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We report a study of the Fermi surface of the chiral semimetal CoSi and its relationship to a network of
multifold topological crossing points, Weyl points, and topological nodal planes in the electronic band structure.
Combining quantum oscillations in the Hall resistivity, magnetization, and torque magnetization with ab initio
electronic structure calculations, we identify two groups of Fermi-surface sheets, one centered at the R point
and the other centered at the � point. The presence of topological nodal planes at the Brillouin zone boundary
enforces topological protectorates on the Fermi-surface sheets centered at the R point. In addition, Weyl points
exist close to the Fermi-surface sheets centered at the R and the � points. In contrast, topological crossing
points at the R point and the � point, which have been advertised to feature exceptionally large Chern numbers,
are located at a larger distance to the Fermi level. Representing a unique example in which the multitude of
topological band crossings has been shown to form a complex network, our observations in CoSi highlight the
need for detailed numerical calculations of the Berry curvature at the Fermi level, regardless of the putative
existence and the possible character of topological band crossings in the band structure.
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I. INTRODUCTION

Nontrivial topology in reciprocal space gives rise to a vari-
ety of interesting physical phenomena like Fermi arc surface
states [1–4], the chiral anomaly [5–7], and nonlinear optical
responses [8–12]. In recent years, chiral B20 compounds crys-
tallizing in space group 198 have been intensively studied due
to symmetry-protected topological degeneracies in their band
structure including multifold crossing points [13–15], Weyl
points, and nodal planes [16–18]. A prime example of this
material class is the semimetal CoSi.

Angle-resolved photoemission spectroscopy (ARPES)
[19–21] and quasiparticle interference [22] experiments con-
firmed main features of the band structure predicted by density
functional theory (DFT) [14,15] and found signatures of the
topological crossing points by observing Fermi arc surface
states. The optical properties were probed by investigating
the optical conductivity [23] and measurements of the circular
photogalvanic effect (CPGE) [24], further establishing the ex-
istence of exotic quasiparticles. However, the fine features of
the Fermi-surface pockets were not resolved in these studies.

A well-established method to experimentally determine
the FS geometry with a high resolution is the analysis of
quantum oscillations (QOs). Indeed, the electron pockets of
CoSi around the R point have been observed in detail in
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numerous QO studies [25–28] and the remarkably simple QO
spectrum arising from this part of the Fermi surface (FS) has
recently been explained comprehensively by the combined
effect of nodal plane degeneracies and magnetic breakdown
at near degeneracies [17,29,30]. These studies unequivocally
confirm that the R-centered electron pockets occupy a Fermi
volume that is considerably smaller than predicted by DFT.
In contrast, little experimental evidence of the FS pockets
around the � point, which are predicted to enclose a multifold
crossing [17], has been reported. The only QOs related to
the �-centered FS sheets detected experimentally are con-
sistent with a single light and very small pocket [27,28],
which has not been assigned correctly to the band structure.
The larger and heavier parts of the �-centered FS remain
unobserved.

An experimental determination of the full FS is needed for
the interpretation of response functions, in particular because
charge neutrality in the semimetal CoSi together with the
experimentally established volume of the R-centered pockets
requires the Fermi volume of the predominantly holelike �-
centered pockets to differ from the DFT predictions as well.
Such information on an experimentally refined FS is impor-
tant for both an analysis based on topological charges alone
and explicit numerical calculations of topological response
functions, sampling the Berry curvature in nontrivial ways
and naturally taking into account contributions from quan-
tized topological charges and near degeneracies [29–31] on
an equal footing.

2469-9950/2024/109(20)/205115(13) 205115-1 ©2024 American Physical Society

https://orcid.org/0000-0002-7023-8829
https://orcid.org/0000-0002-7124-3494
https://orcid.org/0000-0002-3704-1848
https://orcid.org/0000-0001-7658-1911
https://orcid.org/0009-0005-1985-5003
https://orcid.org/0000-0002-1070-9748
https://orcid.org/0000-0002-8072-0483
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.205115&domain=pdf&date_stamp=2024-05-06
https://doi.org/10.1103/PhysRevB.109.205115


NICO HUBER et al. PHYSICAL REVIEW B 109, 205115 (2024)

FIG. 1. Electronic structure of CoSi. (a) Band structure calculated from first-principles including spin-orbit coupling. There are eight bands
in the vicinity of the Fermi energy, which are pairwise degenerate at the Brillouin zone boundary. (b) Fermi surface of CoSi comprising four
almost spherical electron pockets centered at the R point and multiple nested FS sheets around the � point. The FS sheet arising from band 4
is depicted semitransparent to allow for a view of the outer sheet arising from band 3. (c) Detailed depiction of the bands along high-symmetry
directions in the vicinity of the � point with topological crossings marked by colored circles. Curly brackets denote the topological charge
for each individual band (or band pair, where necessary) in ascending order. The fourfold crossing at � involving bands 3–6 represents a
Rarita-Schwinger-Weyl fermion (RSW). Bands 1 and 2 exhibit a singular Weyl point at �. Further Weyl points occur on the �-X , �-M, and
�-R lines. (d) Detailed views of the bands and crossing points around R. Note that the entire Brillouin zone boundary consists of nodal planes
where all bands are pairwise degenerate, such that Chern numbers at R can only be defined for band pairs.

In this work, we report on the detection of QO frequen-
cies in the Shubnikov–de Haas (SdH) and de Haas–van
Alphen (dHvA) oscillations of CoSi exhibiting heavy cy-
clotron masses. We systematically compare our findings with
predictions from first-principles calculations allowing us to
assign the experimentally observed oscillations to extremal
orbits on the �-centered pockets and to determine their size,
geometry, and position with respect to the different topologi-
cal crossings in their vicinity.

II. ELECTRONIC BAND STRUCTURE

The electronic band structure and the Fermi surface
of CoSi were calculated with density functional theory
(DFT) using WIEN2K [32] in the generalized gradient
approximation [33]. The effects of spin-orbit coupling
were taken into account. The electronic structure was
converged on a 23 × 23 × 23 Monkhorst-Pack grid.
Bands used for the determination of the Fermi surface
were sampled on a 100 × 100 × 100 k mesh in the full
Brillouin zone. For CoSi condensing in space group
P213 (198) we used the experimental lattice constant
a = 4.444 Å. Both Co and Si occupy Wyckoff positions
4a with coordinates (u, u, u), (−u + 1/2,−u, u + 1/2),
(−u, u + 1/2,−u + 1/2), (u + 1/2,−u + 1/2,−u), where
uCo = 0.143 and uSi = 0.844. The band structure around the
Fermi level comprising eight bands is shown in Fig. 1(a).

Symmetry-enforced multifold crossing points at � and R are
located above and below the Fermi level, respectively.

Figure 1(c) depicts the vicinity of the � point. In addition
to the multifold crossing points, there is a singular Weyl point
at � below the Fermi energy and multiple symmetry-enforced
Weyl points along �-X , �-M, and �-R [17]. The distance of
the symmetry-enforced crossings to the Fermi level as well
as the question whether they are enclosed by FS pockets is
beyond the accuracy of DFT. Figure 1(d) shows the vicinity
of the R point, which displays a sixfold crossing point and
Weyl points along high-symmetry directions well below the
Fermi level as well as nodal planes on the Brillouin zone (BZ)
boundary.

The curly brackets shown in Fig. 1 denote the Chern num-
bers of each band involved in the crossing in the order of
increasing band index. Chern numbers for single bands are
well defined, e.g., {3, 1,−1,−3} for bands 3, 4, 5, and 6 at
the � point. In contrast, for the crossings associated with the
R point, no fully gapped integration contour may be defined
due to the pairwise degeneracies at the nodal planes. In this
case Chern numbers such as {−4, 0, 4} may only be given for
the three pairs of bands (3,4), (5,6), and (7,8), comprising the
multifold crossing at R. Details concerning the calculation of
Chern numbers are given in Ref. [17].

Shown in Fig. 1(b) is the calculated FS of CoSi, comprising
four almost spherical electron pockets around the R point
and multiple nested sheets around the � point. The shape
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and connectivity of the �-centered FS sheets are extremely
sensitive to the precise location of the bands with respect to
the Fermi level. Strong qualitative changes of the QO spectra
make them an ideal tool to determine the FS of CoSi in the
vicinity of the � point.

The main objective of the work reported in this paper
concerns the experimental determination of the shape of the
FS to lay the foundation for high-precision calculations of
topological response functions. In CoSi such response func-
tions are expected to depend sensitively on the Berry curvature
at or around the FS.

III. EXPERIMENTAL METHODS

A. Sample growth

High-quality single crystals of CoSi were grown using
99.995% Co (MaTecK) and 99.9999% Si (Alfa Aesar). Sam-
ples of similar quality were grown using either 99.9999%
Te (Alfa Aesar) as flux, or optical float zoning under ultra-
high-vacuum compatible conditions [34]. For the flux growth,
a mixture of Co, Si, and Te with an atomic ratio of 1:1:20
was loaded into a crucible and sealed in a quartz tube under
Ar atmosphere. The mixture was heated in a rod furnace
to 1150 ◦C, kept at this temperature for 20 h, followed by
slow cooling to room temperature at a rate of 3 ◦C/h. Af-
ter removal of the Te flux using 50% nitric acid, multiple
millimeter-sized crystals with octahedral shape were obtained.
For the optical float zoning polycrystalline rods were pre-
pared from stoichiometric starting compositions of Co and
Si using an inductively heated, ultra-high-vacuum compatible
rod-casting furnace [35]. The polycrystalline seed- and feed-
rods were mounted in an optical mirror furnace and molten
under high-purity Ar atmosphere resulting in large single-
crystalline ingots.

Phase purity of the single crystals was confirmed by pow-
der x-ray diffraction. The orientation of the single crystals
was determined by Laue x-ray diffraction for both growth
procedures. Thin platelets with edges parallel to major crys-
tallographic axes were prepared using a wire saw. To further
improve the crystalline quality, the platelets were annealed for
100 h at 1100 ◦C. The annealing took place under Ar atmo-
sphere for the flux-grown sample and in ultra-high vacuum
for the sample grown by optical float zoning. The residual
resistivity ratios of the samples are 26 for the flux-grown
sample and 34 for the sample grown by optical float zoning.

B. Experimental setups

Shubnikov–de Haas (SdH) oscillations were recorded in
the Hall resistivity and transverse magnetoresistance under
magnetic fields up to 18 T. In this paper we focus on the
Hall resistivity due to the larger absolute oscillation amplitude
observed. The sample was contacted electrically by means
of Al wire bonds. A small, low-frequency excitation current
was applied and the transverse voltage pickup recorded using
a conventional lock-in technique. To improve the signal-to-
noise ratio, the voltage pickup was amplified by means of
impedance matching transformers operated at liquid helium
temperatures followed by suitable low-noise preamplifiers.

Using cantilever-based torque magnetometry with a capac-
itive readout, de Haas–van Alphen oscillations were detected
under applied magnetic fields up to 31.4 T at LNCMI-
Grenoble. These contributions to the torque originate in the
nonlinear field dependence of the dHvA effect and are a
generic feature of materials exhibiting an anisotropic Fermi
surface [36–43]. The magnetization under magnetic fields up
to 7 T was measured with a Quantum Design MPMS3 AC
SQUID magnetometer.

For the magnetization measurements a large sample cut
from the float-zoned single crystal was used to increase
the signal-to-noise ratio. All other data presented in this
paper were recorded on a flux-grown sample. The SdH
and cantilever-based dHvA measurements were conducted
down to millikelvin temperatures using dilution refrigerators,
permitting in situ sample rotation. The magnetization was
measured down to 1.8 K for fixed sample orientation.

C. Data analysis

The data analysis used to infer the quantum oscillation
spectra of the Hall resistivity and magnetization involved the
following steps (a pedagogical account may be found in the
Supplemental Material of Ref. [17]). First, the nonoscillatory
signal component was determined by fitting and subtracting
polynomials between second and up to fifth order. The or-
der of polynomials was chosen to be as low as possible to
avoid artifacts in the Fourier spectra, but as high as necessary
to remove the background efficiently. The oscillatory signal
component was interpolated on a set of evenly spaced 1/B
values and multiplied by a windowing function to reduce
spectral leakage. Zero padding was employed to increase the
fast Fourier transform (FFT) sampling rate. The peaks in the
FFT spectra were fitted with Gaussians to determine oscilla-
tion frequencies and amplitudes.

The Hall resistivity and magnetization were recorded
for both increasing and decreasing magnetic fields at each
temperature and field orientation. The variance in the QO
frequencies and amplitudes observed in both sweep directions
was used to determine the error bars shown. For the high-field
dHvA data only the upsweep or downsweep of the magnetic
field was recorded at a given temperature and angle. As an
estimate of the uncertainties of the peak amplitudes detected,
the noise level of the FFT spectra at a frequency close to the
peaks was used.

We considered the following criteria in the identification
of peaks in our FFT spectra: (i) Where available, the data
obtained under increasing and decreasing magnetic fields
were directly compared to each other. Only peaks that were
detected for both sweep directions were considered further.
(ii) Following systematic subtraction of nonoscillatory signal
contributions from the raw data approximated by polynomials
of different degree, the calculated FFTs were compared. Only
peaks that were consistently detected under different analysis
parameters were considered as possible QO frequencies. (iii)
To rule out artifacts due to spectral leakage, different win-
dowing functions were applied before performing the FFT
analysis. Only features that were consistently present for
different windowing functions were accepted as oscillation
frequencies. (iv) Data were analyzed for different field ranges
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while keeping the window size in 1/B the same. Only peaks
for which the FFT amplitude increased with increasing fields
were considered as possible QO frequencies. (v) We com-
pared the data for different field directions systematically.
Only oscillatory components present under several adjacent
field directions were considered.

The temperature dependence of the quantum oscillation
amplitude was analyzed by means of the temperature reduc-
tion factor RT in the Lifshitz-Kosevich (LK) formalism [44]

RT = X

sinh(X )
(1)

with

X = 2π2 pm∗kBT

h̄eB
, (2)

where p is the harmonic number, m∗ the cyclotron mass, kB

the Boltzmann constant, T the temperature, h̄ the reduced
Planck constant, e the electron charge, and B the magnetic flux
density. As the Fourier analysis was carried out over a finite
range in 1/B, the mean value of the analysis window in 1/B
was used in the evaluation. We estimate the overall uncertainty
of the extracted cyclotron masses to be ±5%.

D. Predicted QO amplitudes

The relative strengths of the calculated frequency branches
as depicted in terms of the linewidths shown in Fig. 6 were cal-
culated as follows. The cyclotron mass m∗ and the curvature
of the cross-sectional area with respect to the field direction
were inferred from the DFT data using the SKEAF tool [45].
The expected relative QO amplitudes A were calculated as

A = f

m∗√c
RT RD, (3)

where f is the QO frequency, c the curvature, and RT the
temperature damping factor as given in Eq. (1). RD is the
Dingle damping factor given by

RD = exp

(
− π p

τωc

)
= exp

⎛
⎜⎝−

π p
√

2h̄ f
e

lmfpB

⎞
⎟⎠, (4)

where τ is the relaxation time, ωc the cyclotron frequency, lmfp

the mean-free path under the assumption of a circular cross
section. Values of B = 18 T, T = 0.1 K, and lmfp = 30 nm
were used for the evaluation [46]. For clarity, the width of
the branch with a QO frequency of ≈20 T, which displays a
very low cyclotron mass as compared to the other frequency
branches, is reduced by a factor of 10.

For the frequency branches between 600 and 2000 T aris-
ing from the outer FS sheets of bands 3 and 4, which we only
detect in our high-field experiments using cantilever magne-
tometry, the torque factor

RTorque = 1

f

df

dθ
(5)

has been multiplied to the right-hand side of Eq. (3).

IV. EXPERIMENTAL RESULTS

A. Shubnikov–de Haas effect

CoSi exhibits an almost linear Hall resistivity ρH in the
field range studied. Pronounced quantum oscillations may be
observed for fields exceeding ∼6 T. Shown in Fig. 2(a) is ρH

as a function of magnetic field B ‖ [111]. In the temperature
range between 20 and 700 mK the nonoscillatory component
of ρH remains essentially unchanged. The oscillatory part of
the Hall resistivity ρ̃H as a function of inverse magnetic field
following subtraction of a smooth background is shown in
Fig. 2(b). The oscillations, which are periodic in 1/B, are
dominated by a beating pattern indicating that the strongest
contributions arise from two frequencies that are close to one
another.

The oscillatory signal components were analyzed using a
fast Fourier transform (FFT) in the field range between 8 and
18 T. The resulting frequency spectrum is shown in Fig. 2(c).
The two strong frequencies at fα = 566 T and fβ = 668 T
were previously reported in several studies [17,25–29,47]. In
our data up to nine harmonics of fα and fβ may be dis-
tinguished underscoring a high sample quality as compared
to previous studies [25–28]. Additionally, several frequency
contributions below 0.3 kT are observed. Shown in Fig. 2(d)
is a closeup view of the QO spectra below ∼0.9 kT, where
additional frequencies are denoted by δ, ε, and φ. The de-
tection of this large number of harmonics and additional
frequencies as compared to our previous studies [17,47] is
attributed to an improved crystalline quality of the sample
we used in this work, as indicated by its large residual re-
sistivity ratio. The QO frequencies fε and fφ detected are
likely completely suppressed by Dingle damping in previous
studies.

The frequency fδ , which corresponds to the difference
between fα and fβ , is due to quantum oscillations of the
quasiparticle lifetime as described in Ref. [47]. It originates
in a nonlinear interband coupling between the FS pockets
centered at the R point. As it is not associated with an extremal
FS cross section in the spirit of the Onsager relation, it is not at
the center of the work reported in this paper. We note that the
amplitude of this frequency component is expected to depend
on the Dingle damping factors of the constituent frequencies
fα and fβ as well as the strength of the coupling between them
[47,48] which might provide a way to learn more about the
microscopic origin of the involved coupling mechanism.

In the following we focus on the new frequencies fε =
153 T and fφ = 208 T. Shown in Fig. 2(e) are the temperature
dependencies of the amplitudes of fε and fφ as well as fα
and fβ . The temperature dependence of fε and fφ is described
well in terms of the reduction factor RT in the LK formalism
yielding cyclotron masses of mε = 2.5 me and mφ = 3.1 me.
Thus, the effective masses of fε and fφ are significantly larger
than the cyclotron masses of fα and fβ , which are close to the
free-electron mass ≈1 me.

The dependence of the FFT spectra on the angle θ between
the magnetic field applied in the (110) plane and the [001]
direction is shown in Fig. 2(f). Frequencies at which the FFTs
exhibit peaks are marked by colored circles. The peaks at fα
and fβ are detected over the full angular range. They display
almost no dispersion as discussed extensively before [17].
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FIG. 2. Shubnikov–de Haas oscillations in CoSi. (a) Hall re-
sistivity ρH as a function of magnetic field B ‖ [111] at different
temperatures. The inset shows the experimental geometry. (b) Os-
cillations in ρH as a function of 1/B after subtraction of a smooth
background. (c) FFT spectrum in the field range between 8 and
18 T. The main frequencies α and β and their higher harmonics are
labeled. (d) Low-frequency part of the spectrum. Three additional
frequencies δ, ε, and φ are identified. (e) Temperature dependence
of the normalized FFT amplitudes. Lines show fits of the Lifshitz-
Kosevich temperature reduction factor RT yielding effective masses
of mα = 0.93 me, mβ = 0.99 me, mφ = 3.1 me, and mε = 2.5 me.
(f) FFT amplitude as a function of frequency f and angle θ . Several
frequency branches can be traced upon variation of the angle of the
applied magnetic field. The extracted frequencies of each branch are
marked by colored circles.

Consequently, the peak at the difference frequency fδ is also
essentially dispersionless [47].

For θ < 20◦ additional frequencies emerge. As shown be-
low, the upper branch corresponds to fδ while the lower

FIG. 3. de Haas–van Alphen oscillations in CoSi. (a) Capac-
itance change C of the torque magnetometer as a function of
magnetic field B for an exemplary data set recorded at θ = 23◦ and
T = 30 mK. The change in capacitance is directly proportional to the
magnetic torque. (b) Oscillatory part of capacitance as a function of
1/B after subtraction of a smooth background. (c) FFT amplitude as
a function of frequency f and angle θ . In addition to the frequency
branches α, β and their higher harmonics, the frequency branch φ

can be traced for angles >40◦. In the spectra recorded at θ = 20◦

and 24◦ an additional frequency labeled η is identified.

branch may be attributed to an orbit related to the frequency
branch φ. Between θ ≈ 20◦ and ≈40◦ oscillations at fα , fβ ,
and fδ may be discerned. For θ > 40◦ the frequency branch
φ may be traced up to 90◦. In contrast, the peak at fε is only
present in an angular range of about ±10◦ around the [111]
direction. Additional spectral weight may be discerned in the
FFT spectra at frequencies below 50 T. This spectral weight
is consistent with a low frequency reported in Refs. [27,28],
which is also present in our magnetization data (cf. Fig. 5).
However, as the FFT spectra of our SdH data in this low-
frequency region vary with the background subtraction and
the field range analyzed, a specific oscillation frequency can-
not be determined reliably.

B. de Haas–van Alphen effect

The de Haas–van Alphen effect was measured using
cantilever-based torque magnetometry with a capacitive
readout. For a given field direction along a specific crystal-
lographic orientation the change in capacitance is thereby
proportional to the magnetic torque and thus the component
of the magnetization perpendicular to the applied magnetic
field. A typical data set recorded at a temperature of 30 mK
and θ = 23◦ is shown in Fig. 3(a) for magnetic fields between
15 and 31.4 T. As for the SdH data, the oscillatory signal
contributions shown in Fig. 3(b) were determined follow-
ing subtraction of a nonoscillatory signal determined by a
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FIG. 4. de Haas–van Alphen oscillations in CoSi in the angular
range at which the frequency branch η is identified. (a) FFT spectra
between θ = 16◦ and 28◦. Curves are offset for clarity. The posi-
tion of the η peak is marked by upward triangles. Peaks satisfying
all criteria defined in the Methods section are indicated by solid
symbols and frequencies satisfying all but one criterion by open
symbols. (b) FFT spectra at an angle of θ = 23◦ and different se-
lected temperatures. (c) Temperature dependence of the normalized
FFT amplitudes of the identified frequencies. Lines show fits of the
temperature damping factor RT . The extracted cyclotron mass of η

is mη = 7.5 me, while the masses extracted for α and β are close to
1 me.

polynomial fit. The resulting frequency spectra for different
angles are shown in Fig. 3(c).

Consistent with the SdH data, two almost dispersionless
frequency branches denoted α and β are observed, as well as
their higher harmonics. Below 0.3 kT, a QO frequency at φ

may be discerned between θ ≈ 40◦ and ≈90◦. The angular
dispersion of fφ is in good agreement with the dispersion
observed in the SdH spectra (cf. Fig. 6). However, it is not
possible to identify peaks at fδ and fε in the dHvA data.

In the FFT spectra recorded at θ = 20◦ and 24◦ an ad-
ditional frequency with a low amplitude denoted η may be
observed between 0.7 and 0.8 kT. To track the η frequency in
more detail the angular range between θ = 16◦ and 28◦ was
investigated in smaller steps as shown in Fig. 4(a). The peak
at fη could be identified at multiple angles and the strongest
signal contribution was detected at θ = 23◦. Frequency con-
tributions that satisfied all but one of the criteria defined in the
Methods section are marked with open symbols.
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FIG. 5. de Haas–van Alphen oscillations in CoSi in the magnetic
field region up to B = 7 T measured with a SQUID vibrating sample
magnetometer (VSM). The field is applied along the [110] direction.
(a) Magnetization M versus B at different fixed temperatures. (b) Os-
cillatory part of the magnetization versus 1/B after subtraction of a
smooth background. (c) FFT spectrum of the data shown in (b) in the
field range 2.5–7 T. A low-frequency contribution at fγ = 20 ± 1 T
is detected. (d) FFT amplitude of γ versus T . The line represents a
fit with the LK temperature reduction factor RT , yielding a cyclotron
mass of mγ = 0.17 me.

Oscillation spectra were recorded for different tempera-
tures between 30 mK and 1 K at θ = 23◦ and the temperature
dependence of the FFT is shown in Fig. 4(b). Figure 4(c)
shows the FFT amplitudes as a function of temperature. While
the frequencies α and β decrease only slightly with increasing
temperature up to ∼1 K, the amplitude of η decreases strongly
with increasing temperature and vanishes above ∼700 mK.
A fit of the temperature damping factor RT yields a high
cyclotron mass of mη = 7.5 me. In comparison, the cyclotron
masses associated with fα and fβ inferred from the dHvA data
are close to 1 me in agreement with the SdH data and previous
studies [17,25,26,28,29,47].

In order to resolve a low oscillation frequency reported
in Refs. [27,28] that could not be clearly identified in our
SdH and torque magnetometry experiments, we measured
the magnetization M under magnetic field up to 7 T using a
SQUID magnetometer. M(B) ‖ [110] at various temperatures
is shown in Fig. 5(a). The oscillatory signal component of
the magnetization following subtraction of a monotonically
increasing background is shown in Fig. 5(b) as a function
of 1/B, where the periodicity is clearly visible. The corre-
sponding peak in the FFT spectrum at fγ = 20 T is shown in
Fig. 5(c).

The temperature-dependent decrease of the oscillation am-
plitude is shown in Fig. 5(d). It follows the LK temperature
reduction factor RT with a cyclotron mass of mγ = 0.17 me.
The value observed for fγ is consistent with Refs. [27,28] and
the value for the cyclotron mass is consistent with Ref. [28],
but differs slightly from Ref. [27], which reports a smaller
cyclotron mass of mγ = 0.11 me.
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FIG. 6. Comparison between calculated and experimentally detected frequency branches and FS sheets. (a) Comparison of the experi-
mentally detected frequency branches (filled symbols) with the DFT predictions (colored lines). Symbol shapes denote the technique used.
Different colors represent different frequency branches. The light orange symbols of the η branch correspond to the open symbols in Fig. 4.
Angle-dependent VSM data on the low-frequency branch γ are included from Refs. [27,28]. The line color indicates which band gives rise to
the extremal orbit and the linewidth represents the expected amplitude. (b) Closeup view of the FS pockets around the � point as calculated by
DFT. (c) FS pockets around the R point as calculated. (d) Frequency branches as in (a), but after applying small rigid band shifts to the DFT
results. A close match to experiment is achieved for all branches detected experimentally. (e), (f) FS pockets around � and R, respectively, as
matched to experiment.

V. DISCUSSION

In the following, we compare the experimental results with
the DFT calculations in order to determine the FS geometry
of CoSi. We begin with a comparison between experiment
and DFT as calculated, followed step by step by the consid-
erations that permit a unique and unambiguous assignment.
On this note, it is helpful to recall that DFT represents, in
principle, a parameter-free technique. However, DFT relies on
approximate functionals that do not fully capture the effects
of correlations. As a result, the calculated and the real band
dispersions may differ in a way that is not fully understood,
asking for an empirical correction. As shown below, in CoSi
the calculated FS and the experimental results differ moder-
ately. Small rigid shifts of the bands may therefore be used
to match the experimental and calculated quantum oscillation
frequencies when determining the FS.

Shown in Fig. 6(a) are the angular dispersions of all QO
frequencies detected experimentally together with the oscil-
lation frequencies predicted by the DFT as calculated. The

linewidths of the calculated branches are scaled with the ex-
pected QO amplitudes in order to highlight the relative weight
of different branches as described above. For what follows,
it is helpful to note that the majority of those predicted fre-
quency branches that were not observed experimentally are
expected to contribute only weakly to the overall signal.

In addition to the dispersion of a given branch, its cyclotron
mass represents another important indicator for matching
the experimentally detected QOs with predictions from first-
principles calculations. The experimentally determined and
calculated cyclotron masses for selected field orientations are
summarized in Table I.

A. R-centered FS pockets

We start the assignment of the QO frequencies to the FS
sheets with the two almost dispersionless frequency branches
α and β, as denoted in Fig. 6(a) together with their second
harmonics. Both frequencies were previously observed in sev-
eral studies [17,25–29], where they were independently and
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TABLE I. Experimentally determined and calculated cyclotron
masses at specific angles θ .

Frequency branch mexpt (me) mcalc (me) Field angle θ (◦)

γ 0.17 0.13 90 [110]
ε 2.5 2.6 54.7 [111]
φ 3.1 4.3 54.7 [111]
η 7.5 7.2 23

unambiguously assigned to the four Fermi-surface pockets
around the R point. Their flat angular dispersion and the
pairwise degeneracy in cross-sectional area is explained by
a combination of spin-orbit coupling, symmetry-enforced
nodal plane degeneracies on the BZ boundaries, and com-
plete magnetic breakdown at near degeneracies [17,29]. The
corresponding calculated branches shown as gray lines match
the flatness of the dispersion perfectly, but are offset towards
higher frequencies by roughly 160 T. We conclude that the
calculated electron pockets around R depicted in Fig. 6(c) are
larger than in reality. Empirically shifting the bands at the
R point up by 30 meV yields a perfect match between the
experimental and theoretical branches as shown in Fig. 6(d).
This establishes that the real FS at the R point is approximated
well by the four sheets depicted in Fig. 6(f). With this, the
R-point pockets are fully determined since no further branches
are expected.

The size of the R pockets determined experimentally has
important consequences for the possible band shifts around
�. The required shift at R reduces the Fermi volume occupied
by the electron pockets from 2% as calculated to about 1.5%
in the real material. As CoSi is semimetallic with Fermi-
surface sheets at R and � only, charge neutrality implies that
the electron pockets must be compensated by predominantly
holelike pockets at the � point. In turn, a band shift downward
is expected at � on the order of 7 meV, taking into account
the higher density of states due to the larger band masses as
compared to the bands at R.

The above argument based on charge neutrality assumes
the absence of unintentional doping. This is justified by
considering the literature [17,25–29] as well as the work pre-
sented here, where values of fα and fβ differ by less than
±10 T across many samples grown by different methods in
different laboratories, corresponding to a variation of less than
±0.1% of the Fermi volume.

B. Difference frequency

As mentioned above, the dispersionless δ branch at the
semiclassically forbidden difference frequency β − α ob-
served in the transverse magnetoresistance and the Hall effect
can be explained by QOs of the quasiparticle lifetime due to
nonlinear interband coupling between the FS pockets around
the R point [47,48]. If there is a coupling between two dis-
tinct FS orbits, the lifetime of quasiparticles on these orbits
oscillates with the frequencies associated with both orbits.
This may give rise to combination frequencies in the QO
spectra. Since they are not related to an extremal cross sec-
tion via the Onsager relation, the combination frequencies
do not reveal any new information about the FS geometry.

However, they might provide a tool to gain information about
the nature of interactions between quasiparticles on different
parts of the Fermi surface and thereby give insight into a
material’s properties beyond its FS geometry. Because the
goal of this work is the determination of the FS, we focus
on the conventional quantum oscillation frequencies in the
following.

C. �-centered FS sheets

The branches φ, η, ε, and γ observed experimentally arise
from the FS sheets centered at �. Taking into account small
rigid band shifts, all four frequencies may be assigned unam-
biguously based on matching frequency, angular dispersion,
angular range in which they occur, cyclotron mass, angle-
dependent oscillation amplitude, and the consistency with
charge neutrality within the accuracy discussed above. We
start out by first describing the frequency branches corre-
sponding to DFT as calculated.

Shown in Fig. 6(b) are the FS sheets at �, which arise from
bands 3 and 4. Band 3 as calculated leads to multiple sheets of
which the innermost is a spherical hole pocket that would give
rise to a dispersionless frequency branch at 22 T [lowest green
branch in Fig. 6(a)]. It is surrounded by an almost spherical
electron pocket corresponding to a frequency branch at ≈60 T
[middle green branch in Fig. 6(a)].

The outermost hole sheet arising from band 3 is cuboid
shaped with elongations along the �-R directions exhibiting
one minimal and two degenerate maximal extremal cross sec-
tions for B ‖ [001] (note that the intermediate electron pocket
can be understood as a “hole” in the middle of the outermost
hole sheet). QOs arising from the branch of the minimal cross
section at about 0.6 kT are predicted to be much stronger
than the ones arising from the maximal branch at 1.3 kT, due
their respective masses and curvature factors. Upon rotation
towards [111] the minimal and maximal orbits merge and
form a single low-amplitude frequency branch [upper green
branches in Fig. 6(a)].

The calculated FS arising from band 4 consists of a single
pocket whose shape resembles the outermost sheet of band 3.
Accordingly, the resulting frequency branches shown in blue
in Fig. 6(a) resemble those of the outermost sheet of band 3
displaced by ≈300−400 T towards higher frequencies.

No further branches are expected for the FS geometry
as calculated, which is in clear contradiction to experiment.
Namely, the experimental branches in the 70–220 T regime,
φ and ε, cannot be explained by the FS as calculated in DFT.
Conversely, DFT predicts a dispersionless branch at ≈60 T
which is absent in experiment.

In comparison, the experimentally observed branches can
be described consistently in DFT when shifting band 3 down
by 4 meV and shifting band 4 down by 7 meV, resulting in
the FS geometry shown in Fig. 6(e). We note that both the
sign and size of the rigid band shift applied at � are consistent
with the band shift applied at the R point.

Due to this small shift, the intermediate electron pocket of
band 3 merges with the outer hole pocket forming a multiply
connected combined sheet that features apertures along the
�-X directions. Nested inside this is the small spherical hole
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FIG. 7. Extremal orbits on the FS sheets of CoSi around the �

point. (a), (b) FS arising from band 3 in Fig. 1 shifted downwards by
4 meV. Part of the outer pocket has been cut out to allow for a better
view. The γ branch is assigned to the small holelike sphere in the
center. The φ orbits thread through the apertures of the outer pocket,
whereas the ε orbit runs on the inner surface of the same pocket
and exists in a limited angular range only. (c), (d) Fermi surface
originating from band 4 in Fig. 1 shifted downwards by 7 meV. The η

branch can be linked to the extremal orbit with minimal cross section.

pocket arising from the same band. This change in FS geom-
etry explains the branches ε and φ.

The φ branch with its distinct angular dispersion can be
identified as arising from the new orbits around the “necks”
created by the shift. These orbits pass through the apertures
in the outer FS sheet of band 3, as shown in Figs. 7(a) and
7(b) for two field directions. This branch is detected in both
the SdH and dHvA data over the full angular range, with
the exception of the strongly dispersive part between θ = 20◦
and 40◦, where the calculated orbit loses most of its spectral
weight. We note that there are possible contributions in this
frequency range in our dHvA data shown in Fig. 3(c) which
are, however, not conclusive. For θ < 20◦, the experimen-
tal branch resides at ≈70 T, and reemerges at angles larger
than θ = 40◦ where it exhibits a moderate dispersion with
frequencies varying between fφ = 221 T for B ‖ [111] and
fφ = 170 T for B ‖ [110]. This behavior is matched well by
the DFT calculations after the downward shift by 4 meV and
can be understood as the neck orbits for B ‖ [001] in Fig. 7(a)
passing over the “lobes” of the pocket when rotating the field
towards [110], with a maximal cross section close to the [111]
direction.

In addition, the cyclotron mass was analyzed for field ap-
plied along the [111] direction, being about 25% smaller than
estimated from DFT (see Table I). However, we note that close
to the [111] direction the calculated value of mφ is subject to
a large uncertainty both with respect to the angle and with
respect to the exact band shape. In turn, this represents a
satisfactory match.

The ε branch is observed experimentally in a narrow an-
gular range around the [111] direction only featuring a weak
angular dispersion. As shown in Fig. 7(b), it originates from
an orbit running along the “inside” of the outer FS sheet of
band 3. For other orientations, e.g., for field applied along
[001] as shown in Fig. 7(a), this orbit does not exist because
of the apertures along the �-X lines. For the angular range
in which this branch is expected to exist, the dispersion and
the cyclotron mass (see Table I) match the experimentally
detected ε branch well.

The dispersionless low-frequency branch denoted γ was
reported before in dHvA experiments recording directly the
magnetization [27,28], where it was attributed to a small
pocket at �. In Ref. [28] fγ was not assigned to a specific
band, whereas Ref. [27] assigned fγ to band 1. However, a
band shift of about 45 meV upward would be required for this
to be correct, resulting in a dramatic hole doping in excess of
10% of the Fermi volume. In turn, an assignment to band 1
can clearly be ruled out.

The extremal orbit of the innermost spherical pocket of
band 3 matches the γ branch for a downward shift by 4 meV,
reducing the frequency from 22 T as calculated, to ≈20 T as
observed experimentally. The almost perfect isotropy of this
pocket naturally explains why it evades detection in the torque
magnetometry we used. While in principle also bands 1, 2,
and 6 could give rise to light and fairly spherical pockets, only
the assignment to band 3 is consistent with the assignment of
the other branches. In particular, an assignment to band 1 or
2 would imply pocket dimensions of bands 3 and 4 that are
much too large to fit the observation of branch η. In addition,
such an assignment would raise the question why other light
pockets required by the band symmetry for such a shift are not
observed. Along the same line, an assignment to band 6 can
be ruled out because this would require that no outer sheet of
band 4 is present that could host the η orbit.

For the downward shift of band 3 by 4 meV the interme-
diate electron pocket surrounding the small inner hole pocket
merges with the large outer hole pocket. This naturally ex-
plains the absence of a branch from the intermediate electron
pocket, which should otherwise be straightforward to detect
due to its small cross-sectional area and small mass.

fη is, finally, observed in our high-field dHvA experiments
over a limited angular range around θ = 23◦. The frequency
branch η is consistent with the minimal orbit on the FS
pocket arising from band 4 [Figs. 7(c) and 7(d)]. Its frequency
matches theory when shifting band 4 down by 7 meV. The
shift of band 4 being slightly larger than the shift required for
band 3 may be explained in two ways. Either band 4 follows
the dispersion of band 3 a bit more closely than determined
in DFT, or the “waist” of this pocket is more pronounced
than determined in DFT. The presence of η in such a narrow
angular range reflects, most likely, a combination of different
factors. First, with a calculated cyclotron mass ranging be-
tween 6 me and 12 me, it is by far the heaviest orbit observed
reducing the amplitude of the QOs in terms of the cyclotron
energy and the temperature reduction factor RT . Second, the
η branch is predicted to have large weight only in the region
where it is observed experimentally. Apart from the cyclotron
mass which increases with increasing angle up to a maximum
for the field applied along the [111] direction, this may be
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attributed to the torque factor 1
f

df
dθ

, present in our high-field
dHvA experiments and a stronger Dingle damping as the orbit
becomes larger with increasing angle.

D. Conclusions

We conclude that the Fermi surface of CoSi closely resem-
bles the depiction shown in Figs. 6(e) and 6(f). In particular,
the sheets of band 3 around � do not consist of three nested
pockets (or rather, an outer pocket with a hole inside, in
which a small inner pocket is situated), but one inner spherical
pocket and one outer multiply connected sheet with six aper-
tures along the �-X directions. Both the R-centered electron
pockets and the �-centered predominantly holelike sheets are
smaller than predicted by DFT, consistent with global charge
neutrality. Differences between experiment and theory may be
ascribed to the limitations of DFT and be avoided by means
of more accurate calculations as performed, e.g., in Ref. [15].
Knowing the FS geometry and dimensions, we can now com-
ment on the relative positions of the topological crossings and
their relevance for topological response functions.

Shown in Fig. 8 is the distribution of topological crossings
in the vicinity of the � and the R pockets. Around the � point,
shown in Fig. 8(a), the innermost spherical pocket of band 3
encloses only the fourfold crossing, such that the net signed
Berry curvature flow through the surface is +3 (note that the
signs depend on the handedness of the enantiomorph of CoSi).
The Weyl points along �-M and �-R close to this innermost
pocket are not surrounded by a closed Fermi surface. Their
locations may be seen more clearly in Fig. 8(b), where the
point crossing locations (dots) and the FS contours in the
�-centered (001) and (110) planes are shown. Note that these
Weyl points would be enclosed by a FS in case of unshifted
bands, where they would add up to a net topological charge
of (−1 × 12 + 1 × 8) = −4. The multiply connected outer
sheet of band 3 encloses Weyl points on the �-R line with
a topological charge (1 × 8) = 8. The outermost enclosing
sheet arising from band 4 encloses the multifold point at �

and the Weyl points on �-R contributing a net charge of
(1 × 1 − 1 × 8) = −7.

For the sake of completeness, we briefly summarize the
well-established result for the four R-centered pockets arising
from bands 5, 6, 7, and 8. Here, the situation is complicated
by the trios of topological nodal planes covering the entire
Brillouin zone boundary. These nodal planes carry total topo-
logical charges of {−5, 5} for bands 5 and 6, and {−1, 1} for
bands 7 and 8. They form topological protectorates on the
Fermi-surface sheets [red lines in Fig. 8(a)], as the crossings
are pinned to the FS. However, the charge contributed by
the nodal planes enclosed in the FS pockets is not quan-
tized. In addition, the charges of the multifold crossing at R
cannot be evaluated using the Abelian Berry curvature since
no integration contour can be chosen that is gapped every-
where, due to the presence of the nodal planes. Instead, the
non-Abelian Berry curvature [15] allows one to calculate the
Chern numbers representing the topological charges of band
pairs (3,4), (5,6), and (7,8), yielding {−4, 0, 4} [17]. Thus, we
obtain (1 × 0 − 1 × 8) = −8 for charge enclosed by the FS
pair (5,6) because of two Weyl points on �-R (one crossing
between bands 5 and 6 compensating itself and one crossing

FIG. 8. Positions of topological band crossings with respect to
the FS. Crossing points are shown as colored dots where the color
represents the charge of the involved bands sorted by increasing
band index. Red lines indicate topological protectorates (TPs) on
nodal planes (cf. Refs. [16,17]). (a) Perspective views of the FS
sheets centered on � and R. (b) FS contours and band crossings on
high-symmetry planes around the � point as indicated in (a). (c) FS
contours and band crossings in high-symmetry planes around the R
point.

with band 7) and (1 × 8 + 1 × 4) = 12 for the FS pair (7,8)
due to the Weyl point on �-R and the multifold point at R.

The main purpose of our study concerned the detailed and
complete experimental determination of the FS of CoSi. In
principle, based on our results, the relation of the FS to the
topological crossings may now be determined unambiguously.
However, an analysis of the topological charges as performed
above is not only interesting from a fundamental point of view,
but may also provide important insights when searching for
topological contributions in the physical properties.

Response functions, such as CPGE [24], the intrinsic spin
Hall effect [49], and the quantum nonlinear Hall effect [50], in
general anticorrelate with the distance of the crossings to the
Fermi energy and Fermi surface since the Berry curvature en-
tering in these response functions is maximal at the crossings.
Due to this connection, establishing the relation between band
crossings and the Fermi surface is an important step forward.

We wish to point out that the net flow of Berry curva-
ture through FS pockets does, as a rule, not fully determine
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the topological responses per se apart from idealized special
cases (e.g., the quantized CPGE [10,12]). Rather, the integra-
tion “kernels” for different response functions incorporate the
Berry curvature in different nontrivial ways. In general, this
makes it necessary to perform the relevant integrations ex-
plicitly. The resulting Berry curvature will depend sensitively
on the exact positions of the bands with respect to the Fermi
energy as determined in our study. For example, Ref. [24]
calculates the CPGE assuming a band shift of 17 meV in the
opposite direction as compared to the band shift determined
experimentally in our study, corresponding to a strong over-
all hole doping resulting in FS sheets around � that differ
strongly from the real ones. Using the band shifts reported
here, such calculations may now be refined.

Further, the quantization of the CPGE is very sensitive to
the chemical potential, and the multifold points at � and R
contribute most to this response. Since the position of the
multifold point at � derived here is closer to the Fermi energy,
we expect a broader photon energy range of CPGE quantiza-
tion stemming from the � point than previously expected. For
the same reason, we expect topological responses originating
from the multifold crossing at � to be larger in general.

Explicit numerical calculations of response functions
based on the experimentally refined Fermi surface will nat-
urally take into account Berry curvature contributions arising
from the multiple hotspots of Berry curvature discussed here
as well as from near “quasidegeneracies,” which do not lead

to a net flux through a closed surface, but may nevertheless
contribute to response functions [29–31]. When trying to de-
scribe this network of Berry curvature contributions with a
posteriori constructed effective Hamiltonians, a host of such
Hamiltonians valid in different k-space regions would be nec-
essary, limiting the value of this approach for the calculation
of response functions.

In conclusion, we report SdH and dHvA measurements
in CoSi investigating the angular dispersion of quantum os-
cillations and analyzing the temperature dependence of the
oscillation amplitudes at specific angles. We identify a total of
six frequency branches, three of which exhibit large cyclotron
masses. These frequency branches allow the determination of
the FS shape of CoSi and its relation to the topological band
crossings. This way our findings may facilitate a quantitative
understanding of topological response functions in CoSi.
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