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Chiral spin liquid on a Shastry-Sutherland Heisenberg antiferromagnet
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We demonstrate the existence of a topological chiral spin liquid in the frustrated Shastry-Sutherland Heisen-
berg model with an additional spin chirality interaction, using numerically unbiased exact diagonalization and
density matrix renormalization group methods. We establish a quantum phase diagram where conventional
phases, including dimer singlet, plaquette singlet, Néel, and collinear phase, can be clearly identified by suitable
local order parameters. Among them, an SU(2)1 chiral spin liquid emerges in the highly frustrated region, which
is unambiguously identified by two topologically degenerate ground states, a modular matrix, and characteristic
level counting in an entanglement spectrum, featuring the same topological order of the ν = 1/2 bosonic
Laughlin state. The phase boundaries among the different orders are determined by the energy level crossing
analysis and wave-function fidelity susceptibility.
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I. INTRODUCTION

As one of the most intriguing quantum phases in
condensed-matter physics, quantum spin liquid (QSL) [1–4]
does not form any conventional order even down to zero
temperature. Consequently, such a quantum state of matter
goes beyond the description of Landau’s symmetry-breaking
paradigm. Interestingly, the quantum disordered QSL has a
rich internal organizing pattern, and it possesses fractionalized
quasiparticle excitations and long-range quantum entangle-
ment, which has been attracting a great deal of interest in
the community since the initial proposal by Anderson 50
years ago [5]. Chiral spin liquid (CSL) [6], a special type of
gapped QSL that breaks time-reversal symmetry, is closely
related to fractional quantum Hall liquid [7–9] and thus also
exhibits nontrivial topological order [10]. For the fractional
quantum Hall system, gapped ground states have a topological
degeneracy that depends on the lattice geometry, quasiparti-
cle excitations possess fractional statistics, and gapless edge
excitations exhibit a characteristic level counting that mani-
fests underlying topological order in the bulk. These unique
features can be used to identify topological ordered phases
including CSL. Over the past decade, CSL has been un-
ambiguously demonstrated in various lattice spin models by
large-scale numerical methods, including those on a kagome
lattice [11–14], a triangular lattice [15,16], a honeycomb lat-
tice [17–19], and a square lattice [18,20,21]. Quite recently,
emergent CSL has also been reported in the half-filled triangu-
lar Hubbard model [22,23], sandwiched between the metallic
and Mott insulating phases. Doping in such a state may lead to
superconductivity. The mechanism of the formation of CSL is
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attributed to the strong interplay of geometric frustration and
quantum fluctuation, which serves as a guiding principle to
search for CSL in realistic models and materials.

In addition to the aforementioned widely studied lat-
tice models, another lattice system with intrinsic frustration
is the Heisenberg antiferromagnetic model on the Shastry-
Sutherland (SS) lattice [24] with interdimer J and intradimer
J ′ interactions (see the inset of Fig. 1). The SS lattice can
be realized by the compound SrCu2(BO3)2 [25,26], where
in-plane spin-1/2 Cu spins are coupled by Heisenberg in-
teractions. Interestingly, the relative strengths of these two
couplings can be tuned by applying suitable pressure in
experiment. Under ambient pressure, intradimer interaction
dominates and a dimer singlet (DS) phase is realized [26,27].
The Néel order has also been observed at high pressure, while
some variant of the plaquette singlet (PS) phase is detected
around 2 GPa [28–34]. These properties of SrCu2(BO3)2 are
well captured by the phase diagram of the SS model. It is usu-
ally believed that the phase transition between the PS and Néel
phase is direct [35,36], and the transition point could even be a
deconfined quantum critical point (DQCP) [32,37]. However,
some recent numerical studies on the SS model suggested the
possibility of an intermediate gapless spin liquid between the
PS phase and the Néel phase [38–40]. Since SrCu2(BO3)2

can be fabricated quite cleanly in experiment, the disorder
effect is quite small, which makes it promising to explore the
possibility of a gapless spin liquid. It is thus also important
to study some variants of the SS model to find gapped spin
liquids, which will guide the experimental discovery of such
exotic phases. This is the motivation of this paper.

In this paper, we demonstrate the existence of a topolog-
ically ordered CSL in the highly frustrated region of the SS
model. Specifically, we consider antiferromagnetic Heisen-
berg interactions in the original SS model, as well as an
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FIG. 1. Quantum phase diagram vs Jχ − g of the antiferromag-
netic Heisenberg model on the SS lattice. The phase boundaries
are based from fidelity susceptibility and energy level crossing on
a 36-site torus using the ED method. The inset shows the schematic
plot of the SS lattice, with NN J (denoted as black lines) and NNN J ′

(denoted as red lines) Heisenberg interactions, and a three-site chiral
interaction (denoted as blue circles) in plaquettes with a J ′ term [see
Eq. (1)].

additional spin chirality interaction. Using large-scale ED and
DMRG calculations [41,42], we establish a global phase di-
agram with various conventional phases identified by local
order parameters, including nonmagnetic DS and PS phases,
and magnetic Néel and collinear phases. Moreover, among
the phase boundaries of these conventionally ordered phases,
there exists a CSL state. This CSL possesses two topologically
degenerate ground states, and it is characterized by a modular
matrix [10,43] and sequential level countings in an entangle-
ment spectrum [44] as the fingerprints of the ν = 1/2 bosonic
Laughlin state processing semion anyonic statistics.

II. MODEL AND METHOD

As is illustrated in the inset of Fig. 1, we study the SS
model with an additional spin chirality interaction on a square
lattice, with the Hamiltonian

H = J
∑
〈i j〉

Si · S j + J ′ ∑
〈i j〉′

Si · S j + Jχ

∑
i jk∈�

Si · (S j × Sk ),

(1)

where antiferromagnetic Heisenberg interactions J and J ′ run
over all nearest-neighbor (NN) bonds 〈i j〉 and specific next-
nearest-neighbor (NNN) bonds 〈i j〉′, respectively. The first
two terms of Eq. (1) constitute the canonical SS model, which
is widely accepted as the microscopic Hamiltonian describ-
ing the dominant magnetic interactions in SrCu2(BO3)2. The
real material also features additional interactions (e.g., strong
spin-orbit coupling) that has motivated the generalization of
the canonical SS model to include (effective) realistic inter-
actions. In the present study, we consider a three-site spin
chiral interaction with strength Jχ , which runs over the two
triangles in each plaquette with a J ′ bond, where the sites
i jk are ordered in a counterclockwise manner. Chiral inter-

actions normally arise from the coupling of electrons to an
external magnetic field in strong Mott insulators, particularly
in lattice geometries with triangular units [13,45–48]. These
interactions break reflection (mirror-plane) and time-reversal
symmetries, but their product is preserved, as are translational
and rotational symmetries. In the following, we define g ≡
J/J ′ and set J ′ = 1 as the energy scale.

Here we use numerically unbiased ED and DMRG meth-
ods to study this model, which allows us to faithfully
explore possible quantum phases and phase transitions in
strongly correlated systems. Using a torus geometry in the
ED calculation, we examine different system symmetries and
block-diagonalize the Hamiltonian in different symmetry sec-
tors labeled by conserved quantum numbers. This allows us to
achieve larger system sizes in ED, and more importantly to de-
tect intriguing phase transitions using energy level crossings.
In the following, we obtain the low-lying energy spectrum and
label each state with quantum numbers (S, kx, ky, r), where
S is the total spin quantum number, kx and ky label lattice
momenta in the x and y directions, respectively, and r is the
quantum number of the C4 rotational symmetry. We can thus
obtain an approximate phase diagram based on energy level
crossing and fidelity susceptibility. Different order parameters
are further utilized to identify the nature of quantum phases
in the phase diagram. Furthermore, We find a finite region
of CSL at intermediate g, whose topological order is elab-
orately characterized by both ED and DMRG calculations.
Compared with the ED method, DMRG allows us to study
much larger system sizes in a cylindrical geometry, and quan-
tum entanglement can be straightforwardly extracted from the
ground state.

III. PHASE DIAGRAM

In this section, we summarize our main results and present
a global quantum phase diagram of the model in Fig. 1, which
is based on a 36-site torus geometry using the ED method.
Detailed discussions of quantum phases and phase transitions
will be presented in subsequent sections.

When the chiral interaction is turned off, the model returns
to the well-studied SS model. At small g, the intradimer J ′
term dominates and the system favors the DS phase, where
each separate bond connected by the J ′ term forms a spin
singlet to simultaneously minimize system energy. At the
large-g limit, the Hamiltonian reduces to the antiferromag-
netic Heisenberg model on a square lattice, whose ground
state possesses the conventional Néel order [49]. In the in-
termediate region, J and J ′ interactions compete with each
other, and the SS model is highly frustrated. In this case,
nonmagnetic phases with unconventional properties may also
emerge. In our 36-site ED calculation, we find a PS phase for
g ∈ (0.675, 0.774), which evolves to a DS phase and a Néel
phase for small and large g, respectively. Recent calculations
with careful finite-size extrapolation have also suggested the
possibility of an intermediate gapless spin liquid between the
PS and Néel phases [38].

Next we investigate the effect of the nonzero Jχ interaction.
The result of our investigation is summarized in Fig. 1. At
small to moderate values of g (�0.5), the ground state remains
in the DS phase up to strong values of Jχ , but eventually
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FIG. 2. Profile of various order parameters measured in the quantum phase diagram. Here we study an N = 36-site torus by the ED
method. (a) Dimer order parameter Od , (b) plaquette order parameter Op, (c) Néel order parameter m2(π, π ), and (d) collinear order parameter
m2(0, π ). Dashed lines mark the same phase boundaries as in Fig. 1.

there is a transition to a collinear phase at large Jχ . On the
other hand, the Néel phase (at large g) survives for small to
intermediate values of Jχ , beyond which the collinear order
sets in. The PS phase is the most unstable to the effects of
chiral interaction and survives only for small values of Jχ . It
is at intermediate values of g (0.5 � g � 0.7) that the most
interesting physics emerge. We find clear signatures of the
CSL phase over a finite range of Jχ for these values of g
where interactions are highly frustrated. The emergence of
a CSL when turning on the chiral interaction in a highly
frustrated region has also been observed in a number of lattice
systems of a Heisenberg antiferromagnet, including kagome
[13], triangular [15], and square lattice systems [20]. Recent
numerical studies also report the appearance of non-Abelian
CSLs in higher spin systems on the square lattice [50,51].
Interestingly, while the CSL phase is driven by the chiral
interaction, it requires the competing Heisenberg interactions
for stabilization. For example, the CSL phase does not emerge
in the presence of only the Jχ term in the Hamiltonian; instead,
the collinear phase is realized in this limit.

IV. CONVENTIONAL ORDERS

Various conventional phases in the phase diagram can be
effectively identified by suitably chosen local order parame-
ters. First, since the dimer phase is defined by the spin singlet
formed along J ′-bonds, we define a dimer order parameter
as the difference between the averaged expectation value
〈Si · S j〉 for NN J bonds and NNN J ′ bonds as

Od = EJ − EJ ′ . (2)

The DS phase in the original SS model is an exact dimer
phase, which exhibits a finite value of Od = 0.75 [36,52].
When Jχ > 0, the DS phase is destroyed gradually, with Od

decreasing and potentially becoming negative. As is shown in
Fig. 2(a), Od is quite large for a relatively small g regime, and
the region for Jχ = 0 with large Od coincides with the DS
phase determined by another way [38].

Second, we define a plaquette order parameter as

Op = 1
2 (P� + P�

−1)

= − 5
8 + 1

4 (Si + Sj + Sk + Sl)
2 + 2(Si · Sj)(Sk · Sl)

+ 2(Si · Sl)(Sj · Sk ) − 2(Si · Sk )(Sj · Sl), (3)

where P� is a clockwise permutation operator that acts on the
plaquette without a J ′ bond, and {i, j, k, l} are indicators of a
clockwise arrangement on the four vertices of the plaquette.
Op represents the strength of the plaquette, which can be used
to identify the PS phase. In Fig. 2(b), we find that the plaquette
order takes a large value in a window for intermediate g. By
increasing Jχ , the plaquette order decreases monotonically,
which shows that the plaquette order is not favored by the
spin chirality term. However, it is hard to distinguish the PS
and Néel phases from Op. One reason is PS-Néel is a contin-
uous [37] (or weakly first-order [36,53]) phase transition, and
another reason is that the lattice size is still too small.

Third, in addition to the two kinds of dimer phases, we
also calculate the static structure factor to identify possible
long-range magnetic orders in the phase diagram, defined as

m2(kx, ky) = 1

N2

∑
i j

eik·(ri−r j )〈Si · S j〉. (4)
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FIG. 3. Energy spectrum and spectral flow of the CSL phase. (a) Low-energy spectra En − E1 vs the momentum kx + Nkx ∗ ky in the CSL
phase for lattice sizes N = 16, 24, and 36 at (g, Jχ ) = (0.6, 0.75), where a large gap exists between two ground states and other excited states
in all studied lattice sizes. Panels (b) and (c) are low-energy spectra vs inserted flux θ at (g, Jχ ) = (0.6, 0.75) for N = 16 and 24, respectively,
where the two topologically degenerate ground states (marked as red and blue points) remain well separated from higher energy levels (marked
as green points) on flux insertion.

A peak at k = (kx, ky) = (π, π ) corresponds to antiferromag-
netic Néel order, while that at (π, 0) or (0, π ) signals the
formation of collinear order. In particular, m2(kx, ky) at k =
(kx, ky) = (π, π ) is also called squared magnetization. The
results of m2(π, π ) and m2(0, π ) are shown in Figs. 2(c) and
2(d), respectively.

In Figs. 2(a)–2(d), we find a large value of Op, m2(π, π ),
m2(0, π ) at the PS, Néel, and collinear phase, respectively.
These distributions of order parameters in the phase diagram
in Fig. 2 generally agree with the phase diagram presented in
Fig. 1.

V. CHIRAL SPIN LIQUID

Among these conventional phases characterized by local
order parameters, we find a finite region of CSL in the quan-
tum phase diagram where competing interactions are highly

frustrated. This spin-disordered phase cannot be character-
ized by conventional order parameters, but by its intriguing
topological order. Next, we will demonstrate the numerical
evidence from the viewpoints of energy spectra, entanglement
spectra, and modular matrix.

A. Energy spectra

First, we find twofold topologically degenerate ground
states, which are well separated from bulk excitations with a
large energy gap, as is shown in Fig. 3(a) for the CSL phase of
lattice sizes N = 16, 24, and 36 at (g, Jχ ) = (0.6, 0.75). This
excitation gap remains robust when adiabatically twisting the
boundary condition, i.e., the twofold ground states never cross
with the excited states. Since the twofold ground states share
the same momentum quantum numbers in these three high-
symmetric lattice clusters, the energy spectrum evolves back
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FIG. 4. (a) Bipartitions of the SS model system on a N = 36 cluster. The two ways to partition the system along the dashed lines are
labeled as cut I and cut II , respectively. (b) Profile of minus entanglement entropy (-S) of wave function |�c1,φ〉 on the N = 36 lattice with
g = 0.6 and Jχ = 0.75. These two peaks correspond to minimally entangled states along bipartition cut I , which are used in the calculation of
modular matrix.

to itself by inserting a flux quantum, as is shown in Figs. 3(b)
and 3(c) for N = 16 and 24, respectively.

B. Fractional statistics

An important feature of a topological ordered state is
that its quasiparticle excitation takes the fractional statistics.
Here we utilize the framework of modular matrices [10,43],
which encode complete information of topological order, to
characterize the underlying anyon statistics of the CSL. Inter-
estingly, modular matrices can be effectively obtained from
entanglement measurements [54,55]. Given the topologically
degenerate ground states on a torus geometry, we construct
two sets of minimally entangled states (MESs) along inter-
winding cuts, and the transformation between these two MES
sets yields desired modular matrices.

To construct MESs, we take an arbitrary superposition of
the ground states |ξ1〉 and |ξ2〉,

|�c1,φ〉 = c1|ξ1〉 + c2eiφ|ξ2〉, (5)

where c1 and φ are two independent real numbers, and c2 =√
1 − c2

1. We bipartite the whole system into two parts, A and
B, and we construct the reduced density matrix of subsys-
tem A by tracing out degrees of freedom in subsystem B as
ρA = TrB|�c1,φ〉〈�c1,φ|, such that the entanglement entropy
for this cut is obtained by S = − log Trρ2

A. By evaluating S
for each linear combination of the ground states, we identify
(c1, φ) pairs corresponding to states with minimal entangle-
ment entropy, i.e., MESs. As is shown in Fig. 4(a), we use
two ways to bipartite the system along noncontractible cuts I
and II , each yielding one set of MESs. In Fig. 4(b), we draw
the profile of −S as a function of (c1, φ) in the contour plot for
a 36-site lattice, so that the peaks represent the minima of S.
In this way, we identify two peaks in (c1, φ) parameter space,
corresponding to two distinct MESs:

∣∣
I
1

〉 = 0.897|ξ1〉 + 0.442ei1.374π |ξ2〉,∣∣
I
2

〉 = 0.295|ξ1〉 + 0.955ei0.371π |ξ2〉, (6)

where the label I means we bipartite the system along the
horizontal line (cut I ). We find that the relative phase dif-
ference between these two MESs is φ(1) − φ(2) = π , and
consequently the two MESs are approximately orthogonal
to each other for this finite-size system: |〈
I

1|
I
2〉| ≈ 0.169.

Due to the π/2 rotation symmetry in the system, the MESs
along the vertical line (cut II) |
II

i 〉 are related to |
I
i 〉 as

|
II
i 〉 = Rπ/2|
I

i 〉, where Rπ/2 rotates a state anticlockwise by
π/2.

In our calculation, we identify that

Rπ/2|ξ1〉 = |ξ1〉,
Rπ/2|ξ2〉 = −|ξ2〉, (7)

and then we have the second set of MESs,∣∣
II
1

〉 = 0.897|ξ1〉 − 0.442ei1.374π |ξ2〉,∣∣
II
2

〉 = 0.295|ξ1〉 − 0.955i0.371π |ξ2〉. (8)

Finally we get the modular matrix by S = 〈
II |
I〉 as

S ≈ 0.7176

(
0.8490 0.9713
0.9713 −1.1510

)
, (9)

which is close to the analytic prediction for the bosonic ν =
1/2 Laughlin state [56–58]:

S = 1√
2

(
1 1
1 −1

)
. (10)

This directly shows the semion statistics emergent in the CSL.

C. Entanglement spectra

To establish the existence of CSL conclusively, we have
studied larger systems, up to Ly × Lx = 8 × 16 with a
cylindrical lattice using DMRG for a representative set of
parameters for which the ground state is in the CSL phase.
Various entanglement information of the ground state can
be straightforwardly extracted in this method. To reveal the
underlying topological order, we calculate the entanglement
spectrum [44] from the entanglement Hamiltonian − log ρA,
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FIG. 5. Momentum-resolved entanglement spectra of the two
ground states at (g, Jχ ) = (0.6, 0.75) on the 8 × 16 cylinder, where
�k means relative momentum in the transverse direction of the cylin-
der, and λi represents the eigenvalues of reduced density matrix ρA.
Here we set �k = 0 for the largest λi. Panels (a) and (b) correspond
to the ground state at the vacuum and semion sector, respectively.
These counting structures at different Sz sectors match the tower of
states of SU(2)1 Wess-Zumino-Witten theory.

whose low-lying spectrum {− log λi} harbors characteristic
edge countings for topologically ordered phases.

In the DMRG optimization, we get one of the ground
states directly and the other one by the removal of a single
site at each edge. We keep up to 1200 U(1) states to obtain
accurate results with the truncation error less than 10−6. The
entanglement spectra of the ground states are presented in
Fig. 5. The degeneracy pattern in the low-lying entanglement
spectrum {1, 1, 2, 3, 5, . . . } follows the U(1) decomposition
of the SU(2)1 Wess-Zumino-Witten CFT theory [59] exactly,
establishing the same topological order as in the ν = 1/2
bosonic Laughlin state. Intuitively, this counting structure can
also be simply obtained by the generalized Pauli principle
[60], which states that there is no more than one particle in
two consecutive orbitals in this case.

VI. PHASE BOUNDARIES

In this section, we determine the phase boundaries between
the various ground-state phases in Fig. 1, based on energy
level crossing and fidelity susceptibility numerically using the
ED method on a 36-site torus. To get the phase boundaries, we
fix Jχ and change g. As examples, the results of Jχ = 0.4 and
2.0 are shown in Fig. 6. All states |φ〉 are labeled by quantum
numbers (S, kx, ky, r). In our results, the low-lying states in the
level spectroscopy are mainly located in the r = 0 and r = π

sectors, where r = 0 means the states satisfy Rπ/2|φ〉 = |φ〉,
while r = π means Rπ/2|φ〉 = −|φ〉.

The fidelity susceptibility (FS) that we use here is defined
as

χF (g) ≡ lim
δg→0

−2 ln F

(δg)2
= − ∂2F

∂ (δg)2
, (11)

where F = |〈φ(g + δg)|φ(g)〉| is the definition of fidelity, and
φ(g) is the “ground state” of a given singlet sector at parameter
g. We compute FS in both (S = 0, 0, 0, 0) and (S = 0, 0, 0, π )
sectors, which are shown in Figs. 6(e) and 6(f). When a
quantum phase transition occurs, φ(g) undergoes a significant
change at a certain point, and the fidelity F deviates from 1,
leading to a peak on the FS curve.

The FS approach is effective in detecting quantum phase
transitions [61–63]. With this approach, we obtain the DS-
CSL, DS-collinear, and CSL-collinear phase boundaries, i.e.,
the black curves in Fig. 1. However, for certain types of
quantum phase transitions, such as the PS-Néel transition in
the original SS model (Jχ = 0), there are no peaks on the
fidelity curves and the FS approach fails.

For this reason, we use excited energy level crossings to get
the PS-Néel, PS-collinear, and Néel-collinear phase bound-
aries, i.e., the red and blue curves in Fig. 1. From this point
of view, quantum phases have their own characteristic energy
spectra, which is usually called a tower of states (TOS), and
the quantum phase transitions are caused by the reconstruction
of the TOS. During the reconstruction, the crossing point
of low-lying excited energy levels provides an approximate
quantum critical point at a finite size. This method has been
widely applied to various different systems [38,40,64–71].

In the study of the square lattice and the SS lattice, both
FS and level crossing methods have also been successfully
applied in Refs. [38,40,66]. Below we will present a detailed
discussion on Fig. 6.

We first review the phase transitions in the original SS
model at Jχ = 0. The energy evolution of the ground states on
increasing NN Heisenberg interaction J (or equivalently g) is
easily understood. The two lowest singlet (S = 0) energy lev-
els cross with each other and change their order at g ≈ 0.675.
For small g � 0.675, the global ground state has a relatively
fixed energy on varying g, which is a typical character of the
DS phase. In this case, the ground state is mainly a product
state of spin singlets, with each bond connected by the J ′ term.
As a result, the typical ground-state energy is thus −0.75Ns.
For g � 0.675 the global ground state instead changes to other
phases, namely the PS phase and the Néel phase in this region
[35–37,52]. (It was argued recently that there may also be
an intermediate gapless spin-liquid phase between the PS and
Néel phases [38,40].) Energy level crossing may be the most
effective approach to distinguish the PS and Néel phases,
since the low-lying states of the Néel phase are the famous
Anderson TOS, while the ground states of PS have a twofold
degeneracy [35,72]. The lowest excitation of the Néel phase is
a triplet state, while it is a singlet state for the collinear phase.
We can use the singlet (S = 0) -triplet (S = 1) crossing point
as the boundary of the PS phase in a small cluster. This point
is also in strong agreement with the iPEPS [36] and iDMRG
[37] results [38].

However, as is shown in Figs. 6(a) and 6(c), the energy
spectras at Jχ = 0.4 are markedly different. For g � 0.625,
the ground state is still a DS phase, and the peak at g ≈ 0.625
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FIG. 6. Level spectroscopy at Jχ = 0.4 and 2.0 in (a) and (b), respectively, by varying J2 for the N = 36 periodic cluster. The two lowest
singlets are displayed for both the (S = 0, 0, 0, 0) sector (in black squares and red pentagons) and the (S = 0, 0, 0, π ) sector (in blue squares
and green pentagons). Characteristic magnetic excitations of the Néel phase are also shown, i.e., Anderson tower excitation in terms of the
(S = 1, 0, 0, π ) triplet (in purple triangles). Energy gaps defined with respect to the lowest (S = 0, 0, 0, 0) singlet are shown in (c) and (d) for
Jχ = 0.4 and 2.0, respectively. For the lowest (S = 0, 0, 0, 0) singlet and the lowest (S = 0, 0, 0, π ) singlet state, the corresponding FSs are
shown in (e) and (f).

of the FS curve in the (S = 0, 0, 0, π ) sector [see Fig. 6(e)]
forms a boundary of DS. When g > 0.625, there is a finite
range of g over which the two ground states in the (S =
0, 0, 0, 0) and (S = 0, 0, 0, π ) sectors are nearly degenerate,
and they turn out to be the topologically degenerate ground
states of the CSL phase. In Fig. 6(e), the FS curve of the
ground state in the (S = 0, 0, 0, 0) sector indicates a phase
transition at g = 0.7, which becomes a phase boundary of
the CSL phase. Further increasing g leads to two magnetic
orders, i.e., collinear order and Néel order. They are separated
by the singlet-triplet level crossing point at g = 0.862, which
is displayed in Fig. 6(c). Since the low-lying states of Néel
order form the Anderson TOS, the lowest excitation is a triplet
state in the (S = 0, 0, 0, π ) sector, while for collinear order
the lowest excitation is one of the twofold-degenerate ground
states, which is a singlet state in the (S = 0, 0, 0, π ) sector.

When Jχ is 2.0, the ground state is still the DS state in the
(S = 0, 0, 0, π ) sector while g is small. With the increase of
g, the state in the (S = 0, 0, 0, π ) sector has a FS peak at g ≈

0.5, as shown in Fig. 6(f). At the same time, there is a crossing
point between the (S = 0, 0, 0, 0) and (S = 0, 0, 0, π ) curves
at g = 0.45 [see Fig. 6(d)]. Both points can be regarded as
the DS-collinear phase boundary, but they are not consistent
due to the finite-size effect. To maintain consistency with the
case of Jχ = 0.4, we select the FS peak at g ≈ 0.5 as the
phase boundary. As in Fig. 6(e), in Fig. 6(f) both the (S =
0, 0, 0, 0) sector and the (S = 0, 0, 0, π ) sector have a FS
peak. However, the phase boundaries presented in these two
figures are completely different. In Fig. 6(f), the FS peak of the
(S = 0, 0, 0, 0) curve is located at g = 0.35, indicating a phase
transition of the excited state of the DS phase, but only when
g > 0.5 will the corresponding states of the (S = 0, 0, 0, 0)
and (S = 0, 0, 0, π ) sectors form the twofold degeneracy of
the collinear phase.

To pin down the phase boundary of the PS phase, we fix
g and instead change Jχ . In Fig. 7(a) we show the evolution
of three low-lying energy levels upon increasing the chiral
interaction at g = 0.775. At small Jχ the system is in the PS
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FIG. 7. Level spectroscopy at g = 0.775 and 0.7875 in (a) and (b), respectively, by varying Jχ for an N = 36 periodic cluster. The two
lowest singlets in the (S = 0, 0, 0, 0) sector are displayed in black squares and red pentagons, respectively, and the lowest singlet in the
(S = 0, 0, 0, π ) sector is displayed in blue squares.

phase and thus the lowest two energy levels remain in the
(S = 0, 0, 0, 0) sector. For Jχ � 0.13, an excited level cross-
ing occurs, indicating a transition to the collinear phase, where
the lowest two energy levels remain in the (S = 0, 0, 0, 0) and
(S = 0, 0, 0, π ) sector, respectively. We also observe a simi-
lar behavior at g = 0.7875, where the excited level crossing
occurs at Jχ ≈ 0.14.

Based on the above discussion, we establish the ground-
state phase diagram as shown in Fig. 1, which is further
corroborated by the results of order parameters in Fig. 2.

VII. SUMMARY AND DISCUSSION

In summary, we study the antiferromagnetic SS model
with an additional three-spin chiral interaction using numeri-
cally unbiased ED and DMRG calculations. Using local order
parameters, various conventional phases have been identi-
fied, including the magnetic Néel phase and the collinear
phase, and the nonmagnetic DS and PS phases. The PS
phase emerges when the SS model is highly frustrated, and
we show that a topologically ordered CSL can emerge by

adding a small chirality interaction to this phase, which is
conclusively identified as a ν = 1/2 Laughlin state by a char-
acteristic modular matrix and an entanglement spectrum. In
addition, the phase transitions in the global phase diagram
are determined by using energy level crossing and fidelity
susceptibility, which shows a finite region of the CSL phase.
Since the quantum material SrCu2(BO3)2 is highly related
to the SS model, we expect to observe CSL under certain
circumstances in experiment. To be specific, the CSL exhibits
electromagnetic signatures to facilitate experimental detection
even within a Mott insulator regime [73], i.e., the electrical
charge and orbital electrical current associated with a spinon
excitation and a nonvanishing optical response.
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