ranging from 7.34◦ to 3.89◦ and have presented
the findings in Fig. 2. As shown in Fig. 13 from panels (a)
to (f), the conduction bands are quite messy. Based on the
decomposition of orbital content depicted in Fig. 14, we
determine that the conduction band minimum (CBM) at
the �M point for a 9.43◦ twist exhibits the same orbital
characteristics—specifically Mo dxy and dx2−y2 —as those
found in the electron pocket along the �-K path in the
monolayer band structure, also illustrated in Fig. 14. The
conduction band minimum of tMoTe2is around the �M point
rather than KM point can be understood from the band struc-
tures of untwisted AB and AA bilayers in Fig. 11. In the AB
bilayer band structure, the dip of conduction bands along the
� − K path is lower than that at the K point. Conversely, in the
AA bilayer, the � − K path’s minimum aligns with the level at
the K point. Given that the moiré unit cell is consist of AA, AB

stacking and the intermediate stacking states between AA and
AB types, the moiré conduction band minimum consequently
shifts away from the KM point.

We discuss the erratic evolution of the electron bands in
Appendix C 4, which we can attribute to the lowest energy
states coming from an electron-like pocket. This pocket oc-
curs at generic momentum pi in the untwisted BZ, so that
the bands are folded around a generic point pi mod GM in
the moiré BZ that depends extremely sensitively on the angle
through GM .

d. 3.89◦ AA stacking tMoTe2 electronic structures

Let us focus on the 3.89◦ twisted AA stacking. In Fig. 15,
we present the band structure calculations for both the rigid
and relaxed configurations, with and without SOC. Before re-
laxation, the �-valley ultra-flat bands are located at the top of
the valence bands when SOC is omitted. The introduction of
SOC raises some dispersive bands; however, even with SOC,
the rigid structure maintains flat �-valley bands at the top.
Relaxation dependent on stacking has a significant impact on
the band structure. When SOC is absent, the relaxation raises

TABLE V. Band width of the top two pairs of valence band of AA-stacking tMoTe2.

Twist angle 9.43◦ 7.34◦ 5.09◦ 4.41◦ 3.89◦ 3.48◦

kv1 (meV) 133.3 80.7 31.3 19.7 12.8 7.6
kv2 (meV) 88.7 56.9 27.6 21.3 16.2 12.2
kv3 (meV) None None 24.5 21.1 16.5 11.3
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FIG. 15. AA-stacking configuration band structure of 3.89◦

tMoTe2. (a) and (b) show the band structures without SOC and with
SOC bands for rigid structure, respectively. (c) and (d) show the band
structures without SOC and with SOC bands for relaxed structure,
respectively.

the ±K bands. Further incorporating SOC, ±K bandsnow
becomes the VBM, and the red-dashed bands originating from
the � valley, as denoted in Fig. 15(d), are markedly dimin-
ished, sinking approximately 80 meV below the VBM. Our
results are different from Ref. [21], where the � bands are
close to the top two valence bands from ±K valley, with
only 30 meV away from the VBM. The top valence band in
Ref. [21] has the bandwidth of about 9 meV, while the width
of the same band in our results is about 12.8 meV.

The density of states (DOS) calculations depicted in
Fig. 16(c) reveal two distinct peaks within the valence bands
around –75 meV and –105 meV, which correspond to the
�-valley band embedded in the backdrop of dispersive bands.
Additionally, several minor peaks, around 0 meV and 20 meV,
are observed, which originate from the valence bands of the
±K valleys.

In Fig. 17, we show the band structure given by three
different relaxation methods: (a) only using MLFF, (b) two-
step MLFF+DFT relaxation, and (c) relaxation directly from
rigid structure using DFT. The accuracy of MLFF can closely
approach that of DFT calculations, especially the top three
pairs of ±K-valley valence bands and the highest �-valley
bands as shown in Fig. 17(a). However, we find the forces
of MLFF relaxed structure is not small enough (with a mean
absolute force of 7.8 × 10−2 eV/Å), meaning that the MLFF
result can be relaxed further using the more accurate DFT
relaxation method. After the further DFT relaxation, the mean
absolute force reached 2.1 × 10−3 eV/Å, and the band struc-
ture changes quantitatively [see in Figs. 17(a) and 17(b)]. If
the relaxation is performed from the rigid structure using DFT

only, we will get almost the same band structure as the two-
step relaxation band. The two-step relaxation leads to a more
stable configuration, likely due to the maintenance of C3z
symmetry throughout the relaxation process. MLFF+DFT
relaxation results in an approximately 0.9 eV lower energy
compared to direct DFT relaxation, indicating the advantage
of MLFF initial guess of relaxed structure in finding the lowest
energy configurations.

The squared wavefunctions |ψ�M |2 of the top four valence
bands at the �M point in the K valley is illustrated in Fig. 20(a)
below. The wavefunctions of the first and second topmost
valence bands in the K valley are predominantly localized in
the XM and MX regions, collectively manifesting a hexagonal
lattice pattern in real space. In contrast, the wavefunction of
the third topmost valence band primarily occupies the AA
region, delineating a triangular lattice. Meanwhile, the fourth
band’s wavefunction is concentrated at the XM, MX, and AA
regions, constituting another hexagonal lattice configuration.

e. Comparision with Ref. [20,21]

References [20,21] have studied the relaxation and band
structures of tMoTe2. Reference [20] employed the SCAN
density functional with dDsC dispersion correction to perform
crystal structure relaxation. In our assessment of 19 different
functionals, as shown in Table III, we find that the SCAN
functional and dDsC dispersion correction (IVDW = 4 in
Table III) yielded a larger c-axis lattice parameter and smaller
a(b)-axis lattice parameters, whereas the DFT-D2 functional
that we use (IVDW = 10 in Table III) provide the lattice
parameters closest to the experimental results. After crystal
structure relaxation, Ref. [20] showed a larger interlayer dis-
tance compared to our relaxation.

In contrast to both our approach and Refs. [20,21] used
SIESTA with DFT-D2 functional to perform the DFT cal-
culations. After the relaxation, Ref. [21] obtains a smaller
interlayer distance (ILD) of which the minimum is about
6.9 Å. This Mo-Mo ILD is smaller than our relaxation result
shown in Fig. 3, even smaller than ILD of bulk MoTe2 crystal
structure with 7.0 Å.

Our relaxation results shows that, in the AA region, where
the stacking configuration is close to that of AA untwisted
bilayer structure, and thus the maximum interlayer distance
should be close to but slightly smaller than (due to the drag
of surrounding environment, which is not aligned in AA
form) the interlayer distance of AA-stacking untwisted bilayer
(7.7 Å), which is not satisfied by Ref. [20]. Furthermore, the
MX region has the stacking configuration akin to that of AB
untwisted bilayer structure. As a result, the smallest interlayer
distance in tMoTe2 structures should be close to but slightly
larger than (due to the surrounding environment’s influence)
7 Å, which is violated by Ref. [21].

From Fig. 15, it is clear that relaxation will push the �-
valley bands down as well as lift the bands from ±K valleys
up. The relaxation in Ref. [21] gets the smaller ILD, resulting
that their �-valley bands are not pushed down significantly
and close to the ±K-valley bands. The relaxed �-valley bands
in Ref. [21] are only 30 meV below the valence band maxi-
mum, while our �-valley bands are 80 meV below the VBM.
This implies, likely, lack of band-mixing from the �-valley
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FIG. 16. Conduction bands and valence bands with their density of states (DOS) in unit of states per Mo atom of 3.89◦ for relaxed
AA-stacking and AB-stacking configuration with SOC. a and b are the conduction bands of AA- and AB-stacking configuration with DOS. c
and d are the valence bands of AA- and AB-stacking configuration. The green line represents the Fermi level.

band in the many-body calculations. Meanwhile, the relax-
ation in Ref. [20] gives the maximal ILD of 7.8 Å, which
is larger that us, due to the overestimated c-axis lattice pa-

rameter by SCAN functional. Reference [20] calculated the
band structure of 4.4◦ moiré structure (1014 atoms per unit
cell). Due to Ref. [20] only calculated 4 k point along the
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FIG. 17. Comparison of different relaxation band structures. (a) Band structure of MLFF relaxation. (b) Band structure of MLFF+DFT
relaxation. (c) Band structure of direct DFT relaxation from rigid structure.
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FIG. 18. Evolution of band structures for various angles range from 9.43◦ to 3.48◦ AB-stacking configuration tMoTe2. Top (bottom) row
is for conduction (valence) bands. The lattice was fully relaxed with DFT-D2 vdW functional. SOC are considered in the calculation.

high-symmetry line, the band width is estimated from their
fitted continuum model. From the model, the top valence
band from ±K valleys has band width of about 30 meV at
4.41◦, while our 4.41◦ structure (1014 atoms per unit cell)
±K-valley band has a smaller bandwidth. For 3.89◦ structure
in Ref. [21], the top pair of the valence bands have band
width of about 9 meV, which is smaller than our result of
12.8 meV.

f. AB stacking: Evolution of band structure from 9.43◦ to 3.48◦

The symmetry group of the AB stacking can be given by
replacing C2y in the group for AA stacking by C2x. At large
twist angle, such as 13.2◦, the electronic structures of the
two stacking configurations appear similar, as illustrated in
Fig. 12. However, they exhibit notable differences at smaller
twist angles (most notable for angles smaller than 5◦, as seen
in Figs. 18 and 13).

As listed in Table VI, the bandwidth of the top two pairs
of bands narrows with decreasing twist angle, specifically to
16 meV for 3.89◦ and 9.8 meV for 3.48◦. As the twist angle
decreases, a pair of ultra-flat valence bands gradually moves
up, and become isolated for θ < 4.41◦ as shown in Fig. 18.
When the twist angle decreases to 3.89◦, the two set of ultra-
flat valence bands are separated with about 56.0 meV, bringing
two distinct peak in the DOS as shown in Fig. 16.

Similar with that of AA, the top two pairs of valence bands
of AB configuration consist of dx2−y2 and dxy orbitals of Mo
atoms as shown in Fig. 14, indicating these bands come from
the ±K valleys. We also find that the flat valence bands of AB
come from � valley because they consist of Mo dz2 orbitals.

Distinct from from AA stacking, there are isolated moiré
bands on the conduction band side for the AB stacking. As
the twist angle decreases to 4.41◦ [see Fig. 18(d)], there are 12
bands at the bottom of the conduction bands that are isolated
from the higher-energy bands. The degeneracy of these bands
suggests they likely originate from the pockets along the �-K
line of the conduction bands, as depicted in Figs. 11(b) and
11(c). Compared with AA stacking, the valence bands from
the � valley in AB stacking are extremely flat [see Figs. 18(k)
and 18(l)], resulting in pronounced peaks in the density of
states (DOS) (see Fig. 16). To facilitate further comprehensive
analysis in Appendixes B and C, we have also calculated the
irreducible representations of the top four valence bands for
AB stacking, which can be found in Fig. 19. In Fig. 20(b),
we plot the charge densities of first four pairs of valence
bands’ wavefunctions at �M . The top ±K-valley bands wave-
functions are localized at MX region, similar with the top
�-valley bands. The third pair valence bands’ wavefunctions
are localized at MM region, forming triangular lattice, while
the fourth pair valence bands’ wavefunctions form triangular
rings with minimum at MX region.

TABLE VI. Band width of the top two pairs of valence band of AB-stacking tMoTe2.

Twist angle 9.43◦ 7.34◦ 5.09◦ 4.41◦ 3.89◦ 3.48◦

Bandwidth (meV) 135.4 89.8 36.1 22.5 16.0 9.8
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FIG. 19. Irreducible representations at high-symmetry points �

and K of valence bands of 3.89◦ for relaxed AB-stacking configura-
tion with SOC. The eigenvalues of the C3 are denoted as ω = eiπ/3,
ω∗ = e−iπ/3 and 1̄ = e−iπ .

APPENDIX B: SINGLE-PARTICLE CONTINUUM MODEL
AND FITTING: AA-STACKING

The symmetry group of AA-stacked tMoTe2 (AA-tMoTe2)
is generated by C3, C2y, and T , in addition to the moiré
lattice translations TRM [43], where RM labels the moiré
lattice vectors. We label the moiré lattice basis vectors as
aM,1 = aM (

√
3

2 ,− 1
2 )T and aM,2 = C3aM,1, and the moiré recip-

rocal lattice basis vectors as bM,1 = 4π√
3aM

(1, 0)T and bM,2 =
4π√
3aM

( 1
2 ,

√
3

2 )T , where

aM = a0

2 sin
(

θ
2

) , (B1)

and a0 = 3.52 Å is the lattice constant of the monolayer
MoTe2.

Up to now, FCI states were only found for hole doping
experimentally [34–37]. From Fig. 13, it is immediately ap-

parent that isolated, nearly flat bands (understood to be an
important precursor to the FCI phase [1–3]) appear only in
the valence bands, which are accessible through hole doping.
In contrast the conduction bands do not have well-separated
bands. As such, we focus on building a model for the valence
bands in this section.

We will discuss the continuum models for both ±K valleys
and the � valley.

1. AA-Stacking: ±K Valleys

a. Microscopic Basis, Symmetries, and Inter-layer coupling

We now derive the moiré states that make up the continuum
model basis for the AA-stacked twisted heterostructure. This
derivation follows [88,89] by expanding the tight-binding
states around the monolayer K point. (K can be straightfor-
wardly obtained via time-reversal symmetry.) We consider
a two-layer system where the l = t, b layer is twisted via
the linear transformation M = R( − (−)l θ

2 ) to leading order
θ 
 1, where l = t, b corresponds to l = 0, 1 for (−)l . We
will derive the symmetry representations as well as the form of
the interlayer coupling within the two-center approximation.

From our first-principles calculations in Fig. 14, we see the
valence band maximum around K is spanned by dx2−y2 + idxy

orbitals on the Mo atoms, which we will refer to as d for
brevity in this part. The dz2 Mo orbitals and Te orbitals do not
contribute significantly to the density of states near the active
bands. We write MR as the positions of the Mo atoms on the
th layer, where R is an untwisted lattice vector. The states
carried by these orbitals are

|p, 〉 = 1√
N

∑
R

eiMR·p|MR′, 〉 (B2)

for  = 0, 1 corresponding to top/bottom, and p = K + δp is
a momentum near the K point. The intralayer C3 symmetry
acts as (define K = MK)

C3|K + δp, 〉 = 1√
N

∑
R

eiMR·C3(K+δp)|MR, 〉eiλd

= 1√
N

∑
R

eiMR·(K+G+C3δp)|MR, 〉eiλd

= |K + C3δp, 〉eiλd , (B3)

FIG. 20. Charge densities of the valence-band wavefunctions at �M point in the 2 × 2 moiré cell of relaxed 3.89◦ (a) AA-twist and (b) AB-
twist MoTe2. The color bar represents the value of charge density.
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where eiλd = ei 2π
3 is the (spinless) C3 eigenvalue of d orbital,

and G = C3K − K is a reciprocal lattice vector obeying
G · MR = 0 mod 2π . We also used that the rotation matrix
C3 commutes with M, since both are rotations. Note that
eiλd is simply an overall phase of the rotation representation.
Secondly, the C2yT representation is

C2yT |K + δp, 〉 = 1√
N

∑
R

e−iMR·(K+δp)|C2yMR,−〉

= 1√
N

∑
R

e−iMR·(K+δp)|M−C2yR,−〉

= 1√
N

∑
R

e−iMC2yR·(K+δp)|M−R,−〉

= 1√
N

∑
R

eiM−R·(−C2y )(K+δp)|M−R,−〉

=
∑
′

|K′ + C2y(−δp), ′〉[σx]′ (B4)

using the fact that T is antiunitary and C2y flips layer, the re-
flection property C2yMC

−1
2y = M−, the symmetry −C2yK =

K− since the untwisted K point is at the x axis, and the
trivial transformation of d orbital under C2yT [32]. In this
discussion, we have neglected the spin degree of freedom,
which can be easily reintroduced because of the spin-valley
locking in MoTe2. Including the angular momentum of the
spin ↑ states in the K valley, we have λd → λd,K e

π i
3 . In the

K′ valley, the band is composed of the Mo dx2−y2 − idxy with

spin down, giving λd,K′ = e− π i
3 . These form a spinful repre-

sentation of C3. Lastly, we note that the emergent intravalley
inversion (which will be discussed in Appendix B 1 b) has no
representation on the microscopic basis since it is not a true
symmetry of the model, much like the emergent particle-hole
symmetry in twisted bilayer graphene [89,90].

We now derive the form of the interlayer Hamiltonian.
Formally, we compute the overlap

H inter
l,−l (p, p′) = 1

N

∑
R,R′

e−iMl R·p+iM−l R′ ·p′

× 〈MlR, l|H |M−l R′,−l〉 . (B5)

It is convenient to shift the sum so that the bottom layer is
rotated by θ and the top layer is unrotated,

H inter
b,t (p, p′) = 1

N

∑
R,R′

e−iMR·p+iR′ ·p′ 〈MR, b|H |R′, t〉, (B6)

where M = R(θ ). To proceed, we assume that the matrix
element of the Hamiltonian is only dependent on the distance
between orbitals (the “two-center” approximation) leading to

〈MR, b|H |R′, t〉 = 1

N�

∑
q∈BZ

∑
G

tq+Gei(q+G)·(MR−R′ ) . (B7)

Plugging this expression into the interlayer Hamiltonian and
using Mr · k = (Mr)T k = r · MT k gives

H inter
b,t (p, p′) =

∑
G1,G2

tp+G1

�
δp+G1,p′+MG2 . (B8)

Using p = K + δp (and similarly for p′), we see that
H inter

b,t (p, p′) connects momenta apart by MK − K = q1. We
now keep only the lowest order G1 since tp is rapidly decay-
ing. Thus in real space, this Hamiltonian can be written

H inter
b,t (K + δp, MK + δp′) =

3∑
j=1

wδδp,δp′+qi (B9)

where w = tK . We will find agreement with this term and the
symmetry-based approach in the following section.

The intralayer Hamiltonian, in the two-center approxi-
mation, is given by expanding the monolayer dispersion

hmono(K + δp) = − h̄2δp2

2m∗ to leading order. Note that the two-
center approximation cannot capture the intralayer moiré
potential, which arises due to relaxation within the moiré unit
cell.

b. Continuum Model

In this part, we discuss the continuum model for the low-
energy states around the ±K valleys based on symmetries.
Reference [43] proposed a model with first harmonics, and
we will introduce more terms into it. In monolayer MoTe2, the
strong spin-orbit coupling locks the spin degree of freedom to
the valley degree of freedom. Explicitly, the highest valence
band around the K valley is made up of dx2−y2 + idxy Mo
orbitals with spin ↑ [91]. The highest and second highest
valence bands are separated by the large energy 200 meV
[43], and thus we only consider the highest electron valence
band around K and −K (in both layers) to construct the
moiré model. The basis of the continuum model is labeled
by c†

η,l,r with η = ± labels the ±K valleys (or equivalently
spins), l = t, b labels the layer, and r labels the position. The
wavefunction of c†

η,l,r is a continuous approximation to the
microscopic basis in Eq. (B2). Using Eqs. (B4) and (B3) and
after accounting for the electron spin, the spinful symmetry
representations furnished by c†

η,l,r read

C3c†
η,l,rC

−1
3 = c†

η,l,C3re
iη π

3 ,

(C2yT )c†
η,l,r(C2yT )−1 = c†

η,l̄,C2yr
,

T c†
η,l,rT

−1 = c†
−η,l,r(−η),

TRM c†
η,l,rT

−1
RM

= c†
η,l,r+RM

e−iηRM ·Kl , (B10)

where l̄ = b, t for l = t, b respectively, and Kl is the rotated K
point of the lth layer. For AA-tMoTe2, we rotate the top layer
by −θ/2 and the bottom layer by θ/2, and thus

Kb = 4π

3a0

(
cos

(
θ

2

)
, sin

(
θ

2

))T

,

Kt = 4π

3a0

(
cos

(
θ

2

)
,− sin

(
θ

2

))T

. (B11)

For the convenience of the discussions in the rest of this part,
we define

q1 = Kb − Kt = 4π

3a0
2 sin

(
θ

2

)(
0
1

)
,

q2 = C3q1 , q3 = C2
3 q1 . (B12)
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The general form of the single-particle Hamiltonian in the η

valley reads

HAA
η,0 =

∫
d2r(c†

η,b,r, c†
η,t,r)(hη,b(r) tη(r) t∗

η (r)hη,t (r))

(
cη,b,r

cη,t,r

)
,

(B13)

where hη,l (r) is Hermitian. The symmetry requirements on the
terms in the Hamiltonian read

C3 : hη,l (C3r) = hη,l (r) , tη(C3r) = tη(r),

C2yT : hη,l̄ (C2yr) = h∗
η,l (r) , tη(C2yr) = tη(r),

T : h−η,l (r) = h∗
η,l (r) , t−η(r) = t∗

η (r),

TRM : hη,l (r + RM ) = hη,l (r) ,

tη(r + RM ) = tη(r)e−iηq1·RM . (B14)

Owing to C3 symmetry, the dispersion around ±K in the
monolayer MoTe2 is quadratic. Thus, the spatial derivatives
are kept to the second order in the intralayer term,

hη,l (r) = h̄2∇2

2m∗ + Vη,l (r) , (B15)

where m∗ is real and positive as we are considering the valence
electron bands, the C2yT and T symmetries require m∗ to
be the same for all values of η, l , and Hermiticity requires
Vη,l (r) to be real. The kinetic term follows from the two-center
approximation [see the discussion after Eq. (B9)]. Owing to
the constraints imposed by moiré lattice translations on the
potential terms [see Eq. (B14)], Vη,l (r) and eiηq1·rtη(r) can be
expanded in series of the moiré lattice vector GM ,

Vη,l (r) =
∑
GM

e−ηiGM ·rVη,l,GM ,

tη(r) =
∑
GM

e−ηi(q1+GM )·rtη,q1+GM , (B16)

where the TR symmetry requires Vη,l,GM = V ∗
−η,l,GM

and
tη,q1+GM = t∗

−η,q1+GM
.

In Ref. [43], only the first harmonics of Vη,l (r) and tη(r)
is kept, i.e., only including GM ∈ {±gi|i = 1, 2, 3} with gi =
Ci−1

3 bM,1 for the intralayer terms, and only include q1 + GM ∈
{−qi|i = 1, 2, 3} for the interlayer terms. Combined with C3,
C2yT , and TR symmetries, V+,l (r) and t+(r) take the forms of

V FH
η,l (r) = Ve−(−)l iψ

∑
i=1,2,3

eigi·r + Ve(−)l iψ
∑

i=1,2,3

e−igi·r,

tFH
η (r) = w

∑
i=1,2,3

e−ηiqi·r , (B17)

where “FH” labels the first harmonics, l = t, b respectively
correspond to l = 0, 1 for (−)l , V and ψ are real, and w

is chosen to be real nonpositive by tuning the relative phase
between the two layers. The lowest-harmonics model has
effective inversion symmetry

Ic†
η,l,rI

−1 = c†
η,l̄,−r

. (B18)

Adding displacement field would induce an energy difference
between the two layers, i.e.,

Hη,ε =
∫

d2r
∑

l

c†
η,l,rcη,l,r(−)l ε

2
, (B19)

which breaks the effective inversion symmetry, as well as the
C2y symmetry.

As discussed in the previous work (e.g., Ref. [21]) and
in Appendix B 3, the lowest-harmonics model can only well
describe the highest two valence bands per valley and the gap
between second and third valence bands at �. In our paper, we
want to capture the third band in each valley by including one
more harmonics. In general, including higher harmonics may
break the effective inversion symmetry. However, according
to the DFT band structure in Fig. 13, the third pairs of valence
bands are still approximately degenerate for angles below 5.09
degrees; therefore, we will keep the effective inversion sym-
metry when adding extra harmonics. The second harmonics
(SH) have |GM | = |bM,1 + bM,2| for the intralayer potential
and have |q1 + GM | = q1 + bM,1 for the interlayer potential;
combined with C3, C2yT , TR and the effective inversion sym-
metries, the form of the SH for the intralayer potential read

V SH
η,l (r) = 2V2

3∑
i=1

cos(g2i · r),

t SH
η (r) = w2

∑
i=1,2,3

e−ηiq2i·r , (B20)

where g21 = bM,1 + bM,2, g2i = Ci−1
3 g21, q21 = bM,1 + q

1
,

q2i = Ci−1
3 q21, and V2 and w2 are real. We note that here we

already include the effective inversion, which constraints the
form of Eq. (B20); without the effective inversion, we would
have additional terms. With the extra terms in Eq. (B20), the
final form of Vη(r) and tη(r) reads

Vη,l (r) = Ve−(−)l iψ
∑

i=1,2,3

eigi·r + Ve(−)l iψ
∑

i=1,2,3

e−igi·r

+ 2V2

3∑
i=1

cos(g2i · r),

tη(r) = w
∑

i=1,2,3

e−ηiqi·r + w2

∑
i=1,2,3

e−ηiq2i·r . (B21)

The moiré translations allow us to express the Hamiltonian in
the momentum space. The Fourier transformation of the basis
reads

c†
η,l,r = 1√

V
∑

k

∑
Q∈Qη

l

e−i(k−Q)·rc†
η,l,k−Q , (B22)

where

Qη

l = {GM + η(−)lq1} . (B23)

As a result, Hη,0 reads

HAA
η,0 =

∑
k

∑
Q,Q′∈Q

c†
η,k,QhAA

η,QQ′ (k)cη,k,Q′ , (B24)
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where we have included the displacement field, Q = {GM +
q1} ∪ {GM − q1},

c†
η,k,Q = c†

η,lηQ,k−Q , (B25)

and lη

Q = l for Q ∈ Qη

l . The general form of hAA
η,QQ′ (k) reads

hAA
η,QQ′ (k) = δQQ′

(
−h̄2(k − Q)2

2m∗ + ε

2
η(−)Q

)

+
∑
GM

δQ1,Q2+ηGMVη,lηQ1
,GM

+
∑
GM

δQ1,Q2+η(q1+GM )tη,q1+GM

+
∑
GM

δQ1,Q2−η(q1+GM )t
∗
η,q1+GM

. (B26)

With the FH and SH terms in Eq. (B21), the matrix Hamilto-
nian hAA

η,QQ′ (k) has the form

hAA
η,QQ′ (k) = δQQ′

(
−h̄2(k − Q)2

2m∗ + ε

2
η(−)Q

)

+ V
3∑

i=1

[
e−η(−)QiψδQ+gi,Q

′ + eη(−)QiψδQ−gi,Q
′
]

+ V2

3∑
i=1

[
δQ+g2i,Q

′ + δQ,Q′+g2i

]

+ w

3∑
i=1

[
δQ+qi,Q

′ + δQ,Q′+qi

]

+ w2

3∑
i=1

[
δQ+q2i,Q

′ + δQ,Q′+q2i

]
, (B27)

where (−)Q = ±1 for Q ∈ {GM ± q1}, and we used η(−)Q =
(−)lηQ .

2. AA-Stacking: � Valley

In this part, we discuss the continuum model for the �

valley. In the monolayer MoTe2, the bands around � mainly
come from the dz2 orbital, and time-reversal symmetry at �

leads to a Kramers degeneracy between spin-up and spin-
down states. Thus, the basis of the moiré model at � valley
is labeled as ψ

†
r,l,s, where l is the layer index, and s =↑ / ↓

labels the spin. Then, the continuum model in general has the
following form:

HAA
� =

∫
d2r(ψ†

r,b ψ†
r,t )

(
h�,b(r) t� (r)

t†
� (r) h�,t (r)

)(
ψ

†
r,b

ψ
†
r,t

)
, (B28)

where

ψ
†
r,l = (ψ†

r,l,↑, ψ
†
r,l,↓) , (B29)

t and b correspond to the top and bottom layers, respectively,
and h�,l (r) and t� (r) are 2 × 2 moiré-periodic matrix func-
tions.

The spinful representations of the dz2 orbital symmetries of
the moiré model are

C3ψ
†
r,lC

−1
3 = ψ

†
C3r,l e

−isz
π
3 ,

C2yT ψ
†
r,l (C2yT )−1 = ψ

†
C2yr,l̄

,

T ψ
†
r,lT

−1 = ψ
†
r,l isy,

TRM ψ
†
r,lT

−1
RM

= ψ
†
r+RM ,l , (B30)

where sx, sy, sz are the Pauli matrices for the spin index, and
l̄ = t, b if l = b, t . Based on symmetries, we know

e−isz
π
3 h�,l (r)eisz

π
3 = h�,l (C3r),

e−isz
π
3 t� (r)eisz

π
3 = t� (C3r),

h∗
�,l (r) = h�,l̄ (C2yr) , t∗

� (r) = t†
� (C2yr),

σyh∗
�,l (r)σy = h�,l (r) , σyt

∗
� (r)σy = t� (r),

h�,l (r) = h�,l (r + RM ) , t� (r) = t� (r + RM ) .

(B31)

The intralayer kinetic energy term must take the form

h�,l (r) = h̄2∇2

2m∗
�

s0 + V�,l (r), (B32)

since a linear Rashba-like kinetic term is forbidden by C3, T ,
and Mz symmetry in the monolayer. The effective mass m∗

�

is the same in both layers because of the C2y symmetry. We
note that the value of m∗

� in Eq. (B32) might not be equal
to that for monolayer MoTe2 due to the interlayer coupling
renormalizing the bands, due to the fact that the bands near
� in the monolayer is quite flat as shown in Fig. 11(a). The
potentials are periodic and can be expanded as

V�,l (r) =
∑

G

V�,l,GeiG·r,

t� (r) =
∑

G

t�,GeiG·r, (B33)

whose components are restricted by symmetry to obey

e−isz
π
3 V�,l,Geisz

π
3 = V�,l,C3G , e−isz

π
3 t�,Geisz

π
3 = t�,C3G,

V ∗
�,l,G = V�,l̄,−C2yG , t∗

�,G = t†
�,−C2yG,

syV
∗
�,l,Gsy = V�,l,−G , syt

∗
�,Gsy = t�,−G,

V †
�,l,G = V�,l,−G . (B34)

To capture the dominant contribution, we only include the first
harmonics in V�,l (r), and the zeroth harmonic in the t� (r), i.e.,

V�,l (r) =
∑

G∈{±gi|i=1,2,3}
V�,l,GeiG·r,

t� (r) = t�,0 . (B35)

We neglect the zeroth harmonic in V�,l (r) since it is just a
total shift of energy (although it must be included to compare
the energies of the in-active � valley and active ±K valleys).
According to Eq. (B34), the first harmonic terms in V�,l (r) can
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FIG. 21. The comparison between the valence bands from the DFT calculation (black dots) and from the continuum model (red/orange
line) for twist angle 3.89◦ in the fundamental zone for (a) (b) AA stacking and (c) AB stacking. The red line comes from the ±K-valley model,
while the orange line comes from the �-valley model. The horizontal axes labels the 31 momenta in the k mesh of the fundamental zone that
we choose. Each red line is at least doubly degenerate. The orange line in (c) has double degeneracy around −30 meV and fourfold degeneracy
around −86 meV. The fitting in (a) is done with FH terms, while SH terms are added in (b).

be written

V�,b,±gi
= V�e±iψ� s0,

V�,t,±gi
= V�e∓iψ� s0 , (B36)

and similarly, t�,0 has the form

t�,0 = w�eiszφ� . (B37)

Here V� , ψ� , w� , and φ� are real. We set φ� = 0 as a gauge
choice of the relative phase between the layers. As a result,
Eq. (B35) is further simplified to

V�,l (r) =
3∑

i=1

V�ei(−)l ψ� eigi·r +
3∑

i=1

V�e−i(−)l ψ� e−igi·r,

t� (r) = w�s0 . (B38)

With the simplification in Eqs. (B32) and (B38), the �-valley
continuum model in Eq. (B28) has effective inversion symme-
try, i.e.,

Iψ
†
r,lI

−1 = ψ
†
−r,l̄

. (B39)

Similar to the ±K-valley case, adding displacement breaks
the effective inversion symmetry, as well as the C2y symmetry,
where the displacement field term reads

H�,ε =
∫

d2r
∑

l

ψ
†
r,lψr,l (−)l ε

2
. (B40)

Including the first harmonics in t� (r) and the higher harmonics
in V�,l (r) may also break the effective inversion symmetry.

3. AA-Stacking: Fitting to the DFT Data

As shown in Fig. 13, the �-valley valence bands are be-
low the 6th highest valence bands for θ � 5.09◦ and zero

displacement field ε = 0. Therefore, we only use the ±K-
valley model [Eq. (B27)] in the fitting.

We fit the DFT bands at 3.89◦ in two ways. First, we set
V2 = w2 = 0, which corresponds to the FH model. In this
case, we manage to fit the top four valence bands (two in
each valley) with the corresponding FH parameters in Ta-
ble I, as shown in Fig. 4(a) along the high-symmetry lines
and in Fig. 21(a) for the k points in the fundamental zone.
Then, we allow nonzero V2 and w2, which means we add the
effective-inversion-symmetric SH terms. We are now able to
fit the top six valence bands (three in each valley) with the
corresponding FH+SH parameters in Table I, as shown in
Fig. 4(b) along the high-symmetry lines and in Fig. 21(b) for
the k points in the fundamental zone.

As shown in Table I, the value of the effective mass m∗ is
similar to the monolayer and untwisted AA-stacking bilayer
structures masses, as shown in Fig. 11. We note that all bands
from the −K-valley continuum model are the same as those
from the K-valley continuum model, due to the combination
of the effective inversion and the TR symmetry. By comparing
Figs. 22(a) and 22(b) to Fig. 2(c), we can see that the C3

eigenvalues for the top 6 valence bands from the model are
the same as those from the DFT calculation in both FH and
FH+SH cases at 3.89◦. At 3.89◦, the Chern numbers of the top
three bands in K valley are (1,–1,0) for the highest, the second
highest and the third highest valence bands in both FH and
FH+SH cases, respectively, which are consistent with the C3

eigenvalues. The Chern numbers and the C3 eigenvalues of the
top two bands per valley are the same as those in Ref. [21] at
3.89◦. The quantum geometry on the moiré Brillouin zone is
shown in Figs. 23 and 24, with Chern number C and integrated
Fubini-Study metric G/2π (see Ref. [32]). We observe that
the Berry curvature and Fubini-Study metric are more uniform
in the first band than in the second (remote) band, with the
second remote band showing a peak around � where the gap
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FIG. 22. The C3 eigenvalues of the bands from the continuum model for twist angle 3.89◦ for (a) (b) AA stacking and (c) AB stacking.
The plot in (a) is done with FH terms, while SH terms are added in (b). In (a) and (b), we only include C3 eigenvalues for the K-valley bands
(red) at �M and KM , since K′

M point is related to the KM point by C2yT and the −K valley can be obtained from the TR symmetry. In (c), we
only include C3 eigenvalues for the K-valley bands (red) and the �-valley spin-up bands at �M and KM , since K′

M point is related to the KM

point by the effective TR symmetry, and those for the −K-valley and the �-valley spin down can be obtained from the TR symmetry. Like in
Fig. 2, ω = eiπ/3 and 1̄ = −1.

to the third band is smallest. Note also that the effect of second
harmonic terms is weak on the first (C = −1) valence band,
whereas the second valence band becomes significantly more
strongly peaked at the � point and flatter elsewhere on the
BZ. This can be understood from the decrease in the gap at
� between the second and third valence bands due to the
improved accuracy of the higher-harmonic model. Since the
FH+SH model captures more bands than the FH model, we
use the FH+SH model to discuss the phase diagram under
the twist angle θ and the displacement field ε. Figure 5 in the
main text shows the single-particle phase diagram for the top
three valence bands in K valley. The highest valence band—
most relevant to the filling factors where FCIs have been
observed. The top valence K-valley band displays a Chern
number C = 1 throughout the phase diagram at ε = 0, and
shows a phase transition into a trivial insulator as ε is turned
on. The phase diagram of the remote bands is richer, showing
all Chern numbers C = −2, . . . , 2 throughout the θ, ε plane.
In particular, at ε = 0, the second and third top bands have a
gap closing around θ = 4.2◦, which is close to the gap closing
around 4.41◦ shown in Fig. 2.

APPENDIX C: SINGLE-PARTICLE CONTINUUM MODEL
AND FITTING: AB-STACKING (2H-STACKING)

Replacing C2y by C2x in the generators of the symmetry
group of AA-tMoTe2 gives the generators of the symmetry
group of AB-stacking tMoTe2 (AB-tMoTe2), which can be
thought of as twisting the top layer of AA-tMoTe2 by another
180◦. The change of symmetry has a dramatic effect on the
model. Since C2x is local to the monolayer K point (unlike
C2y), it preserves the valley quantum in the moiré model.

Different from the AA-tMoTe2, the DFT results show that
the low-energy valence bands of AB-tMoTe2 come from both
the ±K valleys and the � valleys. Therefore, in the following,
we will review the continuum model for the ±K valleys pro-
posed in Ref. [43], and will also discuss the continuum model
for the � valley.

1. AB-Stacking: ±K Valleys

In this part, we review the continuum model of AB-tMoTe2

for the ±K valleys proposed in Ref. [43]. The basis of the
continuum model is still labeled by c†

η,l,r with η = ± labeling

FIG. 23. Quantum geometry of the AA-stacked continuum FH model (θ = 3.89◦) in (B27) (without higher harmonics). (a) and (b) show
the Berry curvature and Fubini-Study metric of the highest valence band, respectively, and (c) and (d) show the corresponding plots for the
second highest valence band. The Chern numbers are C = −1, + for (a) and (c) respectively, and integrated Fubini-Study metrics are marked.
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FIG. 24. Quantum geometry of the AA-stacked continuum model (θ = 3.89◦) including second-shell harmonics in (B27). (a) and (b) show
the Berry curvature and Fubini-Study metric of the highest valence band, respectively, and (c) and (d) show the corresponding plots for the
second highest valence band. The Chern numbers are C = −1, + for (a) and (c) respectively.

the ±K valleys (or equivalently spins), l = t, b labels the
layer, and r labels the position. Since AB-tMoTe2 is given
by rotating the top layer of AA-tMoTe2 by an extra 180◦, the
two layers in one valley now have opposite spin. Then, the
symmetry reps furnished by c†

η,l,r now read

C3c†
η,l,rC

−1
3 = c†

η,l,C3re
−iη(−)l π

3 ,

C2xc†
η,l,rC

−1
2x = c†

η,l̄,C2xr
(−i),

T c†
η,l,rT

−1 = c†
−η,l,r(−η),

TRM c†
η,l,rT

−1
RM

= c†
η,l,r+RM

e−iηRM ·Kl , (C1)

where l̄ = b, t for l = t, b respectively, Kl is the rotated K
point of the lth layer, and l = t, b respectively correspond to
l = 0, 1 for (−)l .

The general form of the single-particle Hamiltonian in the
η valley reads

HAB
η,0 =

∑
l

∫
d2rc†

η,l,r

[
h̄2∇2

2m∗ + Vη,l (r)

]
cη,l,r

+
[∫

d2rc†
η,b,rtη(r)cη,t,r + H.c.

]
, (C2)

where Vη,l (r) is real, and we have used the fact that the dis-
persion around ±K in the monolayer MoTe2 is quadratic and
the fact that m∗ is the same for two valleys and two layers
owing to C2x and T symmetries. The symmetry requirements
on Vη,l (r) and tη(r) read

C3 : Vη,l (C3r) = Vη,l (r) , tη(C3r) = tη(r)e−iη 2π
3 ,

C2x : Vη,l (C2xr) = Vη,l̄ (r) , t†
η (C2xr) = tη(r),

T : V−η,l (r) = V ∗
η,l (r) , t−η(r) = t∗

η (r),

TRM : Vη,l (r + RM ) = Vη,l (r),

tη(r + RM ) = tη(r)eiηq1·RM . (C3)

By keeping the first harmonics, the symmetry requirements
lead to

Vη,l (r) = Ve−iψ
∑

i=1,2,3

eigi·r + Veiψ
∑

i=1,2,3

e−igi·r,

tη(r) = w
∑

i=1,2,3

eηi(i−1) 2π
3 e−ηiqi·r . (C4)

As can be checked from the expressions above, this lowest-
harmonics model has effective antiunitary symmetry

Kc†
η,l,rK

−1 = c†
η,l̄,r

, (C5)

which flips the layers and acts like time reversal. This symme-
try can be anticipated since the opposite layers have opposite
spins in the twisted AB stacking. Adding displacement field
would induce an energy difference between the two layers,
i.e.,

Hη,ε =
∫

d2r
∑

l

c†
η,l,rcη,l,r(−)l ε

2
, (C6)

which breaks the effective TR symmetry, as well as the C2x

symmetry. Including higher harmonics for the intralayer and
interlayer terms may break the effective TR symmetry.

Similar to the discussion in Appendix B 1, we can express
the Hamiltonian in the momentum space based on the Fourier
transformation in Eq. (B22), leading to

HAB
η,0 =

∑
k

∑
Q,Q′∈Q

c†
η,k,QhAB

η,QQ′ (k)cη,k,Q′ , (C7)

where c†
η,k,Q is defined in Eq. (B25), and Q is defined right

below Eq. (B24). Specifically, hAB
η,QQ′ (k) reads

hAB
η,QQ′ (k) = δQQ′

(
−h̄2(k − Q)2

2m∗ + ε

2
η(−)Q

)

+ V
3∑

i=1

∑
α=±

[
e−αiψδQ+αgi,Q

′
]

+ w

3∑
i=1

∑
α=±

[
eiα 2π (i−1)

3 δQ,Q′+αqi

]
, (C8)
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where we have included the displacement field, and w is
chosen to be real by picking the relative phase between the
two layers, and (−)Q = ±1 for Q ∈ {GM ± q1}. We can see
that without the displacement field, hAB

η,QQ′ (k) is the same for
two valleys due to the effective time-reversal symmetry.

2. AB-Stacking: � Valley

In this part, we discuss the continuum model for the �

valley. Thus, the basis of the moire model at � valley for
AB-tMoTe2 is the same as that for AA-tMoTe2, which is
labeled as ψ

†
r,l,s with l being the layer index and s = ↑/ ↓

labeling the spin. The important difference is that, in the �

valley, the momentum space lattice is triangular instead of a
honeycomb at ±K points. The reps of the symmetries of the
moiré model read

C3ψ
†
r,lC

−1
3 = ψ

†
C3r,l e

−isz
π
3 ,

C2xψ
†
r,l (C2x )−1 = ψ

†
C2xr,l̄

(−isx ),

T ψ
†
r,lT

−1 = ψ
†
r,l isy,

TRM ψ
†
r,lT

−1
RM

= ψ
†
r+RM ,l , (C9)

where sx, sy, sz are the Pauli matrices for the spin index, and
l̄ = t, b if l = b, t .

After choosing the kinetic term in the continuum model as
the intralayer spin-independent ∇2 term similar to the AA-
stacking case, the form of the continuum model reads

H� =
∫

d2r(ψ†
r,bψ

†
r,t )h

AB
� (r)

(
ψ

†
r,b

ψ
†
r,t

)
, (C10)

where

hAB
� (r) =

⎛
⎝ h̄2∇2

2m∗
�

s0 + V�,b(r) t� (r)

t†
� (r) h̄2∇2

2m∗
�

s0 + V�,t (r)

⎞
⎠ + E� ,

(C11)

ψ
†
r,l = (ψ†

r,l,↑, ψ
†
r,l,↓) , (C12)

t and b correspond to the top and bottom layers, respectively,
E� accounts for the energy difference between the �-valley
and ±K-valley bands, and V�,l (r) and t� (r) are 2 × 2 matrix
functions. Similar to the discussion for AA-tMoTe2, we only
include the terms up to the first harmonics in V�,l (r), and
the zeroth harmonics in the t� (r). Then, combined with the
symmetry reps in Eq. (C9), we arrive at

V�,l (r) =
[

3∑
i=1

V�eiψ� eigi·r +
3∑

i=1

V�e−iψ� e−igi·r
]

s0,

t� (r) = w�s0 . (C13)

With the simplification in Eqs. (C11) and (C13), the �-valley
continuum model in Eq. (C10) has an effective TR symmetry

Kψ
†
r,lK

−1 = ψ
†
r,l̄

(C14)

arising because of the spin-layer locking in the AB stacked
structure. Similar to the ±K-valley case, adding displacement
breaks the effective inversion symmetry, as well as the C2x

symmetry, where the displacement field term reads

H�,ε =
∫

d2r
∑

l

ψ
†
r,lψr,l (−)l ε

2
. (C15)

Including the first harmonics in t� (r) and the higher harmonics
in V�,l (r) can also break the effective TR symmetry.

To express the Hamiltonian in the momentum space, we
use the Fourier transformation of the basis, which reads

ψ
†
r,l,s = 1√

V
∑

k

∑
GM

e−i(k−GM )·rψ†
k−GM ,l,s . (C16)

As shown in Eq. (C13), the Hamiltonian has the same form in
the two spin subspaces. As a result, Hη,0 reads

HAB
�,0 =

∑
k,GM ,G′

M

∑
l,l ′,s

ψ
†
k−GM ,l,sh

AB
ll ′,GM G′

M
(k)ψk−G′

M ,l ′,s , (C17)

where

hAB
ll,GM G′

M
(k) =

[
− h̄2(k − G)2

2m∗
�

+ (−)l ε

2
+ E�

]
δGM ,G′

M

+ V�

3∑
i=1

[
eiψ�δGM ,G′

M−gi
+ e−iψ�δGM ,G′

M+gi

]
hAB

ll̄,GM G′
M

(k) = w�δGM ,G′
M

, (C18)

and we have included the displacement field.

3. AB-Stacking: Fitting to the DFT Data

As shown in Fig. 18, both the ±K-valley and the �-valley
valence bands are close to the charge neutrality. Therefore,
we only use both the ±K-valley model [Eq. (C8)] and the
�-valley model [Eq. (C18)] in the fitting. We mainly fit to the
top four valence bands (two in each valley) for the ±K-valley
model [Eq. (C8)] and top six valence bands in the � valley;
similar to the case of AA stacking, we fit to the DFT bands
at θ = 3.89◦. The good match between those DFT bands
and those from the models is shown in Figs. 4(b) and 21(b),
where the model parameter values obtained from the fitting
are shown in Table II. In the following, we provide more
details for the fitting for the ±K-valley model [Eq. (C8)] and
the �-valley model, separately.

a. ±K-valley

We choose the value of m∗ to be the effective mass
(∼0.62me) of the top valence band for the untwisted AB-
stacking bilayer structure around K, as shown in Fig. 11. The
value of effective mass around K is similar for the monolayer
MoTe2 and the untwisted AB-stacking bilayer MoTe2.

Owing to the effective TR symmetry Eq. (C5) and the
true microscopic TR symmetry, the −K valley has the same
bands as the +K valley, leading to at least double degeneracy
of each band from the ±K-valley continuum model. Along
the �M − MM line, the bands from the ±K-valley continuum
model have fourfold degeneracy because we set the interlayer
coupling to be zero (w = 0), which is justified by the nearly
fourfold degeneracy for the top four DFT valence bands along
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�M − MM , as shown in Fig. 4. The small w = 0 can be un-
derstood as the follows. The two layers in one valley now
have opposite spin; owing to the spin U(1) symmetry for the
low-energy states near ±K valleys in monolayer MoTe2, we
expect the spin U (1) symmetry is approximately preserved in
tMoTe2, which means the interlayer coupling is very small
for the AB stacking. The zero interlayer coupling makes the
eigenstates have well-defined valley and layer/spin. As a re-
sult, the two states with the same spin are degenerate at KM ,
since the combination of the effective TR symmetry and the
TR symmetry leaves the spin invariant. This is consistent with
the DFT result in Fig. 19. In Fig. 22(b), we show the C3

eigenvalues of the bands from the ±K-valley model, which is
consistent with Fig. 19 and which shows that each of the top
four valence bands is in the A1@1a atomic limit, representing
an atomic s orbital at the origin of the center of moiré Wigner-
Seitz unit cell.

b. �-valley

In our fitting, we choose the values of m∗
� to be the

effective mass of the top valence band for the untwisted
AB-stacking bilayer structure around � in Fig. 11. (There is
some anisotropy, so in practice we round the effective mass
to 10me. The resulting bands show little dependence on the
precise value of the mass.) Although the value of effective
mass around K is similar for the monolayer MoTe2 and the
untwisted AB-stacking bilayer MoTe2, it differs a lot around
� as shown in Fig. 11. The change of the � effective mass
from the monolayer MoTe2 to the untwisted AB-stacking bi-
layer MoTe2 comes from the interlayer coupling between the
monolayer conduction and valence bands. This effect can only
be taken into account in the �-valley continuum model by
changing the value of m∗, since the the monolayer conduction
bands are not explicitly included in the �-valley continuum
model. Therefore, we do not take the values of m∗

� from the
monolayer; instead, we round it to the � effective mass in
the untwisted AB-stacking bilayer MoTe2. Furthermore, we
determine the interlayer coupling w� for the �-valley model
based on the interlayer coupling at � for the untwisted AB-
stacking bilayer structure, as shown in Fig. 11.

The �-valley continuum model in Eq. (C10) preserves spin
U(1). Owing to the effective TR symmetry Eq. (C5) and the
TR symmetry, the spin-down bands are the same as the spin-
up bands, leading to at least double degeneracy of each band
from the �-valley continuum model. As shown in Fig. 22(c),
the C3 eigenvalues of the bands from the ±K-valley model are
consistent with the DFT calculation shown in Fig. 19.

The �-valley bands are extremely flat as shown in Fig. 4.
To understand it, first we note that the interlayer coupling w�

is very large (shown in Table II), allowing us to project the
model into ψ†

r,s = 1√
2
(ψ†

t,r,s + ψ
†
b,r,s) basis. (Note that we have

rotated the relative phase between ψ
†
t,r,s and ψ

†
b,r,s to make w�

positive.) Then, the �-valley continuum model in Eq. (C11)
with zero displacement field becomes

h̃AB(r) = h̄2∇2

2m∗
�

+ w� + E� + V� (r) , (C19)

where the spin degeneracy is implicit, and

V� (r) =
3∑

i=1

V�eiψ� eigi·r +
3∑

i=1

V�e−iψ� e−igi·r

= 2V�

3∑
i=1

cos(gi · r + ψ� ) . (C20)

For convenience of the discussion, let us consider the hole
Hamiltonian

−h̃AB(r) = − h̄2∇2

2m∗
�

− w� − E� − V� (r) ; (C21)

the highest bands of h̃AB(r) are lowest bands of −h̃AB(r). With
ψ = 0 and V� > 0 in Table II, the minimum of the potential
−V� (r) is at the moiré lattice points r = RM , which has value
−V� (RM ) = −6V� . To go from one moiré lattice point RM

to its nearest neighbors RM to RM + aM,1, the minimum en-
ergy barrier is 8V� = 576 meV. The energy barrier is much
larger than the kinetic energy term estimated for m∗

� = 10me:
h̄2|q1|2

2m∗
�

= 2.49 meV. As a result, the lowest-energy states of

−h̃AB(r) are bounded around RM ; then we can expand −V� (r)
around RM to the second order of r − RM (the first order of
r − RM is forbidden by the C3 symmetry),

− V� (r)

= −V (RM ) + V�

∑
i

(gi · (r − RM ))2 + O(|r − RM |4)

= −6V� + 3

2
V�|bM,1|2|r − RM |2 + O(|r − RM |4) (C22)

for small |r − RM |. Then, the effective Hamiltonian for those
lowest-energy states can be approximated by an array of
decoupled harmonic oscillators centered around the RM . Har-
monic oscillators centered around different RM’s are related
by the moiré lattice translations, and thus have the same spec-
trum. As a result, we have a set of flat bands with energies
given by solving (choosing RM = 0 as an example)

hAB
�,harmonic(r) = − h̄2∇2

2m∗
�

+ w� − E� + 3

2
V�|bM,1|2|r|2,

(C23)

which yields

EAB
�,harmonic(nx, ny) = w�E� − h̄ω − (nx + ny)

h̄ω

2
, (C24)

where nx, ny = 0, 1, 2, 3, ... and

h̄ω = h̄

√
3V�|bM,1|2

m∗
�

= 56.76 meV . (C25)

This spectrum tells us (i) after including spin, the highest
valence band (nx, ny) = (0, 0) is doubly degenerate and the
second highest valence band (nx, ny) = (1, 0), (0, 1) is four-
fold degenerate, (ii) the highest and second valence bands
have spinless C3 eigenvalues 1 and e±i2π/3, respectively, and
(iii) the energy difference between the highest valence band
and the second highest valence is h̄ω = 56.76 meV. All
of the features are consistent with the DFT calculation. In
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FIG. 25. The evolution of the bands of the AB-stacking tMoTe2

based on the continuum model with parameter values in Table II.
The red and orange lines come from the ±K valley and the � valley,
respectively.

Fig. 21(b), the flat bands from the � valley around −30 meV
and −86 meV have near twofold degeneracy (spinless C3

eigenvalue 1) and near fourfold degeneracy (spinless C3 eigen-
value e±i2π/3), and the energy difference between them is
56.74 meV.

At last, we discuss the effect of the displacement field. As
shown in Fig. 25, the effect of the displacement field on the
±K-valley bands are just to shift the bands from different
layers relative to each other, since the valley is a good quan-
tum number due to the zero interlayer coupling (see Table II).
On the other hand, the effect of the displacement field on the
low-energy �-valley bands is negligible, which is consistent
with the fact that the very large interlayer (see Table II) cou-
pling make the eigenstates equally distributed between the two
layers.

4. AB-Stacking Electron Bands

For completeness, we also briefly discuss the conduction
bands although they are not the focus of this paper. The
Fermi surface of the electron bands in the untwisted struc-
ture is more complex than the valence bands (see Fig. 11),
exhibiting an electron-like pocket along the �K line, which
is below the ±K-valley states in both bilayer configura-
tions. Let us denote the center of the pocket by sK, s ∼ 0.7,
along with its C3- and T -related partners. Thus in total there
are six pockets in the untwisted BZ. Figure 11 shows that
there are only two low-energy states (spin ↑ and spin ↓)
at sK, unlike the four total states (spin ↑ and spin ↓ in
both layers) at K. This can be understood from the simple
model k2

2mp
τ0 − wpτ1 where τ is a layer Pauli matrix, k is

the momentum measured from the Fermi pockets with mass
mp, and wp is the effective interlayer coupling, which splits

FIG. 26. Conduction bands of the AB-stacked tMoTe2using s =
0.68 for θ = 4.41◦ (a) and θ = 3.89◦ (b). Note that there are six low
energy bands (per valley) in each case, although in (b) they are nearly
degenerate. The features of the band structures are well matched by
the lowest 12 bands in ab initio in Fig. 18 between both angles. One
should note that the ab initio band structures also show bands from
the K valley at slightly higher energies.

the two layers into bonding/antibonding states with energy
k2/2mp ∓ wp.

Comparing the monolayer and bilayer band structures in
Fig. 11, we estimate wp ∼ 200 meV. Since this is a large
hybridization that removes the antibonding state from the
low-energy bands, an effective moiré model on the bonding
state is

Hpi = (−i∇ + pi )2

2mp
+ Vp(r), (C26)

where Vp(r) is a moiré-periodic potential and p j = R( 2π j
6 )sK

is the center of the pocket. Note that the momentum-space
origin of Hpi , pi mod GM , depends sensitively on the value
of s and θ and is generically off the moiré high-symmetry
points. The resulting shifting and folding of the pi pocket
onto the moiré BZ explains the nonuniform evolution of the
conduction bands in Figs. 13 and 18 as a function of twist
angle. In comparison, the valence bands, which originate at
the K points converge smoothly.

We show band structures at θ = 4.41◦, 3.89◦ in Fig. 26
using s = .68 as an example to illustrate the strong effect of
pi. Here we chose similar parameters to the K-valley model
in Table II, namely mp = 0.62me, V = 26.5 meV (half the K-
valley value), and ψ = −52◦. We see that Fig. 26 qualitatively
matches the lowest bands in Fig. 18. Since the only symmetry
preserved at pi is C2x, symmetry does not strongly constrain
the form of Eq. (C26). Nevertheless, the minimal model here
successfully reproduces many features of the bands.
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