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We propose a novel scheme for combining efficiently the truncated-unity functional renormalization group
(TUFRG) and the mean-field theory. It follows the method of Wang, Eberlein, and Metzner that uses only the
two-particle channel-irreducible part of the vertex as an input for the mean-field treatment. In the TUFRG, the
neglect of fluctuation effects from other channels in the symmetry-broken regime is represented by applying
the random phase approximation (RPA) in each individual channel, below the divergence scale. Then the
Bethe-Salpeter equation for the four-point vertex is translated into the RPA matrix equations for the bosonic
propagators that relates the singular and irreducible singular modes of the propagators. The universal symmetries
for the irreducible singular modes are obtained from the antisymmetry of Grassmann variables. The mean-field
equation based on these modes is derived by the saddle-point approximation in the framework of the path-integral
formalism. By using our scheme, the power of the TUFRG, as a diagrammatically unbiased tool for identifying
the many-body instabilities, could be elevated to a quantitatively reasonable level, and its application would
be extended to a quantitatively reasonable analysis of the coexisting orders. As an illustration, we employ this
scheme to study the coexistence phase of the chiral superconductivity and the chiral spin-density wave, predicted
near van Hove filling of the honeycomb lattice.
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I. INTRODUCTION

Intermediately correlated electron systems exhibit a
plethora of fascinating properties and their theoretical anal-
ysis continue to be one of the important tasks in condensed
matter physics. The systems can be described within both
itinerant and strong coupling approaches. Among the itiner-
ant approaches, the functional renormalization group (FRG)
has proven to be an effective and reliable tool to study
Fermi-surface instabilities in a diagrammatically unbiased
way [1–3]. It treats the pairing, spin, and charge channels on
equal footing, and thus enables to investigate the fluctuation-
driven instabilities and competing or coexisting orders [4].
The FRG method has been successfully applied to capture
the d-wave pairing instability in the two-dimensional (2D)
repulsive Hubbard model [5–8] and the extended s-wave su-
perconductivity (SC) in Fe-based superconductors [9–11].

In these FRG studies the evolution of the four-point vertex
was approximated by a one-loop truncation, where the six-
point and the higher-order vertices were completely neglected.
Furthermore, in many FRG calculations one applies additional
approximations of discarding the frequency dependence of
and the self-energy feedback to the four-point vertex. They
are justified in the weak coupling regime by the fact that
the frequency dependence appears, in its power counting, to
be irrelevant [3,12], and the higher-order vertices and the
self-energy correction can only make contributions of third
order in the bare interaction [1,2]. We will also use these
approximations in the present work.
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In the FRG method, Fermi-surface instabilities are signaled
by divergences of the four-point vertex at a divergence en-
ergy scale �D. The FRG flow of the four-point vertex should
be stopped at this scale because, when the vertex becomes
very large, the one-loop approximation is no longer valid. To
complete the calculation and perform a quantitative analysis
of the resulting ordered phases, one has to continue the flow
below the divergence scale �D, allowing the emergence of
the symmetry-broken phase. This task can be accomplished
by using either of two approaches within a purely fermionic
or a partially bosonized formalism.

In the first approach [13], one inserts an infinitesimal
symmetry-breaking component into the initial action and
tracks the FRG flow of purely fermionic vertex functions. It
was applied to obtain the exact solutions of the mean-field
(MF) models for superconductivity [13,14], and to describe a
formation of the s-wave superfluid phase in the 2D attracting
Hubbard model [15,16]. That scheme was also used to analyze
a d-wave superconducting (d-wave SC) state in the 2D repul-
sive Hubbard model [8] and an antiferromagnetic phase in a
two-pocket model for the iron pnictides [17]. In this approach,
since the effective action is no longer charge/spin-conserving,
the FRG flow equations would involve the abnormal vertices
and become very complicated. Particularly, in complex sys-
tems with several potential instabilities, introducing various
kinds of seeds for those into the flow is a formidable task.

In the second approach [18], the symmetry-broken phases
in interacting fermion systems are treated by introducing
bosonic order-parameter fields via the Hubbard-Stratonovich
transformation and solving partially bosonized FRG flow
equations. It was applied to describe the antiferromagnetic
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phase [18] and the d-wave SC induced by antiferromagnetic
fluctuation [19], both in the 2D repulsive Hubbard model. By
using that partial bosonization approach, the competition of
the antiferromagnetic and d-wave SC orders in the Hubbard
model was analyzed [20,21], and the exact solution of the
Tomonaga-Luttinger model was reproduced [22]. It has also
been employed to analyze the superfluid ground state of the
2D attracting Hubbard model, taking into account the effect
of the order-parameter fluctuations [23,24]. When distinct
instabilities are competing, one should decouple the bare in-
teraction in various channels, involving several bosonic fields,
which leads to an ambiguity in splitting the interaction [25]
and may introduce a certain bias. Furthermore, the fluctuation
effects associated with other channels appear to become more
complicated than in the purely fermionic approach.

Although the above-mentioned schemes are logically rea-
sonable and make it possible to continue the flow into the
symmetry-broken phase, their implementation for multiband
systems with competing orders are numerically demanding. In
this case, one may neglect low-energy fluctuations and com-
bine the FRG flow at high scales with a mean-field treatment
of low-energy modes. In this renormalized mean-field theory
[26], the flow of the four-point vertex is stopped near the diver-
gence scale, i.e., before entering the symmetry-broken regime,
and the remaining low-energy modes are treated in mean-field
approximation, with a reduced effective interaction extracted
from resulting vertex. With this scheme, the competitions of
the antiferromagnetic and superconducting instabilities have
been considered quantitatively in the Hubbard model for the
cuprates [26] and in an eight-band model for the iron arsenides
[27]. It has also been applied to describe the s + id pairing
state in a five-band model for the iron pnictides [28] and a
mixed state of the spin-singlet and triplet SC in an attracting
Rashba model on the triangular lattice [29].

This approach makes sense in the FRG flow with the sharp
momentum cutoff regulator, due to clear separation of the
high- and low-energy modes. However, in the case of the
frequency-dependent regulation scheme like the � scheme
[30] and the sharp frequency cutoff, or the temperature cutoff
scheme [31], the renormalized MF approach is not applicable,
as the high- and low-energy modes cannot entirely be sepa-
rated. In this regard, it is, strictly speaking, not suitable even
for the FRG study with the smooth momentum cutoff regu-
lation as performed in Ref. [29]. In these cases, one may try
to simply use the mean-field approach, plugging the effective
interaction at the divergence scale into the MF equation, as
done in Ref. [32], but it would give rise to double counting of
the contributions from high-energy modes, leading to overes-
timation of the order parameters.

To extend the renormalized MF approach to the generic
cases, Wang et al. [33] developed a sophisticated FRG +

MF procedure that is applicable to the FRG study with a
general regulator. Unlike the renormalized MF theory, in this
approach, only the part of resulting vertex, which is two-
particle irreducible in a given channel, is inserted as the
effective interaction into the MF equation. In the following we
will call this part the channel-irreducible one. Moreover, the
mean-field calculation here involves all the fermion degrees
of freedom, which differs from the previous theory where
only the low-energy modes are considered. It was applied to
analyze the coexistence of d-wave SC and antiferromagnetism
[33] or incommensurate spin-density wave (incommensurate
SDW) [34] in the ground state of the 2D Hubbard model.

On the other hand, the FRG achieved substantial method-
ological developments, broadening its range of applications.
A recent version of it, the truncated-unity FRG (TUFRG)
approach [35] features a high resolution of the transfer mo-
menta and a concise matrix structure of its flow equation. The
TUFRG method is based on the exchange parametrization
FRG [30] and the singular-mode FRG [36] methods and is
known to ensure a fast and highly resolved computation. It
was successfully applied to analyze the electronic instabilities
in several 2D single-band [35,37,38] and multiband systems
[39–43]. It has also been employed to study three-dimensional
systems [44,45] and spin-orbit [46–48] and electron-phonon
[49] coupled systems. Recently, the TUFRG has been ex-
tended to treat more complicated systems [50–52].

In this paper we propose a scheme for combining con-
sistently the TUFRG with the MF theory for spontaneous
symmetry breaking. To this end, we adopt the key idea of
the efficient FRG + MF [33], in which only the channel-
irreducible part of the four-point vertex resulting from the
FRG flow is taken as an input interaction for the MF equation.
In the matrix formalism of the TUFRG, the Bethe-Salpeter
equation relating the channel-irreducible part and the vertex
becomes simple RPA matrix equations for the bosonic propa-
gators, by which the irreducible singular modes are extracted.
We provide an explicit derivation of the MF equation built
on the irreducible singular modes, by resorting to the saddle-
point approximation of the path-integral formalism. As a first
application to competing orders, we use our novel TUFRG
+ MF approach to study the coexistence phase of the chi-
ral SC and the chiral SDW on a heavily doped honeycomb
lattice.

This paper is organized as follows. In Sec. II we briefly
outline the TUFRG approach. In Sec. III, we give a detailed
description of our TUFRG + MF scheme and derive explicitly
the MF equation using the saddle-point approximation of sta-
tistical field theory. In Sec. IV, we analyze quantitatively the
coexistence of chiral SC and SDW on the doped honeycomb
lattice, by means of the TUFRG + MF approach. Finally, in
Sec. V we draw our conclusions.

II. OVERVIEW OF TUFRG

We start our description of the FRG with the field-theoretical expression for the grand canonical partition function of
interacting electron systems [53]

� =
∫

Dψ̄ Dψ exp

{
−1

h̄

∫ β h̄

0
dτ

[∑
l

h̄ψ̄l (τ + 0)
dψl (τ )

dτ
+ H[ψ̄, ψ]

]}
. (1)
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Here ψ, ψ̄ are fermionic Grassmann fields, β is the inverse temperature, and l ≡ (o, σ, k) is a multi-index comprising an orbital
(sublattice) index o, spin polarity σ , and wave vector k, while the function H[ψ̄, ψ] is obtained by replacing ĉ† → ψ̄, ĉ → ψ in
the Hamiltonian Ĥ = H[ĉ†, ĉ]. Spin-SU(2)-invariant lattice systems of interacting electrons, having N unit cells, are described
by the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint, Ĥ0 =
∑
o,o′

∑
k,σ

ĉ†
koσ

(
H0

oo′ (k
) − μδoo′ )ĉko′σ ,

Ĥint = 1

2N

∑
o1,o2,o3,o4

∑
k1,k2,k3,k4

∑
σ,σ ′

δk1+k2,k3+k4Vo1o2,o3o4 (k1, k2; k3, k4)ĉ†
k1o1σ

ĉ†
k2o2σ ′ ĉk4o4σ ′ ĉk3o3σ . (2)

In this case, one can perform a Fourier transformation of the Grassmann variables ψl (τ ) = 1√
β h̄

∑
ω

ψl (ω)e−iωτ to derive the

following expression for the partition function in frequency space [54]:

� =
∫

Dψ̄ Dψ exp{−S[ψ, ψ̄]} =
∫

Dψ̄ Dψ exp{−S0[ψ, ψ̄] − Sint[ψ, ψ̄]},

S0[ψ, ψ̄] ≡ −(ψ̄, [G0]−1ψ ) =
∑
o,o′

∑
k,σ

ψ̄σ (k, o)

[
−iωδoo′ + 1

h̄
(H0

oo′ (k) − μδoo′ )

]
ψσ (k, o′), (3)

Sint[ψ, ψ̄] ≡ 1

2Nβ h̄2

∑
o1,o2,o3,o4

∑
k1,k2,k3,k4

∑
σ,σ ′

Vo1o2,o3o4 (k1, k2; k3, k4)δk1+k2,k3+k4ψ̄σ (k1, o1)ψ̄σ ′ (k2, o2)ψσ ′ (k4, o4)ψσ (k3, o3).

For convenience, here, we combine the momentum k and the frequency ω into a (d + 1)-dimensional variable k = (k, ω). The
noninteracting part (S0) of the action includes the bare propagator G0(k, ω) = [iω − 1

h̄ (H0(k) − μ)]−1.
The generating functional for connected Green’s functions W [η, η̄] is obtained from the action in Eq. (3) by adding external

sources η, η̄ to it and taking the logarithm of the functional integral

W [η, η̄] = − ln
∫

Dψ̄ Dψe−S[ψ,ψ̄]+(η̄,ψ )+(ψ̄,η). (4)

Then, we obtain the generating functional of the one-particle irreducible (1PI) vertices �[ψ, ψ̄] by a Legendre transformation
of W [η, η̄]:

�[ψ, ψ̄] = W [η, η̄] + (η̄, ψ ) + (ψ̄, η), ψ = −∂W [η, η̄]

∂η̄
, ψ̄ = ∂W [η, η̄]

∂η
. (5)

To set up the renormalization group flow, we introduce an artificial scale dependence to the bare propagator, i.e., G0(k, ω) →
G0,�(k, ω). This regularization procedure eliminates the infrared modes below the energy scale � and it can be implemented in
different ways. In this paper we employ the � scheme [30] in which the bare propagator is modified by the scale � as

G0(k, ω) → G0,�(k, ω) = h̄2ω2

h̄2ω2 + �2
G0(k, ω). (6)

The generating functional of the 1PI vertices, or the effective action �[ψ, ψ̄], is then defined with G0,� and becomes scale
dependent as well, � → ��. Taking the derivative of �� with respect to � yields the functional flow equation. The initial
condition of this flow equation is given as ��→+∞ ≡ �(0) = Sint. The equation is then Taylor-expanded to provide an infinite
hierarchy of flow equations for the 1PI vertices.

Within the above-mentioned approximations, namely, the one-loop truncation of the effective action and neglecting the self-
energy feedback and the frequency dependence for the four-point vertex, we focus only on the evolution of the four-point part
��,(4) of the action. For spin-SU(2)-invariant systems it can be expressed in terms of the effective interaction V � as follows:

��,(4)[ψ, ψ̄] = 1

2Nβ h̄2

∑
o1,o2,o3,o4

∑
k1,k2,k3,k4

∑
σ,σ ′

V �
o1o2,o3o4

(k1, k2; k3, k4)δk1+k2,k3+k4ψ̄σ (k1, o1)ψ̄σ ′ (k2, o2)ψσ ′ (k4, o4)ψσ (k3, o3).

(7)

The flow equation of V � can be derived from the equation of the four-point vertex, and it is composed of three
contributions [7,55]:

d

d�
V � = Jpp(�) + Jph,cr (�) + Jph,d(�). (8)
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The concrete expressions of Jpp(�), Jph,cr (�), and Jph,d(�) are as follows [42]:

Jpp(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = −
∑
μ,μ′

∑
ν,ν ′

∫
d p

d

d�

[
G0,�

μν (p + k′
1 + k′

2, ω)G0,�
μ′ν ′ (−p,−ω)

]
× V �

o′
1o′

2,μμ′ (k′
1, k′

2; p + k′
1 + k′

2,−p)V �
νν ′,o1o2

(p + k′
1 + k′

2,−p; k1, k2), (9)

Jph,cr(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = −
∑
μ,μ′

∑
ν,ν ′

∫
d p

d

d�

[
G0,�

μν (p + k′
1 − k2, ω)G0,�

ν ′μ′ (p, ω)
]

× V �
o′

1μ
′,μo2

(k′
1, p; p + k′

1 − k2, k2)V �
νo′

2,o1ν ′ (p + k′
1 − k2, k′

2; k1, p), (10)

Jph,d(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = −
∑
μ,μ′

∑
ν,ν ′

∫
d p

d

d�

[
G0,�

μν (p + k′
1 − k1, ω)G0,�

ν ′μ′ (p, ω)
]

× [
V �

o′
1μ

′,μo1
(k′

1, p; p + k′
1 − k1, k1)V �

νo′
2,ν

′o2
(p + k′

1 − k1, k′
2; p, k2)

+ V �
o′

1μ
′,o1μ

(k′
1, p; k1, p + k′

1 − k1)V �
νo′

2,o2ν ′ (p + k′
1 − k1, k′

2; k2, p)

− 2V �
o′

1μ
′,o1μ

(k′
1, p; k1, p + k′

1 − k1)V �
νo′

2,ν
′o2

(p + k′
1 − k1, k′

2; p, k2)
]
, (11)

with a shorthand notation
∫

d p = ∫ dp
SBZ

1
β h̄2

∑
ω (SBZ is the Brillouin zone area) and the implicit momentum conservation k′

1 +
k′

2 = k1 + k2. The effective interaction is calculated by integrating Eq. (8) with respect to the scale �:

V � = V (0) + �pp(�) + �ph,cr (�) + �ph,d(�),

�pp(�) =
∫ �

�0

d�′Jpp(�′), �ph,cr (�) =
∫ �

�0

d�′Jph,cr (�′), �ph,d(�) =
∫ �

�0

d�′Jph,d(�′). (12)

Here �0 is the initial value of � (in our case of using the � scheme, �0 = +∞), V (0) ≡ V �0 = V is the initial bare interaction,
and �pp(�),�ph,cr (�), and �ph,d(�) are the single-channel coupling functions, respectively, in the particle-particle, crossed
particle-hole, and direct particle-hole channels.

In the exchange parametrization FRG [30], three bosonic propagators are defined by projecting these coupling functions onto
three channels:

P� = P̂[�pp(�)], C� = Ĉ[�ph,cr (�)], D� = D̂[�ph,d(�)], (13)

or, more explicitly,

P�
o′

1o′
2m,o1o2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)�pp(�)
o′

1o′
2,o1o2

(p + q,−p; p′ + q,−p′),

C�
o′

1o2m,o1o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)�ph,cr(�)
o′

1o′
2,o1o2

(p + q, p′; p′ + q, p),

D�
o′

1o1m,o2o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)�ph,d(�)
o′

1o′
2,o1o2

(p + q, p′; p, p′ + q).

(14)

Here fm(p) = eiRm·p is the plane-wave basis with the Bravais lattice vector Rm. The inverse transformation of Eq. (14) is, e.g.,

�
pp(�)
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) =
∑

m,n(infinite sum)

P�
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k).

In real computation one should introduce the truncation in the sum over the basis indices, which leads to somewhat approximate
expressions of the single-channel coupling functions, such as, e.g.,

�
pp(�)
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) ≈
∑

m,n(truncate sum)

P�
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k).

However, numerical experiences in the FRG studies demonstrate that the single-channel coupling functions are reproduced very
well by the sum over Rm, Rn within the region determined by a suitable value of the cutoff radius Rcut. Therefore, we simply use

205118-4



CONSISTENT COMBINATION OF TRUNCATED-UNITY … PHYSICAL REVIEW B 109, 205118 (2024)

an equal sign, with implicit notation
∑

m,n ≡ ∑
m(|Rm|�Rcut )

∑
n(|Rn|�Rcut ), in the inverse projections of Eq. (14)

�
pp(�)
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) =
∑
m,n

P�
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k),

�
ph,cr(�)
o′

1o′
2,o1o2

(p + q, k; k + q, p) =
∑
m,n

C�
o′

1o2m,o1o′
2n(q) f ∗

m(p) fn(k),

�
ph,d(�)
o′

1o′
2,o1o2

(p + q, k; p, k + q) =
∑
m,n

D�
o′

1o1m,o2o′
2n(q) f ∗

m(p) fn(k),

(15)

or, concisely,

�pp(�) = P̂−1[P�], �ph,cr (�) = Ĉ−1[C�], �ph,d(�) = D̂−1[D�]. (16)

Due to the fast convergence of the expansions in Eq. (15) and a feature of the bosonic propagators depending only on one
momentum, not on three momenta, the parametrization of the effective interaction via the propagators seems to be efficient,
requiring considerably reduced memory.

In the singular-mode FRG [36,56], the same expressions are used in the projections of the effective interaction onto three
channels:

V P(�) = P̂[V �], V C(�) = Ĉ[V �], V D(�) = D̂[V �], (17)

or, in more detail,

V P(�)
o′

1o′
2m,o1o2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)V �
o′

1o′
2,o1o2

(p + q,−p; p′ + q,−p′),

V C(�)
o′

1o2m,o1o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)V �
o′

1o′
2,o1o2

(p + q, p′; p′ + q, p),

V D(�)
o′

1o1m,o2o′
2n(q) = 1

S2
BZ

∫
dp

∫
dp′ fm(p) f ∗

n (p′)V �
o′

1o′
2,o1o2

(p + q, p′; p, p′ + q).

(18)

The inverse transformation of the above equation reads as follows:

V �
o′

1o′
2,o1o2

(p + q,−p; k + q,−k) =
∑
m,n

V P(�)
o′

1o′
2m,o1o2n(q) f ∗

m(p) fn(k),

V �
o′

1o′
2,o1o2

(p + q, k; k + q, p) =
∑
m,n

V C(�)
o′

1o2m,o1o′
2n(q) f ∗

m(p) fn(k),

V �
o′

1o′
2,o1o2

(p + q, k; p, k + q) =
∑
m,n

V D(�)
o′

1o1m,o2o′
2n(q) f ∗

m(p) fn(k),

(19)

or, briefly,

V � = P̂−1[V P(�)] = Ĉ−1[V C(�)] = D̂−1[V D(�)]. (20)

Using the relation (12) between the effective interaction and the single-channel coupling functions, we can represent the
projection matrices of the effective interaction in terms of the bosonic propagators:

V P(�) = V P,(0) + P� + V P←C(�) + V P←D(�),

V C(�) = V C,(0) + V C←P(�) + C� + V C←D(�),

V D(�) = V D,(0) + V D←P(�) + V D←C(�) + D�,

(21)

with

V P,(0) ≡ P̂[V (0)], V C,(0) ≡ Ĉ[V (0)], V D,(0) ≡ D̂[V (0)],

V P←C(�) ≡ P̂[�ph,cr (�)] = P̂{Ĉ−1[C�]}, V P←D(�) ≡ P̂[�ph,d(�)] = P̂{D̂−1[D�]},
V C←P(�) ≡ Ĉ[�pp(�)] = Ĉ{P̂−1[P�]}, V C←D(�) ≡ Ĉ[�ph,d(�)] = Ĉ{D̂−1[D�]},
V D←P(�) ≡ D̂[�pp(�)] = D̂{P̂−1[P�]}, V D←C(�) ≡ D̂[�ph,cr (�)] = D̂{Ĉ−1[C�]}. (22)

The detailed expressions for the crossed contributions [V P←C(�),V P←D(�), etc.] can be found in Ref. [42].
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Based on these preliminaries, the TUFRG flow equations for the bosonic propagators can be set up. Taking the derivative of
P�,C�, and D� with respect to �, we get the following equation:

d

d�
P� = d

d�
P̂[�pp(�)] = P̂

[
d

d�
�pp(�)

]
= P̂[Jpp(�)],

d

d�
C� = Ĉ[Jph,cr (�)],

d

d�
D� = D̂[Jph,d(�)]. (23)

Inserting Eqs. (9) to (11) into the above equation, and expressing the effective interaction via the projection matrices according
to Eq. (20), we derive a concise matrix form of the TUFRG flow equations for the bosonic propagators [35]:

dP�(q)

d�
= V P(�)(q)

[
d

d�
χpp(�)(q)

]
V P(�)(q),

dC�(q)

d�
= V C(�)(q)

[
d

d�
χph(�)(q)

]
V C(�)(q),

dD�(q)

d�
= [V C(�)(q) − V D(�)(q)]

[
d

d�
χph(�)(q)

]
V D(�)(q) + V D(�)(q)

[
d

d�
χph(�)(q)

]
[V C(�)(q) − V D(�)(q)]. (24)

Here the particle-particle and particle-hole susceptibility matrices are defined as

χ
pp(�)
o′

1o′
2m,o1o2n(q) ≡ −

∫
dk
SBZ

fm(k) f ∗
n (k)

[
1

β h̄2

∑
ω

G0,�

o′
1o1

(k + q, ω)G0,�

o′
2o2

(−k,−ω)

]
,

χ
ph(�)
o′

1o′
2m,o1o2n(q) ≡ −

∫
dk
SBZ

fm(k) f ∗
n (k)

[
1

β h̄2

∑
ω

G0,�

o′
1o1

(k + q, ω)G0,�

o2o′
2
(k, ω)

]
. (25)

Combined with Eq. (21), the flow equation (24) constitutes a closed system of the equations for P�,C�, and D�.
Let us consider the universal symmetries for the bosonic propagators. In the FRG flow, the particle-hole symmetry (PHS)

and the remnant of antisymmetry (RAS) of Grassmann variables, inherited from the initial bare interaction, are satisfied by the
effective interaction [30]

V �
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = [
V �

o1o2,o′
1o′

2
(k1, k2; k′

1, k′
2)
]∗

(PHS), (26)

V �
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = V �
o′

2o′
1,o2o1

(k′
2, k′

1; k2, k1) (RAS). (27)

These relations should also be satisfied by each of the single-channel coupling functions. For example, the PHS and RAS in the
particle-particle channel are expressed as

�
pp(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = [
�

pp(�)
o1o2,o′

1o′
2
(k1, k2; k′

1, k′
2)
]∗

(PHS), (28)

�
pp(�)
o′

1o′
2,o1o2

(k′
1, k′

2; k1, k2) = �
pp(�)
o′

2o′
1,o2o1

(k′
2, k′

1; k2, k1) (RAS). (29)

Combining the first equation of Eq. (14) with Eq. (28), one can easily derive the relation P�
o′

1o′
2m,o1o2n(q) = [P�

o1o2n,o′
1o′

2m(q)]∗. It is
extended to the other channels, leading to the following symmetry relation [41]:

X �
o′

1o′
2m,o1o2n(q) = [

X �
o1o2n,o′

1o′
2m(q)

]∗
with X ∈ {P,C, D} (PHS). (30)

Inserting Eq. (29) into the first equation of Eq. (14), we obtain

P�
o′

1o′
2m,o1o2n(q) = 1

S2
BZ

∫
dp

∫
dp′eiRm·pe−iRn·p′

�
pp(�)
o′

2o′
1,o2o1

(−p, p + q; −p′, p′ + q)

= 1

S2
BZ

∫
dk

∫
dk′eiRm·(−k−q)e−iRn·(−k′−q)�

pp(�)
o′

2o′
1,o2o1

(k + q,−k; k′ + q,−k′)

= e−iRm·qeiRn·q 1

S2
BZ

∫
dk

∫
dk′ei(−Rm )·ke−i(−Rn )·k′

�
pp(�)
o′

2o′
1,o2o1

(k + q,−k; k′ + q,−k′)

= e−iRm·qP�
o′

2,o
′
1,−Rm;o2,o1,−Rn

(q)eiRn·q.

We can derive the RAS relations for C� and D� in a similar way. Thus, we have the RAS relations for three bosonic
propagators [41]

P�
o′

1o′
2m,o1o2n(q) = e−iRm·qP�

o′
2o′

1m̄,o2o1n̄(q)eiRn·q,

X �
o′

1o′
2m,o1o2n(−q) = eiRm·q[X �

o′
2o′

1m̄,o2o1n̄(q)
]∗

e−iRn·q with X ∈ {C, D}, (RAS), (31)

where m̄ is the basis index associated with the Bravais vector −Rm.
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In the following, we elaborate on the four-point part of the action. From now on, we will denote ��,(4) as �� for simplicity.
Substituting Eq. (12) into Eq. (7), and then inserting Eq. (15) into it, we obtain the following expression for ��:

��[ψ, ψ̄] = �(0)[ψ, ψ̄] + �pp[ψ, ψ̄] + �ph,cr[ψ, ψ̄] + �ph,d[ψ, ψ̄], (32)

with �(0), �pp, �ph,cr, and �ph,d, defined by

�(0)[ψ, ψ̄] = Sint[ψ, ψ̄] = 1

2Nβ h̄2

∑
o1,··· ,o4

∑
k1,k2,k3,k4

∑
σ,σ ′

Vo1o2,o3o4 (k1, k2; k3, k4)

× δk1+k2,k3+k4ψ̄σ (k1, o1)ψ̄σ ′ (k2, o2)ψσ ′ (k4, o4)ψσ (k3, o3), (33)

�pp[ψ, ψ̄] ≡ 1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·pP�
o1o2m,o3o4n(q)eiRn·k

×
∑
σ,σ ′

[ψ̄σ (p + q, o1)ψ̄σ ′ (−p, o2)][ψσ ′ (−k, o4)ψσ (k + q, o3)], (34)

�ph,cr[ψ, ψ̄] ≡ − 1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·pC�
o1o2m,o3o4n(q)eiRn·k

×
∑
σ,σ ′

[ψ̄σ (p + q, o1)ψσ ′ (p, o2)][ψ̄σ ′ (k, o4)ψσ (k + q, o3)], (35)

�ph,d[ψ, ψ̄] ≡ 1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·pD�
o1o2m,o3o4n(q)eiRn·k

×
∑
σ,σ ′

[ψ̄σ (p + q, o1)ψσ (p, o2)][ψ̄σ ′ (k, o4)ψσ ′ (k + q, o3)]. (36)

Taking into account the relation∑
σ,σ ′

[ψ̄σ (p1, o1)ψ̄σ ′ (p2, o2)][ψσ ′ (p4, o4)ψσ (p3, o3)]

= 1

2

{[∑
σ

σ ψ̄σ (p1, o1)ψ̄−σ (p2, o2)

][∑
σ ′

σ ′ψ−σ ′ (p4, o4)ψσ ′ (p3, o3)

]
+

[
−
∑

σ

σ ψ̄σ (p1, o1)ψ̄σ (p2, o2)

]

×
[
−
∑
σ ′

σ ′ψσ ′ (p4, o4)ψσ ′ (p3, o3)

]
+

[
i
∑

σ

ψ̄σ (p1, o1)ψ̄σ (p2, o2)

][
−i

∑
σ ′

ψσ ′ (p4, o4)ψσ ′ (p3, o3)

]

+
[∑

σ

ψ̄σ (p1, o1)ψ̄−σ (p2, o2)

][∑
σ ′

ψ−σ ′ (p4, o4)ψσ ′ (p3, o3)

]}
,

we can decompose �pp into the spin-singlet �sSC and the spin-triplet �tSC parts

�pp[ψ, ψ̄] = �sSC[ψ, ψ̄] + �tSC[ψ, ψ̄], (37)

�sSC[ψ, ψ̄] ≡ −1

2

1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·p(−P�
o1o2m,o3o4n(q)

)
eiRn·k

×
[∑

σ

σψ−σ (−p, o2)ψσ (p + q, o1)

]∗[∑
σ ′

σ ′ψ−σ ′ (−k, o4)ψσ ′ (k + q, o3)

]
, (38)

�tSC[ψ, ψ̄] ≡ −1

2

1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·p(−P�
o1o2m,o3o4n(q)

)
eiRn·k

×
{[

−
∑

σ

σψσ (−p, o2)ψσ (p + q, o1)

]∗[
−
∑
σ ′

σ ′ψσ ′ (−k, o4)ψσ ′ (k + q, o3)

]
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+
[
−i

∑
σ

ψσ (−p, o2)ψσ (p + q, o1)

]∗[
−i

∑
σ ′

ψσ ′ (−k, o4)ψσ ′ (k + q, o3)

]

+
[∑

σ

ψ−σ (−p, o2)ψσ (p + q, o1)

]∗[∑
σ ′

ψ−σ ′ (−k, o4)ψσ ′ (k + q, o3)

]}
. (39)

In addition, by using the relation∑
σ,σ ′

[ψ̄σ (p + q, o1)ψσ ′ (p, o2)][ψ̄σ ′ (k, o4)ψσ (k + q, o3)]

= 1

2

[∑
σ

ψ̄σ (p + q, o1)ψσ (p, o2)

][∑
σ ′

ψ̄σ ′ (k, o4)ψσ ′ (k + q, o3)

]

+ 1

2

⎡
⎣∑

σ,σ ′
ψ̄σ (p + q, o1)�σσσ ′ψσ ′ (p, o2)

⎤
⎦ ·

⎡
⎣∑

s,s′
ψ̄s(k, o4)�σss′ψs′ (k + q, o3)

⎤
⎦,

we can modify Eq. (35) as

�ph,cr[ψ, ψ̄] = − 1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·p 1

2
C�

o1o2m,o3o4n(q)eiRn·k

×
⎧⎨
⎩
⎡
⎣∑

σ,σ ′
ψ̄σ (p + q, o1)�σσσ ′ψσ ′ (p, o2)

⎤
⎦ ·

⎡
⎣∑

s,s′
ψ̄s(k, o4)�σss′ψs′ (k + q, o3)

⎤
⎦

+
[∑

σ

ψ̄σ (p + q, o1)ψσ (p, o2)

][∑
σ ′

ψ̄σ ′ (k, o4)ψσ ′ (k + q, o3)

]}
. (40)

Substituting Eqs. (36) to (40) into Eq. (32), we obtain the following representation for ��:

��[ψ, ψ̄] = �(0)[ψ, ψ̄] + �sSC[ψ, ψ̄] + �tSC[ψ, ψ̄] + �SPN[ψ, ψ̄] + �CHG[ψ, ψ̄], (41)

with �(0), �sSC, and �tSC defined in Eqs. (33), (38), and (39), respectively, and with �SPN and �SPN defined as

�SPN[ψ, ψ̄] = −1

2

1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·pC�
o1o2m,o3o4n(q)eiRn·k

×
⎡
⎣∑

σ,σ ′
ψ̄σ (p, o2)�σσσ ′ψσ ′ (p + q, o1)

⎤
⎦

∗

·
⎡
⎣∑

s,s′
ψ̄s(k, o4)�σss′ψs′ (k + q, o3)

⎤
⎦, (42)

�CHG[ψ, ψ̄] = −1

2

1

2Nβ h̄2

∑
o1,··· ,o4

∑
q,p,k

∑
m,n

e−iRm·pW �
o1o2m,o3o4n(q)eiRn·k

×
[∑

σ

ψ̄σ (p, o2)ψσ (p + q, o1)

]∗[∑
σ ′

ψ̄σ ′ (k, o4)ψσ ′ (k + q, o3)

]
. (43)

In the above equation, W �(q) = C�(q) − 2D�(q) is the bosonic propagator in the charge channel. It is easy to verify that the
flow equation (24) can be rewritten as

d[−P�(q)]

d�
= [−V P(�)(q)]

d[−χpp(�)(q)]

d�
[−V P(�)(q)],

dC�(q)

d�
= V C(�)(q)

dχph(�)(q)

d�
V C(�)(q),

dW �(q)

d�
= V W(�)(q)

dχph(�)(q)

d�
V W(�)(q), (44)

where W �(q) and V W(�)(q) are defined as

W �(q) ≡ C�(q) − 2D�(q), V W(�)(q) ≡ V C(�)(q) − 2V D(�)(q). (45)
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III. TUFRG + MF APPROACH

A. TUFRG flow and RPA equations

To access the symmetry-broken phases, we follow the idea
of Wang, Eberlein, and Metzner [33], where the FRG flow of
the vertex is exactly taken into account above the divergence
scale (� � �D), while the contributions from the fluctua-
tion channels are discarded at lower-energy scale (� < �D).
Namely, we compute the bosonic propagators by integrating
the TUFRG flow equation (44) at high scale � � �D, but at
low scale � < �D, we employ the following approximation
for the projection matrices:

V P(�) = V P,(0) + P� + V P←C(�) + V P←D(�) ≈ P�,

V C(�) = V C,(0) + V C←P(�) + C� + V C←D(�) ≈ C�,

V D(�) = V D,(0) + V D←P(�) + V D←C(�) + D� ≈ D�,

at � < �D. (46)

This approximation is justified by the fact that, in the
symmetry-broken regime, we focus only on the divergent
parts of the effective interaction, and they are captured sat-
isfactorily by Eq. (46). Generally speaking, since the bare
interaction is moderate, the initial projections, V P,(0),V C,(0),
and V D,(0) are not divergent. Moreover, the crossed contribu-
tions like, e.g., V C←P(�) and V D←P(�) do not have sharp
peaks that are necessary for developing some orders, even
though P� has a peak. Under the approximation of Eq. (46),
the flow equation (44) becomes

d[−P�(q)]

d�
≈ [−P�(q)]

d[−χpp(�)(q)]

d�
[−P�(q)],

dC�(q)

d�
≈ C�(q)

dχph(�)(q)

d�
C�(q),

dW �(q)

d�
≈ W �(q)

dχph(�)(q)

d�
W �(q),

at � < �D, (47)

which has an exact solution

[−P�(q)]−1 − [−P�D (q)]−1 = −χpp(�D )(q) + χpp(�)(q),

[C�(q)]−1 − [C�D (q)]−1 = χph(�D )(q) − χph(�)(q),

[W �(q)]−1 − [W �D (q)]−1 = χph(�D )(q) − χph(�)(q),

at � < �D. (48)

Now we introduce the irreducible bosonic propagators,
P̃, C̃, and W̃ , defined by

[−P̃(q)]−1 ≡ [−P�D (q)]−1 − χpp(�D )(q),

[C̃(q)]−1 ≡ [C�D (q)]−1 + χph(�D )(q),

[W̃ (q)]−1 ≡ [W �D (q)]−1 + χph(�D )(q)

= [C�D (q) − 2D�D (q)]−1 + χph(�D )(q). (49)

Then Eq. (48) becomes the solution of the RPA matrix equa-
tion, which reads as

[−P�(q)]−1 = [−P̃(q)]−1 + χpp(�)(q),

[C�(q)]−1 = [C̃(q)]−1 − χph(�)(q),

[W �(q)]−1 = [W̃ (q)]−1 − χph(�)(q),

at � < �D. (50)

Thus, in our approximation, where at high scale � � �D the
TUFRG is utilized and in the divergent regime (� < �D) the
effects of the fluctuation channels are completely neglected,
the bosonic propagators (at � < �D) can also be obtained
purely by applying the RPA starting from the irreducible
bosonic propagators.

B. Singular modes of bosonic propagators

The final purpose of the present paper is to derive the
MF equation based on the irreducible singular modes. These
modes are obtained by a linear combination of the singular
modes of the bosonic propagators. Therefore, in this sub-
section, we first introduce the singular modes |φX,α (Q)〉,
and then, by using it, represent in detail the effective action
��D , the irreducible bosonic propagators X̃ (Q), and the ir-
reducible singular modes |ϕX,α (Q)〉. After that, we present
the significant and universal symmetry conditions satisfied by
|ϕX,α (Q)〉, which could simplify many of subsequent deriva-
tions.

Since the bosonic propagators are Hermitian matrices, they
can be decomposed in terms of their eigenmodes

−P�
o1o2m,o3o4n(q) =

∑
γ

λP,γ (q)φP,γ
o1o2m(q)

[
φP,γ

o3o4n(q)
]∗

,

C�
o1o2m,o3o4n(q) =

∑
γ

λC,γ (q)φC,γ
o1o2m(q)

[
φC,γ

o3o4n(q)
]∗

,

W �
o1o2m,o3o4n(q) =

∑
γ

λW,γ (q)φW,γ
o1o2m(q)

[
φW,γ

o3o4n(q)
]∗

.

At the divergence scale, some propagators have strong di-
vergence at particular transfer momenta Qi and they can
be approximated by the expansions in terms of several sin-
gular eigenmodes associated with dominant positive [57]
eigenvalues

−P�D
o1o2m,o3o4n

(
QP

i

) ≈
MP,i∑
α=1

λP,α
(
QP

i

)
φP,α

o1o2m

(
QP

i

)[
φP,α

o3o4n

(
QP

i

)]∗
,

C�D
o1o2m,o3o4n

(
QC

i

) ≈
MC,i∑
α=1

λC,α
(
QC

i

)
φC,α

o1o2m

(
QC

i

)[
φC,α

o3o4n

(
QC

i

)]∗
,

W �D
o1o2m,o3o4n

(
QW

i

) ≈
MW,i∑
α=1

λW,α
(
QW

i

)
φW,α

o1o2m

(
QW

i

)[
φW,α

o3o4n

(
QW

i

)]∗
.

(51)

Here, e.g., λP,α (QP
i ) is the αth largest positive eigenvalue

of the matrix −P�D (QP
i ), and φP,α

o1o2m(QP
i ) is an element of

the corresponding orthonormal eigenvector (singular mode).
Hence, for numerical implementation of the MF theory, we
will retain only the divergent parts and take the following
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approximation for ��D :

��D [ψ, ψ̄] ≈ �sSC[ψ, ψ̄] + �tSC[ψ, ψ̄] + �SPN[ψ, ψ̄] + �CHG[ψ, ψ̄],

�sSC[ψ, ψ̄] ≈ −1

2

1

2Nβ h̄2

NP∑
i=1

MP,i∑
α=1

λP,α
(
QP

i

)∑
ω

[
AsSC

α

(
QP

i , ω
)]∗

AsSC
α

(
QP

i , ω
)
,

�tSC[ψ, ψ̄] ≈ −1

2

1

2Nβ h̄2

NP∑
i=1

MP,i∑
α=1

λP,α
(
QP

i

)∑
ω

[ �AtSC
α

(
QP

i , ω
)]∗ · �AtSC

α

(
QP

i , ω
)
, (52)

�SPN[ψ, ψ̄] ≈ −1

2

1

2Nβ h̄2

NC∑
i=1

MC,i∑
α=1

λC,α
(
QC

i

)∑
ω

[ �ASPN
α (QC

i , ω)
]∗ · �ASPN

α (QC
i , ω),

�CHG[ψ, ψ̄] ≈ −1

2

1

2Nβ h̄2

NW∑
i=1

MW,i∑
α=1

λW,α
(
QW

i

)∑
ω

[
ACHG

α

(
QW

i , ω
)]∗

ACHG
α

(
QW

i , ω
)
,

with the fermion bilinear in the X-channel, AX
α (X ∈ {sSC, tSC, SPN, CHG}), defined as

AsSC
α

(
QP

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
φP,α

oo′m

(
QP

i

)]∗
eiRm·p ∑

σ

σψ−σ (−p,−ωp, o′)ψσ (p + QP
i , ωp + ω, o),

�AtSC
α

(
QP

i , ω
) ≡ (

AtSC
α,x

(
QP

i , ω
)
, AtSC

α,y

(
QP

i , ω
)
, AtSC

α,z

(
QP

i , ω
))

≡
∑
p,ωp

∑
o,o′,m

[
φP,α

oo′m

(
QP

i

)]∗
eiRm·p

(
−
∑

σ

σψσ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
)

− i
∑

σ

ψσ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
)∑

σ

ψ−σ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
))

,

�ASPN
α

(
QC

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
φC,α

oo′m

(
QC

i

)]∗
eiRm·p ∑

σ,σ ′
ψ̄σ (p, ωp, o′)�σσσ ′ψσ ′ (p + QC

i , ωp + ω, o),

ACHG
α

(
QW

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
φW,α

oo′m

(
QW

i

)]∗
eiRm·p ∑

σ

ψ̄σ (p, ωp, o′)ψσ (p + QW
i , ωp + ω, o). (53)

One can rewrite briefly the bosonic propagators in Eq. (51) by introducing the notation |φα〉〈φβ | whose elements are defined as
(|φα〉〈φβ |)o1o2m,o3o4n ≡ φα

o1o2m(φβ
o3o4n)∗,

−P�D
(
QP

i

) =
∑

α

λP,α
(
QP

i

)∣∣φP,α
(
QP

i

)〉〈
φP,α

(
QP

i

)∣∣,
C�D

(
QC

i

) =
∑

α

λC,α
(
QC

i

)∣∣φC,α
(
QC

i

)〉〈
φC,α

(
QC

i

)∣∣,
W �D

(
QW

i

) =
∑

α

λW,α
(
QW

i

)∣∣φW,α
(
QW

i

)〉〈
φW,α

(
QW

i

)∣∣.
(54)

Inserting Eq. (54) into Eq. (49), we can derive, e.g., the irreducible bosonic propagator in the pairing channel

[−P̃
(
QP

i

)] =
√

−P�D
(
QP

i

)[
1 +

√
−P�D

(
QP

i

)(−χpp(�D )
(
QP

i

))√−P�D
(
QP

i

)]−1
√

−P�D
(
QP

i

)
=

(∑
α

√
λP,α

(
QP

i

)∣∣φP,α
(
QP

i

)〉〈
φP,α

(
QP

i

)∣∣)[1 +
√

−P�D
(
QP

i

)(−χpp(�D )(QP
i

))√−P�D
(
QP

i

)]−1

×
(∑

α′

√
λP,α′(QP

i

)∣∣φP,α′(
QP

i

)〉〈
φP,α′(

QP
i

)∣∣).

The above equation can be rewritten as[−P̃
(
QP

i

)] =
∑

α

∑
α′

Y P
αα′

(
QP

i

)∣∣φP,α
(
QP

i

)〉〈
φP,α′(

QP
i

)∣∣,
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with a MP,i × MP,i-matrix Y P(QP
i ), defined as

Y P
αα′

(
QP

i

) ≡
√

λP,α
(
QP

i

)√
λP,α′(QP

i

)〈
φP,α

(
QP

i

)∣∣[1 +
√

−P�D
(
QP

i

)(−χpp(�D )
(
QP

i

))√−P�D
(
QP

i

)]−1∣∣φP,α′(
QP

i

)〉
.

The inverse of Y P(QP
i ) is represented as

[
Y P

(
QP

i

)−1]
αα′ = 1√

λP,α
(
QP

i

)√
λP,α′(QP

i

)(δαα′ +
√

λP,α
(
QP

i

)√
λP,α′(QP

i

)
ZP

αα′
(
QP

i

))

=
(

1

λP,α
(
QP

i

)δαα′ + ZP
αα′

(
QP

i

))
,

where ZP
αα′ (QP

i ) is given by

ZP
αα′

(
QP

i

) ≡ 〈
φP,α

(
QP

i

)∣∣[−χpp(�D )
(
QP

i

)]∣∣φP,α′(
QP

i

)〉 =
∑

o1,o2,m

∑
o3,o4,n

[φP,α
o1o2m

(
QP

i

)
]∗[−χpp(�D )

o1o2m,o3o4n

(
QP

i

)
]φP,α

o3o4n

(
QP

i

)
.

Thus, we have

−P̃
(
QP

i

) =
∑

α

∑
α′

Y P
αα′

(
QP

i

)∣∣φP,α
(
QP

i

)〉〈
φP,α′(

QP
i

)∣∣,
[
Y P

(
QP

i

)−1]
αα′ ≡

(
1

λP,α
(
QP

i

)δαα′ + 〈
φP,α

(
QP

i

)∣∣[−χpp(�D )
(
QP

i

)]∣∣φP,α′(
QP

i

)〉)
. (55)

In a similar way, we can derive the expressions of the other two irreducible bosonic propagators

C̃
(
QC

i

) =
∑

α

∑
α′

Y C
αα′

(
QC

i

)∣∣φC,α
(
QC

i

)〉〈
φC,α′(

QC
i

)∣∣,
[
Y C

(
QC

i

)−1]
αα′ ≡

(
1

λC,α
(
QC

i

)δαα′ + 〈
φC,α

(
QC

i

)∣∣χph(�D )
(
QC

i

)∣∣φC,α′(
QC

i

)〉)
, (56)

W̃
(
QW

i

) =
∑

α

∑
α′

Y W
αα′

(
QW

i

)∣∣φW,α
(
QW

i

)〉〈
φW,α′(

QW
i

)∣∣,
[
Y W

(
QW

i

)−1]
αα′ ≡

(
1

λW,α
(
QW

i

)δαα′ + 〈
φW,α

(
QW

i

)∣∣χph(�D )
(
QW

i

)∣∣φW,α′(
QW

i

)〉)
. (57)

In Eqs. (55) to (57), the matrices Y X(QX
i ) can be diagonalized as

[
Y X(QX

i

)−1]
αα′ =

MX,i∑
β=1

1

�X,β
(
QX

i

)SX,β
α

(
QX

i

)[
SX,β

α′
(
QX

i

)]∗
with X ∈ {P,C,W }. (58)

Here �X,β (QX
i ) is the irreducible coupling constant for the βth mode in the X-channel, and SX,β (QX

i ) =
(SX,β

1 (QX
i ), SX,β

2 (QX
i ), . . . , SX,β

MX,i
(QX

i )) is its corresponding orthonormal eigenvector. One can rewrite Eqs. (55) to (57) as

−P̃
(
QP

i

) =
MP,i∑
α=1

�P,α
(
QP

i

)∣∣ϕP,α
(
QP

i

)〉〈
ϕP,α

(
QP

i

)∣∣,

C̃
(
QC

i

) =
MC,i∑
α=1

�C,α
(
QC

i

)∣∣ϕC,α
(
QC

i

)〉〈
ϕC,α

(
QC

i

)∣∣,

W̃
(
QW

i

) =
MW,i∑
α=1

�W,α
(
QW

i

)∣∣ϕW,α
(
QW

i

)〉〈
ϕW,α

(
QW

i

)∣∣,

(59)

with the irreducible singular modes

∣∣ϕX,α
(
QX

i

)〉 ≡
MX,i∑
β=1

SX,α
β

(
QX

i

)∣∣φX,β
(
QX

i

)〉
, or ϕX,α

oo′m

(
QX

i

) ≡
MX,i∑
β=1

SX,α
β

(
QX

i

)
φ

X,β

oo′m

(
QX

i

)
. (60)
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Now we consider the universal symmetry relations for the irreducible singular modes. The RAS relation (31) should also be
respected by the irreducible bosonic propagators

P̃o1o2m,o3o4n(Q) = e−iRm·QP̃o2o1m̄,o4o3n̄(Q)eiRn·Q, (61)

C̃o1o2m,o3o4n(−Q) = eiRm·Q[C̃o2o1m̄,o4o3n̄(Q)
]∗

e−iRn·Q,

W̃o1o2m,o3o4n(−Q) = eiRm·Q[W̃o2o1m̄,o4o3n̄(Q)
]∗

e−iRn·Q. (62)

From Eq. (61) one can see that for any eigenvector |ϕP,α (Q)〉 of the matrix P̃(Q), its unitary transformation

T̂ pp : |ϕP,α (Q)〉 → |ϕ̃P,α (Q)〉; ϕ̃P,α
oo′m(Q) ≡ ϕP,α

o′om̄(Q)e−iRm·Q, (63)

gives also an eigenvector |ϕ̃P,α (Q)〉 of P̃(Q), associated with the same eigenvalue. It means that the nondegenerate eigenvector
|ϕP,α (Q)〉 should also be an eigenvector of the transformation T̂ pp. The relation (T̂ pp)2 = 1 gives

T̂ pp|ϕP,α (Q)〉 = ±|ϕP,α (Q)〉, or in more detail,

ϕP,α
oo′m(Q) = ±ϕP,α

o′om̄(Q)e−iRm·Q. (64)

For the degenerate eigenvectors, one can make new eigenvectors, which satisfy the above condition, by a suitable linear
combination of the original vectors.

Similarly, it can be seen from Eq. (62) that, for any eigenvector |ϕX,α (Q)〉 of the matrix X̃ (Q) (X ∈ {C, W}) with the
eigenvalue �X,α (Q), its antiunitary transformation

T̂ ph : |ϕX,α (Q)〉 → |ϕ̃X,α (−Q)〉; ϕ̃X,α
oo′m(−Q) ≡ [

ϕX,α
o′om̄(Q)

]∗
eiRm·Q, (65)

presents an eigenvector |ϕ̃X,α (−Q)〉 of X̃ (−Q) with the same eigenvalue �X,α (Q). So, in the case of Q /∈ {G/2} ({G} is a group
of all reciprocal vectors), we can take the eigenvectors of X̃ (−Q), using the ones of X̃ (Q), by the relation

|ϕX,α (−Q)〉 = T̂ ph|ϕX,α (Q)〉, or in more detail,

ϕX,α
oo′m(−Q) = [

ϕX,α
o′om̄(Q)

]∗
eiRm·Q, for Q /∈ {G/2}. (66)

For Q ∈ {G/2}, the wave vector Q is physically equivalent to −Q. In this case, we can construct, by multiplying some phase
factors and/or taking suitable linear combinations of degenerate eigenvectors, a new set of eigenvectors of X̃ (Q) that respects
the following condition:

T̂ ph|ϕX,α (Q)〉 = |ϕX,α (Q)〉, or ϕX,α
oo′m(Q) = [

ϕX,α
o′om̄(Q)

]∗
eiRm·Q, for Q ∈ {G/2}. (67)

The constraints of Eqs. (64), (66), and (67) serve as necessary conditions satisfied by the irreducible singular modes. These
constraints should also be respected by the singular modes |φX,α (Q)〉.

C. Irreducible action as an input for MF treatment

In this paper, we derive the MF equation, based on the saddle-point approximation in the field-theoretical framework. This
needs a specific form of the input action. Here we present a detailed expression of the irreducible action. Then, we discuss the
relation between the RPA, the MF theory, and the saddle-point approximation. Specifically, we focus on their equivalence in
the critical conditions. Finally, on the base of it, we justify our novel TUFRG + MF approach, namely, we explain why the
irreducible action should be the interaction part of the input action in our MF theory.

The irreducible bosonic propagators in Eq. (59) have a structure similar to that of the bosonic propagators in Eq. (54), and
they are thus associated with the following irreducible action:

�̃[ψ, ψ̄] = �̃sSC[ψ, ψ̄] + �̃tSC[ψ, ψ̄] + �̃SPN[ψ, ψ̄] + �̃CHG[ψ, ψ̄],

�̃sSC[ψ, ψ̄] ≡ −1

2

1

2Nβ h̄2

NP∑
i=1

MP,i∑
α=1

�P,α
(
QP

i

)∑
ω

[
OsSC

α

(
QP

i , ω
)]∗

OsSC
α

(
QP

i , ω
)
,

�̃tSC[ψ, ψ̄] ≡ −1

2

1

2Nβ h̄2

NP∑
i=1

MP,i∑
α=1

�P,α
(
QP

i

)∑
ω

[ �OtSC
α

(
QP

i , ω
)]∗ · �OtSC

α

(
QP

i , ω
)
, (68)

�̃SPN[ψ, ψ̄] ≡ −1

2

1

2Nβ h̄2

NC∑
i=1

MC,i∑
α=1

�C,α
(
QC

i

)∑
ω

[ �OSPN
α

(
QC

i , ω
)]∗ · �OSPN

α

(
QC

i , ω
)
,

�̃CHG[ψ, ψ̄] ≡ −1

2

1

2Nβ h̄2

NW∑
i=1

MW,i∑
α=1

�W,α
(
QW

i

)∑
ω

[
OCHG

α

(
QW

i , ω
)]∗

OCHG
α

(
QW

i , ω
)
.
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Here the fermion bilinear in the X-channel, OX
α (X ∈ {sSC, tSC, SPN, CHG}) is defined by

OsSC
α

(
QP

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
ϕP,α

oo′m

(
QP

i

)]∗
eiRm·p ∑

σ

σψ−σ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
)
,

�OtSC
α

(
QP

i , ω
) = (

OtSC
α,x

(
QP

i , ω
)
, OtSC

α,y

(
QP

i , ω
)
, OtSC

α,z

(
QP

i , ω
))

≡
∑
p,ωp

∑
o,o′,m

[ϕP,α
oo′m

(
QP

i

)
]∗eiRm·p

(
−
∑

σ

σψσ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
)
,

− i
∑

σ

ψσ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
)
,
∑

σ

ψ−σ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp + ω, o
))

,

�OSPN
α

(
QC

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
ϕC,α

oo′m

(
QC

i

)]∗
eiRm·p ∑

σ,σ ′
ψ̄σ (p, ωp, o′)�σσσ ′ψσ ′

(
p + QC

i , ωp + ω, o
)
,

OCHG
α

(
QW

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
ϕW,α

oo′m

(
QW

i

)]∗
eiRm·p ∑

σ

ψ̄σ (p, ωp, o′)ψσ

(
p + QW

i , ωp + ω, o
)
. (69)

It is easy to verify that the constraint of Eq. (64) yields the following relation:

OsSC
α

(
QP

i , ω
) = 0, if ϕP,α

oo′m

(
QP

i

) = −ϕP,α
o′om̄

(
QP

i

)
e−iRm·QP

i ,

�OtSC
α

(
QP

i , ω
) = (0, 0, 0), if ϕP,α

oo′m

(
QP

i

) = +ϕP,α
o′om̄

(
QP

i

)
e−iRm·QP

i . (70)

This means that the irreducible singular modes in the pairing
channel are divided into two groups, namely, the spin-
singlet [ϕsSC,α

oo′m (QP
i ) = +e−iRm·QP

i ϕsSC,α
o′om̄ (QP

i )] and spin-triplet
[ϕtSC,α

oo′m (QP
i ) = −e−iRm ·QP

i ϕtSC,α
o′om̄ (QP

i )] modes. Also, starting
from Eqs. (66) and (67), one can easily derive

�OSPN
α

(
QC

i , ω
) = [ �OSPN

α

( − QC
i ,−ω

)]∗
,

OCHG
α

(
QW

i , ω
) = [

OCHG
α

( − QW
i ,−ω

)]∗
. (71)

Let us consider the relationship between the RPA, the MF
theory, and the so-called saddle-point approximation in the
path-integral formalism. The RPA starting from �(0)[ψ, ψ̄]
yields the critical condition equivalent to the MF theory
(see Appendix A). Concretely speaking, one can represent
�(0)[ψ, ψ̄], by using V P,(0), in the form of the pairing chan-
nel, and then use the ladder approximation (RPA in pairing
channel) to obtain V P,RPA (corresponding to �P,RPA[ψ, ψ̄]).
If the resulting V P,RPA(Q) has any eigenvector with infinite
eigenvalue at some particular Q, the system is said to be at
critical point between the disordered (metal) and ordered (su-
perconductor) phases. This is the critical condition in the RPA.

In the MF theory, one can introduce the mean-field de-
composition of the interaction Hamiltonian (corresponding
to �(0)[ψ, ψ̄]) in the pairing channel, and calculate the su-
perconducting order parameter (energy gap) by applying the
self-consistency condition. If the order parameter starts being
different from zero (the critical condition in the MF theory),
the system can be considered to have a transition from metallic
to superconducting phase. As will be discussed in Ap-
pendix A, the RPA and the MF theory have identical critical
conditions, implying a sort of the equivalence between them.

We can also obtain the result identical to the MF theory
within the path-integral formalism, starting from the interac-
tion part �(0)[ψ, ψ̄] of the action. Namely, introducing, via
a Hubbard-Stratonovich transformation, the auxiliary variable

associated with superconducting order parameters, and em-
ploying the saddle-point approximation, one can arrive at the
result that is completely identical to the MF approximation.
In this sense, the above three methods can be considered
to be physically equivalent. However, the MF theory has an
advantage, when compared with the RPA, that it can address
the ordered phases of the system.

FIG. 1. Relationship between the conventional MF theory, the
simple FRG + MF approach, and our TUFRG + MF approach. A
pair of opposite arrows indicates the agreement between their critical
conditions, while an equal sign means the physical equivalence.
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Now we return to the irreducible action �̃[ψ, ψ̄] pre-
sented in Eq. (68). In the multichannel RPA, it evolves into
��D of Eq. (52) at the divergence scale. Namely, the pair-
ing part of the action changes from �̃sSC + �̃tSC of Eq. (68)
to �sSC + �tSC of Eq. (52) in the RPA flow of the pairing
channel, while the spin and charge parts transform into �SPN

and �CHG, starting from �̃SPN and �̃CHG, in the RPA flows
of the spin and charge channels, respectively. Moreover, in
our approach (using the TUFRG at � � �D, while using
the RPA at � < �D), the resulting low-energy-scale action
��<�D is exactly the same as the one that is obtained by the
multichannel RPA starting from �̃ given in Eq. (68). Taking
into account the equivalence between the RPA and MF theory,
we arrive at the conclusion that it would be reasonable to
choose the interaction Hamiltonian corresponding to �̃[ψ, ψ̄]
as an input for our MF calculation.

Our TUFRG + MF approach is advantageous when com-
pared with the conventional MF theory and the simple FRG
+ MF approach. As a biased method, the MF theory neglects
the interplay between different channels and emphasize a par-
ticular channel. When it is applied to the case of coexisting

orders, the bare interaction should be split into the parts of
multiple channels, which leads to the Fierz ambiguity in the
multichannel MF calculation and may cause a certain bias.
In the simple FRG + MF scheme, the resulting effective
interaction at the divergence scale, which was obtained by the
FRG flow, is directly inserted into the MF calculation. This
approach has a drawback that it counts doubly the contribu-
tions from high-energy modes and generally overemphasizes
the ordering tendencies. The relationship between these three
methods is schematically shown in Fig. 1.

D. Hubbard-Stratonovich transformation and
saddle-point approximation

In the following, we will derive the MF equation for our
TUFRG + MF approach by resorting to the saddle-point
approximation of statistical field theory. Following the discus-
sion in the previous subsection, we use �̃, instead of �(0) or
��D , as the interaction part of the action. Therefore, in our
TUFRG + MF scheme, we consider the partition function
represented as follows:

� =
∫

Dψ̄ Dψ exp{−S0[ψ, ψ̄] − �̃[ψ, ψ̄]} =
∫

Dψ̄ Dψ exp{−S0[ψ, ψ̄]}

× exp{−�̃sSC[ψ, ψ̄]} × exp{−�̃tSC[ψ, ψ̄]} × exp{−�̃SPN[ψ, ψ̄]} × exp{−�̃CHG[ψ, ψ̄]}, (72)

with S0 and �̃ given in Eqs. (3) and (68), respectively. We can use the Hubbard-Stratonovich transformation to decompose the
fermionic quartic terms in �̃ into the fermion bilinears.

For example, let us consider the term containing �̃sSC in Eq. (72). It can be expressed in a factorized form

exp{−�̃sSC[ψ, ψ̄]} =
NP∏
i=1

MsSC,i∏
α=1

∏
ω

exp

{
1

2

1

2Nβ h̄2 �sSC,α
(
QP

i

)[
OsSC

α

(
QP

i , ω
)]∗

OsSC
α

(
QP

i , ω
)}

. (73)

We can perform the Hubbard-Stratonovich transformation for each factor of Eq. (73) in the following way:

exp

{
1

2

1

2Nβ h̄2 �sSC,α
(
QP

i

)[
OsSC

α

(
QP

i , ω
)]∗

OsSC
α

(
QP

i , ω
)}

= exp
{
η
[
OsSC

α

(
QP

i , ω
)]∗

OsSC
α

(
QP

i , ω
)}∫ dδ∗ ∫ dδ exp

{
− 1

η

[
δ
h̄ − ηOsSC

α

(
QP

i , ω
)]∗ [ δ

h̄ − ηOsSC
α

(
QP

i , ω
)]}

∫
dδ∗ ∫ dδ exp

{− 1
η

(
δ
h̄

)∗( δ
h̄

)}

=
∫

dδ∗ ∫ dδ exp
{
− 1

ηh̄2 δ
∗δ + δ∗

h̄ OsSC
α

(
QP

i , ω
) + δ

h̄

[
OsSC

α

(
QP

i , ω
)]∗}

∫
dδ∗ ∫ dδ exp

{− 1
ηh̄2 δ∗δ

}

= c
∫

dδ∗
∫

dδ exp

{
− 4Nβ

�sSC,α
(
QP

i

)δ∗δ + δ∗

h̄
OsSC

α

(
QP

i , ω
) + δ

h̄

[
OsSC

α

(
QP

i , ω
)]∗}

,

with a complex variable δ, a real constant c, and η = �sSC,α(QP
i )

4Nβ h̄2 . Inserting the above equation into Eq. (73), we obtain the
following relation:

exp{−�̃sSC[ψ, ψ̄]} = CsSC

∫
Dδ∗

sSC

∫
DδsSC exp

{−SsSC
HS

[
ψ, ψ̄ ; δ∗

sSC, δsSC
]}

,

SsSC
HS [ψ, ψ̄ ; δ∗

sSC, δsSC] ≡
NP∑
i=1

MsSC,i∑
α=1

∑
ω

{
4Nβ

�sSC,α
(
QP

i

) [δsSC
α

(
QP

i , ω
)]∗

δsSC
α

(
QP

i , ω
)

− 1

h̄

[
δsSC
α

(
QP

i , ω
)]∗

OsSC
α

(
QP

i , ω
) − 1

h̄
δsSC
α

(
QP

i , ω
)[

OsSC
α

(
QP

i , ω
)]∗}

. (74)
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In a similar way, after a tedious calculation, we derive the following equations:

exp{−�̃tSC[ψ, ψ̄]} = CtSC

∫
D�δ∗

tSC

∫
D�δtSC exp

{−StSC
HS [ψ, ψ̄ ; �δ∗

tSC, �δtSC]
}
,

StSC
HS [ψ, ψ̄ ; �δ∗

tSC, �δtSC] ≡
NP∑
i=1

MtSC,i∑
α=1

∑
ω

{
4Nβ

�tSC,α
(
QP

i

) [�δtSC
α

(
QP

i , ω
)
]∗ · �δtSC

α

(
QP

i , ω
)

− 1

h̄

[�δtSC
α

(
QP

i , ω
)]∗ · �OtSC

α

(
QP

i , ω
) − 1

h̄
�δtSC
α

(
QP

i , ω
) · [ �OtSC

α

(
QP

i , ω
)]∗}

, (75)

exp{−�̃SPN[ψ, ψ̄]} = CSPN

∫
D�δ∗

SPN

∫
D�δSPN exp{−SSPN

HS [ψ, ψ̄ ; �δ∗
SPN, �δSPN]},

SSPN
HS [ψ, ψ̄ ; �δ∗

SPN, �δSPN] ≡
NC∑
i=1

MC,i∑
α=1

∑
ω

{
4Nβ

�C,α
(
QC

i

) [�δSPN
α

(
QC

i , ω
)]∗ · �δSPN

α

(
QC

i , ω
)

− 1

h̄

[�δSPN
α

(
QC

i , ω
)]∗ · �OSPN

α

(
QC

i , ω
) − 1

h̄
�δSPN
α

(
QC

i , ω
) · [ �OSPN

α

(
QC

i , ω
)]∗}

,

with a constraint �δSPN
α

(
QC

i , ω
) = [�δSPN

α

( − QC
i ,−ω

)]∗
, (76)

exp{−�̃CHG[ψ, ψ̄]} = CCHG

∫
Dδ∗

CHG

∫
DδCHG exp

{ − SCHG
HS [ψ, ψ̄ ; δ∗

CHG, δCHG]
}
,

SCHG
HS [ψ, ψ̄ ; δ∗

CHG, δCHG] ≡
NW∑
i=1

MW,i∑
α=1

∑
ω

{
4Nβ

�W,α
(
QW

i

) [δCHG
α

(
QW

i , ω
)]∗

δCHG
α

(
QW

i , ω
)

− 1

h̄

[
δCHG
α

(
QW

i , ω
)]∗

OCHG
α

(
QW

i , ω
) − 1

h̄
δCHG
α

(
QW

i , ω
)[

OCHG
α

(
QW

i , ω
)]∗}

,

with a constraint δCHG
α

(
QW

i , ω
) = [

δCHG
α

( − QW
i ,−ω

)]∗
. (77)

Near the critical points, the electronic instabilities are dominated by ω = 0 components of the auxiliary variables δX
α (Q, ω)

(for a detailed discussion, see pages 89–91 of Ref. [58]). Therefore, in what follows we will only consider these components
and eliminate the ω-dependence of δX

α (Q, ω) and OX
α (Q, ω), with implicit definition of δX

α (Q) ≡ δX
α (Q, ω = 0) and OX

α (Q) ≡
OX

α (Q, ω = 0).
Inserting Eqs. (74) to (77) into Eq. (72), we have

� = C
∫

D{δ∗}
∫

D{δ}
(∫

Dψ̄ Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {δ∗}, {δ}]}
)

= C
∫

D{δ∗}
∫

D{δ} exp{−β�HS[{δ∗}, {δ}]}, (78)

with a definition of

SHS[ψ, ψ̄ ; {δ∗}, {δ}] ≡ SsSC
HS [ψ, ψ̄ ; δ∗

sSC, δsSC] + StSC
HS [ψ, ψ̄ ; �δ∗

tSC, �δtSC]

+ SSPN
HS [ψ, ψ̄ ; �δ∗

SPN, �δSPN] + SCHG
HS [ψ, ψ̄ ; δ∗

CHG, δCHG], (79)

�HS[{δ∗}, {δ}] ≡ − 1

β
ln

(∫
Dψ̄ Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {δ∗}, {δ}]}

)
, (80)

and with an abbreviation {δ} ≡ (δsSC, �δtSC, �δSPN, δCHG). Equation (78) indicates that the probability of the auxiliary variables to
take the values (δsSC, �δtSC, �δSPN, δCHG) is proportional to e−β�HS[{δ∗},{δ}]. Therefore, the value of {δ} with the maximal provability
corresponds to the minimum of the Hubbard-Stratonovich thermodynamic potential �HS[{δ∗}, {δ}].

In the integration of Eq. (78), one usually employs the saddle-point approximation. Within this approximation the result
of the integration is approximated to be the maximal value of the integrand. Namely, the saddle-point approximation is
represented as

� ≈ exp{−β�HS[{�∗}, {�}]} =
∫

Dψ̄Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {�∗}, {�}]}. (81)
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Here the mean-field parameters {�} ≡ (�sSC, ��tSC, ��SPN,�CHG) are determined by the minimization of the effective thermo-
dynamic potential:

�HS[{�∗}, {�}] = min{�HS[{δ∗}, {δ}]}. (82)

Equation (81) implies that the interacting system in the saddle-point approximation turns into the noninteracting system in
the external field determined by the parameters {�}. Combining the minimization condition (82) and Eq. (80), we obtain the
following self-consistency condition:

�sSC
α

(
QP

i

) = �sSC,α
(
QP

i

)
4Nβ h̄

〈
OsSC

α

(
QP

i

)〉
�
, ��tSC

α

(
QP

i

) = �tSC,α
(
QP

i

)
4Nβ h̄

〈 �OtSC
α

(
QP

i

)〉
�
,

��SPN
α

(
QC

i

) = �C,α
(
QC

i

)
4Nβ h̄

〈 �OSPN
α

(
QC

i

)〉
�
, �CHG

α

(
QW

i

) = �W,α
(
QW

i

)
4Nβ h̄

〈
OCHG

α

(
QW

i

)〉
�
, (83)

with the mean value defined by

〈A〉� ≡
∫

Dψ̄ Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {�∗}, {�}]}A∫
Dψ̄ Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {�∗}, {�}]} . (84)

Thus, in the saddle-point approximation, the system is described by the approximate action:

SMF = S0[ψ, ψ̄] + SHS[ψ, ψ̄ ; {�∗}, {�}], (85)

with S0 and SHS, represented by Eqs. (3) and (79), respectively.
Now we return to the operator formalism. The action (85) is equivalent to the following mean-field Hamiltonian:

ĤMF = Ĥ0 + ĤsSC + ĤtSC + ĤSPN + ĤCHG, Ĥ0 =
∑
o,o′

∑
k,σ

ĉ†
koσ (H0

oo′ (k) − μδoo′ )ĉko′σ ,

ĤsSC =
NP∑
i=1

MsSC,i∑
α=1

(
4N

�sSC,α
(
QP

i

)[�sSC
α

(
QP

i

)]∗
�sSC

α

(
QP

i

) − [
�sSC

α

(
QP

i

)]∗
ÔsSC

α

(
QP

i

) − �sSC
α

(
QP

i

)[
ÔsSC

α

(
QP

i

)]†

)
,

ĤtSC =
NP∑
i=1

MtSC,i∑
α=1

(
4N

�tSC,α
(
QP

i

) [ ��tSC
α

(
QP

i

)]∗ · ��tSC
α

(
QP

i

) − [ ��tSC
α

(
QP

i

)]∗ · �̂OtSC
α

(
QP

i

) − ��tSC
α

(
QP

i

) · [ �̂OtSC
α

(
QP

i

)]†

)
,

ĤSPN =
NC∑
i=1

MC,i∑
α=1

(
4N

�C,α
(
QC

i

) [ ��SPN
α

(
QC

i , ω
)]∗ · ��SPN

α

(
QC

i , ω
) − [ ��SPN

α

(
QC

i

)]∗ · �̂OSPN
α

(
QC

i

) − ��SPN
α

(
QC

i

) · [ �̂OSPN
α

(
QC

i

)]†

)
,

ĤCHG =
NW∑
i=1

MW,i∑
α=1

(
4N

�W,α
(
QW

i

) [�CHG
α

(
QW

i

)]∗
�CHG

α

(
QW

i

) − [
�CHG

α

(
QW

i

)]∗[ �̂OCHG
α

(
QW

i

) − �CHG
α

(
QW

i

)[ �̂OCHG
α

(
QW

i

)]†

)
,

with constraints ��SPN
α

(
QC

i

) = [ ��SPN
α

( − QC
i

)]∗
,�CHG

α

(
QW

i

) = [
�CHG

α

( − QW
i

)]∗
.

(86)

Here the operators ÔX
α are expressed as

ÔsSC
α

(
QP

i

) =
∑

k

∑
o,o′,m

[
ϕP,α

oo′m

(
QP

i

)]∗
eiRm·k ∑

σ

σ ĉ−k,o′,−σ ĉk+QP
i ,o,σ ,

�̂OtSC
α

(
QP

i

) = (
ÔtSC

α,x

(
QP

i

)
, ÔtSC

α,y

(
QP

i

)
, ÔtSC

α,z

(
QP

i

))
=

∑
k

∑
o,o′,m

[
ϕP,α

oo′m

(
QP

i

)]∗
eiRm·k

(
−
∑

σ

σ ĉ−k,o′,σ ĉk+QP
i ,o,σ , − i

∑
σ

ĉ−k,o′,σ ĉk+QP
i ,o,σ ,

∑
σ

ĉ−k,o′,−σ ĉk+QP
i ,o,σ

)
,

�̂OSPN
α

(
QC

i

) =
∑

k

∑
o,o′,m

[
ϕC,α

oo′m

(
QC

i

)]∗
eiRm·k ∑

σ,σ ′
ĉ†

k,o′,σ �σσσ ′ ĉk+QC
i ,o,σ ′ ,

ÔCHG
α

(
QW

i

) =
∑

k

∑
o,o′,m

[
ϕW,α

oo′m

(
QW

i

)]∗
eiRm·k ∑

σ

ĉ†
k,o′,σ ĉk+QW

i ,o,σ , (87)

with the symmetry relation

�̂OSPN
α

( − QC
i

) = [ �̂OSPN
α

(
QC

i

)]†
, ÔCHG

α

( − QW
i

) = [
ÔCHG

α

(
QW

i

)]†
. (88)
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In addition, inserting the relations

1

β h̄

〈∑
ω

ψ̄ (α, ω)ψ (β, ω)

〉
�

= 〈ĉ†
α ĉβ〉MF,

1

β h̄

〈∑
ω

ψ (α, ω)ψ (β,−ω)

〉
�

= 〈ĉα ĉβ〉MF,

1

β h̄

〈∑
ω

ψ̄ (α, ω)ψ̄ (β,−ω)

〉
�

= 〈ĉ†
α ĉ†

β〉MF,

into Eq. (83), we have the self-consistency condition in the operator formalism

�sSC
α

(
QP

i

) = �sSC,α
(
QP

i

)
4N

〈
ÔsSC

α

(
QP

i

)〉
MF,

��tSC
α

(
QP

i

) = �tSC,α
(
QP

i

)
4N

〈 �̂OtSC
α

(
QP

i

)〉
MF,

��SPN
α

(
QC

i

) = �C,α
(
QC

i

)
4N

〈 �̂OSPN
α

(
QC

i

)〉
MF, �CHG

α

(
QW

i

) = �W,α
(
QW

i

)
4N

〈
ÔCHG

α

(
QW

i

)〉
MF. (89)

Here 〈Â〉MF is the mean value of the operator Â of the system
described by ĤMF, in the grand canonical ensemble.

If the total number of electrons in the system is taken to
be constant, the chemical potential μ of the MF Hamilto-
nian should be a function of the variables {δ}. In this case,
according to the knowledge of statistical mechanics, the mini-
mization condition of Eq. (82) translates into the minimization
of the free energy of the MF Hamiltonian (86). At the same
time, the self-consistency condition (89) will also coincide
with the minimization condition of the free energy. At zero
temperature, the free energy becomes the ground-state energy.
Therefore, the self-consistency condition is achieved by the
minimization of the ground-state energy of the MF Hamilto-
nian.

IV. COEXISTENCE PHASE OF CHIRAL SC
AND CHIRAL SDW

This section presents the first application of our TUFRG
+ MF approach to competing or coexisting orders. Actually,
our approach has already been applied, with poor elucidation
and derivation, to the simple case with a unique singular mode
in the spin channel [43]. A similar scheme has been used to
describe the SC phases in the Rashba-Hubbard model [48],
but it has not addressed competing orders in distinct channels.
Furthermore, its detailed derivation and reasonable validation
are not presented. A similar approach has also been utilized in
the context of the singular-mode FRG to determine the SC gap
of strontium ruthenate [59], but again without any derivation
and justification. In this section, we use our TUFRG + MF
approach to analyze competing chiral d-wave SC [60–63]
and chiral SDW [63–65] orders which have been predicted
to be possible in graphene near van Hove filling. In some
FRG studies [36,42], it was concluded that the chiral SDW
phase is generated right around van Hove filling, while the
chiral d-wave SC emerges slightly away from it. Here we
will focus our attention on the value of both order parameters,
�sSC

d1,2
(Q = 0) and ��SPN(Q = M1,2,3), as a function of doping.

In the following we will denote these parameters as �sSC
1,2 =

�sSC
d1,2

(Q = 0) and ��SPN(M1,2,3) = ��SPN(Q = M1,2,3).

Here we study the honeycomb lattice at zero temperature
that is doped close to van Hove filling. As mentioned above,
for the system at zero temperature, we determine the order
parameters by minimizing the ground-state energy of the MF
Hamiltonian, with respect to the order parameters. The hon-
eycomb lattice is described by the following Hubbard model:

Ĥ = Ĥ0 + Ĥint,

Ĥ0 = −t
∑

〈iA, jB〉,σ
(ĉ†

iAσ ĉ jBσ + H.c.)

− t ′ ∑
〈〈io, jo〉〉,o,σ

(ĉ†
ioσ ĉ joσ + H.c.) − μ

∑
i,o,σ

ĉ†
ioσ ĉioσ ,

Ĥint = U
∑
i,0

n̂io↑n̂io↓. (90)

Here t and t ′ are the hopping amplitudes between near-
est and next-nearest neighbors, μ is the chemical potential,
while 〈iA, jB〉 and 〈〈io, jo〉〉 denote nearest-neighbor and
next-nearest-neighbor bonds. The doping level is defined by
δ = ne − 1 with ne being the number of electrons per site.
The chemical potential and the doping level have the values
of μVH = t + 2t ′, δVH = 0.25 at van Hove filling. We set the
parameters as t = 2.8 eV, t ′ = 0.1 eV,U = 10.08 eV, which
were used in our previous work [42]. We investigate the
range of doping corresponding to ne = 1.25–1.29. Figure 2
shows the Brillouin zone (BZ) of the honeycomb lattice and
sampling points for transfer momenta within the irreducible
region of BZ.

The TUFRG calculation is performed until the maximum
absolute value of the elements of P�(q),C�(q), or W �(q)
exceeds a certain threshold value S = 10EBW (EBW is the band
width). This process is mostly time consuming. After that,
one obtains the singular modes of the bosonic propagators
and then extracts the irreducible singular modes from those.
This calculation is done quickly, so that this stage needs very
little computation time. Finally, the MF calculation is per-
formed. This process is in essence a minimization of the free
energy (ground-state energy at zero temperature) of the MF
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(a)                                                                      (b)
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M2M3

M2 M3

K

K

K'

Γ

KK'

K'

FIG. 2. (a) Brillouin zone and high-symmetry points of the hon-
eycomb lattice. The gray triangle is the irreducible region of the
Brillouin zone. (b) Mesh of sampling points for transfer momenta
within the irreducible region. Only the bosonic propagators with
these transfer momenta are numerically calculated at each step of
the TUFRG, while others are generated by using the point-group
symmetry relations [41,42].

Hamiltonian. It needs also much computation time. We show
in Table I the ratios of two computation times elapsed for the

TABLE I. The ratios of two computation times elapsed for the
MF and TUFRG calculations for several values of ne.

ne tMF/tTUFRG

1.25 0.126
1.26 0.721
1.27 0.407
1.28 0.264
1.29 0.263

MF (tMF) and the TUFRG (tTUFRG) calculations, for several
values of ne.

For the parameter sets considered in the present work, the
chiral d-wave SC and the chiral SDW constitute main ingre-
dients of the resulting phase diagram. Following the process
given in Sec. III B, the irreducible coupling constants and
singular modes are extracted from the bosonic propagators
in the pairing and spin channels that were obtained by the
TUFRG flow. Then we perform the MF calculation, with
these coupling constants and singular modes, following the
procedure described in Sec. III D. At this stage the system is
depicted by the following MF Hamiltonian:

ĤMF = Ĥ0 + ĤsSC + ĤSPN,

Ĥ0 =
∑
k,σ

{[−tF (k)]ĉ†
kAσ ĉkBσ + [−tF ∗(k)]ĉ†

kBσ ĉkAσ } +
∑
k,o,σ

[−t ′g(k) − μ]ĉ†
koσ ĉkoσ ,

ĤsSC =
∑

α=1,2

(
4N

�sSC

(
�sSC

α

)∗
�sSC

α −(
�sSC

α

)∗
ÔsSC

α − �sSC
α

(
ÔsSC

α

)†
)

=
∑

α=1,2

(
4N

�sSC

(
�sSC

α

)∗
�sSC

α −
∑

k

∑
o,o′,m

(
ϕsSC,α

oo′m

)∗
eiRm·k(�sSC

α

)∗ ∑
σ

σ ĉ−k,o′,−σ ĉk,o,σ

−
∑

k

∑
o,o′,m

ϕsSC,α
oo′m e−iRm·k �sSC

α

∑
σ

σ ĉ†
k,o,σ ĉ†

−k,o′,−σ

)
,

ĤSPN =
3∑

i=1

(
4N

�C
��SPN(Mi ) · ��SPN(Mi ) − 2 ��SPN(Mi ) · �̂OSPN(Mi)

)

=
3∑

i=1

(
4N

�C
��SPN(Mi ) · ��SPN(Mi ) − 2

∑
k

∑
o,o′,m

[
ϕC

oo′m(Mi)
]∗

eiRm·k ��SPN(Mi ) ·
∑
σ,σ ′

ĉ†
k,o′,σ �σσσ ′ ĉk+Mi,o,σ ′

)
. (91)

Here we use the relations, ��SPN(Q) = [ ��SPN(Q)]∗ and
�̂OSPN(Q) = [ �̂OSPN(Q)]†, valid for Q = M1,2,3 ∈ {G/2}. The
functions F (k) and g(k) are defined by

F (k) ≡ 1 + 2 cos

(
1

2
kxa

)
e−i

√
3

2 kya,

g(k) ≡ 2

[
cos(kxa) + 2 cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
. (92)

As an example, the irreducible singular modes in the
pairing channel for ne = 1.286 (δ = 0.286) and in the spin
channel for ne = 1.252 (δ = 0.252) are shown schematically
in Figs. 3 and 4. In Fig. 4, large circles centered at the
origin demonstrate that the resulting spin order is a kind
of SDW.

In the presence of this SDW, the unit cell gets enlarged,
while the BZ reduced. The BZ of the system is shown in
Fig. 5(a), compared with the BZ of the honeycomb lattice.
Moreover, due to the SC order, a pair of the states associated
with momenta k and −k are coupled with each other, and
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ϕ
AAm  vs  Rm ϕ

BBm  vs  Rm 

ϕ
ABm  vs  Rm ϕ

BAm  vs  Rm 

(a)

ϕ
AAm  vs  Rm ϕ

BBm  vs  Rm 

ϕ
ABm  vs  Rm ϕ

BAm  vs  Rm 

ϕ
oo'm

  vs  Rm
sSC,1 (b)ϕoo'm

  vs  Rm
sSC,2

FIG. 3. Values of the two-fold degenerate spin-singlet irreducible singular modes (a) ϕsSC,1
oo′m and (b) ϕsSC,2

oo′m for ne = 1.286 (δ = 0.286). The
red and blue circles indicate the positive and negative values, respectively, and the absolute values |ϕoo′m| are encoded by the radius of the
circles. The small dots denote the sites Rm having negligible ϕoo′m, while the empty sites are eliminated by the filtering process [42].

therefore, the region of independent momentum becomes half
of small BZ (HSBZ). The sampling momentum points in it,
employed in the MF calculation, are shown in Fig. 5(b).

One can express the Hamiltonian (91) in terms of
X̂k ≡ (Ĉk, Ĉk+M1 , Ĉk+M2 , Ĉk+M3 , Ĉ†

−k, Ĉ†
−k+M1

, Ĉ†
−k+M2

,

Ĉ†
−k+M3

)T with Ĉk ≡ (ĉk,A,↑, ĉk,A,↓, ĉk,B,↑, ĉk,B,↓). Diagonal-
izing it, we can obtain 32 eigenstates per momentum in the
HSBZ. From the eigenstates for all the sampling points, one
can calculate the ground-state energy EG as a function of

�sSC
1 ,�sSC

2 , ��SPN(M1), ��SPN(M2), and ��SPN(M3). Finally,
we can determine the order parameters by minimization of
EG. In our calculation the resulting order parameters have the
form of

�sSC
1 = �sSC,�sSC

2 = i�sSC,

��SPN(M1) = −�SPNez,

��SPN(M2) = −�SPNex,

��SPN(M3) = −�SPNey, (93)

ϕ
AAm  vs  Rm ϕ

BBm  vs  Rm 

ϕ
ABm  vs  Rm ϕ

BAm  vs  Rm 

ϕ
AAm  vs  Rm ϕ

BBm  vs  Rm 

ϕ
ABm  vs  Rm ϕ

BAm  vs  Rm 

ϕ
AAm  vs  Rm ϕ

BBm  vs  Rm 

ϕ
ABm  vs  Rm ϕ

BAm  vs  Rm 

(a) ϕoo'm
  vs  Rm

C  (M  )1 (b)ϕoo'm
  vs  Rm

C  (M  )2 (c) ϕoo'm
  vs  Rm

C  (M  )3

FIG. 4. Values of the irreducible singular modes in the spin channel (a) ϕC
oo′m(M1), (b) ϕC

oo′m(M2), and (c) ϕC
oo′m(M3) for ne = 1.252 (δ =

0.252). The red and blue circles, the radius of them, the small dots, and the empty sites have the same meanings as in Fig. 3.
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M1

M2M3

HSBZ

Γ(M  )0

(a)                                                                             (b)

Γ

FIG. 5. (a) Small BZ reduced by the spin order (small hexagon
surrounded by a red border) and the original BZ (large hexagon
with a gray border). The spin order couples a momentum in the
small BZ with the ones in three little hexagons above it, while the
superconducting order links the momenta in a half of the small BZ
(HSBZ) to the ones within another half region below it. (b) Sampling
points for the momenta in the HSBZ, used in the MF calculation. The
HSBZ has an area smaller by a factor of 8 than that of the original
BZ.

which indicate the chiral SC and the chiral SDW orders.
The order parameters �sSC and �SPN as a function of the

electron density are shown in Fig. 6. For comparison, we
calculated the order parameters using our TUFRG + MF
scheme, in two ways. In the first calculation we obtained
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ne
(b)

FIG. 6. Order parameters �sSC and �SPN as a function of ne

obtained by the TUFRG + MF calculations starting from the bosonic
propagators (a) at the divergence scale �D and (b) just before �D,
i.e., at � = �D + ��. Two plots are nearly identical, demonstrating
the robustness of the results of our TUFRG + MF scheme.

the irreducible bosonic propagators from the TUFRG result
of the bosonic propagators at the divergence scale �D, and
then plugged them into the MF calculation. In the second
calculation the irreducible bosonic propagators are extracted
from the TUFRG result just before entering the divergent
regime, namely, from the result at the scale slight larger than
�D. Comparative analysis of the plots in Figs. 6(a) and 6(b)
demonstrates the robustness of the results of our TUFRG +
MF scheme. The plots are characterized by weak and per-
sistent chiral SC order and strong, but suddenly disappearing
chiral SDW. These features are very similar to the amplitudes
of antiferromagnetic and SC gaps in the ground state of the
2D Hubbard model [33]. Near ne = 1.27, there is an extended
region where the chiral SC and chiral SDW orders coexist.
In this region the SC order is much smaller than the SDW
order. Hence the SC order can be thought of as a secondary
order within the chiral SDW phase having the unit cell four
times larger than the original one. Since the Fermi surface
shrinks to two points, the SC order disappears at van Hove
filling. At ne ≈ 1.275 the SDW order drops suddenly and
the plot of �sSC exhibits a kink, which implies that the two
order parameters compete with each other (see the discus-
sion in page 3 of Ref. [33]). The drop of the chiral SDW
order is related with the generalized Stoner criterion for this
instability and the Fermi surface structure away from the
nesting.

V. CONCLUSION

In the present work, we proposed an approach for com-
bining efficiently the TUFRG and the MF theory, extending
the efficient FRG + MF scheme [33] developed by Wang,
Eberlein, and Metzner. Following the FRG + MF, fluctuation
effects from other channels were neglected in the symmetry-
broken regime of the TUFRG flow, yielding the RPA flow
of the bosonic propagators. The irreducible bosonic propa-
gators were defined as the initial values of these RPA flow
equations. We retained only the dominantly divergent parts of
the propagators at the divergence scale, and determined the
singular eigenmodes of them. The irreducible bosonic propa-
gators and their eigenmodes (irreducible singular modes) are
obtained by resolving inversely the RPA matrix equations.
The singular and irreducible singular modes have to satisfy
the universal RAS symmetry relations derived from the an-
tisymmetry of Grassmann variables. The MF equation based
on the irreducible singular modes was derived by introducing
the Hubbard-Stratonovich transformation and employing the
saddle-point approximation, in the framework of the path-
integral formalism. Details of our TUFRG + MF algorithm
are described below.

First, the TUFRG flow equation (44) is integrated until
the largest element of some bosonic propagator exceeds a
certain value at the divergence scale �D. Second, the singular
eigenvalues and eigenmodes are found by a diagonalization
[Eq. (51)] of the resulting propagators, P�D ,C�D , and W �D .
Third, the irreducible bosonic propagators [Eqs. (55) to (57)]
and the irreducible singular modes [Eqs. (58) and (60)] are
determined. The irreducible singular modes in the pairing
channel should respect the condition (64) and are divided into
the spin-singlet and spin-triplet modes. The modes in the spin
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and charge channels should satisfy the constraints (66) and
(67). Finally, the irreducible coupling constants �X,α (QX

i )
and singular modes |ϕX,α (QX

i )〉 are inserted into the MF
equation with the Hamiltonian given by Eq. (86). This equa-
tion should be combined with the self-consistency condition
(89), leading to final results of the order parameters.

Our novel scheme was applied to a quantitatively reason-
able analysis of the competing chiral d-wave SC and chiral
SDW orders, predicted near van Hove filling of the hon-
eycomb lattice. The plot of the magnitudes of both order
parameters are obtained as a function of the electron density.
Comparative analysis of the plots, which were obtained from
the TUFRG results at different scales, indicates the robustness
of the results of our TUFRG + MF scheme. The plots are
characterized by weak and durable chiral SC order and strong,
but suddenly dropped chiral SDW, and these features are
similar to the previous work where the antiferromagnetic and
SC gaps are discussed for the ground state of the 2D Hubbard
model. This calculation result shows that our TUFRG + MF

approach can elevate the power of the TUFRG to a quantita-
tively reasonable level and extend its application to the study
of the coexisting orders.

Finally, we give a brief comment on the comparison of
our approach with the renormalized MF theory [26]. When
using the sharp momentum cutoff regulator, the latter will be
physically reasonable. So, it would be interesting to compare
these two MF approaches, while using the momentum cutoff
regulator in both of them. In Appendix B, we derived the criti-
cal conditions of both approaches. According to our result, the
ordering tendencies are a bit more enhanced in our TUFRG +
MF than in the renormalized MF. However, in the special case
of the SC order in the single-band systems, the two critical
conditions become identical.
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APPENDIX A: EQUIVALENCE OF CRITICAL CONDITIONS IN RPA AND MF THEORY

We prove the equivalence of two critical conditions in the RPA and the MF theory under the assumption of the positivity of
the initial matrices. First, we consider the critical conditions of the RPA. The RPA flow equations in the pairing, spin, and charge
channels are, respectively [see Eq. (50)]:

[−P�(q)]−1 = [−P(0)(q)]−1 + χpp(�)(q), [C�(q)]−1 = [C(0)(q)]−1 − χph(�)(q),

[W �(q)]−1 = [W (0)(q)]−1 − χph(�)(q). (A1)

Here P(0),C(0), and W (0) are the initial values of P�,C�, and W �. In our TUFRG + MF they are the irreducible bosonic
propagators, P̃, C̃, and W̃ , while in the conventional MF theory they would become the initial projection matrices, V P,(0),V C,(0),

and V W,(0) ≡ V C,(0) − 2V D,(0). They should be Hermitian [Eq. (30)] and satisfy the RAS relations [Eq. (31)]:

P(0)
o′

1o′
2m,o1o2n(q) = e−iRm·qP(0)

o′
2o′

1m̄,o2o1n̄(q)eiRn·q,

X (0)
o′

1o′
2m,o1o2n(−q) = eiRm·q[X (0)

o′
2o′

1m̄,o2o1n̄(q)
]∗

e−iRn·q with X ∈ {C,W }, (RAS). (A2)

For simplicity, we assume that −P(0),C(0), and W (0) are positive matrices like P̃, C̃, and W̃ . In this case, the initial matrices,
−P(0),C(0), and W (0), can be decomposed in terms of their eigenmodes associated with nonzero positive eigenvalues as done in
Eq. (59)

[−P(0)(q)] =
MP∑
α=1

�P,α (q)|ϕP,α (q)〉〈ϕP,α (q)|, with �P,α (q) > 0,

C(0)(q) =
MC∑
α=1

�C,α (q)|ϕC,α (q)〉〈ϕC,α (q)|, with �C,α (q) > 0,

W (0)(q) =
MW∑
α=1

�W,α (q)|ϕW,α (q)〉〈ϕW,α (q)|, with �W,α (q) > 0.

(A3)

Here the eigenmodes have to respect the constraints of Eqs. (64), (66), and (67)

ϕP,α
oo′m(q) = ±ϕP,α

o′om̄(q)e−iRm·q, (A4)

ϕX,α
oo′m(−q) = [

ϕX,α
o′om̄(q)

]∗
eiRm·q with X ∈ {C, W}. (A5)

The eigenmodes of P(0) are divided into two sets, i.e., the spin-singlet {|ϕsSC,α〉} and the spin-triplet {|ϕtSC,α〉} modes, which
satisfy

ϕsSC,α
oo′m (q) = +ϕsSC,α

o′om̄ (q)e−iRm·q, ϕtSC,α
oo′m (q) = −ϕtSC,α

o′om̄ (q)e−iRm·q. (A6)
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Due to the positivity of −P(0),C(0), and W (0), we can introduce

√
−P(0)(q) =

MP∑
α=1

√
�P,α (q)|ϕP,α (q)〉〈ϕP,α (q)|,

√
C(0)(q) =

MC∑
α=1

√
�C,α (q)|ϕC,α (q)〉〈ϕC,α (q)|,

√
W (0)(q) =

MW∑
α=1

√
�W,α (q)|ϕW,α (q)〉〈ϕW,α (q)|, (A7)

and rewrite Eq. (A1) as follows:

−P�(q) =
√

−P(0)(q)(1 +
√

−P(0)(q)χpp(�)(q)
√

−P(0)(q))−1
√

−P(0)(q),

C�(q) =
√

C(0)(q)(1 −
√

C(0)(q)χph(�)(q)
√

C(0)(q))−1
√

C(0)(q),

W �(q) =
√

W (0)(q)(1 −
√

W (0)(q)χph(�)(q)
√

W (0)(q))−1
√

W (0)(q).

(A8)

Inserting Eq. (A7) into Eq. (A8) and setting � as � = 0, we get the final results of the RPA flows

−P�=0(q) =
MP∑
α=1

MP∑
β=1

[
√

�P(q)(1 +
√

�P(q)X pp(q)
√

�P(q))−1
√

�P(q)]αβ |ϕP,α (q)〉〈ϕP,β (q)|,

C�=0(q) =
MC∑
α=1

MC∑
β=1

[
√

�C(q)(1 −
√

�C(q)X ph,C(q)
√

�C(q))−1
√

�C(q)]αβ |ϕC,α (q)〉〈ϕC,β (q)|,

W �=0(q) =
MW∑
α=1

MW∑
β=1

[
√

�W(q)(1 −
√

�W(q)X ph,W(q)
√

�W(q))−1
√

�W(q)]αβ |ϕW,α (q)〉〈ϕW,β (q)|.

(A9)

Here three diagonal matrices, �P(q),�C(q), and �W(q), are given by

�P
αβ (q) ≡ �P,α (q)δαβ, �C

αβ (q) ≡ �C,α (q)δαβ, �W
αβ (q) ≡ �W,α (q)δαβ, (A10)

and three matrices, X pp(q), X ph,C(q), and X ph,W(q), are defined by

X pp
αβ (q) ≡ 〈ϕP,α (q)|χpp(�=0)(q)|ϕP,β (q)〉,

X ph,C
αβ (q) ≡ 〈ϕC,α (q)|χph(�=0)(q)|ϕC,β (q)〉, X ph,W

αβ (q) ≡ 〈ϕW,α (q)|χph(�=0)(q)|ϕW,β (q)〉. (A11)

The critical condition of the RPA in the pairing channel is given by the requirement that the matrix −P�=0(q) should have an
eigenvector associated with infinite eigenvalue. It can be represented by the following equation:

MP∑
β=1

[
√

�P(q)(1 +
√

�P(q)X pp(q)
√

�P(q))−1
√

�P(q)]αβCβ = lim
λ→∞

λCα,

or equivalently,

MP∑
β=1

[(
√

�P(q))−1(1 +
√

�P(q)X pp(q)
√

�P(q))(
√

�P(q))−1]αβCβ = lim
λ→∞

1

λ
Cα = 0.

Due to the finiteness of the diagonal matrix
√

�P(q), this condition is satisfied only if

MP∑
β=1

(1 +
√

�P(q)X pp(q)
√

�P(q))αβ

(
Cβ√

�P,β (q)

)
= 0.

This indicates that the matrix
√

�P(q)X pp(q)
√

�P(q) should have the eigenvalue of −1. Thus we have the critical condition at
q = QP

i ,

MP,i∑
β=1

{√
�P,α

(
QP

i

)[−X pp
αβ

(
QP

i

)]√
�P,β

(
QP

i

)}
Yβ = Yα, (Critical condition of the RPA in the pairing channel). (A12)
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In a similar way, we can obtain the critical conditions of the RPA in the spin and charge channels, which read

MC,i∑
β=1

{√
�C,α

(
QC

i

)
X ph,C

αβ

(
QC

i

)√
�C,β

(
QC

i

)}
Yβ = Yα, (Critical condition of the RPA in the spin channel), (A13)

MW,i∑
β=1

{√
�W,α

(
QW

i

)
X ph,W

αβ

(
QW

i

)√
�W,β

(
QW

i

)}
Yβ = Yα, (Critical condition of the RPA in the charge channel). (A14)

The critical condition (A12) can be expressed more concisely. Starting from the definition of χpp(�)(q) [Eq. (25)], one can
easily derive following relation:

χ
pp(�)
o′

1o′
2m,o1o2n(q) = e−iRm·qχpp(�)

o′
2o′

1m̄,o2o1n̄(q)eiRn·q. (A15)

Combining Eqs. (A6) and (A15), we obtain

〈ϕsSC,α (q)|χpp(�)(q)|ϕtSC,β (q)〉 = 〈ϕtSC,α (q)|χpp(�)(q)|ϕsSC,β (q)〉 = 0, (A16)

which demonstrates that each of the two sets, {|ϕsSC,α〉} and {|ϕtSC,α〉}, becomes the invariant subspace with respect to the matrix
X pp(q). Therefore, the critical condition (A12) is divided into two separate conditions for the spin-singlet and spin-triplet pairing
channels

MsSC,i∑
β=1

{√
�sSC,α

(
QP

i

)[−X pp,sSC
αβ

(
QP

i

)]√
�sSC,β

(
QP

i

)}
Yβ = Yα, (Critical condition of the RPA in the spin-singlet pairing channel),

(A17)
MtSC,i∑
β=1

{√
�tSC,α

(
QP

i

)[−X pp,tSC
αβ

(
QP

i

)]√
�tSC,β

(
QP

i

)}
Yβ = Yα, (Critical condition of the RPA in the spin-triplet pairing channel).

(A18)

Second, we consider the critical conditions of the MF theory. All discussions in Sec. III are valid here, except for the
irreducible bosonic propagators, P̃, C̃, and W̃ , replaced with P(0),C(0), and W (0). The self-consistency conditions are given
by [see Eq. (83)]

�sSC
α

(
QP

i

) = �sSC,α
(
QP

i

)
4Nβ h̄

〈
OsSC

α

(
QP

i

)〉
�
, ��tSC

α

(
QP

i

) = �tSC,α
(
QP

i

)
4Nβ h̄

〈 �OtSC
α

(
QP

i

)〉
�
,

��SPN
α

(
QC

i

) = �C,α
(
QC

i

)
4Nβ h̄

〈 �OSPN
α

(
QC

i

)〉
�
, �CHG

α

(
QW

i

) = �W,α
(
QW

i

)
4Nβ h̄

〈
OCHG

α

(
QW

i

)〉
�
. (A19)

Here the mean values are defined as

〈A〉� ≡
∫

Dψ̄ Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {�∗}, {�}]}A∫
Dψ̄ Dψ exp{−S0[ψ, ψ̄] − SHS[ψ, ψ̄ ; {�∗}, {�}]} , (A20)

with S0 given in Eq. (3), and SHS defined by Eqs. (74) to (77) and (79). In addition, the fermion bilinears in four channels,
OsSC

α (q), �OtSC
α (q), �OSPN

α (q), and OCHG
α (q) are defined by Eq. (69). In the limit of {�∗} → 0 and {�} → 0, the additional action

SHS vanishes and we have

exp{−SHS[ψ, ψ̄ ; {�∗}, {�}]} ≈ 1 − SHS[ψ, ψ̄ ; {�∗}, {�}],
from which the following equation is obtained:

〈A〉� ≈ 〈A〉0 − 〈ASHS[ψ, ψ̄ ; {�∗}, {�}]〉0

1 − 〈SHS[ψ, ψ̄ ; {�∗}, {�}]〉0
= 〈A〉0 + 〈A〉0〈SHS[ψ, ψ̄ ; {�∗}, {�}]〉0 − 〈ASHS[ψ, ψ̄ ; {�∗}, {�}]〉0

1 − 〈SHS[ψ, ψ̄ ; {�∗}, {�}]〉0
.

Here we introduced a notation 〈A〉0 ≡
∫

Dψ̄Dψ exp(−S0 )A∫
Dψ̄Dψ exp(−S0 ) . Since SHS has the order of magnitude of {�∗} and {�}, the above

equation becomes

〈A〉� = 〈A〉0 + 〈A〉0〈SHS[ψ, ψ̄ ; {�∗}, {�}]〉0 − 〈ASHS[ψ, ψ̄ ; {�∗}, {�}]〉0 + O({|�|2}). (A21)

Let us consider the mean value 〈OsSC
α (QP

i )〉�. Because of 〈OsSC
α (QP

i )〉0 = 0, we have〈
OsSC

α

(
QP

i

)〉
�

≈ −〈
OsSC

α

(
QP

i

)
SHS[ψ, ψ̄ ; {�∗}, {�}]〉0

= −〈
OsSC

α

(
QP

i

)(
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

+ StSC
HS [ψ, ψ̄ ; ��∗

tSC, ��tSC] + SSPN
HS [ψ, ψ̄ ; ��∗

SPN, ��SPN] + SCHG
HS [ψ, ψ̄ ; �∗

CHG,�CHG]
)〉

0. (A22)
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Inserting Eq. (74) [66] into the above equation, one can rewrite the first term in it as follows:〈
OsSC

α

(
QP

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0

= −1

h̄

NP∑
j=1

MsSC, j∑
β=1

{[
�sSC

β

(
QP

j

)]∗ 〈
OsSC

α

(
QP

i

)
OsSC

β

(
QP

j

)〉
0
+ �sSC

β

(
QP

j

)〈
OsSC

α

(
QP

i

)[
OsSC

β

(
QP

j

)]∗〉
0

}

= −1

h̄

MsSC,i∑
β=1

�sSC
β

(
QP

i

)〈
OsSC

α

(
QP

i

)[
OsSC

β

(
QP

i

)]∗〉
0
. (A23)

Here we used the relations of〈
OsSC

α

(
QP

i

)
OsSC

β

(
QP

j

)〉
0

= 0,
〈
OsSC

α

(
QP

i

)[
OsSC

β

(
QP

j

)]∗〉
0

= δi j
〈
OsSC

α

(
QP

i

)[
OsSC

β

(
QP

i

)]∗〉
0
.

Inserting the first equation in Eq. (69) into Eq. (A23), we have

〈
OsSC

α

(
QP

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0 = −1

h̄

MsSC,i∑
β=1

�sSC
β

(
QP

i

)〈
OsSC

α

(
QP

i

)[
OsSC

β

(
QP

i

)]∗〉
0

= −1

h̄

MsSC,i∑
β=1

�sSC
β

(
QP

i

)∑
p,ωp

∑
o,o′,m

[
ϕsSC,α

oo′m

(
QP

i

)]∗
eiRm·p ∑

k,ωk

∑
õ,õ′,n

ϕ
sSC,β

õõ′n

(
QP

i

)
e−iRn·k

×
∑
σ,σ ′

σσ ′〈ψ−σ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp, o
)
ψ̄σ ′

(
k + QP

i , ωk, õ
)
ψ̄−σ ′ (−k,−ωk, õ′)

〉
0.

(A24)

We can use Wick’s theorem [53] to evaluate the mean value in the above equation∑
σ,σ ′

σσ ′〈ψ−σ (−p,−ωp, o′)ψσ

(
p + QP

i , ωp, o
)
ψ̄σ ′

(
k + QP

i , ωk, õ
)
ψ̄−σ ′ (−k,−ωk, õ′)

〉
0

=
∑
σ,σ ′

σσ ′〈ψ−σ (−p,−ωp, o′)ψ̄−σ ′ (−k,−ωk, õ′)
〉
0

〈
ψσ

(
p + QP

i , ωp, o
)
ψ̄σ ′

(
k + QP

i , ωk, õ
)〉

0

+
∑
σ,σ ′

σσ ′(−1)
〈
ψ−σ (−p,−ωp, o′)ψ̄σ ′

(
k + QP

i , ωk, õ
)〉

0

〈
ψσ

(
p + QP

i , ωp, o
)
ψ̄−σ ′ (−k,−ωk, õ′)

〉
0

= 2δp,kδωp,ωk G0
o′õ′ (−p,−ωp)G0

oõ

(
p + QP

i , ωp
) + 2δp,−k−QP

i
δωp,−ωk G0

o′õ(−p,−ωp)G0
oõ′
(
p + QP

i , ωp
)
.

Inserting this result into Eq. (A24), we obtain〈
OsSC

α

(
QP

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0

= −1

h̄

MsSC,i∑
β=1

�sSC
β

(
QP

i

) ∑
o,o′,m

[
ϕsSC,α

oo′m

(
QP

i

)]∗ ∑
õ,õ′,n

ϕ
sSC,β

õõ′n

(
QP

i

)
2
∑
p,ωp

eiRm·p[e−iRn·pG0
o′õ′ (−p,−ωp)G0

oõ

(
p + QP

i , ωp
)

+e−iRn·(−p−QP
i )G0

o′õ(−p,−ωp)G0
oõ′
(
p + QP

i , ωp
)]

= −2

h̄

MsSC,i∑
β=1

�sSC
β

(
QP

i

) ∑
o,o′,m

[
ϕsSC,α

oo′m

(
QP

i

)]∗ ∑
p,ωp

eiRm·p

×
∑
õ,õ′,n

(
ϕ

sSC,β

õõ′n

(
QP

i

) + ϕ
sSC,β

õ′õn̄

(
QP

i

)
e−iRn·QP

i
)
e−iRn·pG0

o′õ′ (−p,−ωp)G0
oõ

(
p + QP

i , ωp
)
.

Due to the relation (A6), the above equation becomes〈
OsSC

α

(
QP

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0

= −4

h̄

MsSC,i∑
β=1

�sSC
β

(
QP

i

) ∑
o,o′,m

[
ϕsSC,α

oo′m

(
QP

i

)]∗ ∑
õ,õ′,n

ϕ
sSC,β

õõ′n

(
QP

i

)
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×
∑

p

eiRm·pe−iRn·p
∑
ωp

G0
oõ

(
p + QP

i , ωp
)
G0

o′õ′ (−p,−ωp)

= 4Nβ h̄
MsSC,i∑
γ=1

�sSC
γ

(
QP

i

) ∑
o,o′,m

[
ϕsSC,α

oo′m

(
QP

i

)]∗ ∑
õ,õ′,n

ϕ
sSC,γ

õõ′n

(
QP

i

)
χ

pp(�=0)
oo′m,õõ′n

(
QP

i

)
.

Taking into account the definition (A11), we have the final result

〈
OsSC

α

(
QP

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0 = 4Nβ h̄

MsSC,i∑
γ=1

X pp,sSC
αγ

(
QP

i

)
�sSC

γ

(
QP

i

)
. (A25)

In a similar way, one can verify the following relations:〈
OsSC

α

(
QP

i

)
StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

〉
0 = 〈

OsSC
α

(
QP

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= 〈
OsSC

α

(
QP

i

)
SCHG

HS [ψ, ψ̄ ; �∗
CHG,�CHG]

〉
0 = 0. (A26)

Inserting Eqs. (A25) and (A26) into Eq. (A22), we get

〈
OsSC

α

(
QP

i

)〉
�

= −4Nβ h̄
MsSC,i∑
γ=1

X pp,sSC
αγ

(
QP

i

)
�sSC

γ

(
QP

i

)
. (A27)

Finally, the first equation in Eq. (A19) becomes

�sSC
α

(
QP

i

) = −�sSC,α
(
QP

i

) MsSC,i∑
β=1

X pp,sSC
αβ

(
QP

i

)
�sSC

β

(
QP

i

)
, (A28)

or equivalently, with Yα ≡ �sSC
α (QP

i )√
�sSC,α(QP

i )
,

MsSC,i∑
β=1

{√
�sSC,α

(
QP

i

)[−X pp,sSC
αβ

(
QP

i

)]√
�sSC,β

(
QP

i

)}
Yβ = Yα,

(Critical condition of the MF theory in the spin-singlet pairing channel). (A29)

This is exactly the same as the critical condition (A17).
We consider the mean value 〈 �OtSC

α (QP
i )〉�. It is clear that 〈 �OtSC

α (QP
i )〉0 = 0. So we have〈 �OtSC

α

(
QP

i

)〉
�

= −〈 �OtSC
α

(
QP

i

)(
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC] + StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

+ SSPN
HS [ψ, ψ̄ ; ��∗

SPN, ��SPN] + SCHG
HS [ψ, ψ̄ ; �∗

CHG,�CHG]
)〉

0. (A30)

Through the procedure similar to the one described above, we obtain the following results:

〈 �OtSC
α

(
QP

i

)
StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

〉
0 = 4Nβ h̄

MtSC,i∑
γ=1

X pp,tSC
αγ

(
QP

i

) ��tSC
γ

(
QP

i

)
, (A31)

〈 �OtSC
α

(
QP

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0 = 〈 �OtSC

α

(
QP

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= 〈 �OtSC
α

(
QP

i

)
SCHG

HS [ψ, ψ̄ ; �∗
CHG,�CHG]

〉
0 = 0. (A32)

Inserting Eqs. (A31) and (A32) into Eq. (A30), we get

〈 �OtSC
α

(
QP

i

)〉
�

= −4Nβ h̄
MtSC,i∑
γ=1

X pp,tSC
αγ

(
QP

i

) ��tSC
γ

(
QP

i

)
. (A33)

Then, the second equation in Eq. (A19) becomes

��tSC
α

(
QP

i

) = −�tSC,α
(
QP

i

) MtSC,i∑
β=1

X pp,tSC
αβ

(
QP

i

) ��tSC
β

(
QP

i

)
, (A34)
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or equivalently, with �Yα ≡ ��tSC
α (QP

i )√
�tSC,α(QP

i )
,

MtSC,i∑
β=1

{√
�tSC,α

(
QP

i

)[−X pp,tSC
αβ

(
QP

i

)]√
�tSC,β

(
QP

i

)} �Yβ = �Yα,

(Critical condition of the MF theory in the spin-triplet pairing channel). (A35)

This is exactly the same as the critical condition (A18).
Now let us consider the mean value 〈 �OSPN

α (QC
i )〉�. Evidently, 〈 �OSPN

α (QC
i )〉0 = 0, and we get〈 �OSPN

α

(
QC

i

)〉
�

= −〈 �OSPN
α

(
QC

i

)(
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC] + StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

+ SSPN
HS [ψ, ψ̄ ; ��∗

SPN, ��SPN] + SCHG
HS [ψ, ψ̄ ; �∗

CHG,�CHG]
)〉

0. (A36)

Inserting Eq. (76) into the above equation, one can rewrite the third term in it as follows:

〈 �OSPN
α

(
QC

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0 = −1

h̄

NC∑
j=1

MC, j∑
β=1

〈 �OSPN
α

(
QC

i

){[ ��SPN
β

(
QC

j

)]∗ · �OSPN
β

(
QC

j

) + ��SPN
β

(
QC

j

) · [ �OSPN
β

(
QC

j

)]∗}〉
0.

Concretely, its x-component reads〈
OSPN

α,x

(
QC

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= −1

h̄

NC∑
j=1

MC, j∑
β=1

〈
OSPN

α,x

(
QC

i

){[ ��SPN
β

(
QC

j

)]∗ · �OSPN
β

(
QC

j

) + ��SPN
β

(
QC

j

) · [ �OSPN
β

(
QC

j

)]∗}〉
0

= −1

h̄

NC∑
j=1

MC, j∑
β=1

{[ ��SPN
β

(
QC

j

)]∗·〈OSPN
α,x

(
QC

i

) �OSPN
β

(
QC

j

)〉
0
+ ��SPN

β

(
QC

j

) · 〈OSPN
α,x

(
QC

i

)[ �OSPN
β

(
QC

j

)]∗〉
0

}

= −1

h̄

MC,i∑
β=1

{[ ��SPN
β

( − QC
i

)]∗ · 〈OSPN
α,x

(
QC

i

) �OSPN
β

( − QC
i

)〉
0
+ ��SPN

β

(
QC

i

) · 〈OSPN
α,x

(
QC

i

)[ �OSPN
β

(
QC

i

)]∗〉
0

}
.

By using the relations 〈
OSPN

α,x

(
QC

i

) �OSPN
β

(
QC

j

)〉
0

= δQC
i ,−QC

j

〈
OSPN

α,x

(
QC

i

) �OSPN
β

( − QC
i

)〉
0
,〈

OSPN
α,x

(
QC

i

)[ �OSPN
β

(
QC

j

)]∗〉
0 = δi j

〈
OSPN

α,x

(
QC

i

)[ �OSPN
β

(
QC

i

)]∗〉
0,[ ��SPN

β

( − QC
i

)]∗ = ��SPN
β

(
QC

i

)
, �OSPN

β

( − QC
i

) = [ �OSPN
β

(
QC

i

)]∗
,

we obtain

〈
OSPN

α,x

(
QC

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= −2

h̄

MC,i∑
β=1

��SPN
β

(
QC

i

) · 〈OSPN
α,x

(
QC

i

)[ �OSPN
β

(
QC

i

)]∗〉
0. (A37)

Inserting the third equation in Eq. (69) into Eq. (A37), we have

〈
OSPN

α,x

(
QC

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= −2

h̄

MC,i∑
β=1

��SPN
β

(
QC

i

) · 〈OSPN
α,x

(
QC

i

)[ �OSPN
β

(
QC

i

)]∗〉
0

= −2

h̄

MC,i∑
β=1

∑
γ=x,y,z

�SPN
β,γ

(
QC

i

)∑
p,ωp

∑
o,o′,m

[
ϕC,α

oo′m

(
QC

i

)]∗
eiRm·p ∑

k,ωk

∑
õ,õ′,n

ϕ
C,β

õõ′n

(
QC

i

)
e−iRn·k

×
∑
σ,σ ′

σ x
σσ ′

∑
s,s′

[
σ

γ

ss′
]∗〈

ψ̄σ (p, ωp, o′)ψσ ′
(
p + QC

i , ωp, o
)
ψ̄s′

(
k + QC

i , ωk, õ
)
ψs(k, ωk, õ′)

〉
0.

(A38)
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The mean value in the above equation is evaluated using Wick’s theorem∑
σ,σ ′

σ x
σσ ′

∑
s,s′

[
σ

γ

ss′
]∗〈

ψ̄σ (p, ωp, o′)ψσ ′
(
p + QC

i , ωp, o
)
ψ̄s′

(
k + QC

i , ωk, õ
)
ψs(k, ωk, õ′)

〉
0

=
∑
σ,σ ′

∑
s,s′

σ x
σσ ′σ

γ

s′s

〈
ψ̄σ (p, ωp, o′)ψσ ′

(
p + QC

i , ωp, o
)〉

0

〈
ψ̄s′

(
k + QC

i , ωk, õ
)
ψs(k, ωk, õ′)

〉
0

+
∑
σ,σ ′

∑
s,s′

σ x
σσ ′σ

γ

s′s

〈
ψ̄σ (p, ωp, o′)ψs(k, ωk, õ′)

〉
0

〈
ψσ ′

(
p + QC

i , ωp, o
)
ψ̄s′

(
k + QC

i , ωk, õ
)〉

0

= Tr{σ x}Tr{σγ }δQC
i ,0G0

oo′ (p, ωp)G0
õ′õ(k, ωk ) − Tr{σ xσγ }δp,kδωp,ωk G0

õ′o′ (p, ωp)G0
oõ

(
p + QC

i , ωp
)

= −2δxγ δp,kδωp,ωk G0
õ′o′ (p, ωp)G0

oõ

(
p + QC

i , ωp
)
.

Inserting this result into Eq. (A38), we obtain

〈
OSPN

α,x

(
QC

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= −2

h̄

MC,i∑
β=1

�SPN
β,x

(
QC

i

) ∑
o,o′,m

[
ϕC,α

oo′m

(
QC

i

)]∗ ∑
õ,õ′,n

ϕ
C,β

õõ′n

(
QC

i

)

× (−2)
∑

p

eiRm·pe−iRn·p
∑
ωp

G0
oõ

(
p + QC

i , ωp
)
G0

õ′o′ (p, ωp)

= −4Nβ h̄
MC,i∑
γ=1

�SPN
γ ,x

(
QC

i

) ∑
o,o′,m

[
ϕC,α

oo′m

(
QC

i

)]∗ ∑
õ,õ′,n

ϕ
C,γ

õõ′n

(
QC

i

)
χ

ph(�=0)
oo′m,õõ′n

(
QC

i

)
.

Taking into account the definition (A11), we obtain the final result

〈
OSPN

α,x

(
QC

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0

= −4Nβ h̄
MC,i∑
γ=1

X ph,C
αγ

(
QC

i

)
�SPN

γ ,x

(
QC

i

)
. (A39)

In a similar way, one can verify the following relations:〈
OSPN

α,x

(
QC

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0

= 〈
OSPN

α,x

(
QC

i

)
StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

〉
0

= 〈
OSPN

α,x

(
QC

i

)
SCHG

HS [ψ, ψ̄ ; �∗
CHG,�CHG]

〉
0

= 0. (A40)

Inserting Eqs. (A39) and (A40) into Eq. (A36), we get

〈
OSPN

α,x

(
QC

i

)〉
�

= 4Nβ h̄
MC,i∑
γ=1

X ph,C
αγ

(
QC

i

)
�SPN

γ ,x

(
QC

i

)
. (A41)

Finally, the third equation in Eq. (A19) becomes

�SPN
α,x

(
QC

i

) = �C,α
(
QC

i

) MC,i∑
β=1

X ph,C
αβ

(
QC

i

)
�SPN

β,x

(
QC

i

)
. (A42)

This equation is also valid for y, z-components, giving

��SPN
α

(
QC

i

) = �C,α
(
QC

i

) MC,i∑
β=1

X ph,C
αβ

(
QC

i

) ��SPN
β

(
QC

i

)
, (A43)

or equivalently, with �Yα ≡ ��SPN
α (QC

i )√
�C,α(QC

i )
,

MC,i∑
β=1

{√
�C,α

(
QC

i

)
X ph,C

αβ

(
QC

i

)√
�C,β

(
QC

i

)} �Yβ = �Yα, (Critical condition of the MF theory in the spin channel). (A44)

This is exactly the same as the critical condition (A13).
We consider the mean value 〈OCHG

α (QW
i )〉�, assuming that 〈OCHG

α (QW
i )〉0 = 0.〈

OCHG
α

(
QW

i

)〉
�

= −〈
OCHG

α

(
QW

i

)(
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC] + StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

+ SSPN
HS [ψ, ψ̄ ; ��∗

SPN, ��SPN] + SCHG
HS [ψ, ψ̄ ; �∗

CHG,�CHG]
)〉

0. (A45)
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Through the procedure similar to the one for 〈 �OSPN
α (QC

i )〉�, we obtain the following results:

〈
OCHG

α

(
QW

i

)
SCHG

HS [ψ, ψ̄ ; �∗
CHG,�CHG]

〉
0 = −4Nβ h̄

MW,i∑
γ=1

X ph,W
αγ

(
QW

i

)
�CHG

γ

(
QW

i

)
, (A46)

〈
OCHG

α

(
QW

i

)
SsSC

HS [ψ, ψ̄ ; �∗
sSC,�sSC]

〉
0 = 〈

OCHG
α

(
QW

i

)
StSC

HS [ψ, ψ̄ ; ��∗
tSC, ��tSC]

〉
0

= 〈
OCHG

α

(
QW

i

)
SSPN

HS [ψ, ψ̄ ; ��∗
SPN, ��SPN]

〉
0 = 0. (A47)

Inserting Eqs. (A46) and (A47) into Eq. (A45), we get

〈
OCHG

α

(
QW

i

)〉
�

= 4Nβ h̄
MW,i∑
γ=1

X ph,W
αγ

(
QW

i

)
�CHG

γ

(
QW

i

)
. (A48)

Then, the fourth equation in Eq. (A19) becomes

�CHG
α

(
QW

i

) = �W,α
(
QW

i

) MW,i∑
β=1

X ph,W
αβ

(
QW

i

)
�CHG

β

(
QW

i

)
, (A49)

or equivalently, with Yα ≡ �CHG
α (QW

i )√
�W,α(QW

i )
,

MW,i∑
β=1

{√
�W,α

(
QW

i

)
X ph,W

αβ

(
QW

i

)√
�W,β

(
QW

i

)}
Yβ = Yα, (Critical condition of the MF theory in the charge channel). (A50)

This is exactly the same as the critical condition (A14).

APPENDIX B: COMPARISON OF THE RENORMALIZED MF AND OUR TUFRG + MF APPROACHES

Here we compare the critical conditions in the renormalized MF [26] and our TUFRG + MF approaches. First, let us consider
the renormalized MF in the framework of the TUFRG. The bosonic propagators P�,C�, and W � are obtained by solving the
TUFRG flow with the sharp momentum cutoff regulator. In this regularization the fermionic propagator is given by

G0,�
oo′ (ω, k) =

∑
b

Tob(k)[To′b(k)]∗
1

iω − (εb(k) − μ)/h̄
�(|εb(k) − μ| − �), (B1)

where εb(k) and �(x) denote the energy level of the band b and the Heaviside step function, respectively, while the unitary
matrix Tob(k) connects two operators in the orbital (ĉkoσ ) and the band (d̂kbσ ) pictures, according to

ĉkoσ =
∑

b

Tob(k)d̂kbσ , d̂kbσ =
∑

o

[Tob(k)]∗ĉkoσ .

At the divergence scale �D, the bosonic propagators are expressed in terms of the singular modes |φX,α (QX
i )〉 as given in Eq. (51),

and the effective action ��D as in Eq. (52). The modes |φX,α (QX
i )〉 should satisfy the constraints (64), (66), and (67).

In the renormalized MF approach, only the low-energy modes with |εb(k) − μ| � �D are involved in the MF calculation.
Thus, we have to address the following action:

S[ψ, ψ̄] = S0[ψ, ψ̄] + �sSC[ψ, ψ̄] + �tSC[ψ, ψ̄] + �SPN[ψ, ψ̄] + �CHG[ψ, ψ̄]. (B2)

The noninteracting part (S0) of the action is represented as Eq. (3), with H0
oo′ (k) given by

H0
oo′ (k) =

∑
b

Tob(k)εb(k)[To′b(k)]∗. (B3)

The expressions of the interaction parts, �sSC, �tSC, �SPN, and �CHG, are given by a replacement of �X,α (QX
i ) →

λX,α (QX
i ), OX

α (QX
i , ω) → BX

α (QX
i , ω) in Eq. (68)

�sSC[ψ, ψ̄] = −1

2

1

2Nβ h̄2

NP∑
i=1

MP,i∑
α=1

λP,α
(
QP

i

)∑
ω

[
BsSC

α

(
QP

i , ω
)]∗

BsSC
α

(
QP

i , ω
)
,

�tSC[ψ, ψ̄] = −1

2

1

2Nβ h̄2

NP∑
i=1

MP,i∑
α=1

λP,α
(
QP

i

)∑
ω

[ �BtSC
α

(
QP

i , ω
)]∗ · �BtSC

α

(
QP

i , ω
)
,
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�SPN[ψ, ψ̄] = −1

2

1

2Nβ h̄2

NC∑
i=1

MC,i∑
α=1

λC,α
(
QC

i

)∑
ω

[ �BSPN
α

(
QC

i , ω
)]∗ · �BSPN

α

(
QC

i , ω
)
,

�CHG[ψ, ψ̄] = −1

2

1

2Nβ h̄2

NW∑
i=1

MW,i∑
α=1

λW,α
(
QW

i

)∑
ω

[
BCHG

α

(
QW

i , ω
)]∗

BCHG
α

(
QW

i , ω
)
, (B4)

with the fermion bilinears in the X-channel, BX
α (X ∈ {sSC, tSC, SPN, CHG}), defined as

BsSC
α

(
QP

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[φP,α
oo′m

(
QP

i

)
]∗eiRm·p ∑

õ,õ′
ρo′õ′ (−p)ρoõ

(
p + QP

i

)∑
σ

σψ−σ (−p,−ωp, õ′)
[
ψσ

(
p + QP

i , ωp + ω, õ
)]

,

�BtSC
α

(
QP

i , ω
) ≡ (

BtSC
α,x

(
QP

i , ω
)
, BtSC

α,y

(
QP

i , ω
)
, BtSC

α,z

(
QP

i , ω
))

≡
∑
p,ωp

∑
o,o′,m

[
φP,α

oo′m

(
QP

i

)]∗
eiRm·p ∑

õ,õ′
ρo′õ′ (−p)ρoõ

(
p + QP

i

)(−
∑

σ

σψσ (−p,−ωp, õ′)ψσ

(
p + QP

i , ωp + ω, õ
)
,

− i
∑

σ

ψσ (−p,−ωp, õ′)ψσ

(
p + QP

i , ωp + ω, õ
)
,
∑

σ

ψ−σ (−p,−ωp, õ′)ψσ

(
p + QP

i , ωp + ω, õ
))

,

�BSPN
α

(
QC

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
φC,α

oo′m

(
QC

i

)]∗
eiRm·p ∑

õ,õ′
ρõ′o′ (p)ρoõ

(
p + QC

i

)∑
σ,σ ′

ψ̄σ (p, ωp, õ′)�σσσ ′ψσ ′
(
p + QC

i , ωp + ω, õ
)
,

BCHG
α

(
QW

i , ω
) ≡

∑
p,ωp

∑
o,o′,m

[
φW,α

oo′m

(
QW

i

)]∗
eiRm·p ∑

õ,õ′
ρõ′o′ (p)ρoõ

(
p + QW

i

)∑
σ

ψ̄σ (p, ωp, õ′)ψσ

(
p + QW

i , ωp + ω, õ
)
. (B5)

We introduced here the low-energy density matrix ρ(k):

ρoo′ (k) ≡
∑

b

Tob(k)�(�D − |εb(k) − μ|)[To′b(k)]∗. (B6)

The self-consistency condition is obtained from Eq. (83) by using the same replacement (�X,α (QX
i ) →

λX,α (QX
i ), OX

α (QX
i , ω) → BX

α (QX
i , ω)),

�sSC
α

(
QP

i

) = λsSC,α
(
QP

i

)
4Nβ h̄

〈
BsSC

α

(
QP

i

)〉
�
, ��tSC

α

(
QP

i

) = λtSC,α
(
QP

i

)
4Nβ h̄

〈 �BtSC
α

(
QP

i

)〉
�
,

��SPN
α

(
QC

i

) = λC,α
(
QC

i

)
4Nβ h̄

〈 �BSPN
α

(
QC

i

)〉
�
, �CHG

α

(
QW

i

) = λW,α
(
QW

i

)
4Nβ h̄

〈
BCHG

α

(
QW

i

)〉
�
. (B7)

Following the discussions in Eqs. (A19) to (A50), one can easily derive the critical conditions of the renormalized MF scheme.
The result is given by a replacement of �X,α (QX

i ) → λX,α (QX
i ), X X

αβ (QX
i ) → DX

αβ (QX
i ) in the critical conditions of the MF

theory (Eqs. (A29), (A35), (A44), and (A50)). Here DX
αβ (QX

i ) is defined as

Dpp,sSC
αβ

(
QP

i

) ≡ 〈
φsSC,α

(
QP

i

)∣∣χ̄pp(�D )(QP
i

)∣∣φsSC,β
(
QP

i

)〉
, Dpp,tSC

αβ

(
QP

i

) ≡ 〈
φtSC,α

(
QP

i

)∣∣χ̄pp(�D )(QP
i

)∣∣φtSC,β
(
QP

i

)〉
,

Dph,C
αβ

(
QC

i

) ≡ 〈
φC,α

(
QC

i

)∣∣χ̄ph(�D )
(
QC

i

)∣∣φC,β
(
QC

i

)〉
, Dph,W

αβ

(
QW

i

) ≡ 〈
φW,α

(
QW

i

)∣∣χ̄ph(�D )
(
QW

i

)∣∣φW,β
(
QW

i

)〉
, (B8)

with χ̄pp(�D )(q) and χ̄ph(�D )(q), given by

χ̄
pp(�D )
o′

1o′
2m,o1o2n(q) ≡ −

∫
dk
SBZ

fm(k) f ∗
n (k)

[
1

β h̄2

∑
ω

Ḡ�D

o′
1o1

(k + q, ω)Ḡ�D

o′
2o2

(−k,−ω)

]
,

χ̄
ph(�D )
o′

1o′
2m,o1o2n(q) ≡ −

∫
dk
SBZ

fm(k) f ∗
n (k)

[
1

β h̄2

∑
ω

Ḡ�D

o′
1o1

(k + q, ω)Ḡ�D

o2o′
2
(k, ω)

]
, (B9)

and the low-energy propagator Ḡ�D
oo′ (k, ω) ≡ ∑

õ,õ′ ρoõ(k)G0
õõ′ (k, ω)ρõ′o′ (k). From Eqs. (B1) and (B6) one can easily verify the

relation

Ḡ�D
oo′ (k, ω) = G0

oo′ (k, ω) − G0,�D
oo′ (k, ω). (B10)
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The critical conditions of the renormalized MF theory are represented as follows:

MsSC,i∑
β=1

{√
λsSC,α

(
QP

i

)[−Dpp,sSC
αβ

(
QP

i

)]√
λsSC,β

(
QP

i

)}
Yβ = Yα (Critical condition in the spin-singlet pairing channel), (B11)

MtSC,i∑
β=1

{√
λtSC,α

(
QP

i

)[−Dpp,tSC
αβ

(
QP

i

)]√
λtSC,β

(
QP

i

)} �Yβ = �Yα (Critical condition in the spin-tripglet pairing channel), (B12)

MC,i∑
β=1

{√
λC,α

(
QC

i

)
Dph,C

αβ

(
QC

i

)√
λC,β

(
QC

i

)} �Yβ = �Yα (Critical condition in the spin channel), (B13)

MW,i∑
β=1

{√
λW,α

(
QW

i

)
Dph,W

αβ

(
QW

i

)√
λW,β

(
QW

i

)}
Yβ = Yα (Critical condition in the charge channel). (B14)

We consider in more detail Eq. (B11), which can be expressed as

MsSC,i∑
β=1

√
λsSC,α

(
QP

i

)[ 1

λsSC,α
(
QP

i

)δαβ + Dpp,sSC
αβ

(
QP

i

)]√
λsSC,β

(
QP

i

)
Yβ = 0.

With Xβ ≡
√

λsSC,β (QP
i )Yβ , we can take into account Eqs. (51) and (B8) to rewrite the above equation as

〈
φsSC,α

(
QP

i

)∣∣[(−P�D
(
QP

i

))−1 + χ̄pp(�D )
(
QP

i

)]⎛⎝MsSC,i∑
β=1

Xβ

∣∣φsSC,β
(
QP

i

)〉⎞⎠ = 0 (α = 1, . . . , MsSC,i ).

Therefore, the critical condition (B11) requires the matrix[−P̄
(
QP

i

)]−1 ≡ [−P�D
(
QP

i

)]−1 + χ̄pp(�D )(QP
i

)
, (B15)

to have an eigenvector associated with zero eigenvalue in the MsSC,i-dimensional space consisting of the bases {|φsSC,α (QP
i )〉}.

Likewise, the critical condition (B12) requires the zero eigenvalue of the matrix (−P̄(QP
i ))−1 in the MtSC,i-dimensional space

consisting of {|φtSC,α (QP
i )〉}. In a similar way, one can extract the meaning of critical conditions (B13) and (B14). Namely, the

condition (B13) requires the zero eigenvalue of the matrix[
C̄
(
QC

i

)]−1 ≡ [
C�D

(
QC

i

)]−1 − χ̄ph(�D )
(
QC

i

)
, (B16)

in the MC,i-dimensional space consisting of {|φC,α (QC
i )〉}, while Eq. (B14) requires the zero eigenvalue of[

W̄
(
QW

i

)]−1 ≡ [
W �D

(
QW

i

)]−1 − χ̄ph(�D )(QW
i

)
(B17)

in the MW,i-dimensional space consisting of {|φW,α (QW
i )〉}.

Second, let us reconsider our novel scheme. The critical conditions of our TUFRG + MF approach are given by Eqs. (A17),
(A18), (A13), and (A14). Following the arguments above, one can draw the meaning of these conditions. The critical condition
(A17) (or Eq. (A18)) requires the zero eigenvalue of the matrix[−P�=0

(
QP

i

)]−1 = [−P̃
(
QP

i

)]−1 + χpp(�=0)
(
QP

i

)
, (B18)

in the MsSC,i- (or MtSC,i)-dimensional space consisting of the bases {|ϕsSC,α (QP
i )〉} (or {|ϕtSC,α (QP

i )〉}). And the critical conditions
(A13) and (A14) require the zero eigenvalues of the matrices [C�=0(QC

i )]−1 and [W �=0(QW
i )]−1, expressed as

[
C�=0

(
QC

i

)]−1 = [
C̃
(
QC

i

)]−1 − χph(�=0)
(
QC

i

)
, (B19)[

W �=0
(
QW

i

)]−1 = [
W̃

(
QW

i

)]−1 − χph(�=0)
(
QW

i

)
, (B20)

in the MC,i- and MW,i-dimensional spaces, consisting of {|ϕC,α (QC
i )〉} and {|ϕW,α (QW

i )〉}, respectively.
Now we compare the critical conditions in the renormalized MF and our TUFRG + MF approaches. Note that two MX,i-

dimensional spaces, each consisting of the bases {|φX,α (QX
i )〉} and {|ϕX,α (QX

i )〉}, are identical because these two bases are
related to each other by Eq. (60). Let us compare two matrices in Eqs. (B15) and (B18). Combining these equations with the
definition (49), we obtain [−P̄

(
QP

i

)]−1 = [−P�=0
(
QP

i

)]−1 − χpp−mix(�D )
(
QP

i

)
, (B21)
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where χpp−mix(�D )(QP
i ) is the contribution from the interplay between the high- and low-energy modes, defined by

χpp−mix(�D )(q) ≡ χpp(�=0)(q) − χ̄pp(�D ) − χpp(�D )(q),

χ
pp−mix(�D )
o′

1o′
2m,o1o2n (q) = −

∫
dk
SBZ

fm(k) f ∗
n (k)

[
1

β h̄2

∑
ω

(
G�D

o′
1o1

(k + q, ω)Ḡ�D

o′
2o2

(−k,−ω) + Ḡ�D

o′
1o1

(k + q, ω)G�D

o′
2o2

(−k,−ω)
)]

.

(B22)

Similar equations for the matrices, C̄(QC
i ) and W̄ (QW

i ), are easily derived[
C̄
(
QC

i

)]−1 = [
C�=0(QC

i

)]−1 + χph−mix(�D )(QC
i

)
, (B23)[

W̄
(
QW

i

)]−1 = [
W �=0(QW

i

)]−1 + χph−mix(�D )(QW
i

)
. (B24)

Here χph−mix(�D )(QC
i ) is defined by

χph−mix(�D )(q) ≡ χph(�=0)(q) − χ̄ph(�D ) − χph(�D )(q),

χ
ph−mix(�D )
o′

1o′
2m,o1o2n (q) = −

∫
dk
SBZ

fm(k) f ∗
n (k)

[
1

β h̄2

∑
ω

(
G�D

o′
1o1

(k + q, ω)Ḡ�D

o2o′
2
(k, ω) + Ḡ�D

o′
1o1

(k + q, ω)G�D

o2o′
2
(k, ω)

)]
. (B25)

Due to the positivity of −χpp−mix(�D )(q) and χph−mix(�D )(q), the ordering tendencies are underestimated in the renormalized MF
than in the novel TUFRG + MF approach. However, in some special cases, e.g., in the case of the SC order in the single-band
systems, the two critical conditions become identical due to the vanishing χpp−mix(�D )(Q = 0).

[1] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.
Schönhammer, Rev. Mod. Phys. 84, 299 (2012).

[2] C. Platt, W. Hanke, and R. Thomale, Adv. Phys. 62, 453 (2013).
[3] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.

Pawlowski, M. Tissier, and N. Wschebor, Phys. Rep. 910, 1
(2021).

[4] A. Eberlein, Phys. Rev. B 90, 115125 (2014).
[5] D. Zanchi and H. J. Schulz, Phys. Rev. B 61, 13609 (2000).
[6] C. J. Halboth and W. Metzner, Phys. Rev. B 61, 7364

(2000).
[7] C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M. Rice,

Phys. Rev. B 63, 035109 (2001).
[8] A. Eberlein and W. Metzner, Phys. Rev. B 89, 035126 (2014).
[9] F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, Phys.

Rev. Lett. 102, 047005 (2009).
[10] R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig,

Phys. Rev. B 80, 180505(R) (2009).
[11] C. Platt, C. Honerkamp, and W. Hanke, New J. Phys. 11,

055058 (2009).
[12] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[13] M. Salmhofer, C. Honerkamp, W. Metzner, and O. Lauscher,

Prog. Theor. Phys. 112, 943 (2004).
[14] C. Honerkamp and M. Salmhofer, Prog. Theor. Phys. 113, 1145

(2005).
[15] R. Gersch, C. Honerkamp, and W. Metzner, New J. Phys. 10,

045003 (2008).
[16] A. Eberlein and W. Metzner, Phys. Rev. B 87, 174523 (2013).
[17] S. A. Maier, A. Eberlein, and C. Honerkamp, Phys. Rev. B 90,

035140 (2014).
[18] T. Baier, E. Bick, and C. Wetterich, Phys. Rev. B 70, 125111

(2004).
[19] H. C. Krahl, J. A. Müller, and C. Wetterich, Phys. Rev. B 79,

094526 (2009).

[20] S. Friederich, H. C. Krahl, and C. Wetterich, Phys. Rev. B 81,
235108 (2010).

[21] S. Friederich, H. C. Krahl, and C. Wetterich, Phys. Rev. B 83,
155125 (2011).

[22] F. Schütz, L. Bartosch, and P. Kopietz, Phys. Rev. B 72, 035107
(2005).

[23] P. Strack, R. Gersch, and W. Metzner, Phys. Rev. B 78, 014522
(2008).

[24] B. Obert, C. Husemann, and W. Metzner, Phys. Rev. B 88,
144508 (2013).

[25] Since this ambiguity is closely related to the Fierz identity
δαμδβν = 1

2 [δανδβμ + �σαν · �σβμ], it is dubbed the Fierz ambigu-
ity. For a detailed discussion of it, see Refs. [18,67].

[26] J. Reiss, D. Rohe, and W. Metzner, Phys. Rev. B 75, 075110
(2007).

[27] J. Lichtenstein, S. A. Maier, C. Honerkamp, C. Platt, R.
Thomale, O. K. Andersen, and L. Boeri, Phys. Rev. B 89,
214514 (2014).

[28] C. Platt, R. Thomale, C. Honerkamp, S.-C. Zhang, and W.
Hanke, Phys. Rev. B 85, 180502(R) (2012).

[29] G. A. H. Schober, K.-U. Giering, M. M. Scherer, C.
Honerkamp, and M. Salmhofer, Phys. Rev. B 93, 115111
(2016).

[30] C. Husemann and M. Salmhofer, Phys. Rev. B 79, 195125
(2009).

[31] C. Honerkamp and M. Salmhofer, Phys. Rev. B 64, 184516
(2001).

[32] D. D. Scherer, M. M. Scherer, and C. Honerkamp, Phys. Rev. B
92, 155137 (2015).

[33] J. Wang, A. Eberlein, and W. Metzner, Phys. Rev. B 89,
121116(R) (2014).

[34] H. Yamase, A. Eberlein, and W. Metzner, Phys. Rev. Lett. 116,
096402 (2016).

205118-31

https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1080/00018732.2013.862020
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevB.90.115125
https://doi.org/10.1103/PhysRevB.61.13609
https://doi.org/10.1103/PhysRevB.61.7364
https://doi.org/10.1103/PhysRevB.63.035109
https://doi.org/10.1103/PhysRevB.89.035126
https://doi.org/10.1103/PhysRevLett.102.047005
https://doi.org/10.1103/PhysRevB.80.180505
https://doi.org/10.1088/1367-2630/11/5/055058
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1143/PTP.112.943
https://doi.org/10.1143/PTP.113.1145
https://doi.org/10.1088/1367-2630/10/4/045003
https://doi.org/10.1103/PhysRevB.87.174523
https://doi.org/10.1103/PhysRevB.90.035140
https://doi.org/10.1103/PhysRevB.70.125111
https://doi.org/10.1103/PhysRevB.79.094526
https://doi.org/10.1103/PhysRevB.81.235108
https://doi.org/10.1103/PhysRevB.83.155125
https://doi.org/10.1103/PhysRevB.72.035107
https://doi.org/10.1103/PhysRevB.78.014522
https://doi.org/10.1103/PhysRevB.88.144508
https://doi.org/10.1103/PhysRevB.75.075110
https://doi.org/10.1103/PhysRevB.89.214514
https://doi.org/10.1103/PhysRevB.85.180502
https://doi.org/10.1103/PhysRevB.93.115111
https://doi.org/10.1103/PhysRevB.79.195125
https://doi.org/10.1103/PhysRevB.64.184516
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.89.121116
https://doi.org/10.1103/PhysRevLett.116.096402


SONG-JIN O PHYSICAL REVIEW B 109, 205118 (2024)

[35] J. Lichtenstein, D. S. de la Peña, D. Rohe, E. D. Napoli, C.
Honerkamp, and S. A. Maier, Comput. Phys. Commun. 213,
100 (2017).

[36] W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang, and
D.-H. Lee, Phys. Rev. B 85, 035414 (2012).

[37] N. Gneist, L. Classen, and M. M. Scherer, Phys. Rev. B 106,
125141 (2022).

[38] N. Gneist, D. Kiese, R. Henkel, R. Thomale, L. Classen, and
M. M. Scherer, Eur. Phys. J. B 95, 157 (2022).

[39] D. S. de la Peña, J. Lichtenstein, and C. Honerkamp, Phys. Rev.
B 95, 085143 (2017).

[40] D. S. de la Peña, J. Lichtenstein, C. Honerkamp, and M. M.
Scherer, Phys. Rev. B 96, 205155 (2017).

[41] S.-J. O, Y.-H. Kim, H.-Y. Rim, H.-C. Pak, and S.-J. Im, Phys.
Rev. B 99, 245140 (2019).

[42] S.-J. O, Y.-H. Kim, O.-G. Pak, K.-H. Jong, C.-W. Ri, and H.-C.
Pak, Phys. Rev. B 103, 235150 (2021).

[43] Y.-U. An, S.-J. O, K.-I. Ryom, and I.-G. Son, Phys. B: Condens.
Matter 655, 414748 (2023).

[44] J. Ehrlich and C. Honerkamp, Phys. Rev. B 102, 195108
(2020).

[45] A. Som, N. K. Yirga, and D. K. Campbell, arXiv:2304.12472.
[46] G. A. H. Schober, J. Ehrlich, T. Reckling, and C. Honerkamp,

Front. Phys. 6, 32 (2018).
[47] J. Beyer, J. B. Profe, L. Klebl, T. Schwemmer, D. M. Kennes,

R. Thomale, C. Honerkamp, and S. Rachel, Phys. Rev. B 107,
125115 (2023).

[48] P. M. Bonetti, D. Chakraborty, X. Wu, and A. P. Schnyder,
arXiv:2304.07100.

[49] N. K. Yirga, K.-M. Tam, and D. K. Campbell, Phys. Rev. B 107,
235120 (2023).

[50] J. B. Profe, C. Honerkamp, S. Achilles, and D. M. Kennes,
Phys. Rev. Res. 3, 023180 (2021).

[51] J. B. Profe and D. M. Kennes, Eur. Phys. J. B 95, 60 (2022).

[52] J. Beyer, J. B. Profe, and L. Klebl, Eur. Phys. J. B 95, 65
(2022).

[53] J. W. Negele and H. Orland, Quantum Many-Particle Systems
(Addison-Wesley, Reading, MA, 1988).

[54] A. Altland and B. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, England, 2010).

[55] M. Salmhofer and C. Honerkamp, Prog. Theor. Phys. 105, 1
(2001).

[56] W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang, Phys. Rev.
B 87, 115135 (2013).

[57] As can be seen from Eq. (50), in the RPA flow, due to the
positivity of χ ph(�) and −χ pp(�), the positive eigenvalue will
be amplified while the negative eigenvalue weakened. In the
TUFRG flow (44) with the structure similar to the RPA, a
similar behavior is exhibited when the scale approaches �D.
Actually, in our experience to date, we have not found any
dominant negative eigenvalue at the divergence scale.

[58] N. Nagaosa, Quantum Field Theory in Strongly Correlated
Electronic Systems (Springer-Verlag, Berlin, 1999).

[59] W.-S. Wang, C.-C. Zhang, F.-C. Zhang, and Q.-H. Wang, Phys.
Rev. Lett. 122, 027002 (2019).

[60] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat. Phys.
8, 158 (2012).

[61] M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R.
Thomale, Phys. Rev. B 86, 020507(R) (2012).

[62] Z.-C. Gu, H.-C. Jiang, D. N. Sheng, H. Yao, L. Balents, and
X.-G. Wen, Phys. Rev. B 88, 155112 (2013).

[63] T. Ying and S. Wessel, Phys. Rev. B 97, 075127 (2018).
[64] T. Li, Europhys. Lett. 97, 37001 (2012).
[65] S. Jiang, A. Mesaros, and Y. Ran, Phys. Rev. X 4, 031040

(2014).
[66] Note that only the ω = 0 components are involved in the sum-

mations of Eqs. (74) to (77) [see the discussion below Eq. (77)].
[67] J. Jaeckel and C. Wetterich, Phys. Rev. D 68, 025020 (2003).

205118-32

https://doi.org/10.1016/j.cpc.2016.12.013
https://doi.org/10.1103/PhysRevB.85.035414
https://doi.org/10.1103/PhysRevB.106.125141
https://doi.org/10.1140/epjb/s10051-022-00395-w
https://doi.org/10.1103/PhysRevB.95.085143
https://doi.org/10.1103/PhysRevB.96.205155
https://doi.org/10.1103/PhysRevB.99.245140
https://doi.org/10.1103/PhysRevB.103.235150
https://doi.org/10.1016/j.physb.2023.414748
https://doi.org/10.1103/PhysRevB.102.195108
https://arxiv.org/abs/2304.12472
https://doi.org/10.3389/fphy.2018.00032
https://doi.org/10.1103/PhysRevB.107.125115
https://arxiv.org/abs/2304.07100
https://doi.org/10.1103/PhysRevB.107.235120
https://doi.org/10.1103/PhysRevResearch.3.023180
https://doi.org/10.1140/epjb/s10051-022-00316-x
https://doi.org/10.1140/epjb/s10051-022-00323-y
https://doi.org/10.1143/PTP.105.1
https://doi.org/10.1103/PhysRevB.87.115135
https://doi.org/10.1103/PhysRevLett.122.027002
https://doi.org/10.1038/nphys2208
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.88.155112
https://doi.org/10.1103/PhysRevB.97.075127
https://doi.org/10.1209/0295-5075/97/37001
https://doi.org/10.1103/PhysRevX.4.031040
https://doi.org/10.1103/PhysRevD.68.025020

