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Nonendpoint Majorana bound states in an extended Kitaev chain

Xuan Zhang,1 Cheng-Ming Miao,1 Qing-Feng Sun ,2,3,* and Ying-Tao Zhang 1,†

1College of Physics, Hebei Normal University, Shijiazhuang 050024, China
2International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

3Hefei National Laboratory, Hefei 230088, China

(Received 17 January 2024; revised 22 April 2024; accepted 26 April 2024; published 7 May 2024)

We study the energy levels and transport properties of an extended Kitaev chain with a phase gradient. It
is demonstrated that the hopping phase difference can effectively induce the generation of Majorana bound
states, which are located at the nonendpoint sites of the chain. The number and position of the nonendpoint
Majorana bound states can be modulated by the hopping phase difference and initial hopping phase, respectively.
In addition, we propose a protocol to realize topological braiding operation by exchanging the positions of two
Majorana bound states in the extended Kitaev ring. Furthermore, we also implement the braiding of any two of
the multiple Majorana bound states in the extended Kitaev double rings.
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I. INTRODUCTION

Majorana bound states (MBSs) are zero-energy quasi-
particles obeying non-Abelian statistics [1–6], which means
that exchanging two MBSs results in a transformation de-
pending on the order of the exchange. These properties
make them ideal candidates for the realization of topological
quantum computation [2,7]. There have been many theo-
retical proposals suggesting that MBSs exist in the vortex
core of p-wave topological superconductors or at the ends
of one-dimensional topological superconductors [1,4,8–12].
Although experiments show signatures expected for MBSs,
the various possibilities make the interpretation challeng-
ing [13–17]. Therefore, detecting and braiding MBSs still
remain an important and open challenge. In a rigorous one-
dimensional system, two MBSs cannot bypass each other
for braiding. Thus, some artificial two-dimensional platforms
have been proposed to avoid mixing MBSs, such as T/Y
junctions, quantum dots, and so on [18–22]. All these schemes
inevitably require the aid of other chains or dots and are
difficult to extend to braiding multiple MBSs since they are
located at the endpoints of the one-dimensional chains.

In this paper, we investigate the energy levels and transport
properties of an extended Kitaev chain with a phase gradient.
We find that MBSs are bound at nonendpoint sites of the
extended Kitaev chain in the presence of a hopping phase
difference, and their number and position can be adjusted
by the hopping phase difference and initial hopping phase.
Furthermore, we show that the exchange of the positions of
two MBSs completes the quantum braiding process in an
extended Kitaev ring, which is always topologically protected
by an energy gap.

*sunqf@pku.edu.cn
†zhangyt@mail.hebtu.edu.cn

II. MODEL AND HAMILTONIAN

We consider an extended Kitaev chain in which the hop-
ping phases and p-wave superconducting phases are site
dependent and linearly increasing, as shown in Fig. 1. The
Hamiltonian of the extended Kitaev chain can be described
as [1]

HC = −μ

N∑

n=1

c†
ncn − t

N−1∑

n=1

eiφn (c†
ncn+1 + H.c.)

+ �

N−1∑

n=1

eiθn (cncn+1 + H.c.), (1)

where c†
n (cn) is the fermionic creation (annihilation) operator

at site n and the total number of sites is chosen to be N . t is the
nearest-neighbor hopping strength amplitude, which is chosen
to be the unit of energy in our calculations. μ is the chemical
potential, and � is the p-wave pairing amplitude. The phases
of hopping and superconducting between site n and site
n + 1 are φn = φ1 + n−1

N−1δφ and θn = θ1 + n−1
N−1δθ , respec-

tively. δφ = φN−1 − φ1 (δθ = θN−1 − θ1) is the phase differ-
ence between the first and last hopping (superconducting)
phases, and φ1 (θ1) is the initial hopping (superconducting)
phase.

III. REALIZATION OF THE NONENDPOINT
MAJORANA BOUND STATES

In Fig. 2(a), we calculate the energy levels of the extended
Kitaev chain with open boundary conditions as a function of
the hopping phase difference δφ. The total number of sites
is chosen to be N = 200. Considering the electron and hole
degrees of freedom, the total number of states is 2N . We
show the energy structures of E ∈ [−0.4t, 0.4t] in Fig. 2(a).
We can see that the twofold-degenerate zero-energy states
emerge at δφ = 0.25π . The degeneracy of the zero-energy
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FIG. 1. Schematic of an extended Kitaev chain with site-
dependent hopping and superconducting phase. teiφn and �eiθn are
hopping and superconducting terms between site n and site n + 1,
respectively. N is the total number of sites. The STM tip can scan
along whole the chain. The red curves represent MBSs.

states increases in pairs with the increase of the hopping
phase difference. Furthermore, we plot the energy levels with
different hopping phase differences in Figs. 2(b)–2(d). It is
shown that there are two zero-energy in-gap states (red dots),
the probability distribution of which is highlighted in the inset
of Fig. 2(b). We can see that the zero-energy in-gap states
are not located at the endpoint positions of the supercon-
ducting chain. The hopping phase difference is the key factor
to induce the nonendpoint MBSs protected by particle-hole
symmetry, as shown in Figs. 2(a) and 2(b). It is worth noting
that the zero-energy in-gap states are the MBSs because they
are composed of electrons and holes each contributing half
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FIG. 2. (a) Band structure for the Kitaev chain as a function of
hopping phase difference δφ. The energy structures within the energy
gap are highlighted in red. (b)–(d) Energy levels of the Kitaev chain
with different hopping phase differences: δφ = π in (b), δφ = 2π

in (c), and δφ = 3π in (d). The red dots represent the zero-energy
MBSs whose probability distributions are plotted in the inset, with
details enlarged in the dashed ellipse in (b). The area of the red
ellipses is proportional to the modulus of the wave function. The
parameters are set to be μ = 1, t = 1, � = 1, φ1 = 0.5π , θ1 = 0,
δθ = 0, and N = 200.
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FIG. 3. Andreev reflection coefficient TAR as a function of STM
tip connected sites n with δφ = π (blue solid line), 2π (black dashed
line), and 3π (red dot-dashed line). The energy of the incident
electron is E = 0, and the other parameters are the same as those
in Fig. 2(a).

probability. However, for the hopping phase differences δφ =
2π and δφ = 3π , the four- and six-degeneracy MBSs appear,
the wave function of which is distributed over nonendpoint
positions of the extended Kitaev chain, as shown in Figs. 2(c)
and 2(d). Our results demonstrate that nonendpoint MBSs
can be induced in the extended Kitaev chain with the hop-
ping phase difference. In addition, the number of nonendpoint
MBSs can be adjusted by the magnitude of the hopping phase
difference.

It is well known that a MBS can lead to a perfect Andreev
reflection (TAR = 1), a process of converting an incoming
electron into an outgoing hole [23–26]. Thus, the scanning
tunneling microscope (STM) spectroscopic mapping can be
taken as the single Majorana detector. To detect the location
of the MBSs, we imagine that an STM tip is employed to
scan each lattice site n of the extended Kitaev chain (see
Fig. 1). We employ the nonequilibrium Green’s function
method [27,28] to calculate the Andreev reflection coeffi-
cient of the extended Kitaev chain connected by the STM
tip. The Andreev reflection coefficient can be described as
TAR(E ) = Tr[�eeGr

eh�hhGa
he], where the linewidth function �

and the Green’s function Gr(a) are expressed in the Nambu
representation, with e and h representing the electron and hole
components [27,28]. To calculate the coefficients above, we
need the matrix of the surface Green’s function g of the STM
tip [29]. Then, by combining it with the coupling Hamilto-
nian between the extended Kitaev chain and the STM tip,
we can calculate the retarded self-energy �r = tSTMgrtSTM,
in which tSTM is the coupling strength between the extended
Kitaev chain and the STM tip and gr is the retarded surface
Green’s function of the STM tip. The linewidth function
can be obtained as �(E ) = i[�r − (�r )†]. Finally, with the
Dyson equation, the retarded and advanced Green’s functions
of the extended Kitaev chain can be expressed as Gr (E ) =
[Ga(E )]† = [E − HC − �r]−1.

In Fig. 3, we plot the Andreev reflection coefficient TAR as a
function of connection site n of the extended Kitaev chain with
different hopping phase differences, δφ = π , 2π , and 3π .
Figure 3 shows that the perfect Andreev reflection coefficient
TAR = 1 occurs when the STM tip scans the nonendpoint
sites of the chain, while no Andreev reflection, with TAR = 0,
occurs when scanning with the STM tip to the end sites of the
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FIG. 4. The energy spectrum of the extended Kitaev chain vs
(a) phase disorder strength WP and (b) Anderson disorder strength
WA. The zero-energy states are denoted by the red lines. The param-
eters are the same as those in Fig. 2(b).

chain. The number and position of the perfect reflection co-
efficient plateau TAR = 1 are consistent with the number and
distribution position of zero-energy nonendpoint bound states
in the insets of Figs. 2(b)–2(d). The above results provide
lateral evidence that the zero-energy nonendpoint bound states
are MBSs whose numbers can be modulated by the hopping
phase difference.

To verify the robustness of the in-gap MBSs, we plot the
energy spectrum of the Kitaev chain versus the phase disorder
strength WP and Anderson disorder strength WA in Figs. 4(a)
and 4(b), respectively. In Fig. 4(a), the phase disorder ωP

n is
added to the hopping phase φn in Eq. (1). In Fig. 4(b), the
Anderson disorder term

∑N
n=1 ωA

n c†
ncn is added to the Hamil-

tonian in Eq. (1). ωP(A)
n is randomly and uniformly distributed

in the interval [−WP(A),WP(A)]. All the curves are averaged
over 1000 random configurations, which is enough to obtain
reasonable results. With the increasing of WP(A), the energy
gap gradually becomes smaller, but the zero-energy states
(red lines) always hold (see Fig. 4). The above results show
that moderate phase disorder and Anderson disorder do not
suppress the appearance of in-gap MBSs but could reduce
the energy gap. It can be concluded that the MBSs are robust
against the phase disorder and Anderson disorder.

IV. BRAIDING OF THE NONENDPOINT
MAJORANA BOUND STATES

Naturally, we consider connecting the first and last sites
of the one-dimensional chain with nonendpoint MBSs in a
superconducting ring, as shown in Fig. 5(a). The Hamiltonian
for the extended Kitaev ring can be written by adding two
terms to Eq. (1):

HR = HC − teiφN c†
N c1 + �eiθN cN c1 + H.c., (2)

where the two added terms represent the hopping and the
pairing interaction between the first and last sites of the chain.
The hopping (superconducting) phase between site n and site
n + 1 is rewritten as φn = φ1 + n−1

N δφ (θn = θ1 + n−1
N δθ ), in

which the phase difference between the first and last hopping
(superconducting) phases is denoted by δφ = φN − φ1 (δθ =
θN − θ1). The other parameters are consistent with those in
Eq. (1).

In Figs. 5(b)–5(f), we calculate the energy levels of the Ki-
taev ring with different initial hopping phases φ1. Figure 5(b)
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FIG. 5. (a) Schematic of the extended Kitaev ring with site-
dependent hopping and superconducting phase. The red curves
represent MBSs. (b)–(f) Energy levels of Kitaev ring with different
initial hopping phases: φ1 = 0.5π in (b), φ1 = 0.7π in (c), φ1 = π

in (d), φ1 = 1.3π in (e), and φ1 = 1.5π in (f). The red dots represent
the in-gap MBSs; the probability distribution of the MBSs is plotted
in the inset. The area of the red ellipses is proportional to the modulus
of the wave function. (g) Band structure for the Kitaev ring as a
function of the initial hopping phase φ1. The red line indicates the
Majorana zero-energy bands, which always remain separate from the
other bands (black lines). The other parameters are set to be μ = 1.4,
t = 1, � = 1, δφ = π , θ1 = 0, δθ = π , and N = 200.

shows that two zero-energy in-gap MBSs (red dots) are still
present in the extended Kitaev ring for φ1 = 0.5π . Since
MBSs are at the nonendpoints of the extended Kitaev chain,
they do not couple or disappear when the chain is linked
head to tail. The two zero-energy eigenvalues of the system
are denoted as ε1,2, with the corresponding eigenstates |φε1,2〉.
Theoretically, the isolated Majorana fermions γ1 and γ2 can be
obtained with combinations of these eigenstates, i.e., |φγ1,2〉 =
(1/

√
2)(|φε1〉 ± |φε2〉). At φ1 = 0.5π , γ1 and γ2 arise at the
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top and bottom positions of the Kitaev ring, respectively [see
the inset of Fig. 5(b)]. These two MBSs can be considered our
initial state in the topological braiding process. If we increase
the initial phase to φ1 = 0.7π , the two zero-energy in-gap
MBSs remain [see Fig. 5(c)], but the positions of γ1 (γ2) move
to the top right (bottom left) sites of the Kitaev ring, as shown
in the inset of Fig. 5(c). This indicates that the positions of
the MBSs can be adjusted by changing the initial hopping
phase. Until φ1 = π , two MBSs, γ1 and γ2, arise at the bottom
and top positions of the Kitaev ring, respectively. The spatial
positions of γ1 and γ2 are mutually swapped, as displayed
in the inset of Fig. 5(d). The braiding operation can be rep-
resented by the unitary operator U (γ1, γ2) = exp(−π

4 γ1γ2).
The MBSs can be transformed as γ1 → γ2 and γ2 → −γ1

[8]. To implement an entire topological braiding process, we
continue to increase the initial hopping phase to φ1 = 1.3π

and φ1 = 1.5π . Figures 5(e) and 5(f) show that two zero-
energy in-gap MBSs (red dots) always appear. As shown in
the inset of Fig. 5(e), γ1 and γ2 are localized at the top left
and bottom right positions of the Kitaev ring, respectively.
Until φ1 = 1.5π , MBSs γ1 and γ2 are bounded at the top and
bottom positions of the Kitaev ring, respectively [see the inset
of Fig. 5(f)]. In Video 1 of the Supplemental Material [30],
we show an animation of the entire braiding process with the
increase of φ1 from 0.5π to 1.5π . Over the entire braiding pro-
cess, the spatial positions of γ1 and γ2 can be swapped twice,
and the system returns to its initial state. After the exchange
process, both MBSs γ1 and γ2 accumulate a π Berry phase
and experience a sign flip, with γ1 → −γ1 and γ2 → −γ2. It
is worth noting that the positions of γ1 and γ2 are exchanged
without spatial collision. In order to observe whether the two
MBSs are excited throughout the entire braiding process, we
plot the energy levels of the extended Kitaev ring as a function
of the initial hopping phase φ1 [see Fig. 5(g)]. We can see
that the zero-energy MBSs (red line) remain stable through-
out the variation of φ1. The isolated zero-energy MBSs can
completely prevent mixing with other states (black lines) by
an energy gap (−0.17t, 0.17t ). The braiding process can be
considered to be approximately adiabatic, as long as the vari-
ation of φ1 is slower than 4.1 × 1013 Hz when t = 1 eV. Thus,
our results validate the stability of the braiding process in the
extended Kitaev ring. Moreover, the two MBSs can also be
exchanged counterclockwise by changing φ1 from 1.5π to
0.5π .

By using the above extended Kitaev ring, we can also
realize the braiding process of multiple MBSs. For example,
in order to obtain an efficient braiding process of four MBSs,
we set the phase differences δφ = δθ = 2π . By increasing the
initial hopping phase φ1, the four MBSs rotate in the ring. For
φ1 ∈ [0, 2π ], the spatial positions of γ1 (γ4) and γ3 (γ2) are
swapped twice, and the system returns to its initial state (see
the Appendix). The combination of electron tunneling and ro-
tation can identify a novel braiding operator [31]. The braiding
operations can be assisted by the tunneling of electrons into or
out of the MBSs [31].

To enable more elementary gate operations, we design
Kitaev double rings composed of Kitaev rings R1 and R2.
The Hamiltonian of the extended Kitaev double rings can be
written as HD = HR1 + HR2 + Ht . HR1 and HR2 are the Hamil-
tonians of Kitaev rings R1 and R2, which are described by
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FIG. 6. (a) Initial hopping phase φ1,2
1 (black lines) and hopping

phase difference δφ1,2 (red lines) vs time τ in the Kitaev double rings.
The solid and dashed lines show the variation of the parameters in
rings R1 and R2, respectively. (b)–(e) Energy levels of the Kitaev
double rings with different times: τ = 0 in (b), τ = T/3 in (c),
τ = 2T/3 in (d), and τ = T in (e). The red dots represent the in-gap
MBSs; the probability distribution of the MBSs is plotted in the inset.
The area of the red ellipses is proportional to the modulus of the
wave function. (f) Band structure of the Kitaev double rings as a
function of time τ . The red line indicates the zero-energy MBSs,
which always remain separate from the other states (black lines).
The parameters of rings R1 and R2 are set to be μ1 = 1.4, θ1

1 = 0,
δθ1 = 1.5π , and N1 = 200 and μ2 = 0.6, θ2

1 = 1.5π , δθ2 = 0.5π ,
and N2 = 200, respectively. The other parameters of the double rings
are the same: t = 1, t1 = 1, and � = 1.

Eq. (2). The coupling Hamiltonian Ht between the two Kitaev
rings is given by

Ht = −t1c†
n1

cn′
N2

− t1c†
nN1

cn′
1
+ H.c., (3)

where c†
nξ

and cn′
ξ ′ are the creation operator for ring R1 and

annihilation operator for ring R2, respectively. ξ = 1, N1 (ξ ′ =
1, N2) are the two coupling sites for Kitaev ring R1 (R2). t1 is
the coupling strength.

To implement topological braiding, we tune the time-
dependent intensities of the initial hopping phase φ1,2

1 and
hopping phase difference δφ1,2, as displayed in Fig. 6(a). In
Figs. 6(b)–6(f), we calculate the energy levels of the Kitaev
double rings with different times τ . The braiding protocol
takes four steps in T time to spatially swap two neighboring
MBSs γ3 and γ4: (1) At τ = 0, we set φ1

1 = 0.5π , φ2
1 =

0.7π , δφ1 = 2π , and δφ2 = 0.5π . Figure 6(b) shows that four
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zero-energy in-gap MBSs (red dots) are present in the ex-
tended Kitaev double rings. γ1, γ2, γ3, and γ4 arise at four
positions of the upper ring, R1 [see the inset of Fig. 6(b)].
These four MBSs can be considered our initial state in the
topological braiding process. (2) At τ = T/3, the initial hop-
ping phase and hopping phase difference change to φ1

1 =
π , φ2

1 = 0.5π , δφ1 = 1.5π , and δφ2 = 0.7π . The four zero-
energy MBSs remain [see Fig. 6(c)], but the position of γ4

moves to ring R2. The remaining three MBSs, γ1, γ2, and
γ3, are located in the bottom left, top, and bottom right sites
of ring R1, respectively [see the inset of Fig. 6(c)]. (3) For
τ ∈ [T/3, 2T/3], we increase only φ1

1 of ring R1 from π to 2π

and keep the rest of the parameters unchanged. It can be seen
that four MBSs remain at τ = 2T/3, as shown in Fig. 6(d).
The inset of Fig. 6(d) shows that the position of γ4 remains
unchanged in ring R2, while the positions of γ1, γ2, and γ3 are
turned counterclockwise in ring R1 to the top, bottom right,
and bottom left sites, respectively. (4) For τ ∈ [2T/3, T ], we
leave the initial hopping phase of ring R1 unchanged at φ1

1 =
2π and change the remaining three parameters to φ2

1 = 0.7π ,
δφ1 = 2π , and δφ2 = 0.5π . We can see from Fig. 6(e) that
the four MBSs still emerge, as shown by red dots. The inset
of Fig. 6(e) shows that MBSs γ1, γ2, γ3, and γ4 are bounded
at the top left, top right, bottom left, and bottom right sites
of ring R1, respectively. The spatial positions of γ3 and γ4

are mutually swapped, and the spatial positions of γ1 and
γ2 remain unchanged [see the insets of Figs. 6(b) and 6(e)].
In Video 2 of the Supplemental Material [30], we show an
animation of the braiding process when the time τ increases
from 0 to T , as shown in Fig. 6(a).

In order to observe whether the four MBSs are excited
throughout the entire braiding process, we plot the energy
levels of the extended Kitaev double rings as a function of the
time τ [see Fig. 6(f)]. We can see that the zero-energy MBSs
(red line) remain stable throughout the variation of τ . The iso-
lated zero-energy MBSs can completely prevent mixing with
other states (black lines) by an energy gap. Thus, our results
validate the stability of the braiding process in the extended
Kitaev double rings. Furthermore, any two adjacent MBSs of
the four MBSs can be swapped in the extended Kitaev double
rings, so we can construct a braiding operation for unary gates
such as Pauli gates, S gates, and Hadamard gates. To detect the
MBSs in double rings, the differential conductance at each
site can be measured by a STM. In addition, two of the six
MBSs can be swapped pairwise to obtain the braiding oper-
ations of binary gates such as controlled-NOT gates. Thus, a
variety of braiding schemes can be designed in a multiple-ring
system.

Finally, we present the possibility of an experimental re-
alization of the proposed setup. The phases in Eq. (1) are
determined by two initial phases, φ1 and θ1, and two phase
differences, δφ and δθ . The value of the initial superconduct-
ing phase θ1 does not affect the appearance and positions of
nonendpoint MBSs. The gauge transformation cn → cneiθn/2

eliminates the phase from the superconducting terms, in ex-
change for adding the complex amplitude ei(θn−θn+1 )/2 to the
hopping term from site n to site n + 1 [32]. The supercon-
ducting phase gradient and the initial hopping phase can be
converted into each other. The superconducting phase dif-
ference δθ and initial hopping phase φ1 can be tuned by

persistent spin current and magnetic flux [26,33–35]. Ex-
perimentally, a constant force can be introduced around the
smaller perimeter of the hopping torus to adiabatically real-
ize the gradient of φn, F ∝ ∂tφn [36,37]. It gives rise to a
quantized Hall current perpendicular to the introduced force.
Alternatively, superconducting charge qubits consisting of a
dc superconducting quantum interference device with two
identical Josephson junctions can be placed at each site.
Hence, a phase gradient can be introduced experimentally to
realize phase settings. A lattice-dependent gradient current
induces the emergence and movement of nonendpoint MBSs.

V. CONCLUSIONS

In this work, we investigated the energy levels and
transport properties of an extended Kitaev chain with a site-
dependent linearly increasing hopping phase and p-wave
superconducting phase. We demonstrated that the controlled
number of nonendpoint MBSs can be induced in the chain
with the hopping phase difference. Furthermore, we proposed
a protocol to implement the pairwise exchange of MBSs in an
extended Kitaev ring and the swap of any two MBSs of the
multiple MBSs in the extended Kitaev double rings. Impor-
tantly, MBSs remain stable throughout the braiding process,
as evidenced by the fact that the MBSs can be completely
protected from mixing with other states by an energy gap.
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APPENDIX: BRAIDING OF MULTIPLE
MAJORANA BOUND STATES

In order to obtain an efficient braiding process of four
MBSs in one extended Kitaev ring, we plot the energy levels
and wave function distribution with phase differences δφ =
δθ = 2π in Fig. 7. Figures 7(a)–7(e) show that there are
always four zero-energy in-gap MBSs (red and blue dots)
that appear with different initial hopping phases. For every
MBS, the probability of the wave functions is highlighted in
the insets of Figs. 7(a)–7(e) by the corresponding color. Here,
the four zero-energy eigenvalues of the system are denoted
as ε1,2,3,4, and the corresponding eigenstates are |φε1,2,3,4〉. As
shown in Fig. 7(a), the zero-energy eigenstates |φε2〉 and |φε3〉
(in blue) correspond to the excitations of γ1 and γ4, while
the zero-energy eigenstates |φε1〉 and |φε4〉 (in red) correspond
to the excitations of γ2 and γ3. Theoretically, the isolated
Majorana fermions can be obtained by combinations of these
zero-energy eigenstates, i.e., |φγ1,4〉 = (1/

√
2)(|φε2〉 ± |φε3〉)

and |φγ2,3〉 = (1/
√

2)(|φε1〉 ± |φε4〉). At φ1 = 0, γ1 and γ4

arise in the top right and bottom right positions of the Kitaev
ring, while γ2 and γ3 arise in the top left and bottom left
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FIG. 7. (a)–(e) Energy levels of a Kitaev ring with different ini-
tial hopping phases: φ1 = 0 in (a), φ1 = 0.25π in (b), φ1 = 0.5π in
(c), φ1 = 0.75π in (d), and φ1 = π in (e). The red and blue dots rep-
resent the in-gap MBSs; the probability distribution of the MBSs is
plotted in the inset. (f) Band structure of the Kitaev ring as a function
of the initial hopping phase φ1 with phase differences δφ = δθ = 2π .
The other parameters are the same as those in Fig. 5(b).

positions of the Kitaev ring, respectively [see the inset of
Fig. 7(a)]. These four MBSs can be considered our initial state
in the topological braiding process. The positions of γ1, γ4, γ2,
and γ3 are moved to be the right, bottom, left, and top sites
of the extended Kitaev ring for φ1 = 0.25π , as shown in the
inset of Fig. 7(b). By increasing the initial hopping phase to
φ1 = 0.5π , γ1 and γ4 arise in the bottom right and bottom
left positions, and γ2 and γ3 arise in the top right and top
left positions of the Kitaev ring, as displayed in the inset of
Fig. 7(c). As shown in the inset of Fig. 7(d), γ1, γ4, γ2, and
γ3 are localized in the bottom, left, top, and right positions
of the Kitaev ring, respectively. Until φ1 = π , γ1, γ4, γ2, and
γ3 are bounded at the bottom left, top left, bottom right, and
top right positions of the Kitaev ring, respectively [see the
inset of Fig. 7(e)]. The spatial positions of γ1 (γ4) and γ3 (γ2)
are mutually swapped. The braiding operation can be repre-
sented by the unitary operators U (γ1, γ3) = exp(−π

4 γ1γ3) and
U (γ4, γ2) = exp(−π

4 γ4γ2). The MBSs can be transformed as
γ1 → γ3, γ3 → −γ1 and γ4 → γ2, γ2 → −γ4 [8]. For φ1 ∈
[0, 2π ], the spatial positions of γ1 (γ4) and γ3 (γ2) are swapped
twice, and the system returns to its initial state. The combina-
tion of the electron tunneling and rotation can reveal a novel
braiding operator [31]. The braiding operations can be assisted
by tunneling of electrons into or out of the MBSs [31].

In order to observe whether the four MBSs are excited
throughout the entire braiding process, we plot the energy
levels as a function of the initial hopping phase φ1 in Fig. 7(f).
We can see that the fourfold-degenerate zero-energy states
(red line) remain stable throughout the variation of φ1. The
four isolated MBSs can completely prevent mixing with other
states (black lines) by an energy gap, which demonstrates
that the braiding process is adiabatically changing. Our results
validate that the stabilized braiding process of four MBSs was
obtained by fixing the phase difference to be δφ = δθ = 2π

and tuning the initial hopping phase. Furthermore, MBSs can
also be exchanged counterclockwise by setting φ1 ∈ [2π, 0].
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