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Topological Hall effect in strongly correlated layered magnets: The effect of the spin
of the magnetic atoms and of the polar and azimuthal angles subtended by the spin texture
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The topological properties are investigated for strongly correlated materials having honeycomb lattice struc-
tures and spin texture �S = S[sin( �q1�r) cos( �q2�r), sin( �q1�r) sin( �q2�r), cos( �q1�r)]; here, �q1 (polar) and �q2 (azimuthal)
are the spin modulating vectors and S is the spin (total angular momentum) of the magnetic atoms. The results can
be applied to materials showing the Kondo lattice behavior within the strong Kondo coupling regime. The explicit
dependence of the Chern number on �q1, �q2 for S = 1, 2, 3 and S = 1/2, 3/2, 5/2 (in limiting cases) is derived.
We find that for S = 1, 2, 3, the Chern number depends strongly on �q2 and S; and for S = 1/2, 3/2, 5/2,

the same dependence is expected. The main physical effect of our result is the change in the direction of the
topological Hall resistivity (+ρTHE

xy → −ρTHE
xy or vice versa, THE stands for the topological Hall effect) when

S > 2 as the wave vectors are modulated. We propose heterostructures involving the iron based van der Waals
magnet FeN=3,4,5GeTe2, because in this material both the investigated spin texture and Kondo lattice behavior
were observed. Our method can also be applied to materials with higher spin S > 3 to investigate topological
properties.
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I. INTRODUCTION

Motion of electrons on an adiabatically changing chiral
spin texture in the strong coupling regime gives rise to the
topological Hall effect (THE) [1]. For the strong coupling
case, the spin of the electrons follows the local direction of
the magnetization. If the magnetization varies in a closed
loop, then the electrons acquire a geometric phase in the
parameter space, which in turn gives rise to the THE [2,3].
A large number of spin textures—e.g., skyrmions, conical,
hedgehog, magnetic bubble, to name a few (or a complete
list see Table 1 of Ref. [3])—generating THE were observed
experimentally in 2D layered magnetic materials [3]. Micro-
scopically, the Dzyloshinskii-Moriya interaction (DMI) [4,5],
the dipolar interaction [6], frustrated chirality [7,8], out-of-
plane anisotropy [9,10], and Fermi surface curvatures [11] are
responsible for generating noncollinear spin texture, in turn
THE. Due to the involvement of these different microscopic
effects, understanding the competition between them [12–15]
and ways to manipulate them is important from the point of
view of the fundamental physics as well as applied spintronics
[16]. Recently, Van der Waals (VdW) magnets have emerged
as one of the promising class of materials for investigation
of these effects [17], due to the possibility of changing their
properties through intrinsic means (chemical doping [18],
stacking order and twist of the monolayers [17,19–22]), and
extrinsic means (electric and magnetic field, strain, pressure
[23]). The VdW magnets are primarily divided into five differ-
ent family of compounds [18,24]: (i) transition metal halides,
(ii) transition metal phosphorous trichalcogenides, (iii) transi-
tion metal di-chalcogenides, (iv) ternary iron based tellurides,
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and (v) transition metal oxyhalides. In these compounds itin-
erant ferromagnetism, the Kondo lattice behavior and Mott
insulating phase are observed due to the strong electronic
correlation [24–30]. Keeping this in mind, an investigation of
the electronic properties of these 2D materials with localized
spin moments a low-energy effective theory using su(2) path
integral method was proposed recently [31]. It was shown that
the THE for a material with a honeycomb bipartite lattice and
a strongly coupled electron spin to the background high-spin S
conical spin texture depends only on the (i) atomic spin S (ii)
and the spin modulation vector of the spin texture. On a side
note, by S we mean multiplet of localized angular momentum
�j = �l + �s due to spin-orbit coupling. For example, a Ce3+

ions contains a single unpaired 4 f electrons in the state 4 f 1

with l = 3 and s = 1/2. The spin-orbit coupling gives rise to
the low-lying multiplet with j = 3 − 1/2 = 5/2. In our case,
j and S are same. In the investigated conical spin texture,
only the azimuthal angle of the spin projection (on xy plane)
changed through neighboring sites. Hence naturally the ques-
tion arises: how the topological properties of the materials
changes if both the azimuthal angle as well as the polar angle
of the spin texture change? To answer this question in this
work, we analyzed the spin texture:

�Si ≡
⎡
⎣Sx

Sy

Sz

⎤
⎦ = S

⎡
⎣sin �q1�ri cos �q2�ri

sin �q1�ri sin �q2�ri

cos �q1�ri

⎤
⎦. (1)

Here, Sx, Sy, and Sz are the x, y, and z components of the lo-
calized spin momentum �Si. �q1 = (q1x, q1y) and �q2 = (q2x, q2y )
are the two spin modulating wave vectors on a 2D plane.
�ri = (x, y) is the position vector on the 2D plane. The spin
texture on a different lattice structure is shown in Fig. 1.

The experimentally analogous spin texture was observed
in VdW ferromagnet Fe3GeTe2 (F3GT). It is a conductor
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FIG. 1. Spin texture generated from Eq. (1) for �q1 = �q2 =
(π/6, π/6) on (a) square, (b) triangular, (c) honeycomb, and
(d) Kagome lattices. The direction of the arrow represents the angle
extended by Sx and Sy on xy plane, defined as arctan(Sy/Sx ). The
color represents the values of the Sz.

with itinerant ferromagnetism [34] and Kondo lattice behavior
[35]. In F3GT using scanning electron microscopy with polar-
ization analysis, a modulated spin spiral on the xz plane (Neel
order), as well as on the xy plane, was observed [32]. The same
spin texture was also observed through Lorentz transmission
electron microscopy (LTEM) and micromagnetic simulations
[36–38]. In Fig. 2(a) using Eq. (1) with �q1 = (π/8, π/8) and
�q2 = (π/4, π/4), we plot a qualitatively same spin texture
as was experimentally observed (see Fig. 1 of Ref. [32]).
We say qualitatively, as one can see the pronounced peak
and dip of the magnetization for Sz + Sx in comparison to
Sz + Sy, as was observed in experiment. In another sister
compound Cr2Ge2Te6 (CGT) through LTEM, the analogous
spin texture was detected [33]. In Fig. 2(b) using Eq. (1) for
�q1 = (π/2, 0) and �q2 = (π/3, 0), we reproduce the experi-
mentally observed spin texture (see Fig. 2(c) of Ref. [33]).
Physically this spin texture can be thought of as Neel spin or-
der sandwiched in between two Bloch domain walls. Besides,
such a magnetic texture was also observed in heterostructures
of the multiple ferromagnetic monolayers. In these materials,
the combined effect of the perpendicular magnetic anisotropy
(PMA)—due to the dipole interaction between the layers—
and the interfacial DMI gives rise to the spin texture [39]. In
[Co/Ni]n/Ir/Pt(111) heterostructure, depending on the thick-
ness of the magnetic multilayer stack [Co/Ni]n and the Ir
layer, either Bloch-type or Neel-type domain walls were ob-
served, however, for some specific thickness of both these
layers one can find both Bloch and Neel domain walls [40].
It is in this region one can find the spin texture represented by
Eq. (1). The same is true for Co/Pd [41] and Fe/Ni/Cu(001)
[42] multilayers.

In this work, we solve the Hamiltonian of the 2D magnetic
materials in the strong electron correlation limit with spin

FIG. 2. (a) Generation of the qualitative spin texture in Fe3GeTe2

experimentally observed in Fig. 1 of Ref. [32] using Eq. (1). On the
left-hand side, the summation of magnetization along z and x axes
(Sz + Sx) is plotted. On the right, the summation of magnetization
along z and y axes (Sz + Sy) is plotted. We observe more pronounced
magnetic texture for Sz + Sx compared to Sz + Sy; the same was ob-
served in experiment. (b) Generation of the experimentally observed
spin texture in Cr2Ge2Te6 in Fig. 2(c) of Ref. [33], using Eq. (1).
Here �q1 = (π/2, 0) and �q2 = (π/3, 0).

texture given by Eq. (1). It is assumed that the system has a
localized high spin S. The high-spin treatment of the problem
is necessary, as in most of VdW magnets due to large spin-
orbit coupling the angular momentum of the magnetic atom
becomes large. Besides, in 2D materials due to reduced coor-
dination number of the surface atoms, the localized electronic
bands at surface become narrower compared to the bulk; the
narrow band favors the localization, exchange splitting, and
higher magnetic moments [43].

The paper is structured as follows: in Sec. II, we in-
vestigate the topological properties of the Hamiltonian. In
Sec. II A, the Hamiltonian on a honeycomb lattice is given;
complete derivation, and the mathematical procedure to solve
the Hamiltonian is described in Appendixes A and B, re-
spectively. In Secs. II B and II C, we find the Chern number
for integer spins. In Sec. II D, we find Chern number for
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FIG. 3. (a) Schematic of a bipartite honeycomb lattice. �a1, �a2, and �a3 represent the three NN vectors. �b1, �b2, and �b3 represents the three
NNN vectors. (b) Plot of the dependence of the g′

n and gn on the wave vectors �q1 = (2q1x/
√

3, 0) and �q2 = (2q2x/
√

3, 0) for a honeycomb
bipartite lattice. It is calculated using Eq. (2). The values of q1x and q2x lies in the range (0,

√
3π/2). [(c)–(e)] Plot of the real space function

p(�ri ) and its Fourier transform p(�k′) on a honeycomb lattice. It is calculated using Eq. (3).

half-integer spins in limiting cases. In Sec. III, we discuss dif-
ferent aspects of the results, including possible experimental
setups.

II. METHOD AND CALCULATION

We start from the Kondo lattice model (KLM) where the
magnetic moments are localized at lattice sites.1 At large
Kondo coupling the KLM is identical to the Hubbard model
with large electron correlation [44]. The necessary theory for
solving this model using su(2) path integral method was given
recently [31]. Basically the idea is to represent the KLM in
strong coupling regime (the Hubbard model in strong corre-
lation regime) through the Hubbard X pq operators.2 As there
exist one-to-one mapping of the X pq operators to the su(2)

1KLM is derived from the periodic Anderson model in the strong
correlation regime [49,65]. Periodic Anderson model takes into ac-
count the hybridization of the localized f electrons.

2The Hubbard operators X pq
i ≡ 〈p||q〉 describes the transition at

site from |p〉 state to |q〉 state. Under strong correlation there are three
different states possible, i.e., states with up-spin |↑〉, down-spin |↓〉,
and empty site |0〉. Hence, for example, X ↑0

i represent the transition
from empty state to the up-spin state at ith site. In terms of usual
electron creation (c†

iσ ), annihilation (ciσ ), and number (niσ = c†
iσ ciσ )

operators, the Hubbard operators are represented as

X 0σ
i = ciσ (1 − niσ ′ ), X σ0

i = (1 − niσ ′ )c†
iσ ,

X 00
i = 1 −

∑
σ

(1 − niσ ′ )c†
iσ c†

iσ (1 − niσ ′ ).

Above definition of Hubbard operators shows that the no double
occupancy condition is satisfied.

coherent state operators X pq
cs = 〈z, f |X pq|z, f 〉 [45–47]—here

the f and z are the spinless charged fermionic field (holon)
and spinful bosonic fields (spinon) respectively—one can
transform the X pq Hamiltonian into the coherent symbol X pq

cs

Hamiltonian. Finally the path integral approach is used to
solve the resulting X pq

cs Hamiltonian. Physically this Hamil-
tonian represent the interaction of the strongly correlated
itinerant electrons with the background spin textures. We
rederived this theory in Appendix A for convenience of the
readers.

The resulting Hamiltonian (A17) is applicable to any 2D
lattice structure and spin texture provided: (i) correlation be-
tween electrons should be strong enough to exclude doubly
occupied sites and (ii) the coupling between itinerant electrons
and local moments is strong. KLM in the strong Kondo cou-
pling regime satisfies these conditions [48,49]. As KLM and
periodic Anderson model (PAM) are related, these conditions
are satisfied for PAM with strong onsite Coulomb repulsion
of f electrons and strong hybridization between localized
f electrons and conduction s electrons. Compounds having
heavy fermion elements are likely to satisfy these conditions
[50–52]. In fact in some VdW compounds, the signs of KLM
have been predicted [35,53,54].

A. Hamiltonian on a bipartite lattice

We investigate the Hamiltonian (A17) on a honeycomb
bipartite (L = A ⊕ B; A and B are sublattices) lattice with
spin texture given in Eq. (1). In L the nearest neighbor (NN)
hopping is related to the hopping from one sublattice to the an-
other (A → B, B → A), and the next nearest neighbor (NNN)
hopping is related to the hopping on the same sublattices
(A → A, B → B). On a honeycomb lattice the NN (an), and
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NNN (bn) lattice vectors are [see Fig. 3(a)]

�a1 =
(√

3

2
,

1

2

)
, �a2 =

(
−

√
3

2
,

1

2

)
, �a3 = (0,−1),

�b1 =
(

−
√

3

2
,

3

2

)
, �b2 =

(
−

√
3

2
,−3

2

)
, �b3 = (

√
3, 0).

Here we have assumed a constant unit lattice. In momentum space (see Appendix B),

H (�k) =
∑

�k
ψ̄�kH(�k)ψ�k .

The ψ�k = [ f�k,A f�k,B]T contains the holon creation operators of the �kth momentum on the two sublattice A and B. The single

mode kernel is H(�k) = H0(�k) · I+Hi(�k) · �σi. I is the unit matrix; �σi are the Pauli matrices, and Hi(�k) are the corresponding
kernels. Explicitly

H(�k) = H0I+Hx(�k)σx +Hy(�k)σy +Hz(�k)σz;

H0 = −2t2w
S
n F̂
[

1 + gn cos 2�q1

(
�ri + �bn

2

)]S

∗
⎧⎨
⎩cos S �q2�bn cos �k�bn + 2S sin S �q2�bn

∑
�k′

p(�k′) cos(�k + �k′)�bn

⎫⎬
⎭,

Hx = +t1w
′S
n F̂

[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]S

∗ cos �k�an,

Hy = +t1w
′S
n F̂

[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]S

∗ sin �k�an,

Hz = −2t2w
S
n F̂
[

1 + gn cos 2�q1

(
�ri + �bn

2

)]S

∗
⎧⎨
⎩− sin S �q2�bn sin �k�bn + 2S cos S �q2�bn

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭,

(2)

where

wn ≡ 1

2
+
(

1

4
+ cos �q2�bn

4

)
cos �q1�bn; gn ≡

[(
1

4
− cos �q2�bn

4

)/
wn

]
;

w′
n ≡ 1

2
−
(

1

4
+ cos �q2�an

4

)
cos �q1�an; g′

n ≡
[(

1

4
− cos �q2�an

4

)/
w′

n

]
.

Here, t1 and t2 are the electron NN and NNN hopping factors, respectively. p(�k′) is the Fourier coefficient of the real space
function:

p(�ri) = atan

[
1

h(�ri) csc �q2�bn + cot �q2�bn

]
=
∑

k′
p(�k′)e−i�k′�ri ,

where

h(�ri ) ≡ 2 + cos �q1�bn + [
4 cos �q1 �bn

2 + 1
]

cos 2�q1
(
�ri + �bn

2

)
cos �q1�bn − cos 2�q1

(
�ri + �bn

2

) . (3)

The p(�k′) is a function of �q1 and �q2. In Figs. 3(c)–3(e), we plot p(�ri) and corresponding p(�k′) for different combinations of �q1

and �q2. We observe that p(�k′) 
 1 for whole range of �k′; it is true irrespective of �q1 and �q2.
In Fig. 3(b), we plotted wn, w′

n, gn, and g′
n for �q1 = (2q1x/

√
3, 0), �q2 = (2q2x/

√
3, 0); where 0 < q1x, q2x <

√
3π/2. We

observe that for whole range of q1x and q2x, these functions are positive and less than unity. As these are even functions of �q1 and
�q2, the same is true for −√

3π/2 < q1x, q2x < 0. F̂ represents the Fourier transform operator. 〈〈∗〉〉 is the convolution operator.
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FIG. 4. Dependence of (a) Hx and (b) Hy on the momentum vector kx corresponding to the three NN vectors; the value of ky = 0
everywhere. We have taken �q1 = (π/4, 0) and �q2 = (π/4, 0). The coordinate of ± �K = (±π/

√
3, 0). (c) The same dependence of Hz on

corresponding NNN vectors. (d) Summation of the previously plotted three components of the Hx , Hy, and Hz. [(e)–(g)] Chern number
dependence on q1x and q2x for S = 1, 2, and 3 calculated using Eqs. (6)–(8), respectively.

S is the effective spin of the magnetic atoms. In the following sections, the Chern number for integer and half-integer spins are
discussed.

B. Chern number for spin S = 1

The Hamiltonian for integer spin S = 1 is found from Eq. (2):

H0 = −2t2
∑

n

wn

[
1 + gn

2
cos 2�q1�bn

]⎧⎨
⎩cos �q2�bn cos �k�bn + 2 sin �q2�bn

∑
�k′

p(�k′) cos(�k + �k′)�bn

⎫⎬
⎭,

Hx = +t1
∑

n

w′
n

[
1 − g′

n

2
cos 2�q1�an

]
× cos �k�an,

Hy = +t1
∑

n

w′
n

[
1 − g′

n

2
cos 2�q1�an

]
× sin �k�an,

Hz = −2t2
∑

n

wn

[
1 + gn

2
cos 2�q1�bn

]⎧⎨
⎩− sin �q2�bn sin �k�bn + 2 cos �q2�bn

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭. (4)

For topological properties to appear the condition Hx =
Hy = 0 and Hz �= 0 should be satisfied simultaneously (see
Sec. 3.5.6 of Ref. [55]). If we take �q1 = (2q1x/

√
3, 0) and

�q2 = (2q2x/
√

3, 0), where −√
3π/2 < q1x, q2x <

√
3π/2,

then at the point ± �K = (±π/
√

3, 0) this condition is sat-
isfied (see Appendix F). To show this in Figs. 4(a)–4(c),
we have plotted the Hx, Hy, and Hz for �q1 = (π/4, 0) and

�q2 = (π/4, 0). We observe that at ± �K all three components
of Hx are zero. For Hy at ± �K , the �a3 component is zero, and

the �a1 and �a2 components are of opposite sign. In result the
sum of the all three components of Hy is zero at ± �K . For
Hz, the �b3 component is zero at ± �K , however, the �b1 and
�b2 components are nonzero. Therefore the aforementioned
topological condition is satisfied.

We note that the topological property for �q1 =
(2q1x/

√
3, 0) and �q2 = (2q2x/

√
3, 0) is defined by either

the �b1 or the �b2 component of Hz as (i) only they have
nonzero values at ± �K , (ii) both of them are identical to each
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other. Considering only �b1 component, the Chern number is

c1 = sgn[Hz|�b1
( �K )] − sgn[Hz|�b1

(− �K )]

2
. (5)

Using Eq. (5) in Eq. (4), we will get

c1 = sgn

⎧⎨
⎩sin q2x − 2 cos q2x

∑
�k′

p(�k′) sin

(
π

2
+ �k′ �b1

)⎫⎬
⎭;

where −
√

3π

2
� q1x �

√
3π

2
,−

√
3π

2
� q2x �

√
3π

2
.

(6)

The �q1 dependence of c1 enters through p(�k′), however, as
p(�k′) 
 1 we expect a very weak dependence. In Fig. 4(e),
we plot the dependence of c1 on q1x and q2x; as was expected
�q1 almost does not have any effect on Chern number.

It is important to note that on a honeycomb lattice, the
Chern number is defined only by �b1 or �b2 component of theHz

when following conditions are satisfied: (i) the y components
of the spin modulation vectors are zero: �q1 = (2q1x/

√
3, 0)

and �q2 = (2q2x/
√

3, 0), and (ii) the Hamiltonian can be rep-
resented in the same form as Eq. (4).3

C. Chern number for S = 2 and 3

For higher spin S = 2 and 3, one will expand the terms
containing gn and g′

n in Eq. (2). The Hamiltonian for S = 2 is
given in Eq. (C2). Comparing Eqs. (4) and (C2), we observe
that they are analogous to each other, hence, the Chern number
will be defined by the �b1 (or �b2) component ofHz. The Chern
number for S = 2 is

c1 = sgn

[(
1 + g2

1

2

)
+ g1 cos 2q1x + g2

1

2
cos 4q1x

]

× sgn

⎡
⎣sin 2q2x − 4 cos 2q2x

∑
�k′

p(�k′) sin
(π

2
+ �k′ �bn

)⎤⎦.
(7)

The dependence of c1 on q1x and q2x is plotted in Fig. 4(f). We
observe very weak dependence of c1 on q1x.

In Eq. (C3), we give the Hamiltonian for S = 3. Equa-
tion (C3) is also analogous to the Eq. (4). Hence, as
before, the Chern number will be given by �b1 component

3By same form as Eq. (4) we meant that Hx (Hy) is multiplication
of cos �k�an (sin �k�an) and an even function (with respect to �q1 and �q2).
In case of Hx andHy, the function w′

n(1 − g′
n/2 cos 2�q1�an) is even;

the evenness of gn, g′
n, wn, and w′

n can be observed in Eq. (2) as
they are a function of cosine. Multiplication of Hx (Hy) by cos �kan

(cos �kan) allow us to make Hx = 0 (Hy = 0) at ±K . For explicit
explanation and derivation of this point, please refer Appendix F.

ofHz:

c1 = sgn

⎡
⎣
(

1 + 3g2
1

2

)
+
(

3g1 + 3g3
1

4

)
cos 2q1x

− 3g2
1

2 cos 4q1x − g3
1

4 cos 6q1x

⎤
⎦

× sgn

⎡
⎣sin 3q2x − 6 cos 3q2x

∑
�k′

p(�k′) sin
(π

2
+ �k′ �bn

)⎤⎦.

(8)

In Fig. 4(g), we plot the dependence of c1 on q1x and q2x.
Here, in comparison to Figs. 4(e) and 4(f), the dependence
of c1 on q1x increases; it can be clearly seen in the vicinity
of q1x ≈ ±π/2, π/2 < q2x <

√
3π/2. For other values of q1x

and q2x, the dependence is very weak.

D. Chern number for S = 1/2 and 3/2

Finding a closed analytical expression of Chern number for
S = 1/2 is not possible, as Fourier transform of the terms

[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]1/2

,

(9)[
1 + gn cos 2�q1

(
�ri + �bn

2

)]1/2

,

are not available. One can find the Hamiltonian in the lim-
iting cases of gn and g′

n. We can have four combinations
of limiting cases: (i) gn 
 1, g′

n 
 1, (ii) gn 
 1, g′
n � 1,

(iii) gn � 1, g′
n 
 1, and (iv) gn � 1, g′

n � 1. In Fig. 5(a),
we showed the values of q1x and q2x for which these lim-
iting cases are applicable; we assumed here threshold of
0.2, i.e., four different combinations of 0 < g1, g′

1 � 0.2
and 0.8 � g1, g′

1 � 1. In Fig. 5(a), we observe that only
the combinations g′

1 
 1,g1 
 1 and g′
1 � 1, g1 
 1 are

prominent, hence we analyze only these two combinations.
The Hamiltonian for g′

1 
 1, g1 
 1 is given in Eq. (D3)
and for g′

1 � 1, g1 
 1 is given in Eq. (D7). Both these
Hamiltonians are analogous to the Eq. (4). Besides, the Hz

for both these Hamiltonians is the same as it corresponds to
the single case g1 
 1. Hence, the expression for the Chern
number will be same:

c1 = sgn

⎡
⎣sin

q2x

2
− cos

q2x

2

∑
�k′

p(�k′) sin
(π

2
+ �k′ �b1

)⎤⎦.

(10)

In Fig. 5(b), we plot the Chern number for S = 1/2.
For S = 3/2, the Chern number is also found analogously.

The idea is to represent the functions containing gn in Eq. (4)
as a multiplication of powers of 1 and 1/2, then to apply
the above discussed limiting conditions to find the corre-
sponding Hamiltonian and Chern number. The Hamiltonians
corresponding to the two combinations are given in Eq. (E2)
(g′

1 
 1, g1 
 1) and (E3) (g′
1 � 1, g1 
 1). The Chern
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FIG. 5. (a) Values of q1x and q2x where four different combinations of limiting cases of g1 and g′
1 are applicable. We assumed the threshold

of 0.2, i.e., different combinations of 0 < g1, g′
1 � 0.2 and 0.8 � g1, g′

1 � 1. [(b) and (c)] Chern number dependence on q1x and q2x for
S = 1/2 and 3/2 calculated from Eqs. (10) and (11), respectively.

number is

c1 = sgn

[(
1 + g2

1

4

)
+ 3

2
g1 cos 2q1x + g2

1

4
cos q1x

]

× sgn

⎡
⎣sin

3q2x

2
−3 cos

3q2x

2

∑
�k′

p(�k′) sin
(π

2
+|�k′ �b1

)⎤⎦,

(11)

In Fig. 5(c), we plot the Chern number dependence on q1x and
q2x for S = 3/2. In Fig. 5(d), we showed the Chern number
for 5/2; the explicit expression is not shown here, but it is
calculated using the same procedure, representing the function
containing gn and g′

n in Eq. (4) as a multiplication of powers
of 2 and 1/2.

III. DISCUSSION

In Table I, we summarize the results from the previous
section. From the dependence of the Chern number on q1x

and q2x for integer spin [Figs. 4(e)–4(g)], it can be observed
that the Chern number changes multiple times in the range
0 < q1x, q2x <

√
3π/2 only for higher integer spins S > 2.

Hence experimentally the change in the direction of the topo-
logical Hall resistivity ρTHE

xy (it is proportional to the c1) can
only be observed at higher spin S > 2.

When c1 for the half-integer spin (apart from S = 1/2) is
compared with the c1 for the corresponding floor integer spin
(�S�), i.e., c1 for S = 3/2 [Fig. 5(c)] with S = 1 [Fig. 4(e)]
or for S = 5/2 [Fig. 5(d)] with S = 2 [Fig. 4(f)], we see that
they are identical to each other in the regions where g′

1 

1, g1 
 1 and g′

1 � 1, g1 
 1 are satisfied. We can assume
that the effect of the functions containing gn with S = 1/2 is

TABLE I. Expressions for Hamiltonian, Chern number, and fig-
ures of the Chern number dependence on q1x , q2x and for S =
1/2, 1, 3/2, 2 and , 3. The Hamiltonians for S = 1/2 and 3/2 cor-
respond to two cases (i) g′

1 
 1, g1 
 1 and (ii) g′
1 � 1, g1 
 1.

S = 1/2 S = 1 S = 3/2 S = 2 S = 3

Hamiltonian (D3), (D7) (4) (E2), (E3) (C2) (C3)
Chern Num. (Eq.) (10) (6) (11) (7) (8)
Chern Num. (Fig.) 5(b) 4(e) 5(c) 4(f) 4(g)

very weak. Hence, only the integer components of the half-
integer spins have effects on c1. For example, for S = 9/2 =
4 + (1/2), the dependence of c1 on q1x and q2x will be same as
S = 4; c1 for S = 4 can be found exactly. However, whether
this assumption is true can only be probed experimentally.

In Figs. 4(e)–4(g) and 5(b)–5(d), we observe that c1 = 0
when q1x = 0 or q2x = 0. Physically q1x = 0 means ferro-
magnetic (FM) phase. Observing Eq. (A17), we can conclude
that the Hamiltonian represents an effective spinless elec-
tronic system in the FM case. Whether the system is insulator
or metal depends on the initial parameters (ti j , μ). q2x = 0
means rotation of the spin texture only on yz plane (coplanar);
whether the system is insulator or metal depends on q1x. For
both FM and copolanar cases, the system does not have THE
[56].

A. Closing of a band gap

From the band structure point of view, the
±

√
H2

x +H2
y +H2

z represent the valence (−) and conduction
(+) bands; we have dropped H0 as it is just an additive term,
which can always be subtracted out. The band gap closes at
± �K whenHz = 0. AsHz is a function of q1x and q2x, at some
of their specific values the gap closes. In Fig. 6, we show
the gap closing for S = 2 for q1x = π/4, q2x = 1.81, ky = 0.

FIG. 6. Dependence of energy E (kx ) = ±
√
H2

x +H2
y +H2

z on

kx ∈ (−π,+π ) for the same q1x = π/4 and different q2x . We have
taken S = 2, ky = 0. The complete Hamiltonian is given in Eq. (C2).
The gap closes at ± �K = (±π/

√
3, 0) for q2x = 1.81.

205120-7



KAUSHAL KUMAR KESHARPU PHYSICAL REVIEW B 109, 205120 (2024)

Every time there is a change of c1 the band gap closes and
reopens. Hence, for higher spins, the gap closes and reopens
multiple times as q1x and q2x are modulated.

B. Comparison with th Haldane model

In the Haldane model [57], the topological property was
controlled by the sublattice onsite potential (M) and the con-
stant phase accumulation of electrons due to NNN hopping
(defined as φ in Ref. [57]). The total accumulated phase due
to a closed path on the lattice was interpreted as effective

(fictitious) magnetic field. In our case, the phase due to NNN
hopping is [see Eq. (B7)]

φn = S

[
2 atan

[
1

h(�ri) csc �q2�bn + cot �q2�bn

]
− �q2�bn

]
. (12)

Hence, now the effective magnetic field in a closed loop is
function of S, �q1, and �q2. In fact, we can insert phenomenolog-
ical sublattice potential M into the Hz of Eq. (2). The Chern
number for S = 1 in the presence of M can be found using
Eqs. (5) and (4):

c1 =

sgn

⎧⎪⎨
⎪⎩M −

⎡
⎢⎣4t2w1

(
1 + g1

2 cos 2�q1x �bn

)
×
[
sin q2x − 2 cos q2x

∑
�k′ p(�k′) sin

(
π
2 + �k′ �b1

)]
⎤
⎥⎦
⎫⎪⎬
⎪⎭

2

= −

sgn

⎧⎪⎨
⎪⎩M +

⎡
⎢⎣4t2w1

(
1 + g1

2 cos 2�q1x �bn

)
×
[
sin q2x − 2 cos q2x

∑
�k′ p(�k′) sin

(
π
2 + �k′ �b1

)]
⎤
⎥⎦
⎫⎪⎬
⎪⎭

2
. (13)

Notice that now the c1 depends on M and the prefactor con-
taining g1 and w1; which was absent in Eq. (6). The same
procedure can be used to find Chern number for S = 2 and
S = 3. For a half-integer spin, the Chern number can be found
only in the limited regions of q1x—q2x phase space [Fig. 5(a)].
In Fig. 7, we plotted the Chern number dependence on M/t2
and q2x for S = 1, 2, 3; the q1x = π/4 is kept constant.

C. Minimum energy

To understand the thermodynamics, we calculate the to-
tal internal energy of the system (Uinternal), which can be
found by integrating the lower band energy over the whole
Brillouin zone. In Fig. 8, we plotted the Uinternal for different
S. For all the cases, the lowest energy has an antiferromagnetic
(AFM) configuration �q1 = (±π, 0). Away from the lowest

FIG. 7. Chern number dependence on the sublattice potential
M/t2 and q2x for S = 1, 2, 3; we keep q1x = π/4 constant.

energy, equal energy contours appear in q1x-q2x phase space,
meaning, several degenerate spin configurations for a given
energy. Interestingly, for S = 1, every equal energy contour
ends at an AFM (or q2x = √

3π/2) configuration; in other
words, all are open contours. However, for S = 2 and 3, the
closed contours appear that do not include in the AFM (or
q2x = √

3π/2) state.

D. Perspective materials for the application of the model

One of the perspective materials for observing the afore-
mentioned effect is FeN=3,4,5GeTe2 [58]. In Fig. 9, we showed
the lattice structures of F3GT and Fe4GeTe2 (F4GT). They
belong to vdW materials, where usually the magnetic layers

FIG. 8. Dependence of the total internal energy on the wave
vectors q1x and q2x . The lines represent the equal energy contours.
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FIG. 9. Effective magnetic bipartite honeycomb lattice.

are sandwiched in between the nonmagnetic layer in differ-
ent configurations. For example, in F3GT, a single Fe-Fe
dumbbell and a single Fe atom are placed alternatively in a
honeycomb lattice pattern; at the center of the honeycomb
lattice, the single Ge atom is placed [59,60]. This whole
structure containing the Fe and Ge atoms are sandwiched
in between Te atoms. The F4GT has the same honeycomb
lattice structure, however, now instead of a single dumbbell,
two dumbbells of Fe atoms are present; the single Fe atoms
are absent [59,60]. Both F3GT and F4GT can be treated as
effective bipartite lattices. In F3GT, the Fe-Fe dumbbell and
Fe atoms correspond to the two sublattices of the bipartite
lattice. For F4GT, the bonding between Fe-Fe dumbbell and
Te atoms creates an effective bipartite lattice, i.e., one of the
sublattice contains the dumbbell with the upper Fe atom of
the dumbbell bonded to the Te atom, and the other sublattice
contains the lower Fe atom of the dumbbell bonded to the
Te atom.

The discussed spin texture in this paper had already been
observed in these materials [32]. Fundamental requirements
of the proposed model is the presence of localized angular
momentum (spin S), strong correlation between conduction
electrons, strong coupling between conduction electrons, and
localized angular momentum (KLM in strong coupling limit
have all these properties). In F3GT, the electron correlation
is around U = 5 to 5.5 eV [29,30], which is comparable
to the U = 6.2 eV for the prototypical heavy fermion com-
pound CeIn3. For F4GT, also strong electronic correlation
was predicted from numerical calculations [61]. The local-
ized nature of angular momentum for F3GT (S = 3) and
F4GT (S = 7/2) has been predicted [59,60,62,63]. Besides,
the Kondo lattice behavior was also predicted in F3GT [35]
and F4GT [64]. Hence at low temperatures (T ∼ TK ; TK is
the Kondo temperature), our model can be applied in these
materials, as Kondo coupling is strong near TK [65]. In
the following sections, we propose several heterostructures
to control the spin modulating vectors in F3GT and
F4GT.

E. Experiment

Naturally, the question arises how the above effect can be
physically verified? One of the indirect way of confirming this
effect is through the Hall resistivity measurement. The topo-
logical Hall resistivity is proportional to the Chern number
[66], ρTHE

xy = −σxy/(σ 2
xy + σ 2

xx ) here σxy = e2c1/(2π h̄). Con-
sequently, as the ±c1 depends on q1x, q2x we will observe the
change in direction of ρTHE

xy with changing q1x, q2x. In Fig. 10,
we plotted the dependence of ρTHE

xy on the azimuthal angle q2x,
while keeping q1x = π/4 constant. One can observe that for

FIG. 10. Dependence of the topological Hall resistivity ρTHE
xy on

the azimuthal spin modulation vector q2x . The ρTHE
xy is represented in

units of e2/2π h̄. The polar angle q1x = π/4 is kept constant.

S = 1, there is no change in the sign of the ρTHE
xy , hence, the

predicted effect in this case is not possible to detect. How-
ever, for higher S = 2 and 3, there are multiple sign change
with increasing q2x. Therefore materials with high magnetic
moments (F3GT, F4GT) are good experimental platforms to
observe this effect. Now the question arises: how one can con-
trol the vector q2x in F3GT (or F4GT)? References [36,67,68]
showed that the density of magnetic stripes (therefore q2x) can
be controlled by tuning the temperature and external magnetic
field. Thickness [38] and defect [69,70] engineering can also
be used to manipulate topological spin configurations.

Another idea to control q2x is to use heterostructures
[71–73] of F3GT or F4GT with two perpendicular DMI vec-
tors: (i) bulk DMI and (ii) interfacial DMI. The bulk DMI
arises due to intrinsic broken bulk inversion symmetry (r →
−r). It can be broken through stoichiometry engineering
[69,70], strain, or electric field [74,75]. The interfacial DMI
occurs due to cosmetically broken mirror symmetry (z → −z)
at the interface of the heterostructures [76,77]. The structure
specific bulk DMI is hard to control, however, the interfacial
DMI can be controlled by the extrinsic means [78–82]. There-
fore a heterostructure can be synthesized where an F3GT or
F4GT layer is placed over a substrate; for a substrate, one
can use materials with strong spin-orbit coupling, where the
electrical control of DMI is possible [83].

IV. CONCLUSION

In this work, we analyzed the topological properties of the
electronic bands coupled to the background spin texture (1)
on a honeycomb lattice for strongly correlated materials. The
model is applicable to the materials showing the Kondo lattice
behavior in the strong Kondo coupling regime. The explicit
expression of Chern number for S = 1, 2, 3 is found. We pre-
dict that for S = 1, 2, 3, the Chern number depends strongly
on the azimuthal angle of the spin texture and on the spin of
the magnetic atoms S but weakly on polar spin modulation
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vector. The Chern number for S = 1/2 and 3/2 is also found,
albeit in limiting cases. It is observed that Chern number
for these half-integer cases are identical to their floor integer
�S� (this is not applicable for S = 1/2). It is argued that the
iron based van der Waals magnets FeN=3,4,5GeTe2 are suitable
materials to observe this effect; these several heterostructures
are proposed for experiment. The main physical effect of the
result is that for S > 2, the topological Hall resistivity changes
direction as the wave vectors are modulated. Our method can
be applied to find the Chern numbers analytically and exactly
for an arbitrary integer S; and for a half-integer S, the Chern
number can be found analytically only in limited number of
cases.
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APPENDIX A: THEORY

We will work in the strong correlation regime in which the
underlying Hilbert space is modified as the double occupancy
is prohibited. It results in constrained electrons operators
which are now isomorphic to the Hubbard operators [84].
Those operators appear as a generators of the su(2|1) super-
algebras. As a result charge and spin degrees of freedom can
be represented as product of the SU (2|1) supergroup. This is
applicable for particles described by the S = 1/2, however,
for arbitrary spin S > 1/2, one will use the su(2) algebra.
In the SU(2) formalism, the required theory is constructed
under the condition that the background spin field affects
the fermion hopping without breaking the global symmetry.
The su(2) coherent states (CS) have these properties, as the
electron hopping factor is affected only due to CS overlap
factors [85,86]. In condensed matter, it is analogous to the
Peierls phase factor generated in an external magnetic field.
It is the vector potential generated by the noncollinear chiral
spin textures [56]. Physically it can be thought of fictitious
magnetic field through a plaquette. In field theory, it is the
same as the emergent artificial gauge field generated by the
U(1) local connection one-form of the spin U(1) complex line
bundle. It provides a covariant (geometric) quantization of a
spin [87]. In this approach, the underlying base space appears
as a classical spin phase space. It is a 2-sphere S2, which can
be mapped to a complex projective space CP1, endowed with
a set of local coordinates (z, z̄). In this case, the quantum spin
is represented as the section |z〉 of the principle (monopole)
line bundle P(CP1, U(1)). The local connection of the bundle
is a(0) = i〈z|d|z〉; d is the exterior derivative.

Physically, we start from the lattice KLM:

H = −
∑
i jσ

[ti j + J S(S + 1) δi j]c
†
iσ c jσ

+ J
∑

i

Ŝi · (c†
iσ �σσσ ′ciσ ′ ). (A1)

Here c†
iσ (ciσ ) is the electron creation (annihilation) operator

with the spin σ on site i; J > 0 is the exchange coupling
constant; �σ is the vector of the Pauli spin matrices; Ŝi is
the nuclear spin operator at ith site. The extra J-dependent
term J S(S + 1) δi j introduced in the hopping parameter is to
make sure a finite J → ∞ limit [44]. Under the mean-field
approximation, one can represent the nuclear spin operator as
product of the localized spin magnitude (S) and their direction
(�ni): 〈Ŝi〉 = S · �ni. In the large Kondo limit J → ∞, the Hub-
bard model goes into the U → ∞ limit (strongly correlated
electronic system) [44]:

H ≈ −
∑
i, j,σ

ti j c̄
†
iσ c̄ jσ . (A2)

Here c̄iσ = ciσ (1 − niσ̄ ) is the constrained electron operator;
niσ̄ = c†

iσ̄ ciσ̄ is the number operator of the complementary
spin. The constraint operator as explained above can be dy-
namically factorized into the spinless charge fermionic field
fi (holons) and spinfull bosonic zi fields (spinons) [31,45].
It can be seen that as long as the fermionic field satisfy the
condition f 2

i ≡ 0, the local no double occupancy of strongly
correlated electron is satisfied rigorously. Here, the holons
acquire the band structure of their own; it is the usual behavior
for fractionalized electrons [88]. The spinons are handled by
mean-field treatment.

The necessary theory was given by the authors recently
[31], hence, here we briefly derive the required Hamiltonian.
The high-spin CS theory is constructed from the fundamental
S = 1/2 representation:

|z〉 = (1 + |z|2)−SezŜ− |S〉. (A3)

Here |S〉 is the highest spin-S su(2) state; Ŝ− is the spin
lowering operator. The S-dependent partition function will be

Z =
∫

Dμ(z, f ) expA. (A4)

The measure Dμ(z, f ) is

Dμ(z, f ) =
∏
i,t

S

π i

dz̄i(t )dz̄i(t )

(1 + |zi|2)2
d f̄i(t )dfi(t ). (A5)

Here zi keeps track of the spin and complex, while fi keeps
track of charge and is a Grassman variable. The effective
actionA is defined as

A =
∑

i

∫ β

0

[
ia(0)

i − f̄i
(
∂t + ia(0)

i

)
fi
]
dt −

∫ β

0
H dt . (A6)

Here, ia(0)
i is the u(1)-valued connection one-form of the

magnetic monopole bundle as a spin kinetic term:

ia(0)
i = −〈z|∂t |z〉 = S

˙̄zz − z̄ż

1 + |z|2 . (A7)

It is analogous to the Berry connection. The Hamiltonian in
A can be written as

H = −
∑

i j

ti j f̄i f je
ia ji + H.c. + μ

∑
i

f̄i fi, (A8)
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where

ai j = −i ln 〈zi||z j〉, 〈zi||z j〉 = (1 + z̄iz j )2S

(1 + |z j |2)S (1 + |zi|2)S
.

(A9)

Under a global SU(2) rotation

zi → uzi + v

−v̄zi + ū
, (A10)

the phase will be

a(0)
i → a(0)

i − ∂tθi, ai j → ai j + θ j − θi. (A11)

Here,

θi = iS ln

(
vz̄i + u

v̄zi + ū

)
;

[
u v

−v̄ ū

]
∈ SU(2). (A12)

The effective actionA remains unchanged under SU(2) trans-
formation of the zi in conjunction with U(1) transformation of
the fi → eiθi fi. The real and imaginary parts of the a ji are
defined as

a ji = φ ji + iχ ji; φ ji = φ̄ ji; χ ji = χ̄ ji. (A13)

The φ ji and χ ji are defined as

φ ji = iS ln
1 + z̄iz j

1 + z̄ jzi

= iS ln

(
S + Sz

i

)(
S + Sz

j

)+ S−
i S+

j(
S + Sz

i

)(
S + Sz

j

)+ S−
j S+

i

,

χ ji = −S ln
(1 + z̄iz j )(1 + z̄ j zi)

(1 + |zi|2)(1 + |z j |2)

= −S ln

( �Si · �S j

2S2
+ 1

2

)
. (A14)

Here, �Si stands for the CS symbols of the su(2) generators
[45]. The corresponding values are

Sz
i = 1

2

1 − |z|2
1 + |z|2 , S+

i = z

1 + |z|2 , S−
i = z̄

1 + |z|2 .

(A15)

There is a one-to-one correspondence between the su(2)
generators and their CS symbols [47]. Under SU(2) global
rotation χ ji remains intact, however, φ ji transforms as

φ ji → φ ji + θi − θ j . (A16)

This transformation is analogous to gauge fixing by choosing
a specific rotational covariant frame. The dynamical fluxes
do not depend on the chosen covariant frame. Substituting
Eq. (A14) in the dynamical Hamiltonian (A8), we get

H = −
∑
i, j

ti j f̄i f je
iφ ji

( �Si · �S j

2S2
+ 1

2

)S

+ μ
∑

i

f̄i fi. (A17)

Physically, this represents the interaction of the underlying
spin field and itinerant spinless fermions.

APPENDIX B: SOLUTION OF HAMILTONIAN
ON A BIPARTITE LATTICE

In this section, we use the Hamiltonian (A17) with the spin
texture (1) to find the Hamiltonian on a bipartite honeycomb
lattice. A bipartite lattice L has two sublattices A and B:
L = A ⊕ B. On a bipartite lattice, the nearest neighbor (NN)
hopping corresponds to A → B, and next nearest neighbor
(NNN) hopping corresponds to A → A or B → B. We denote
the three NN and NNN honeycomb lattice vectors as �an and
�bn, respectively. The charge and spin degrees of freedom on
the A sublattice are fi and zi, respectively. For convenience on
sublattice B, we can define

fi → fie
iθ (0)

i , zi → − 1

z̄i
; i ∈ B. (B1)

Where θ
(0)
i ≡ θi|u=0,v=1. Under these transformations, the χ ji

from Eq. (A14) remains unchanged, while the φ ji → φi j +
θ

(0)
j − θ

(0)
i . This transformation makes the calculation easier,

while conserving the form of ai j in Eq. (A11) under global
SU(2) rotation. The coherent states symbols in Eq. (A15) also
changes from �Si → −�Si.

In a bipartite lattice, the total Hamiltonian will contain
three parts depending on hopping of electrons: (i) A → A, (ii)
B → B, (iii) A → B. For A → A (i, j ∈ A) from Eq. (A14) the
χ ji is

eχn = wS
n[1 + gn cos �q1(2�ri + �bn)]S,

wn ≡ 1

2
+
(

1

4
+ cos �q2�bn

4

)
cos �q1 �bn,

gn ≡
[(

1

4
− cos �q2�bn

4

)/
wn

]
. (B2)

Here we defined �bn = �r j − �ri. It can be easily checked that the
values of wn and gn are bounded ∈ [0, 1] and constant for a
given �q1 and �q2. The φ ji is

φn = 2Satan

[
1

h(�ri) csc �q2�bn + cot �q2�bn

]
;

h(�ri) ≡ 2 + cos �q1�bn + [
4 cos �q1 �bn

2 + 1
]

cos 2�q1
(
�ri + �bn

2

)
cos �q1�bn − cos 2�q1

(
�ri + �bn

2

) .

(B3)

The φn is a periodic, but bounded function.
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For B → B, the χn remains same. However, the φ ji|i, j∈B → −φ ji|i, j∈A + 2S �q2�bn.4 Explicitly,

φ ji = 2Satan

[
1

h(�ri) csc �q2�bn + cot �q2�bn

]
+ 2S �q2�bn. (B4)

For A → B, the χ ji is

eχn = w′S
n

[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]S

,

w′
n ≡ 1

2
−
(

1

4
+ cos �q2�an

4

)
cos �q1�an,

g′
n ≡

[(
1

4
− cos �q2�an

4

)/
w′

n

]
, (B5)

and the phase

eiφ ji = eiS( �q2 �an−π ). (B6)

Substituting the above derived φn and χn in Eq. (A17) and assuming the interlattice hopping parameter (t1) and intralattice
hopping parameter (t2), we find the total Hamiltonian:

H = −t2
∑
i, j∈A

f̄i f jw
S
n

[
1 + gn cos 2�q1

(
�ri + �bn

2

)]S

exp

{
+iS

[
2atan

[
1

h(�ri ) csc �q2�bn + cot �q2�bn

]
− �q2�bn

]}

− t2
∑
i, j∈B

f̄i f jw
S
n

[
1 + gn cos 2�q1

(
�ri + �bn

2

)]S

exp

{
−iS

[
2atan

[
1

h(�ri) csc �q2�an + cot �q2�an

]
− �q2�an

]}

+ t1
∑
i∈A
j∈B

f̄i f jw
′S
n

[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]S

. (B7)

The first two terms—corresponding to the hopping either only
on sublattice A, or on sublattice B respectively—are complex
conjugate of each other. The third term corresponding to the
hopping between sublattices A and B does not contain the
imaginary part. Hence, the Hamiltonian and its complex con-
jugate are not identical to each other, which breaks the time
reversal symmetry. At �q1 = (0, 0) or at �q2 = (0, 0), the φn in
Eq. (B3) and (B4) collapses. In this case, there will not be any
topological properties. It was expected as planar spin textures
does not show any THE.

In momentum space, the two band Hamiltonian can be
written as

H (�k) =
∑

�k
ψ̄�kH(�k)ψ�k . (B8)

4On the B sublattice, Si → −Si. Under this transformation, the φ ji

in Eq. (A14) can be written as

φ ji|i, j∈B =iS ln
(S − Sz

i )
(
S − Sz

j

)+ S−
i S+

j

(S − Sz
i )
(
S − Sz

j

)+ S−
j S+

i

= iS ln
(S + Sz

i )
(
S + Sz

j

)+ S−
j S+

i

(S + Sz
i )
(
S + Sz

j

)+ S−
i S+

j

· S+
j S−

i

S+
i S−

j

= −φ ji|i, j∈A + iS ln e2i �q2�r j e−2i �q2�ri

= −φ ji|i, j∈A + 2S �q2 �bn.

The wave vector �k is taken over the first Brillouin zone. The
matrix ψ�k = [ fk,A fk,B] contains the creation operators of the
�kth momentum on the A and B sublattices. The single mode
kernel of the Hamiltonian is H(�k) = H0(�k) · I+ Hi(�k) · �σi.
Here, I is the unit matrix; �σi are the Pauli matrices, and
Hi(�k) are the corresponding kernels.5 To find an analytical
formulation of H(�k), we first represent

p(�ri) ≡ atan

[
1

h(�ri) csc �q2�bn + cot �q2�bn

]

=
∑

k′
p(k′)e−ik′ri , (B9)

5H(�k) is a 2 × 2 matrix. In terms of the Pauli matrices, it is
represented as

H(�k) = H0I+ Hx (�k)σx + Hy(�k)σy + Hz(�k)σz,

where

H0(�k) = Hi, j∈A + Hi, j∈B

2
,Hx (�k) = �[Hi∈A, j∈B

]
,

Hz(�k) = Hi, j∈A − Hi, j∈B

2
,Hy(�k) = �[Hi∈A, j∈B

]
.

Here, I is the 2 × 2 unit matrix; σx , σy, and σz are the Pauli matrices.
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it is the Fourier series representation. As the value of p(k′) 
 1 for most of the �q1, �q2 as shown in Figs. 3(c)–3(e), we can
approximate

exp

{
i 2Satan

[
1

h(�ri) csc �q2�bn + cot �q2�bn

]}
≈ 1 + i2S

∑
k′

p(k′)e−ik′r . (B10)

Using above result the kernel H(�k), can be written as

H0 = −2t2w
S
n F̂
[

1 + gn cos 2q1

(
�ri + �bn

2

)]S

∗
{

cos S �q2�bn cos �k�bn + 2S sin S �q2�bn

∑
k′

p(k′) cos(�k + �k′)�bn

}

Hx = +t1w
′S
n F̂

[
1 − g′

n cos 2q1

(
�ri + �an

2

)]S

∗ cos �k�an

Hy = +t1w
′S
n F̂

[
1 − g′

n cos 2q1

(
�ri + �an

2

)]S

∗ sin �k�an

Hz = −2t2w
S
n F̂
[

1 + gn cos 2q1

(
�ri + �bn

2

)]S

∗
{

− sin S �q2�bn sin �k�bn + 2S cos S �q2�bn

∑
k′

p(k′) sin(�k + �k′)�bn

}
. (B11)

Here, F̂ represents the Fourier transform operator; 〈〈∗〉〉 is the convolution operator.

APPENDIX C: HAMILTONIAN FOR SPIN S = 2, 3

The Hamiltonian for S = 2 is found by first expanding the functions[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]2

,

[
1 + gn cos 2�q1

(
�ri + �bn

2

)]2

(C1)

and then taking its Fourier transform. Substituting these Fourier transforms in Eq. (2) and taking the convolution, we will find
the Hamiltonian:

Hx = +t1
∑

n

w′
n

[(
1 + g′2

n

2

)
− g′

n cos 2�q1�an + g′2
n

2
cos 4�q1�an

]
cos �k�an,

Hy = +t1
∑

n

w′
n

[(
1 + g′2

n

2

)
− g′

n cos 2�q1�an + g′2
n

2
cos 4�q1�an

]
sin �k�an,

Hz = −2t2
∑

n

wn

[(
1 + g2

n

2

)
+ gn cos 2�q1�bn + g2

n

2
cos 4�q1�bn

]⎧⎨
⎩− sin 2�q2�bn sin �k�bn + 4 cos 2�q2�bn

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭.

(C2)

We dropped the H0 term as it does not play any role in determining the topological properties, besides it just adds an offset
to overall energy. Comparing Eq. (C2) and Eq. (4), we see that they are analogous to each other. Hence, on a honeycomb lattice
at ± �K , the topological condition is satisfied, and the Chern number is defined by the �b1 component of the Hz.

In a similar way, we can find the Hamiltonian for S = 3. We take the cube of the terms containing gn and g′
n in Eq. (2), and

then take Fourier transform; the resulting Hamiltonian is

Hx = +t1
∑

n

w′
n

[(
1 + 3g′2

n

2

)
−
(

3g′
n + 3g′3

n

4

)
cos 2�q1�an − 3g′2

n

2
cos 4�q1�an + g′3

n

4
cos 6�q1�an

]
cos �k�an,

Hy = +t1
∑

n

w′
n

[(
1 + 3g′2

n

2

)
−
(

3g′
n + 3g′3

n

4

)
cos 2�q1�an − 3g′2

n

2
cos 4�q1�an + g′3

n

4
cos 6�q1�an

]
sin �k�an,

Hz = −2t2
∑

n

wn

[(
1 + 3g2

n

2

)
+
(

3gn + 3g3
n

4

)
cos 2�q1�bn − 3g2

n

2
cos 4�q1�bn − g3

n

4
cos 6�q1�bn

]

×
⎧⎨
⎩− sin 3�q2�bn sin �k�bn + 6 cos 3�q2�bn

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭. (C3)
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We dropped the H0 term as it does not play any role in deter-
mining the topological properties, besides it just adds an offset
to overall energy. Comparing Eq. (C3) and Eq. (4) we see
that they are analogous to each other. Hence, on a honeycomb
lattice at ± �K the topological condition is satisfied, and the
Chern number is defined by the �b1 component of the Hz.

APPENDIX D: HAMILTONIAN FOR SPIN S = 1/2

Hamiltonian for S = 1/2 can be found only in limiting
cases of gn and g′

n. Here, we find only for two cases (i)
g′

n 
 1, gn 
 1, (ii) g′
n � 1, gn 
 1. When gn 
 1, one

can approximate:

[
1 + gn cos 2�q1

(
�ri + �bn

2

)]1/2

≈
[

1 + gn

2
cos 2�q1

(
�ri + �bn

2

)]
. (D1)

Similarly, for g′
n 
 1, one can approximate

[
1 − g′

n cos 2�q1

(
�ri + �an

2

)]1/2

≈
[

1 − g′
n

2
cos 2�q1

(
�ri + �an

2

)]
. (D2)

Taking Fourier transform of Eqs. (D1) and (D2) and substitut-
ing in Eq. (2), we will get the approximate Hamiltonian:

H0 ≈−2t2
∑

n

wn

[
1 + gn

4
cos 2�q1�bn

]{
cos

�q2�bn

2
cos �k�bn

+ sin
�q2�bn

2

∑
�k′

p(�k′) cos(�k + �k′)�bn

}
,

Hx ≈+t1
∑

n

w′
n

[
1 − g′

n

4
cos 2�q1�an

]
× cos �k�an,

Hy ≈+t1
∑

n

w′
n

[
1 − g′

n

4
cos 2�q1�an

]
× sin �k�an,

Hz ≈−2t2
∑

n

wn

[
1 + gn

4
cos 2�q1�bn

]{
− sin

�q2�bn

2
sin �k�bn

+ cos
�q2�bn

2

∑
�k′

p(�k′) sin(�k + �k′)�bn

}
. (D3)

Comparing Eq. (D3) with Eq. (4), we see that they are analo-
gous to each other. Hence, at ±K the Hx = Hy = 0, and the
Chern number will be given only by the �b1 component of the
Hz. Eq. (D3) is applicable in the regions shown in Fig. 5(a).
The next case we consider is g′

n � 1, gn 
 1. When gn � 1,
we first make the change of variable g′

n = 1 − γ ; where γ

FIG. 11. Comparison of the term cos �q1(�ri + �bn
2 ) γ

4 tan2 �q1(�ri +
�bn
2 ) in Eq. (D4) with the Dirac comb (impulse train) with periodicity

2π . We took γ = 0.1 here. The whole function is summation of one
positive and one negative Dirac comb shifted by π with respect to
each other.

is a small quantity. It gives

[
1g′

n cos 2�q1

(
�ri + �bn

2

)]1/2

≈
√

2 cos �q1

(
�ri +

�bn

2

)[(
1 + γ

4

)
+ γ

4
tan2 �q1

(
�ri +

�bn

2

)]
.

(D4)

Equation (D4) is applicable only when the condition 1 +
cos 2�q1(�ri − �bn

2 ) � γ is satisfied. On the right-hand side of
Eq. (D4), the term cos �q1�ri

γ

4 tan2 �q1�ri can be approximated as
a combination of two Dirac comb (�), one positive and other
negative, as shown in Fig. 11. Hence we approximate

γ

4
tan2 �q1

(
�ri + �bn

2

)
cos �q1

(
�ri + �bn

2

)

≈ �
(

3π

2
+ 2lπ

)
− �

(π

2
+ 2lπ

)
;

�
(

3π

2
+ 2lπ

)

≡
∑
l∈Z

δ

[
�q1

(
�ri + �bn

2

)
−
(

2l + 3

2

)
π

]
,

�
(π

2
+ 2lπ

)

≡
∑
l∈Z

δ

[
�q1

(
�ri + �bn

2

)
−
(

2l + 1

2

)
π

]
. (D5)

Fourier transform of Dirac comb is a Dirac comb in the mo-
mentum space:

F
[
�
(

3π

2
+ 2lπ

)]
=
∑
l∈Z

δ[�k − 2lπ ]. (D6)

Substituting Eq. (D4) with their approximate Dirac comb
functions in Eq. (2) and taking Fourier transform, we
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will find

Hx ≈ +
√

2t1
∑

n

w′
n

[(
1 + γ

4

)
cos �q1�an

]
× cos �k�an

Hy ≈ +
√

2t1
∑

n

w′
n

[(
1 + γ

4

)
cos �q1�an

]
× sin �k�an

Hz ≈ −2t2
∑

n

wn

[
1 + gn

4
cos 2�q1�bn

]⎧⎨
⎩− sin

�q2�bn

2
sin �k�bn + cos

�q2�bn

2

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭. (D7)

Comparing Eq. (D7) with Eq. (4), we see that they are analogous to each other. Hence, at ± �K , the Hx = Hy = 0, and the Chern
number will be given only by the �b1 component of the Hz. Equation (D3) is applicable in the regions shown in Fig. 5(a).

APPENDIX E: HAMILTONIAN FOR S = 3/2

As in S = 1/2, the Hamiltonian for S = 3/2 is found in the limiting cases of gn and g′
n. As in Sec. D here also we consider

only two cases (i) g′
n 
 1, gn 
 1 and (ii) g′

n � 1, gn 
 1. The idea is to represent the terms containing gn with half-integer
powers as the multiplication of the integer power and square root, i.e., for S = 3/2,

[
1 + gn cos 2�q1

(
�ri + �bn

2

)]3/2

=
[

1 + gn cos 2�q1

(
�ri + �bn

2

)][
1 + gn

2
cos 2�q1

(
�ri + �bn

2

)]1/2

. (E1)

Then we can apply the approximation of limiting cases to the square root term as described in Sec. D. It should be kept in mind
that, after this step the resulting equations are applicable only to the limiting values of q1x and q2x; for the case of honeycomb
lattice, it is shown in Fig. 5(a). Further we take Fourier transform of the resulting terms to find the full Hamiltonian. Following
this procedure for S = 3/2 and for the case gn 
 1 and g′

n 
 1, we find

Hx ≈ +t1
∑

n

w′
n

[(
1 + g′2

n

4

)
− 3

2
g′

n cos 2�q1�an + g′2
n

4
cos 4�q1�an

]
cos �k�an,

Hy ≈ +t1
∑

n

w′
n

[(
1 + g′2

n

4

)
− 3

2
g′

n cos 2�q1�an + g′2
n

4
cos 4�q1�an

]
sin �k�an,

Hz ≈ −2t2
∑

n

wn

[(
1 + g2

n

4

)
+ 3

2
gn cos 2�q1�bn + g2

n

4
cos 4�q1�bn

]⎧⎨
⎩− sin

�q2�bn

2
sin �k�bn + cos

�q2�bn

2

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭.

(E2)

Comparing Eq. (E2) and Eq. (4), we see that they are analogous to each other. Hence, for the honeycomb lattice the topological
condition is satisfied at ± �K . Besides, the Chern number is given by the �b1 component of Hz.

For gn 
 1 and g′
n � 1 the Hamiltonian is

Hx ≈ +
√

2t1
∑

n

w′
n

[(
3

4
+ g′

n

4

)(
cos 2�q1�an + g′

n cos 4�q1�an
)]

cos �k�an,

Hy ≈ +
√

2t1
∑

n

w′
n

[(
3

4
+ g′

n

4

)(
cos 2�q1�an + g′

n cos 4�q1�an
)]

sin �k�an,

Hz ≈ −2t2
∑

n

wn

[(
1 + g2

n

4

)
+ 3

2
gn cos 2�q1�bn + g2

n

4
cos 4�q1�bn

]⎧⎨
⎩− sin

�q2�bn

2
sin �k�bn + cos

�q2�bn

2

∑
�k′

p(�k′) sin(�k + �k′)�bn

⎫⎬
⎭.

(E3)

Here also Eq. (E3) is analogous to Eq. (4). Hence, the Chern number is given by �b1 component of Hz on a honeycomb lattice.
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APPENDIX F: CHERN NUMBER CALCULATIONS FOR HONEYCOMB BIPARTITE LATTICE

We calculate the Chern number (c1) for S = 1 using the Hamiltonian Eq. (4). c1 is calculated at momentum ± �K when the
condition Hx = Hy = 0 and Hz �= 0 is satisfied simultaneously (see Sec. 3.5.6 of Ref. [55]). If we take �q1 = (2q1x/

√
3, 0) and

�q2 = (2q2x/
√

3, 0), then at the point ± �K = (±π/
√

3, 0) the condition is satisfied identically. To see this, first we introduce the
three NN (an) and NNN (bn) lattice vectors of the honeycomb lattice, and expand Eq. (4):

Hx = + t1w
′
1

[
1 − g′

1

2
cos 2�q1�a1

]
× cos �k�a1 + t1w

′
2

[
1 − g′

2

2
cos 2�q1�a2

]
× cos �k�a2 + t1w

′
3

[
1 − g′

3

2
cos 2�q1�a3

]
× cos �k�a3,

(F1)

Hy = + t1w
′
1

[
1 − g′

1

2
cos 2�q1�a1

]
× sin �k�a1 + t1w

′
2

[
1 − g′

2

2
cos 2�q1�a2

]
× sin �k�a2 + t1w

′
3

[
1 − g′

3

2
cos 2�q1�a3

]
× sin �k�a3,

(F2)

Hz = − 2t2w1

[
1 + g1

2
cos 2�q1�b1

]{
− sin �q2�b1 sin �k�b1 + 2 cos �q2�b1

∑
k′

p(k′) sin(�k + �k′)�b1

}
− 2t2w2

[
1 + g2

2
cos 2�q1�b2

]

×
{

− sin �q2�b2 sin �k�b2 + 2 cos �q2�b2

∑
k′

p(k′) sin(�k + �k′)�b2

}
− 2t2w3

[
1 + g3

2
cos 2�q1�b3

]

×
{

− sin �q2�b3 sin �k�b3 + 2 cos �q2�b3

∑
k′

p(k′) sin(�k + �k′)�b3

}
. (F3)

In Eqs. (F1)–(F3), we explicitly wrote all the three components of the Hx, Hy and Hz, respectively We dropped the H0 component
as it does not play any role in determining the c1. Further one need to substitute the values of �an, �bn, �q1 = (2q1x/

√
3, 0),

�q2 = (2q2x/
√

3, 0), and ± �K = (±π/
√

3, 0) in above equations. In Table II, we have given the dot product of these values.
Substituting these in Eqs. (F1)–(F3), we will get

Hx = 0, (F4)

Hy = ±t1w
′
1

[
1 − g′

1

2
cos 2�q1x

]
∓ t1w

′
2

[
1 − g′

2

2
cos 2�q1x

]
= 0, (F5)

Hz = −2t2w1

[
1 + g1

2
cos 2q1x

]{
± sin �q2x + 2 cos q2x

∑
k′

p(k′) sin(±π/2 + �k′ �b1)

}
− 2t2w2

[
1 + g2

2
cos 2q1x

]

×
{

± sin �q2x + 2 cos q2x

∑
k′

p(k′) sin(±π/2 + �k′ �b2)

}
− 2t2w3

[
1 + g3

2
cos 2q1x

]{
+2 cos q2x

∑
k′

p(k′) sin(±π + �k′ �b3)

}
.

(F6)

We observe that all the terms of Hx are identically zero; the
term involving �a1 and �a2 are zero as cos �k�a1 = cos π/2 = 0
and cos �k�a2 = cos π/2 = 0; the term involving a3 is zero as
w3 = 0. For Hy, the summation of all three terms are zero;

TABLE II. Table showing dot product between NN (�an) and
NNN (�bn) lattice vectors of the honeycomb lattice and vectors �q1,
�q2, ± �K .

Lat. Vect. �q1 = ( 2q1x√
3
, 0) �q2 = ( 2q2x√

3
, 0) ± �K = (± π√

3
, 0)

�a1 = (
√

3
2 , 1

2 ) q1x q2x ± π

2

�a2 = ( −√
3

2 , 1
2 ) −q1x −q2x ∓ π

2

�a3 = (0, 1) 0 0 0

�b1 = ( −√
3

2 , 3
2 ) −q1x −q2x ∓ π

2

�b2 = ( −√
3

2 , 3
2 ) −q1x −q2x ∓ π

2

�b3 = (
√

3, 0) 2q1x 2q2x ±π

FIG. 12. Dependence of
∑

k′ p(k′) sin(π + k′b3) on �q1=(q1x, 0)
and �q2 = (q2x, 0). In the figure, only the q1x and q2x value changes
from −√

3π/2 to
√

3π/2.
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the term involving �a3 is zero as sin �ka3 = sin 0 = 0; the terms
involving �a1 and �a2 are opposite of each other, hence they
cancel. The three terms of the Hz are not zero at ± �K . For Hz,
in the term containing �b3, one can observe that both p(k′) ∼ 0
(see Fig. 12) and the term sin(±π + �k′ �b3) ∼ 0; hence, we can
neglect this term due to at least an order of smallness com-
pared to other two terms (containing �b1 and �b2). The values

of g′
n and wn are always positive and less than unity. Hence,

they also will not have any effect on Chern number. The terms
containing �b1 and �b2 controls the Chern number. The first
Chern number is calculated by using Eq. (5). Observing the
Hamiltonian of Eqs. (B11), (C2), (C3), (D3), (D7), (E2), and
(E3), we see that the property where c1 depends only on �b1 (or
b2) is also applicable.
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