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Microscopic theory of nonlinear Hall effect induced by electric field and temperature gradient
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We investigate an intriguing phenomenon, the nonlinear chiral thermoelectric (NCTE) Hall effect, where
electric current flows parallel to the outer product of an applied electric field and temperature gradient. We
develop a general microscopic formulation and confirm the effect in a chiral crystal. Significantly, we find that
the contribution of the orbital magnetic moment, which has been previously overlooked, is as crucial as the
conventional Berry curvature dipole term. We further demonstrate a substantial NCTE Hall effect in a chiral
Weyl semimetal. Our results shed new light on nonlinear transport phenomena and have broad implications for
condensed matter physics.
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I. INTRODUCTION

Understanding quantum transport phenomena is essential
in physics, as it allows us to determine the physical properties
by observing how physical quantities respond to different
external forces. We can also design and control materials and
their structures based on the information on the transport co-
efficients for high-performance device applications. A typical
example is the response of an electric current to an electric
field: Ohm’s law and the Hall effect [1] are historically well
known, and the anomalous Hall effect [2–4] and the topolog-
ical Hall effect [5–8] have been extensively studied in recent
years. Employing a temperature gradient instead of an electric
field, these phenomena are known as the Nernst effect and the
anomalous (topological) Nernst effect [9–14]. These transport
phenomena have been mainly studied as linear responses to
external forces. On the other hand, there are responses to two
or more external fields, namely nonlinear responses. Recently,
nonlinear responses have been extensively studied, such as
nonlinear optical responses, nonreciprocal transport, and the
nonlinear Hall (Nernst) effect [15–29].

Here, we focus on the response of an electric current to the
outer product of an electric field and a temperature gradient,
which we call the nonlinear chiral thermoelectric (NCTE)
Hall effect. The NCTE Hall effect is different from the super-
position of linear responses: the direction of the NCTE Hall
current changes when the direction of either an electric field
or temperature gradient changes, whereas the direction does
not change when the direction of both external forces changes
(see Fig. 1). In other words, reversing the sign of one of the
two “inputs” reverses the sign of the “output,” and reversing
the sign of both “inputs” does not change the sign of the
“output”; that is, it works the same as an XOR logic circuit.

The existence of the NCTE Hall effect has been predicted
in Weyl fermion systems [30], and the description of the
Berry curvature dipole has been obtained within semiclassical
kinetic theory [31,32]. These studies have covered only Weyl
systems and diverge at the low-temperature limit or have

only pointed out the possibility of the NCTE Hall effect. The
microscopic formulation of the NCTE Hall effect for general
band structures, verifying the finite NCTE Hall conductivities
in concrete models and showing the NCTE Hall effect in
actual crystals, is still absent.

This paper clarifies that the NCTE Hall effect occurs in
chiral crystals, based on the microscopic theory we developed.
First, we formulate the NCTE Hall effect microscopically by
employing nonequilibrium (Keldysh) Green’s functions [33]
for the (nonlinear) responses not only to mechanical forces but
also to the statistical forces. Next, by rewriting our formula in
band representation within the relaxation time approximation,
we find the novel terms expressed in the orbital magnetic mo-
ment adding to the conventional Berry curvature dipole terms.
Applying our formula to a minimal model, we unveil the

FIG. 1. Conceptual figure of the NCTE Hall effect. When apply-
ing an electric field E and a temperature gradient −∇T orthogonal
to each other, a current j flows perpendicular to both of them,
j ∝ E × (−∇T ). Since the NCTE Hall effect is the nonlinear re-
sponse, the sign of the current changes when replacing E → −E
or −∇T → ∇T , whereas the sign is the same when replacing both
E → −E and −∇T → ∇T .
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finite NCTE Hall conductivity, in which the orbital magnetic
moment terms are essential. Finally, we demonstrate the finite
NCTE Hall conductivity in a model of chiral crystal proposed
in Refs. [34,35], and obtain the NCTE Hall conductivity with
experimentally measurable value.

II. FORMULATION OF THE NONLINEAR CHIRAL
THERMOELECTRIC HALL EFFECT

We consider the Hamiltonian described as

H = H0 + Himp + Hext, (1)

H0 =
∑

k

c†
kHkck, (2)

Himp =
∫

drc†(r)Vimp(r)c(r), (3)

Hext = e
∫

drn̂(r)φ(r, t ), (4)

where c† (c) is the creation (annihilation) operator, Vimp(r)
is the impurity potential, e < 0 is an electron charge, n̂(r) =
c†(r)c(r) is the number density operator, and φ(r, t ) is the
scalar potential. Note that Hk is, in general, the spin and orbital
space matrix. We define the retarded Green’s function as

GR
k (ε) = [

ε − Hk − �R
k (ε)

]−1
, (5)

where �R
k (ε) is the retarded self-energy due to the impurity

scattering. We take the impurity average to retain the transla-
tional symmetry. The expectation value of physical quantity
Ô can be calculated by using the Keldysh Green’s function as

〈Ô〉 = − i

2

∫
dε

2π

∑
k

tr[ÔGK]. (6)

To obtain the Keldysh Green’s function, we calculate the
Keldysh component of the Dyson equation,

GK = GR � �K � GA, (7)

where the product � is the star product which is equivalent
to the convolution integral in the real time-space represen-
tation, or Moyal product in the Wigner representation. The
self-energy of the Keldysh component is described with the
local equilibrium distribution function as

�K = {1 − 2 fleq[ε; μ, T (r)]}(�R − �A), (8)

fleq[ε; μ, T (r)] = 1

exp [(ε − μ)/T (r)] + 1
. (9)

The response to the temperature gradient is obtained by tak-
ing the terms ∇T (r) from the Dyson equation (7). In linear
response theory, the response to the temperature gradient
is often calculated by introducing the gravitational potential
[36]. The essence of this method is that one calculates the
response to a gradient of gravitational potential based on the
Kubo formula, and then replaces the gradient of gravitational
potential with the temperature gradient for the nonequilibrium
component using the Einstein-Luttinger relation. However, we
note that the Einstein-Luttinger relation is only applicable
near equilibrium states, namely, in the linear response regime.
In other words, such a replacement is not justified in nonlinear

response regimes. In fact, violations of the Einstein-Luttinger
relation in specific cases have been reported [37]. On the
other hand, nonlinear responses to the temperature gradient
are calculated based on the Boltzmann equations using the
local equilibrium distribution function as the initial condition
[16,38]. The method employed in this paper is analogous to
the Boltzmann theory but is approached in a quantum me-
chanical framework, which allows for the incorporation of
interband and topological contributions. We also incorporate
an electric field by treating it in Keldysh space to obtain the
nonlinear response to a temperature gradient and an electric
field. For the latter convenience, we consider the setup in
which the electric field and temperature gradient are applied
to the xy plane. Generally, nonlinear conductivities are ex-
pressed in tensor form; however, it should be noted that for
the NCTE Hall current, specifying the direction of the cross
product between the electric field and the temperature gradient
is sufficient. The NCTE Hall current jz is expressed as

jz = σ NCTE
z

[
E ×

(
−∇T

T

)]
z

, (10)

with the NCTE Hall conductivity σ NCTE
z ,

σ NCTE
z = − e2

4π

∫
dε

(
−∂ f

∂ε

)
(ε − μ)

∑
k

× Im{tr[vzG
Rvx(∂εGR)vyGR

+ vz(∂εGR)vxGRvyGA − vzG
Rvx(∂εGR)vyGA

− vzG
RvxGRvy(∂εGA)] − (vx ↔ vy)}, (11)

where vi = ∂ki Hk is the velocity operator, and we put GR(A) =
GR(A)

k (ε) for simplicity. Here we assume that the spatial vari-
ation of the temperature T (r) is slow and use the relation
(∂i fleq ) = (∂iT/T )(−∂ f /∂ε)(ε − μ) with (global) equilib-
rium distribution function f (ε). The detailed derivation of the
NCTE Hall current is shown in the Supplemental Material
[39].

Equation (11) is one of the main results of this paper.
By examining Eq. (11), we find that the NCTE Hall current
becomes zero when the temperature reaches absolute zero,
i.e., T → 0. We can also find that the replacement part of
the velocity operators “−(vx ↔ vy)” in Eq. (11) is a critical
factor for the NCTE Hall effect, which reflects that the NCTE
Hall effect occurs only in the chiral materials. We can show
from Eq. (10) that chiral is the only required symmetry for
the NCTE Hall effect. Here the term “chiral” means the lack
of symmetry with respect to any direction of mirror operation
and spatial inversion. It is worth noting that, unlike the con-
ventional (anomalous) Hall effect, the NCTE Hall effect does
not necessarily require time-reversal breaking as an essential
condition.

III. NCTE HALL EFFECT IN THE BAND
REPRESENTATION

To describe the NCTE Hall current in the band rep-
resentation, we introduce the unitary matrix Un(k), which
diagonalizes Hk such that U †

n (k)HkUn(k) = εnk, where εnk
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represents the eigenenergy of band n. We define the re-
tarded Green’s function in band representation as GR

nk(ε) =
[ε − εnk + iγ ]−1, where we assume the self-energy is written
as �R = −iγ . We drop any dependence on energy, momen-
tum, and band indices for the damping rate γ . This assumption
is essentially the same as in previous studies [31,32] by defin-
ing the relaxation time as τ = 1/(2γ ). We obtain the NCTE
Hall conductivity with σ NCTE

z = σ BC
z + σ OM

z :

σ BC
z = e2τ

∑
n,k

(εnk − μ)

(
−∂ f

∂ε

)
ε=εnk

×
[

(∂zεnk)�z
n − 1

2

{
(∂xεnk)�x

n + (∂yεnk)�y
n

}]
, (12)

σ OM
z = − eτ

2

∑
n,k

(εnk − μ)

(
−∂ f

∂ε

)
ε=εnk

∇k · m⊥
nk, (13)

where �n = ∇ × An(k) is the Berry curvature with the
Berry connection An(k) = −iU †

n (k)∇Un(k), and m⊥
nk =

mnk − mz
nkêz = (mx

nk, my
nk, 0) is the orbital magnetic moment

which is written by the “interband Berry curvature” as

mnk = e

2

∑
m

(εmk − εnk)Im[Anm(k) × Amn(k)], (14)

where Anm(k) = −iU †
n ∇Um is the “interband Berry connec-

tion.” Equation (14) is equivalent to the expression used in
Ref. [35]. σ BC

z can be expressed by the Berry curvature dipole
which has been discussed within semiclassical theory [31,32].
On the other hand, σ OM

z is a novel term that we have identified,
which is comparable with the conventional term σ BC

z in terms
of the relaxation time τ . Both σ BC

z and σ OM
z are expressed as

products of the same direction of wave vector derivatives and
Berry curvature or orbital magnetic moment, which are differ-
ent from the conventional nonlinear Hall effect [15,17,18,24–
26]. In fact, σ OM

z can be understood as a Nernst effect aris-
ing from the nonequilibrium orbital magnetization induced
in the direction of the applied electric field [40–42]; see the
Supplemental Material [39]. In the following, we show that
σ OM

z is essential in a concrete model. We note that there is no
need to assume the (constant) relaxation time approximation
in Eq. (11), since all contributions, such as energy and wave
number dependencies, can be taken into account naturally
by calculating the self-energy and corresponding vertex cor-
rections. We also note that we can incorporate lower-order
relaxation time (higher-order damping constant), including
τ 0 contributions, in Eq. (11); see details in the Supplemen-
tal Material [39]. This feature distinguishes our microscopic
formulation from semiclassical analyses, in which only τ 1

contributions appear in the DC limit.

IV. ANALYSIS IN THE MINIMAL MODEL

Here we give a minimal model in which the finite NCTE
Hall conductivity arises. This model consists of the Weyl
electrons (linear in wave vector) with a term of second order
in wave vector, which is written as

Hk =vFk · σ + λk2, (15)
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FIG. 2. (a) Band structure of Hamiltonian (15) at kz = 0. (b) The
chemical potential dependence of the NCTE Hall conductivity
at temperature T = 0.05. Here we fix the parameters as vF = 1,
λ = 0.2, and γ = 0.1.

where vF is the Fermi velocity, σ = (σ x, σ y, σ z ) are the Pauli
matrices, and λ represents the strength of a term proportional
to k2. This model holds the time-reversal symmetry, and the
anomalous Hall effect does not occur. The eigenenergy ε± and
eigenvectors u± are given as Hku± = ε±u± with

ε± = λk2 ± vFk, (16)

u+ =
(

cos θ
2 e−iϕ/2

sin θ
2 eiϕ/2

)
, (17)

u− =
(

sin θ
2 e−iϕ/2

− cos θ
2 eiϕ/2

)
, (18)

where we introduce the polar coordinates (k, θ, ϕ) with
kx = k sin θ cos ϕ, ky = k sin θ sin ϕ, kz = k cos θ . The en-
ergy band structure at kz = 0 is shown in Fig. 2(a). The
eigenvectors in this model are the same as in the Weyl model,
and we can calculate the Berry curvature and the orbital mag-
netic moment,

�± = ± k
k3

, (19)

m± = − evF

2

k
k2

. (20)

Substituting (19), (20), and the velocity v±, j = ∂k j ε± = (2λ ±
vF/k)k j in (12) and (13), we obtain the NCTE Hall conductiv-
ities

σ BC
z = 0, (21)

σ OM
z = e2vFτ

6π2

∫ ∞

− v2
F

4λ

dε
ε − μ√
v2

F + 4λε

(
−∂ f

∂ε

)
. (22)

We find that the contribution from the Berry curvature dipole
disappears, while the contribution from the orbital magnetic
moment is essential. The dependence of the NCTE Hall con-
ductivity on the chemical potential is shown in Fig. 2(b).
Although the orbital magnetic moment arises near the “Weyl
point” εk = 0, the NCTE Hall conductivity is enhanced when
we tune the chemical potential near the bottom of the lower
energy band. This enhancement reflects the nature of thermo-
electric transport,

∫
dε(−∂ε f )(ε − μ) · · · , which is enhanced

when the chemical potential is near a sharp singularity in the
density of states [43]. We can see that the NCTE Hall effect
is zero in the linear model, including the linear Weyl model
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where the Berry curvature and the orbital magnetic moment
are as described by Eqs. (21) and (22); see the Supplemental
Material [39]. We can also see that σ OM

z = 0 when λ → 0, at
which point the Hamiltonian reduces to the linear Weyl model
Hk = vFk · σ. We emphasize that we need to consider not only
the enhancement of the Berry curvature dipoles or the orbital
magnetic moment but also the differentials of the density of
states to obtain the large NCTE Hall conductivity. One might
think that the NCTE Hall conductivity in Eq. (22) will become
zero in a crystal since it is proportional to vF and is canceled
by considering the pair of Weyl points. We should note that
these Weyl points are generally located at different energies;
here we put the energy difference as μ5. Since the NCTE Hall
conductivity is proportional to the derivative of Fermi distri-
bution function, the single Weyl model is valid when μ5 	
kBT . Moreover, even when considering both Weyl points,
σ NCTE|μ+μ5 − σ NCTE|μ generally holds a finite value. In fact,
we show the finite NCTE Hall conductivity in a chiral crystal
model hereafter.

V. NCTE HALL EFFECT IN CHIRAL CRYSTAL MODEL

Here we demonstrate that the NCTE Hall effect can be
realized in crystals. As mentioned above, the only required
symmetry for the NCTE Hall effect is chiral, which implies
that the NCTE Hall effect can be realized in trigonal Te and
Se [44]. In this paper, we employ the model of a chiral Weyl
semimetal [45]. We consider the tight-binding model pro-
posed in Refs. [34,35], which consists of an infinite stack of
honeycomb lattice layers, and describe the Bloch Hamiltonian
as

Hk = d0 + dk · σ, (23)

d0 = 2t2 cos(kzc)
∑

i

cos(k · bi ) + 2t3 cos(kzc), (24)

dx = t1
∑

i

cos(k · ai ), (25)

dy = t1
∑

i

sin(k · ai ), (26)

dz = −2t2 sin(kzc)
∑

i

sin(k · bi ), (27)

where dk = (dx, dy, dz ), σ = (σ x, σ y, σ z ) are the Pauli
matrices, a1 = a/

√
3êy, a2 = a/2êx − a/(2

√
3)êy, a3 =

−a/2êx − a/(2
√

3)êy, b1 = aêx, b2 = −a/2êx + a
√

3/2êy,
b3 = −a/2êx − a

√
3/2êy, t1, t2, t3 are the hopping

parameters, and a and c are the intralayer and interlayer
lattice constants, respectively. We plot the energy bands and
the density of states of the Hamiltonian (23) in Figs. 3(a)
and 3(b), respectively. (The parameters we use in the
calculation are shown in the caption of Fig. 3.) There are
Weyl points at the K and H points, and the Berry curvature
and the orbital magnetic moment are enhanced around
the Weyl nodes, as shown in Fig. 4. To obtain the NCTE
Hall conductivity, we apply the Sommerfeld expansion and
evaluate the lowest order in temperature T , assuming a
low-temperature limit. We also assume a constant and pure

-3 -2 -1 10.2 0.4 0.6
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2

4

0

Γ Γ ΓK KM H HA AL Density of States

(a) (b) (c)

FIG. 3. (a) Energy bands and (b) density of states of the Hamilto-
nian (23). (c) The NCTE Hall conductivity within the lowest order in
Sommerfeld expansion as a function of the chemical potential. We
use the parameters a = 1.0, c = 1.0, t1 = 1.0, t2 = 0.2, t3 = −0.2,
and γ = 0.1.

imaginary self-energy �R = −iγ . In Fig. 3(c), we plot the
NCTE Hall conductivity of this model at a low temperature
as a function of the chemical potential. We find a finite NCTE
Hall conductivity in a wide range of the chemical potential,
with an enhancement of the NCTE Hall conductivity near
the Weyl points and at points where the density of states
varies sharply, which is consistent with the discussion in the
minimal model. We estimate the NCTE Hall conductivity
in this model using realistic parameters. In Fig. 3(c), we set
γ /t1 = 0.1 for numerical calculation, which is too large for
a realistic situation. As given in Eq. (11), we assume that
the NCTE Hall conductivity is proportional to τ = h̄/(2γ )
and set γ /t1 = 0.001 for estimation. Assuming a temperature
gradient ∇T/T � 102 m−1, an electric field E � 103 V/m,
and a system size L × L × L with L � 1.0 µm, we obtain
an NCTE Hall conductivity of order σ NCTE ∼ 10e2/h and
corresponding NCTE Hall current of order jz ∼ 100 pA,
which are experimentally measurable.

Berry curvature(a) Orbital magnetic moment(b)

FIG. 4. (a) The Berry curvature and (b) the orbital magnetic
moment of the lower band at kz = π − δ, where we put the small
quantity δ = 3π/160 to avoid the singular points. The lengths of
arrows represent their magnitude in the kx-ky plane, and color rep-
resents their magnitude in the kz direction. Dashed lines represent
the boundary of the Brillouin zones. Both the Berry curvature and
the orbital magnetic moment are enhanced near the H points.
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VI. CONCLUSION

In this paper, we have formulated the NCTE Hall effect
using the method of quantum field theory at the microscopic
level. By rewriting the formula in the band representation, we
have identified the contributions of the orbital magnetic mo-
ment in addition to the Berry curvature dipole contributions.
Through analysis of the minimal model, we have demon-
strated the essential nature of the contribution of the orbital
magnetic moment to the NCTE Hall effect. Our findings show
that the chiral crystal model gives rise to finite NCTE Hall
conductivity. These results provide important insights into the

understanding of nonlinear transport phenomena and pave the
way for further investigations in this field.
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