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Expanding the two-particle Green’s functions determines the self-energy and the polarization as well as the
response function on the same footing. The correlation energy is calculated with the help of the extended
quasiparticle picture, which accounts for off-shell effects. The corresponding response function leads to the same
correlation energy as the self-energy in agreement with perturbation theory, provided one works in the extended
quasiparticle picture. A one-dimensional quantum wire of fermions is considered and ground-state properties
are calculated in the high-density regime within the extended quasiparticle picture and Born approximation.
While the on-shell selfenergies are strictly zero due to Pauli-blocking of elastic scattering, the off-shell behavior
shows a rich structure of a gap in the damping of excitation, which is closed when the momentum approaches
the Fermi one. The consistent spectral function is presented, completing the first two energy-weighted sum
rules. The excitation spectrum shows a splitting due to holons and antiholons as non-Fermi liquid behavior.
A renormalization procedure is proposed by subtracting an energy constant to render the Fock exchange
energy finite. The effective mass derived from meanfield approximation shows a dip analogous to the onset
of Peierls instability. The reduced density matrix or momentum distribution is calculated with the help of a
Padé regularization repairing deficiencies of the perturbation theory. A seemingly finite step at the Fermi energy
indicating Fermi-liquid behavior is repaired in this way.
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I. INTRODUCTION AND MOTIVATION

The one-dimensional correlated electron gas is especially
interesting since the quasiparticle picture breaks down and
non-Fermi liquid behavior appears. Such non-Fermi liquid
behavior has been observed in various physical systems rang-
ing from large-scale structures like crystalline ion beams
[1,2], quantum wires [3], carbon nanotubes [4–7], edge states
in quantum Hall liquid [8–10], semiconducting nanowires
[11,12], and cold atomic gases [13–15] up to conducting
molecules [16]. Mostly, it is claimed that perturbation theory
breaks down due to divergences in the expansion and the
absence of quasiparticles since single-particle excitations turn
into collective ones [17–19]. Nevertheless, such excitations
can show up eventually at the Luttinger surface where the
Green’s functions have a zero at zero energy [20]. Due to the
absence of quasiparticles, expansions are necessary beyond
the quasiparticle pole approximation. This is achieved if one
expands with respect to small damping (scattering rate), re-
sulting in the extended quasiparticle approximation [21,22]
and used for transport in impurity systems [23,24] or nonlocal
kinetic theory [25–27].

The limit of small scattering rates was introduced by
Ref. [28] for highly degenerated Fermi liquids, later used in
Refs. [29,30] for equilibrium nonideal plasmas. The same
approximation, but under the name of the generalized Beth-
Uhlenbeck approach, has been applied by Refs. [31,32] in

nuclear matter studies of the correlated density or in the
kinetic equation for nonideal gases [33]. This extended quasi-
particle picture is plagued by the same divergence at the Fermi
energy for one-dimensional wires as is typical for non-Fermi
liquids. Recently, this deficiency of the quasiparticle picture
has been cured by a Padé approximation [34], which shows
that the extended quasiparticle picture works and perturbation
theory can be applied. This renewed interest in perturba-
tion theory is motivated by the fact that in one-dimensional
systems the strongly correlated case coincides with the small-
density limit due to the special density dependencies of kinetic
and correlation energy [35]. Therefore, it is worth investigat-
ing how far the extended quasiparticle picture which takes into
account first-order damping and off-shell behavior is able to
capture the physics.

The aim of the paper is twofold. First, in a pedagogical
sense, different many-body schemes of Dyson equation and
self-energy on one side and the variational technique with
response and correlation functions on the other side are unified
and it is shown how they yield identical results. Results are
presented that half the correlation energy is stored in the quasi-
particle distribution compared to the Wigner function and
that the equivalent results of variational technique, charging
formula,and Dyson equation expansions of the Green’s func-
tions appear only within the extended quasiparticle picture.
The second aim is to demonstrate the many-body scheme for
a highly correlated system of one-dimensional Fermi wire.
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Here it is shown how a finite momentum distribution can be
achieved with a proper Padé regularization and perturbation
theory can be applied. The effective mass signals a transition
similar like Peierls transition.

There exists, of course,growing literature on many-body
theories—only Green’s function techniques are mentioned
here [27,36–40]. Especially for one-dimensional systems, ex-
act solutions are known for Luttinger [41–43], Tomonaga
[44], and Gaudin-Yang models [45,46] by the Bethe ansatz
[47,48]. Frequently bosonization techniques are used [49–52]
due to the similar behavior of long-distance correlations of
Fermi and Bose systems [53,54]. In Ref. [55], it was shown
that the random phase approximation (RPA) becomes ex-
act in the high-density limit for one-dimensional systems.
An overview about one-dimensional models can be found in
Refs. [37–39].

If one wants to consider more realistic systems like the
width dependence [56] of quantum wires. one does not have
any exact solutions and perturbation methods have been used
to investigate analytically and numerically the ground-state
properties [57–59]. Here the quantum Monte-Carlo method
[57,60–62] allows us to simulate strongly coupled systems
[63] as, e.g., implemented in the CASINO code [64]. Slater-
Jastrow-backflow trial wave functions [65,66] were used in
these calculations. The simulation details can be found in
Ref. [62]. The variational Monte Carlo method system [57]
and more accurate diffusion Monte Carlo can be treated as a
benchmark for the theory since it provides an exact solution
for a well-defined model. In one dimension, diffusion Monte
Carlo method is an exact method since the nodal surface is
exactly known.

The paper consists of two main parts. First, in Sec. II, two
approaches to correlations are presented, i.e., the structure
factor and the Dyson equation with self-energy, both rooted in
the two-particle Green’s function. It will be shown that the ex-
tended quasiparticle picture reproduces the correlation results
of the structure factor and correlation energy. It is explicitly
demonstrated on the Born approximation level. The coupling
parameter integration as a special form of variational method
is demonstrated to yield the same correlation energy. Second,
in Sec. III, we present the model of finite-width fermion
wires and discuss systematically the Hartree-Fock and Born
approximations. Within this paper, we consider the Hartree-
Fock as mean field. From the mean field, the effective mass
is calculated in Sec. III C. A dip occurs at twice the Fermi
momentum, indicating a similarity to the onset of Peierls
instability. The self-energy in the Born approximation is then
calculated in Sec. III D, revealing an energy gap. The resulting
spectral function is presented which requires a readaption
of the correct pole when approaching self-consistency. The
extended quasiparticle approximation describes this correct
pole and completes the first two energy-weighted sum rules. In
Sec. III F, we collect the results of the structure factor and pair
correlation function together with the correlation energy. The
reduced density matrix is explicitly calculated in Sec. III H,
which shows a divergence at the Fermi energy due to pertur-
bation theory. With the help of a proper Padé regulator, this
divergence can be subtracted and the momentum distribution
takes a finite value at the Fermi momentum. The contact
potentials as well as finite-size potentials seemingly show a

finite jump at the Fermi energy like a Fermi liquid which is
corrected by a proper Padé regulator. Section IV summarizes
the findings. In the Appendices, the corresponding integration
schemes are presented for the self-energy and the momentum
distribution.

II. MANY-BODY SCHEME

A. Correlation energy and pair correlation

We consider Hamiltonians of the form

Ĥ = Ĥ0 + V̂ =
∑

1

ε1�̂
+
1 �̂1 + 1

2

∑
12

V12�̂
+
1 �̂+

2 �̂2�̂1, (1)

with creation operators �+ and the free single-particle band

dispersion ε1 = k2
1

2m , e.g., for free particles. Numbers are cu-
mulative variables, 1 ≡ x1, t1, .... The probability to find a
particle at 1 and another at 2 is expressed by the one-time
pair-correlation function:

〈�̂+
1 �̂+

2 �̂2�̂1〉t1=t2 = 〈n̂(x1)n̂(x2)〉 − n(x1)δ(x1 − x2)

= g(x1, x2)n(x1)n(x2). (2)

This can be used to express the mean correlation energy in
space representation by [67]

Eint = 1

2

∫
dx1dx2V (x1, x2)

〈
�̂+

x1
�̂+

x2
�̂x2�̂x1

〉
= 1

2

∫
dx1dx2V (x1, x2)n(x1)n(x2)g(x1, x2)

= 1

2

∫
dx1dx2V (x1, x2)n(x1)n(x2)[g(x1, x2) − 1]

+ 1

2

∫
dx1dx2V (x1, x2)n(x1)n(x2), (3)

where the definition (2) is used in the second line and the
Hartree energy EH is split off in the third line. Chang-
ing to difference and center-of-mass coordinates r = x1 − x2,
R = (x1 + x2)/2 and introducing the liquid structure function

n(R)S(r, R) = (g(r, R) − 1)n

(
R + r

2

)
n

(
R − r

2

)
+ n(R)δ(r),

(4)

the interaction energy Eint without the Hartree term EH , which
is the correlation energy Ec with Fock (exchange) term EF ,
becomes

Eint − EH = Ec + EF = 1

2

∫
drdRV (r)n(R)[S(r, R) − 1]

= N

2

∫
dq

(2π )d
V−q(Sq − 1), (5)

where the last line is valid if S(r, R) ≈ S(r). Integrating (4)
yields the density fluctuation correlator∫

dre−irq
∫

dR n(R)S(r, R) = 〈n̂qn̂−q〉 − nqn−q

= 〈δnqδn−q〉, (6)
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FIG. 1. Formal closure of the Martin-Schwinger hierarchy for
Fermi-Bose systems introducing the self-energy (10). About variable
3, one integrates, and 3+ means infinitesimal time later than at 3. We
introduce diagrammatic rules that a broken line means iV and an
arrow line means a causal Green’s function G.

where the left side can be integrated again for S(r, R) ≈ S(r)
and, finally,

Sq = 1

N
〈δn̂qδn̂−q〉, (7)

with the total number of particles N . It means that the structure
function is the density fluctuation correlator. Therefore, it is
advisable to investigate the density fluctuations.

B. Two-particle Green’s function and self-energy

For this aim, we consider the causal Green’s function

G(1, 2) = 1

i
�(t1 − t2)G>(1, 2) ∓ 1

i
�(t2 − t1)G<(1, 2)

(8)

for Fermi-Bose systems which time orders the two
double-time correlation functions G<(1, 2) = 〈ψ̂†

2 ψ̂1〉 and
G>(1, 2) = 〈ψ̂1ψ̂

†
2 〉 with averaging about the unknown statis-

tical operator. Applying the Heisenberg equation of motion,
one obtains the Martin-Schwinger hierarchy [68,69] where the
one-particle Green’s function couples to the two-particle,

G2(1, 3; 2, 4) = 1

i2
〈T̂ ψ̂1ψ̂3ψ̂

†
4 ψ̂

†
2 〉, (9)

the two-particle to the three-particle, and so on. A formal
closure is reached by introducing the self-energy

∓i
∫

d3V (1, 3)G2(13, 23+) =
∫

C
d3 �(1, 3)G(3, 2), (10)

as illustrated in Fig. 1. About double occurring indices, we
understand integration in the following. The integration path
is determined by the demand that in the infinite past the two-
particles are uncorrelated, which leads to [27]∫

C
d3�(1, 3)G(3, 2)

=
∫ +∞

t0

d3{�(1, 3)G(3, 2) ∓ �<(1, 3)G>(3, 2)}. (11)

This allows us to conveniently set up the Langreth-Wilkins
rules [70] to recover the correlation parts from causal func-
tions. If one has C(1, 2) = ∫

d3A(1, 3)B(3, 2), these rules
provide

C≷ = A≷BA + ARB≷, (12)

where the retarded and advanced functions are

CR(t, t ′) = −iθ (t − t ′)[C>(t, t ′) ± C<(t, t ′)],

CA(t, t ′) = iθ (t ′ − t )[C>(t, t ′) ± C<(t, t ′)]. (13)

+=G +--+

FIG. 2. Expansion of the two-particle Green’s function up to
linear order in V.

Now we can systematically expand the two-particle
Green’s function in terms of interaction, as given in Fig. 2.
Introducing this into (10), the first term gives the Hartree, the
second the Fock, and the third and fourth terms the first Born
approximations of the self-energy.

The closure (10) leads to the Dyson equation for the full
propagator

G(1, 2) = G0(1, 2) + G0(1, 3)�̄(3, 4)G(4, 2) (14)

or, graphically,

−Σ+=
where the thin line is G0 and we absorb the Hartree self-
energy together with the external potential U into the induced
potential

Ū11′ = U11′ ∓ iV12G22+δ11′ , (15)

such that the free propagator reads(
i

∂

∂t1
+ ∇2

1

2m
− Ū (1)

)
G0(1, 2) = δ(1 − 2). (16)

One Fourier transforms the difference coordinates into fre-
quency and momentum. Since we concentrate on equilibrium,
all quantities are only dependent on the difference of coordi-
nates. Nonequilibrium expressions can be found in Ref. [27].

C. Correlation energy and extended quasiparticle picture

From the Heisenberg equation of motion, the Hamiltonian
(1) leads to

(i∂t1 − i∂t2 )�+
2 �1 = (ε1 + ε2)�+

2 �1

+
∑

3

(V13 + V12)�+
2 �+

3 �3�1 (17)

and, therefore, after averaging,

1
2 (i∂t1 − i∂t2 )G<

12

∣∣
1=2 = 〈K〉 + 2〈V 〉, (18)

with the kinetic energy 〈K〉 = Tr[ρ̂Ĥ0] and the potential en-
ergy 〈V 〉 = Tr[ρ̂V̂ ]. If one knows the correlation function, the
correlation energy density can therefore be expressed as

Ec + EH + EF =
∑

k

∫
dω

2π

1

2

(
ω − k2

2m

)
G<(k, ω), (19)

where the total energy would be the plus sign instead of the
minus sign in the bracket. Here we note the different expan-
sion scheme compared to (5) and the different role of Fock
energy.
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Within the extended quasiparticle picture, we expand the
correlation functions with respect to the order of self-energy,

G<(k, ω) = 2πδ(ω − εk )

1 − ∂�(ω)
∂ω

nk + �<(ω)
℘′

ω − εk
+ o(�2),

(20)

where the real part of the spectral function is the Hilbert
transform

� = Re�R =
∫

dω̄

2π

�(ω̄)

ω − ω̄
(21)

of the self-energy spectral function

� = �> + �< = −2Im�R. (22)

The letter, both specifying the retarded self-energy:

�R(q, ω) = �(q, ω) − i

2
�(q, ω) =

∫
dω̄

2π

�(ω̄)

ω − ω̄ + iη
.

(23)

We abbreviate

ε0
k = εk + �HF, εk = ε0

k + �(k, εk ) (24)

according to the poles of (20).
If we integrate (20) over the energy ω, we get the connec-

tion between reduced density matrix ρ and the distribution

nk as

ρk = nk +
∫

dω

2π

�<(ω)(1 ∓ nk ) − �>(ω̄)nk

(ω − εk )2
. (25)

The quasiparticle (Bose-Fermi) distribution nk is to be taken
at the pole εk . The form (20) was derived with respect to
small scattering rate expansion and with quasiparticle energies
under the name of extended quasiparticle approximation in
nonequilibrium [21,22] and the history of this expansion was
given in the Introduction above. Details can also be found in
Ref. [27].

D. Born approximation

Since we want to consider the terms up to V 2 in the self-
energy, the terms exceeding (20) would start with fourth-order
interaction. Using the expansion of Fig. 2 to calculate the self-
energy in Fig. 1, one sees that the Hartree and Fock terms
are time-diagonal and therefore do not possess any frequency
dependence which leads to no second part of (20). The Born
term leads to the self-energy

�<(k, ω) =
∑
qp

2πδ(ω + εp − εp−q − εk+q)np−qnk+q(1 ∓ np)

× Vq[gsVq ∓ Vp−k−q], (26)

where the spin degeneracy gs only applies to the direct and
not to the exchange terms. The �> self-energy is obtained by
interchanging n ↔ 1 ∓ n. Using this Born approximation in
(25), we get

〈ερ〉 =
∑

k

εkρk =
∑

k

εknk +
∑
kpq

Vq[gsVq ∓ Vp−k+q]εk
nk+qnp−q(1 ∓ nk )(1 ∓ np) − nknp(1 ∓ nk+q )(1 ∓ np−q )

(εk+q + εp−q − εp − εk )2
(27)

and

〈ρ�〉 = 〈n�〉 + o(V 4). (28)

Using symmetry to replace εk → − 1
4 (εk+q + εp−q − εp − εk ) in (27) and subtracting (28), we obtain

〈ε0ρ〉 = 〈ε0n〉 − 1

4

∑
kpq

Vq[gsVq ∓ Vp−k+q]
nk+qnp−q(1 ∓ nk )(1 ∓ np) − nknp(1 ∓ nk+q )(1 ∓ np−q )

εk+q + εp−q − εp − εk
. (29)

We identify the difference of kinetic energy calculated with
the reduced density matrix and the quasiparticle distribution
function

Kρ = Kn − 1
2 Ec, (30)

with the first nonvanishing correlation energy (19):

Ec =
∫

dkdpdq

(2π h̄)3
Vq[gsVq ∓ Vp−k−q]

× (1 ∓ np−q)(1 ∓ nk+q)npnk

εp + εk − εk+q − εp−q
. (31)

The difference of reduced density matrix and quasiparticle
distribution function accounts for half the correlation energy
[71] and we can write alternatively for the total energy:

E = Kn + 1
2 Ec = Kρ + Ec. (32)

We note here already that the on-shell self-energy
�≷(k, εk ) will vanish for one-dimensional Fermi wires since
two particles can scatter only by exchanging their momenta.
In (20), the off-shell self-energy is required, which has been
presented in a different scheme and discussed in Ref. [72].

Integrating (20) over frequency, we get the reduced density
matrix or Wigner distribution ρk = nk + ρ>

k − ρ<
k in terms of

the Fermi-Dirac distribution nk . We can explicitly use (26) in
(25) to obtain

ρ>
k = (1 ∓ nk )

∫
dpdq

(2π h̄)2

Vq(gsVq ∓ Vp−k−q )

(εp + εk − εk+q − εp−q)2

× np−qnk+q(1 ∓ np) (33)

and ρ<
k by replacing n ↔ 1 ∓ n.
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FIG. 3. The causal functions representing Eq. (35).

E. Density fluctuation and response function

Besides the self-energy, we can also extract the density
fluctuation δn̂(11′) = �+(1′)�(1) − 〈�+(1′)�(1)〉 from the
two-particle Green’s functions. One observes that the fluc-
tuation correlations are linked to the two-particle Green’s
function subtracted by the Hartree term

−iχ (121′2′) = G2(121′2′) − G(11′)G(22′) (34)

and

〈δn̂(11)δn̂(22)〉 = 〈�+
1 �1�

+
2 �2〉 − G<(11)G<(22)

= i2�(t1 − t2)G121+2+ + G(11+)G(22+)

= χ>(12) = χ<(21), (35)

which is illustrated in Fig. 3.
In other words, instead of closing (10) in an s-channel

way, the density fluctuations consider the two-particle Green’s
function in a t-channel, i.e., a different way to reduce four
times to two times. We can use now the causal two-time
correlation function

χ (12) = 1

i
�(t1 − t2)χ>(12) + 1

i
�(t2 − t1)

χ<(12) = χ121+2+ , (36)

where we obey the Bose character of fluctuations by the plus
sign in accordance with (8).

On the other hand, one can express the two-particle Green’s
function by a variation of the one-particle Green’s func-
tions iG12 = 〈Tc�̂1�̂

+
2 〉 with respect to the external potential

[69,73]

G121′2′ = G11′G22′ ∓ δG11′

δU2′2
, (37)

corresponding to Fermi-Bose systems. It shows that the re-
sponse function is just the density fluctuation (36) when we
consider the times t2 = t+

1 = t1 + 0:

χ<
12 = δn1

δU2+2
= δG<

11+

δU2+2
= ∓i

δG11+

δU2+2

= i(G121+2+ − G11+G22+ ) = iχ12. (38)

Now we make the link to the structure function of Sec. II A.
From definitions (2) and (4), we see the relation of the pair

correlation function and structure function to the fluctuation
function (35) are

iχ (x1t1, x2t1+) = χ<(12) = 〈�+
2 �2�

+
1 �1〉 − n(1)n(2)

= 〈�+
1 �+

2 �2�1〉 + δ12n(1) − n(1)n(2)

= n(1)n(2)[g(12) − 1] + δ12n(1)

= n(1)S(x1, x2, t, t ), (39)

which provides the static pair-correlation (2) and structure
function (4) in terms of the time diagonal of χ<. Neglecting
gradients in the density n(R ± r/2) ≈ n(R), we obtain the
known Fourier transform:

Sq = 1 + n
∫

dre−iqr[g(r) − 1] = 1

n
χ>(q, t, t ). (40)

We can extend this to the dynamical structure factor by

nS(q, ω) =
∫

d (t − t ′)eiω(t−t ′ )χ>(q, t, t ′)

= χ>(q, ω) = −2Imχ (q, ω)[1 + nB(ω)], (41)

with the Bose distribution nB accounting for the Bose charac-
ter of the fluctuations. Since the imaginary part of the response
function is odd in frequency, we can write

Sq = 1

n

∫ ∞

−∞

dω

2π
[1 + nB(ω)][−2Imχ (q, ω)]

= 1

n

∫ ∞

0

dω

2π
coth

(
βω

2

)
[−2Imχ (q, ω)]. (42)

If we consider the ground state at β = 1/kBT → ∞, the coth
approaches unity.

F. Coupling parameter integration

So far, we have two possibilities to calculate the correlation
energy. We need the first-order expansion in the two-particle
Green’s function, Fig. 2, to achieve second order in the self-
energy in Fig. 1 and the correlation energy (19). The same
approximation of the two-particle Green’s function is now
used to also calculate the density response in Fig. 3 as a
t-channel closing which provides the density fluctuations, the
structure factor (42), and the correlation energy (5). Due to the
same rooting of approximations to the two-particle Green’s
function, the correlation energies (5) and (19) will coincide.

The total ground-state energy can be obtained by coupling-
constant integration. Therefore, we add a constant λ in front
of the potential. Since the ground-state wave function is nor-
malized independently of this parameter 〈�0(λ)|�0(λ)〉 = 1,
the derivative of the ground-state energy reads

dE (λ)

dλ
= d

λ
〈�0(λ)|Ĥ (λ)|�0(λ)〉 = 〈�0(λ)|d

λ
Ĥ (λ)|�0(λ)〉

= Eint(λ)

λ
, (43)

which provides the ground-state energy beyond the free one
E0 as

E = E0 +
∫ 1

0

dλ

λ
Eint(λ), (44)
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Π

L

+=L Π

FIG. 4. The integral equation connecting the response χ = iL
with the polarization �.

which we will call the charging formula. Using (42) in (5),
we get the ground-state energy without the Hartree term per
particle as

E − EH

N
= −1

2

∫
dq

(2π )d
Vq

×
[

1

n

∫ 1

0
dλ

∫ ∞

0

dω

π
Imχ (q, ω, λ) + 1

]
. (45)

Both forms (45) as well as (19) allow a systematic expan-
sion with the help of the two-particle Green’s function. Some
pitfalls of the coupling-constant integration are discussed in
Ref. [74].

G. RPA-like integral equations

Sometimes it is useful to express the response function
(38) with respect to the external potential U in terms of the
polarization function which is the response with respect to the
induced potential (15):

�12′1′2 = ∓δG11′

δŪ22′
. (46)

Using δG = −GδG−1G, we can write the polarization func-
tion with the help of the Dyson equations (14)–(16):

�12′1′2 = ∓G12G2′1′ ∓ G13
δ�̄34

δŪ22′
G41′ . (47)

Frequently, one expresses the response function (38) or (34)
in terms of the fluctuation L with the help of (37) as

L121′2′ = G121′2′ − G11′G22′

= ∓G12′G21′ ∓ G13
δ�34

δU2′2
G41′

= ∓G12′G21′ + G13
δ�34

δG56
L5262′G41′ . (48)

Comparing (48) and (47) and using the chain rule to express
variations with respect to U by variations with respect to Ū ,
we find a relation between L and � expressed in Fig. 4.

Closing the upper and lower edges in the t-channel man-
ner, we obtain the RPA-like integral equation for the causal
functions

L(12) = −iχ (12) = �(12) + �(13)V (34)L(42), (49)

+

Π = −+
22’

34___δ Σ−

3 4
U−δ 

2 22

1

2

11

+−
2

FIG. 5. Polarization (47) in terms of the variation of the self-
energy with respect to the induced potential (15).

which in equilibrium is solved and reads for the retarded
functions

LR(q, ω) = χR(q, ω) = �R(q, ω)

1 − V (q)�R(q, ω)
. (50)

There is some care to be observed since the polarization itself
has a kernel to be determined self-consistently with the self-
energy. In fact, closing (47) in the t-channel manner we get
for the polarization just Fig. 5, which shows that any approxi-
mation beyond the lowest RPA are calculated as variations of
the self-energy.

Let us illustrate the procedure with the first-order expan-
sion of the self-energy which is the Fock term

�F (34) = ∓V (3 − 4)G(34), (51)

and the Hartree term is absorbed in (15). We obtain

δ�F (3, 4)

δŪ (2, 2′)
= ∓V (3, 4)

δG(3, 4)

δŪ (2, 2′)

= ±V (3, 4)G(3, 5)
δ[Ḡ−1

0 (5, 6) + �(5, 6)]

δŪ (2, 2′)

× G(6, 4)

= ∓V (3, 4)G(3, 5)δ2,6δ5,2′G(6, 4) + o(V 2)

= ∓V (3, 4)G(3, 2′)G(2, 4), (52)

and introduced in (47) one gets the expansion in Fig. 6. Be-
sides the noninteracting polarization function

�0(q, ω) = gs

∑
k

nk − nk+q

ω + �k,q
, (53)

2 ++−

+−

+−= +o(V )2

= +Π

FIG. 6. The polarization diagrams (47) when introducing (52),
the second line is the expansion with the help of the Dyson equa-
tion (14) up to first-order interaction ∓�0 ∓ �se + �ex.
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there appear the self-energy and vertex correction given
by [75]

�se(q, ω) = gs

∑
k,p

v(k − p)(nk − nk+q )(np − np+q )

(ω + �k,q )2
(54)

and

�ex(q, ω) = ∓gs

∑
k,p

v(k − p)(nk − nk+q )(np − np+q)

(ω + �k,q )(ω + �p,q)
,

(55)

respectively. Here �k,q = ωk − ωk+q, �p,q = ωp − ωp+q and
nk represents the Fermi-Dirac or Bose distribution function for
fermions or bosons, respectively.

This completes the many-body scheme where we have
shown how the variational expressions resulting in the pair
correlation or structure function as well as response functions
appear on the same footing as the single-particle self-energy
from Dyson equation. Both lead to the same expression for the
correlated energy and are rooted to the two-particle Green’s
function.

III. WIRE OF FERMIONS

A. Model

We now apply the many-body scheme to the model of
a one-dimensional wire of charged fermions. Due to the
strong divergence of the Coulomb interaction, we model it
by a soften Coulomb potential of a cylindrical wire V (r) =
e2/4πε0

√
r2 + b̄2 and consider the limit b̄ → 0. Its Fourier

transform reads

V (q) = e2

4πε0
v(q),

v(q) = 2K0(b̄q) = −2

[
ln

(
q

2

)
+ γ

]
− 2 ln b̄ + o(b̄2),

(56)

where b̄ is related to the transverse width parameter of the
wire, K0 is the modified Bessel function of the second kind,
and the Euler constant γ .

Within the jellium model of electron density ρ(x), one con-
siders an oppositely charged background density ρb(x). The
background potential Vb(x) = − ∫

dx′V (x − x′)ρb(x′) gives
the interaction energy of electrons with the background

Ee−b = −
∫

dxρ(x)Vb(x). (57)

This energy is compensated by the self-energy of the back-
ground itself,

1

2

∫
dxdx′ρb(x)ρb(x′)V (x − x′), (58)

together with the Hartree self-energy of the electrons

1

2

∫
dxdx′ρ(x)ρ(x′)V (x − x′) (59)

if charge neutrality ρb(x) = ρ(x) is assumed. Therefore, the
Hartree term does not count and we can directly use the
formulas (19) and (45) starting from the Fock term.

We first consider spin-polarized densities n↑↓ = n(1 ±
p)/2 with arbitrary polarization p = (n↑ − n↓)/n. Therefore,
the Fermi momentum is k↑↓ = π h̄n/gs = kF /gs with gs =
2/(1 ± p). For the paramagnetic case, we have p = 0 and
gs = 2, which means k↑ = k↓ = kF /2. Correspondingly for
the ferromagnetic case, gs = 1 and k↑ = kF . The rs parameter
as the number of particles in the Wigner size radius 2aB is
rs = 1/2naB.

B. Fock term or exchange term

First, we investigate the lowest order Fock term

�F (k) = ∓
∫ ∞

−∞

dq

2π h̄
Vqnk−q, (60)

with the upper sign for spin-polarized electrons, gs = 1.
The spectral function in the Fock-propagator G<(k, ω) =
a(k, ω)nk becomes a(k, ω) = 2πδ(ω − k2

2m − �HF) and (19)
leads to the Fock correlation energy density:

EF

�
= 1

2

∫ ∞

−∞

dk

2π h̄
nk�F (k). (61)

It is instructive to see how this formula appears from the
charging formula (44) or (45). For any temperature, we have
(41) and from (50) ImL = Imχ = Im�0 + o(V ). With the
help of nB(−ω) = −1 − nB(ω), we write

EF

N
= 1

2

∫
dq

(2π )d
Vq

[
1

n

∫ ∞

−∞

dω

π
nb(−ω)Im�0(q, ω) − 1

]
.

(62)

Using

Im�0(q, ω) = gsπ

∫
dk

(2π )d
[n(εk ) − n(εk−q)]

× δ(εk − εk−q − ω), (63)

one calculates with the help of n(a)[±1 − n(b)] =
n(a)n(−b) = ±nB(a − b)[n(b) − n(a)],∫ ∞

−∞

dω

π
nb(−ω)Im�0(q, ω)

= gs

∫
dk

(2π )d
[n(εk ) − n(εk−q)]nb(εk−q − εk )

= ±gs

∫
dk

(2π )d
n(εk−q)n(−εk )

= gs

∫
dk

(2π )d
n(εk−q)[1 ∓ n(εk )]

= n ∓ gs

∫
dk

(2π )d
n(εk−q)n(εk ), (64)

and introducing into (62), one gets exactly the Fock energy
(61) with (60) for Fermi-Bose systems:

EF

N
= ∓ gs

2n

∫
dkdq

(2π )2d
Vqn(εk−q)n(εk ). (65)

We can give this exchange energy analytically at zero
temperature with nk = �(k2

↑↓ − k2). In the following, we
scale the momenta in units of k↑↓ = k f (1 ± p)/2 with spin-
polarization p = (n↑ − n↓)/(n↑ + n↓). The Fock correlation
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FIG. 7. The Fock correlation energy for a width of b = 1aB/h̄
versus polarization.

energy per particle and in units of Ryd can be integrated with
the potential (56) by interchanging integration orders

EF

N↑Ryd
= −1

16rs↑

∫ 1

−1
dk

∫ k+1

k−1
dqK0(bq)

= −1

8rs↑

∫ 2

0
dq(2 − q)K0(bq)

= − 1

8rs↑

[
2b(πbL0(2b) + 1)K1(2b) − 1

b2

+ 2πL−1(2b)K0(2b)

]
, (66)

with Ryd = e2/4πε0aB and b = b̄k↑↓ = b̄kF (1 ± p)/2 and
the StruveL function Ln(x). One sees that in this scaling the
mean field appears in orders 1/rs or rs↑ = rs/(1 + p), respec-
tively. If one wants to present the energies in terms of Fermi
energy, one has the relation

Ryd = e2

4πε0aB
= εF

8

π2
r2

s , (67)

and the mean field would start with rs.
In Fig. 7, the scaled Fock self-energy per particle is plotted

as a function of polarization. We see that it is increasing with
increasing polarization.

Now we can investigate whether there is a symmetry-
broken ground state by comparing the para- (p = 0) with the
ferromagnetic (p = 1) ground state as illustrated in Figs. 8 and
9. We see that for any specific width, the ferromagnetic ground

FIG. 8. The ferro- and paramagnetic Fock correlation energy for
a width of b = 0.1aB/h̄.

FIG. 9. The difference of ferro- and paramagnetic Fock correla-
tion energy for any width.

state is higher than the paramagnetic one. This is in agreement
with the Lieb-Schultz-Mattis theorem [76] up to a spin-up
Bruckner parameter of rs↑ ∼ 0.7, which shows the limit of the
mean-field approach. If we scale the b parameter, we see that
this is true for any width b as illustrated in Fig. 9. We conclude
that in one-dimensional systems there is no symmetry-broken
Hartree-Fock state as found in 2D and 3D systems. For an
overview, see Ref. [58].

C. Renormalization of potential and effective mass

The analytical result for the Fock self-energy is

�F

nRyd
= −1 ± p

4nrs

∫ k+1

k−1
dqK0(bq)

= − π

4rsgs
[(1 − k)L−1(b(1 − k))K0(b|1 − k|)

+ |1 − k|L0(b(1 − k))K1(b|1 − k|)
+ (k + 1)L−1(b(k + 1))K0(b(k + 1))

+ (k + 1)L0(b(k + 1))K1(b(k + 1))], (68)

which is plotted in Fig. 10.
When we are approaching the Coulomb limit for vanishing

width b → 0, the Fock term diverges to −∞. This is cured
by a summation of higher-order diagrams which are the RPA
ones to produce an appropriate screened potential. Here we
suggest the following procedure. In principal, we can fix the
energy scale as we want. Therefore, adding a constant does not

FIG. 10. The unrenormalized Fock self-energy (68).
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FIG. 11. The quasiparticle dispersion with the renormalized
Fock self-energy (68).

alter the physics. Within the jellium model, we simply assume
a background bias. Therefore, we are allowed to subtract from
any potential a constant, v(q) → v(q) + v0. Conveniently, we
chose v0 = 2 ln b, which renders the Fock self-energy finite.
We will see in the next section that this constant v0 drops out
exactly in second-order self-energy. In Fig. 11, we plot the
renormalized Fock self-energy as it appears in the quasiparti-
cle dispersion, which shows how it converges to a finite value
for b → 0, the result being

�F

nRyd
= π

rsgs

[
γ − ln

e2

2
+ k + 1

2
ln(k + 1)

+ 1 − k

2
ln |1 − k|

]
. (69)

The effective mass

k

meff
= ∂ε0

k
= k

m
+ ∂�F

∂k
(70)

is independent of such added constant and diverges logarith-
mically at k = 1:

m

meff
= 1 − (p + 1)

rs

π2

[
ln

(
b

2
|k − 1|

)
+ K0(2b) + γ

]

+ o(|k − 1|). (71)

In Fig. 12, we see that the Coulomb limit b → 0 is reached
with a finite value

m

meff
= 1 + rs

2(1 ± p)

xπ2
ln

1 + x

|1 − x| , (72)

with x = k/k↑↓. At the (polarized) Fermi momentum, we see
that the effective mass is zero, indicating the breakdown of the
Fermi liquid picture.

We plot this Coulomb effective mass in Fig. 13 for differ-
ent rs parameters. We see that with increasing density the
effective mass is more suppressed. The dip in the effective
mass is dependent on the polarization, as seen in Fig. 14. In
fact, for the paramagnetic case we see that the dip occurs at
twice the Fermi momentum and indicates an analogous onset
of Peierls instability [77,78] though we do not have any lattice

FIG. 12. The effective mass for different width in the ferromag-
netic case and rs = 1. The position of the logarithmical divergence
are indicated by the dashed line.

in the Hamiltonian. The formation of the Wigner lattice due
to correlation in experiments [1,2] allows us to suggest here a
similar transition.

D. Self-energy in first Born approximation

Now we calculate the self-energy in the Born approxi-
mation (26), which represents the next order in rS beyond
the mean field. The δ function we use to perform the q
integration gives two poles q = (p − k ± η)/2, with η =√

p2 − k2 − 2kp + 2ω, with the residue 1/2η. This restricts
the integration to render the root real. The sum of these two
poles finally yields in dimensionless units

�<

Ryd
= gs

π

∫
d p

η

[
v

(
p − k + η

2

)
− v

(
p − k − η

2

)]2

�[4 − (k + p + η)2]�[4 − (k + p − η)2]

�[p2 − 1]. (73)

The expression for �> is given by interchanging the sign in
the � functions. It is remarkable that any constant shift of the
potential v(q) + v0 drops out. Therefore, we can work with
the renormalized potential as introduced in the mean-field
section. The last integration can be done numerically. The
integration range for p is, in fact, quite involved and given

FIG. 13. The Coulomb effective mass (b = 0.01) for different rs

in the ferromagnetic case.
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FIG. 14. The Coulomb effective mass for rs = 0.1 and various
polarizations ranging from paramagnetic (p = 0) to the ferromag-
netic (p = 1) case. The vertical dashed lines indicate the divergence
at x = k/k↑↓ = 2/(1 + p).

in Appendix A. In Ref. [72], an alternative analytical way is
presented to express the self-energy in terms of one integral
about any used potential.

The first observation is that both self-energies vanish on
shell, �≷(k, ω = k2/2m) = 0. This is a specific feature of 1D
systems. One can understand this as suppression of any elastic
scattering event by Pauli blocking, allowing only exchange of
momenta.

We discuss the spectral function (22) of the self-energy in
Fig. 15. One sees that below the Fermi momentum, a gap
in the dissipation spectrum appears which is closed when

FIG. 15. The spectral function of self-energy (22) for b = 1 and
various momenta. The left curves are �< and the right ones �>.

FIG. 16. The spectral function of self-energy (22) for k = 0.6
(above) and k = 1.6 (below) and various b.

the Fermi momentum is approached. For momenta above the
Fermi momentum, the dispersion splits, which can be inter-
preted as holons and antiholons [47], i.e., the excitation out
of Fermi; see above k f and −k f , respectively. This results
in the two excitations above and below ω = k2

f . The �< as
self-energy due to hole damping is represented by the left
curves which develop a sharp peak when approaching the
Fermi momentum. It never overcomes the on-shell value.
Exceeding the Fermi momentum, �< shrinks and forms a
large background. The opposite behavior one sees for the
particle contribution �>, which are the curves on the right
side, respectively. The sharp peak developed above the Fermi
momentum moves to higher values and broadens for higher
momenta. Please note that at the on-shell value, �> is also
exactly zero. If we approach the Coulomb limit for b → 0, we
see in Fig. 16 that the self-energy is increasing and converging
visibly at b = 0.05.

E. One-particle spectral function

1. Self-consistent spectral function

Next we calculate the real part of the self-energy (21),
which allows us to discuss the spectral function of the elec-
trons from the Dyson equation

a(k, ω) = −2Im

[
ω − k2

2m
− �F (k) − �R(k, ω)

]−1

. (74)

In Fig. 17, we present this spectral function (74) for various
momenta. We see that the pole increases according to the
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FIG. 17. The (unrenormalized) non-self-consistent electron
spectral function (74) for various momenta.

expected dispersion k2/2m + �F + � until the Fermi energy.
Above, the spectral function shows quite a fragmented behav-
ior, indicating that we have missed the correct pole.

Moreover, there are two sum rules known for the spectral
function; for derivation, see Ref. [27]. The first one, the norm
conservation, is ∫

dω

2π
a(k, ω) = 1, (75)

and the second one, the energy-weighted sum rule, reads∫
dω

2π
ωa(k, ω) = k2

2m
+ �F (k). (76)

Checking, one finds that below the Fermi momentum, both
sum rules are completed only within 5 − 10%, but with higher
than Fermi momentum both are badly off. The reason, by
deeper inspection, is that the energy argument of the self-
energy is not the energy ω. In principle, one has to meet the
energy at the pole of the spectral function there. This creates a
self-consistency loop which has to be performed by iteration.
As a consequence, this leads away from the ω argument of the
perturbative �(ω) to a position ω + �k . A very good shortcut
is to consider this shift at the Fermi momentum but corrected
by �k ≈ −�F (kF ) − �(kF , εF ). In fact, this corrected form
of the spectral function towards self-consistency completes
both sum rules better than 0.01% and are given in Fig. 18.
The difference to Fig. 17 is visible.

We see that below the Fermi momentum, a sharp side peak
develops which is vanishing at the Fermi momentum. Above

FIG. 18. The self-consistent electron spectral function (74) with
�(k, ω + �k ) for various momenta of Fig. 17.

this, the sharp side peak is suppressed again. Below zero,
a bound state pole is visible which vanishes for momenta
around 2k f , indicating that nesting is destroying the appear-
ance of bound states.

2. Extended quasiparticle spectral function

According to the extended quasiparticle picture for the
correlation function (20), we can also write the spectral
function as

aEQP(k, ω) = G> + G< = 2πδ(ω − εk )

1 − ∂�(ω)
∂ω

+ �(k, ω)

(ω − εk )2
,

(77)

with the dispersion εk = k2/2m − �F (k) − �(k, εk ). This
spectral function is the consistent expansion in second or-
der potential according to (20). The residue renormalizes the
weight of the pole and the sum rules (75) and (76) are com-
pleted [27].

In Fig. 19, we compare the self-consistent spectral func-
tion with the extended quasiparticle one. One sees how the
self-consistent one approximates the correct pole, which is
indicated by an arrow and approaches the side band for higher
momenta.

3. Quasiparticle energy and density of states

The spectral function describes the one-particle excitations
of the electrons. The quasiparticle excitation of the electrons
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FIG. 19. The self-consistent electron spectral function (74) with
the non-self-consistent as well as the extended quasiparticle one (77)
for momenta k = 0.7kF above and k = 1.6kF below). The arrow
indicates the pole of the δ-function.

are given by the main pole of the spectral function and
according to the above discussion can be approximated by

εk = k2

2m
+ �F (k) + �

(
k,

k2

2m
+ �k

)
. (78)

In Fig. 20, we plot various contributions to the dispersion. If
we compare the case of b = 1 with the Coulomb limit b = 0.1,
we see that the first-order self-energy becomes remarkable
and partially compensates the strong mean-field contribution.
Of course, this is dependent on rs. For illustrative purposes,
we also plot the case of rs = 2, seeing how the influence of
the mean field is further reduced.

From the spectral function, we can also calculate the den-
sity of states

DOS(ω) =
∫

dk

2π h̄
a(k, ω), (79)

which is plotted in Fig. 21. One sees how the mean-field
density of states is approached at higher frequencies. At lower
frequencies, we get a reduction from the mean-field value,
showing no divergence. The shift of the bottom is nearly
identical to the mean-field value. The dip is the reminiscence
of the gap in the excitation seen in the spectral functions in
Figs. 17 and 18.

FIG. 20. The quasiparticle energy dispersion (78) together with
mean-field and self-energy contribution for b = 1, rs = 1 (above),
b = 0.1, rs = 1 (middle), and b = 1, rs = 2 (below).

F. Structure factor and pair correlation function

Now we are going to evaluate the response function (50)
structure function (42) and the pair correlation (40). Since we
consider the first-order high-density expansion equivalent to

FIG. 21. The density of states (79) with the spectral functions
(74) of Figs. 17 and 18 (thick line) together with the mean-field one√

m/2(w − �F (kF )) (thin line) for b = 1, rs = 1. The mean-field
value of frequency is indicated by a vertical grid line.
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FIG. 22. The correlation energy per particle (84) together with
the first-order analytical expansion (87) as well as the large-b
expansion.

the second-order expansion in the potential, we can expand
Eq. (50) as

χ (q, ω) = �0(q, ω) + λ V (q)�2
0(q, ω)

+ λ �se(q, ω) + λ �ex(q, ω), (80)

where we indicate the order of interaction by λ. The first-order
static structure factor (42) can be written according to (80)

S1(x) = SV �2
0
(x) + Sse(x) + Sex(x), (81)

where we will use x = q/2kF in the following. The analytical
evaluation of SV �2

0
and Sex for an infinitely thin cylindrical

wire can be found in Ref. [79]. The contribution of the self-
energy to the structure factor Sse(q, ω) turns out to be zero due
to the ω integration. The sum of both corrections SV �2

0
and Sex

is given by [80]

S1(x) = g2
srs

π2x

{
ζ (x) , x < 1

ζ (x) − 2x ln x ln e2x , x > 1,
(82)

with

ζ (x) = (x + 1) ln(x + 1) ln

(
x2e2

x + 1

)

+ |x − 1| ln |x − 1| ln

(
x2e2

|x − 1|
)

. (83)

G. Correlation energy

Next we discuss the expression for the correlation energy
per particle in second-order perturbation theory [81], i.e.,
second Born approximation with exchange (31). For contact
potentials, we have to subtract an infinite value ∼np1 np2 to
reach convergence, which is a renormalization of contact po-
tential. For finite-range potentials, we have an intrinsic cutoff
due to the range of interaction and such problem does not
occur, as we see a posteriori.

We scale all momenta again by the Fermi momentum
k↑↓ = π h̄n/gs as p1 = k/k↑↓, p2 = p/k↑↓, and x = q/2k f .
The occupation factors restrict the integration range that from
1 > p2

1, 1 > p2
2, (p1 + 2x)2 > 1, and (p2 + 2x)2 > 1 follows

the two cases 0 < x < 1 with 1 − 2x < p1 < 1,−1 < p2 <

2x − 1 and 1 < x with −1, p1, p2 < 1. Presenting the energy
in terms of Ryd = e2/4πε0aB as εc = Ec/n/Ryd, we obtain

εc = − 1

4π2

[∫ 1

0

dx

x
�<

x +
∫ ∞

1

dx

x
�>

x

]
, (84)

with b = b̄2k f . The p1 and p2 integrations can be carried out
analytically and yield for x > 1

�>
x =

∫ 1

−1
d p1

∫ 1

−1
d p2

v(2k f x)[v(2k f x) − v(k f p1 − k f p2 + 2k f x)]

2x(p1 − p2 + 2x)

= K0(2bx)

b

{
G3,1

2,4

(
(bx − b),

1

2

∣∣∣∣ 1, 3
2

1
2 , 1

2 , 1
2 , 0

)
− 2G3,1

2,4

(
bx,

1

2

∣∣∣∣ 1, 3
2

1
2 , 1

2 , 1
2 , 0

)
+ G3,1

2,4

(
(bx + b),

1

2

∣∣∣∣ 1, 3
2

1
2 , 1

2 , 1
2 , 0

)

+ 4bK0(2bx)

[
2x ln

(
x2 − 1

x2

)
+ ln

(
x + 1

x − 1

)2
]}

(85)

and for 0 < x < 1

λ<
x =

∫ 1

1−2x
d p1

∫ 2x−1

−1
d p2

v(2k f x)[v(2k f x) − v(k f p1 − k f p2 + 2k f x)]

2x(p1 − p2 + 2x)

= K0(2bx)

b

{
G3,1

2,4

(
(b + bx),

1

2

∣∣∣∣ 1, 3
2

1
2 , 1

2 , 1
2 , 0

)
+ G3,1

2,4

(
(b − bx),

1

2

∣∣∣∣ 1, 3
2

1
2 , 1

2 , 1
2 , 0

)
− 2G3,1

2,4

(
2x,

1

2

∣∣∣∣ 1, 3
2

1
2 , 1

2 , 1
2 , 0

)

+ 4bK0(2bx)

(
2 ln(1 − x2) + 2x ln

(
x + 1

1 − x

))}
, (86)

with the the Meijer G function. The last x integral can be done numerically and the result is seen in Fig. 22. It shows that the
ground-state correlation energy decreases continuously with increasing width. This means that the one-dimensional system is
unstable compared to the two-dimensional system, which is the large-b limit presented as well in Fig. 22. We see how the exact
expression (84) interpolates between both limits.
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1. Small-b expansion

We have two ways to calculate the correlation energy via the charging formula (5) and via the self-energy (19). The Fock or
exchange term has been given already by (66) and was shown to yield equivalent results with the calculation by the self-energy
(64). Let us check this with the small-b expansion.

First, we give the result via the charging formula. The correlation energy per particle in Eq. (45) in the small-b limit for a
cylindrical wire is given by [80]

εc = 1

4rs
{�(x<1) + �(x>1)}, (87)

where we use the small b expansion of v(x). The result for x < 1 is

�(x<1) =
∫ 1

0
v(x)[S1(x)]x<1 dx

= rsg2
s

12π2

{
42ζ (3) ln

(
bkF

8

)
+ 48(ln(2) − 2) ln(2) ln(bkF ) + 48

(
−2Li4

(
1

2

)
+ ln2(2) + γ (ln2(2) − ln(4)) + ln(4)

)

+ 42(γ − 1)ζ (3) + π4 − 4 log3(2)(12 + ln(2)) + 4π2 ln2(2)

}
, (88)

and for x > 1, it is

�(x>1) =
∫ ∞

1
v(x)

[
SCy.

1 (x)
]

x>1 dx

= −2rsg2
s

π2

{
7

4
ζ (3)

(
ln

(
bkF

8

)
+ γ − 1

)
− 4Li4

(
1

2

)
+ 17π4

360
+ (ln(2) − 2) ln(4) ln(bkF ) − ln4(2)

6
− 2 ln3(2)

+ 1

6
π2 ln2(2) + 2γ ln2(2) + 2 ln2(2) + ln(16) − 4γ ln(2)

}
, (89)

where ζ (s) is the Riemann zeta function and Lin(z) is the polylogarithm function [82]. Adding Eqs. (88) and (89), major
cancellations occur and one obtains the known correlation energy as

εc(rs) = − π2

360
, (90)

which is the result of the conventional perturbation theory [58,59] and in excellent agreement with variational quantum Monte
Carlo simulation [62].

As a comparison we now calculate the small-b expansion via the second Born approximation (84). We first use the lowest
order of (56)

v(2k f x)[v(2k f x) − v(k f p1 − k f p2 + 2k f x)] = 4(γ + ln b/2 + ln 2x)[ln 2x − ln(p1 − p2 + 2x)] + o(b2). (91)

The p1 and p2 integrals read

�>
x = 4(γ + ln b/2 + ln 2x)[ξ (x) − 2x ln x ln e2x]. (92)

For 0 < x < 1, one gets

�<
x = 4(γ + ln b/2 + ln(2x))ξ (x). (93)

Comparing with (82), we see exactly the same expressions ξ (x). This means that in the static perturbation theory, the structure
factor is silently contained but not possible to identify directly here.

Integrating further, we obtain∫ ∞

1

dx

x
�>

x = (γ + ln b/2)[8 ln2(2) − 16 ln 2 + 7ζ (3)] − 16Li4

(
1

2

)
− 7ζ (3)[1 + ln 2] + 17π4

90
+ 2

3
π2 ln2 2

+ 16 ln 2 − 2

3
(ln 2 − 6)2 ln2 2 (94)

and ∫ 1

0

dx

x
�<

x = −(γ + ln b/2)[8 ln2(2) + 16 ln 2 + 7ζ (3)]16Li4

(
1

2

)
+ 7ζ (3)(1 + ln 2) − π4

6
− 2π2

3
ln2 2

− 16 ln 2 + 2

3
(ln 2 − 6)2 ln2 2. (95)
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Adding (94) and (95), we get

εc = − π2

360
, (96)

which is exactly (90). So both ways, the charging energy formula and the self-energy gives the same results.
With the same means, we can calculate the next term of (56). We obtain the next order in b:∫ ∞

1

dx

x
�>

x = (γ + ln b/2)2 16

3
(1 − ln 2) + (γ + ln b/2)

2

9
[3π2 − 68 − 4 ln 2(9 ln 2 − 29)]

+ 1

54
[452 + (36π2 − 1448) ln 2 − 48 ln2 2(3 ln 2 − 19) − 30π2 + 315ζ (3)] (97)

and ∫ 1

0

dx

x
�<

x = −(γ + ln b/2)2 16

3
(1 − ln 2) + (γ + ln b/2)

2

9
[−π2 + 74 + 4 ln 2(9 ln 2 − 29)]

− 1

54
[656 + (12π2 − 1510) ln 2 − 48 ln2 2(3 ln 2 − 19) + 10π2 + 27ζ (3)], (98)

which results in

εc = − π2

360
− b2(6(3 + π2) ln(b) + 72ζ (3) + 6γ (3 + π2) − 5π2 − 51)

108π2
. (99)

H. Reduced density matrix

Finally, we calculate the reduced density matrix (25) or
explicitly (33). The integration ranges due to the occupation
factors are worked out in Appendix B. For the small-b pa-
rameter, this can be evaluated analytically. One finds that
at k = 1kF the reduced density matrix has a singularity in
that it diverges of both sides with opposite signs. The results
for the numerical integration over the self-energies (25) are
given in Fig. 23 for various b parameters. One sees that
in the Coulomb limit, the divergence is seen as a wiggle
around 0.5.

This divergence has been discussed in Ref. [34] and a
Padé regularization was suggested. It consists of the extended
quasiparticle approximation used so far and an additional
expansion around the Fermi energy both interpolated by a
function rapidly vanishing outside the Fermi energy. We
can therefore assume such regularization and it would sub-
tract the divergence on both sides, which here has the form
c1 ln(k − 1) + c2 ln(k − 1)2 + c3 ln(1 − k)3. One obtains the

FIG. 23. The reduced density matrix (25) for various width
parameters b together with the Fermi function and artificially
4r2

s /π
4 = 1.

interesting limiting law for the harmonic potential (56),

lim
k→1±0

ρk =
{

1
12 [3 + ln(2)3] ≈ 0.277752

1 + 1
12 [−3 + ln(2)3] ≈ 1 − 0.222248,

(100)

which exactly approaches the jump

�ρ = 1
2 (101)

at the Fermi momentum. Since we know that the momentum
distribution is finite at the Fermi momentum, the interpolation
between expansion at the Fermi energy and the extended
quasiparticle approximation easily accounts for this finite
jump subtracting not only the divergent terms on both sides
but also the jump [34]. The corresponding analytical expres-
sion for the momentum distribution is somewhat lengthy but
trivially obtained by the formulas in Appendix B.

It is instructive to consider the limit of contact potentials
v(q) = 1. Then one obtains analytically

ρk = 1 + r2
s (gs − 1)

π4

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln(1+k)
(1−k)2 + ln(1−k)

(1+k)2 − 2(1 + 2 ln 2) 1+k2

(k2−1)2 0 < k < 1

1+2 ln 2−2 ln(k−1)
(1+k)2 1 < k < 3

4
k2−1)2 k > 3,

(102)

and one sees that near the Fermi momentum k = 1 ± η we
have from both sides:

ρk ≈
{

1 + 1−2 ln 2
4 + 1

2 ln η k = 1 − η
1+2 ln 2

4 − 1
2 ln η k = 1 + η

+ o(η). (103)

Again, due to Padé expansion we subtract a regularizing term
ρk = 1 + (ρ>

k − ρr
k ) − (ρ<

k − ρr
k ) to get rid of divergences

and see that the jump at the Fermi momentum approaches a
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smaller value than (101) of

�ρ = 1 − ln 2 ≈ 0.3068. (104)

Again this can be included additionally into the Padé term,
rendering the value of the momentum distribution unique at
the Fermi energy.

IV. SUMMARY

We have presented two approaches to the correlation en-
ergy, one by the structure factor with the pair correlation
function and one by the Dyson equation with the self-energy.
Both are rooted in approximating the two-particle Green’s
function appropriately. Different resulting forms are com-
pared and it is shown how they coincide if the same level of
approximation is used. The equivalence is obtained within the
extended quasiparticle picture for the single-particle propaga-
tors and self energies.

For a one-dimensional quantum wire of fermions, the ap-
proximations are illustrated and the self-energies are explicitly
discussed. A gap appears which results in a splitting of exci-
tation lines in the spectral function of holons and antiholons.
Also, bound states are visibly destroyed by higher momentum

around nesting. The mean field leads to an effective mass
which shows the onset of a Peierls-like transition at twice the
Fermi energy. The density of states in the Born approximation
and mean field are compared and the correlation effects are
identified. The width dependence of the correlation energy
is calculated and compared with the analytical results of
small and large width expansions. The momentum distribution
shows a divergence in approaching the left and right side of
the Fermi energy. The occurring divergences and jumps at the
Fermi energy are subtracted due to a regularization scheme of
Padé which interpolates between the extended quasiparticle
approximation and an expansion at the Fermi energy.
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APPENDIX A: INTEGRATION RANGE FOR THE SELF-ENERGY (73)

Performing the restrictions of the � functions, the following integration range for �< appears. It is only nonzero for W =
k2 − ω > 0 and for 0 � k < 1,

p > 1,W < 2(k − 1)2 : Max(1, k +
√

2W ) < p < 1 + W

2(1 − k)

p < −1,W < 2(1 + k)2 : −1 − W

2(1 + k)
< p < Min(−1, k −

√
2W ), (A1)

and for k > 1:

p < −1, 2k2 < W < 2(1 + k)2 : −1 − W

2(1 + k)
< p < Min(−1, k −

√
2W )p < −k < −1 : −1 − W

2(1 + k)
< p < −1

− k < p < −1, 2(k − 1)2 < W < 2(k2 − 1), k >
5

3
: Max(−k, 1 − W

2(k − 1)
< p < Min(−1, k −

√
2W )

× k � 5

3
: Max

(
−k, 1 − W

2(k − 1)

)
< p < −1 2(k2 − 1) < W < 2k2 : −k < p < Min(−1, k −

√
2W ). (A2)

The integration range for �> is somewhat simpler. For 0 � k < 1,

Max

(
− 1, 1 + W

2(1 − k)

)
< p < Min

(
1,−1 − W

2(1 + k)

)
(A3)

and for k > 1 and W > 0,

k � 3 or (k < 3 and 2(k − 1)2 > W ) : Max

(
−1, 1 + W

2(1 − k)

)
< p < Min(1, k −

√
2W )

1 < k < 3 : −1 < p < Min

(
1,−1 − W

2(1 − k)

)
. (A4)

205116-16



ELECTRONIC QUANTUM WIRES IN EXTENDED … PHYSICAL REVIEW B 109, 205116 (2024)

APPENDIX B: INTEGRATION RANGE FOR THE REDUCED DENSITY MATRIX

We scale all momenta by the Fermi momentum to obtain

ρk = nk + 4r2
s

π4

∫∫
d pdq

Vq(gsVq − Vp−k−q )

[2q(k − p + q)]2
{[k > 1][p2 > 1][1 > (k + q)2][1 > (p − q)2]

− [1 > k][1 > p2][(k + q)2 > 1][(p − q)2 > 1]}, (B1)

where we can restrict to positive k since ρ−k = ρk , which one sees by interchanging the signs of p, q. The first part appears
for momenta larger than Fermi momentum, k > 1, and the second part for 0 < k < 1. Discussing the integration range for
0 < k < 1, we have −1 < p < 1 and q < p − 1 or q > p + 1 as well as q < −1 − k or q > 1 − k. This provides two cases:

(a) : −1 < −k < p < 1 : −∞ < q < −1 − k or p + 1 < q < ∞,

(b) : −k > p > −1 : −∞ < q < p − 1 or 1 − k < q < ∞. (B2)

Together, this provides the integration range∫ −k

−1
d p

[∫ p−1

−∞
dq +

∫ ∞

1−k
dq

]
+

∫ 1

−k
d p

[∫ −k−1

−∞
dq +

∫ ∞

p+1
dq

]
=

∫ ∞

2
dq

∫ 1

−1
d p +

∫ 2

1−k
dq

∫ q−1

−1
d p + (k ↔ −k). (B3)

For k > 1, we have p > 1 or p < −1 and two conditions for q:

p − 1 < q < p + 1, −1 − k < q < 1 − k. (B4)

For p > 1, we have 1 − k < 0 < p − 1 and there is no common overlap for the range of q. Since both ranges (B4) have the
length of 2, we have two cases of finite overlap:

(1) : p − 1 < q < 1 − k if − 1 − k < p − 1 < 1 − k < p + 1 < 0,

(2) : −k − 1 < q < p + 1 if p − 1 < −k − 1 < p + 1 < 1 − k < 0. (B5)

Case (1) translates into −k < p < Min(−1, 2 − k), which divides into two cases:

(a) : 1 < k < 3, −k < p < −1; (b) : k > 3, −k < p < 2 − k. (B6)

Case (2) yields −2 − k < p < −k. Combining cases (1) and (2), we find for 1 � k < 3,∫ −k

−2−k
d p

∫ p+1

−1−k
dq +

∫ −1

−k
d p

∫ 1−k

p−1
dq =

∫ −2

k−1
dq

∫ q+1

q−1
d p +

∫ 1−k

−1−k
dq

∫ −1

q−1
d p, (B7)

and for k > 3: ∫ −k

−2−k
d p

∫ p+1

−1−k
dq +

∫ 2−k

−k
d p

∫ 1−k

p−1
dq =

∫ 1−k

−1−k
dq

∫ q+1

q−1
d p. (B8)
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