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Tuning proximity spin-orbit coupling in graphene/NbSe2 heterostructures via twist angle
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We investigate the effect of the twist angle on the proximity spin-orbit coupling (SOC) in graphene/NbSe2

heterostructures from first principles. The low-energy Dirac bands of several different commensurate twisted
supercells are fitted to a model Hamiltonian, allowing us to study the twist-angle dependency of the SOC in
detail. We predict that the magnitude of the Rashba SOC can triple, when going from � = 0◦ to � = 30◦ twist
angle. Furthermore, at a twist angle of � ≈ 23◦ the in-plane spin texture acquires a large radial component,
corresponding to a Rashba angle of up to � = 25◦. The twist-angle dependence of the extracted proximity
SOC is explained by analyzing the orbital decomposition of the Dirac states to reveal with which NbSe2 bands
they hybridize strongest. Finally, we employ a Kubo formula to evaluate the efficiency of conventional and
unconventional charge-to-spin conversion in the studied heterostructures.
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I. INTRODUCTION

Combining different 2D materials into one heterostructure
held together by van der Waals forces has become a well trod-
den path of engineering new physics [1,2]; in this approach,
the materials can imprint some of their own properties onto
another by proximity effects. Graphene has been the most
researched material in this context, since it provides high
electron mobility [3,4] and long spin-relaxation times [5,6].
Embedding it into a heterostructure can enhance its spin-orbit
coupling [7–13] (e.g., graphene/WSe2), equip it with mag-
netic properties [14–19] (e.g., graphene/Cr2Ge2Te6) or turn it
into a superconductor [20–22] (e.g., graphene/NbSe2).

Although graphene/NbSe2 is mostly studied in the context
of superconducting graphene [20–25], the spin-orbit coupling
of graphene is expected to be enhanced in such heterostruc-
tures as well. This is because NbSe2 has a large spin-
orbit coupling, similar to semiconducting transition-metal
dichalcogenides (TMDCs). In heterostructures of graphene
and semiconducting TMDCs (e.g., WSe2), the influence of
the twist angle on the proximity SOC was found to be of
great impact: not only does the magnitude and type of SOC
vary, but also a radial component is introduced to the in-plane
spin structure for nonzero twist angles, as studied by tight
binding models [26–28] and ab initio simulations [11,13,29].
Recently, the emergence of a radial component of the Rashba
spin-orbit field was confirmed experimentally [30]. However,
unlike graphene heterostructures based on semiconducting
TMDCs which feature Dirac points within the semiconductor
band gap, in graphene/NbSe2 the Dirac point lies within the
metallic bands of NbSe2. This brings certain challenges for
deciphering the proximity effects, making their first-principles
investigations useful for understanding the interplay between
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SOC and superconductivity [20–22] and for charge-to-spin
conversion in graphene/NbSe2 heterostructures [31]. Particu-
larly the collinear charge-to-spin conversion (unconventional
Rashba Edelstein effect, UREE [28–34]) as opposed to the
more usual perpendicular charge-to-spin conversion (Rashba
Edelstein effect, REE [35–37]) has a high potential for being
realized in these heterostructures. Since all SOC parameters
(and especially the Rashba phase angle �, linked to collinear
charge-to-spin conversion) can vary strongly with the twist
angle as shown for graphene/TMDCs [11,13,26–30] and
graphene/topological insulators [12,38–40], it is important to
uncover such dependencies for graphene/NbSe2 heterostruc-
tures as well.

To predict twist-angle dependence of proximity SOC, we
perform density functional theory (DFT) calculations on sev-
eral commensurate graphene/NbSe2 supercells. We fit the
obtained band structures around the Dirac points to a model
Hamiltonian which comprises different SOC terms. The main
result of the paper are the extracted SOC values depending
on the twist angle �. More specifically, we find that valley
Zeeman and Rashba SOC both have a magnitude of just under
1 meV for twist angles 0◦ � � � 15◦. Then, for 15◦ � � �
30◦, the Rashba SOC steadily increases reaching a maximum
of about 2.5 meV at � = 30◦, while the valley Zeeman SOC
steadily decreases to zero magnitude at � = 30◦. At � = 22◦,
the Rashba phase angle has a maximum with a value of
� = −25◦. The strong SOC at � = 30◦ twist angle, which
is purely of the Rashba type, can have multiple experimental
implications. For one, the combination of superconductivity
and Rashba SOC, which can be simultaneously achieved by
proximity effects in such graphene/NbSe2 heterostructures,
can lead to superconducting diode effect [41–45]. For another,
strong Rashba SOC without the presence of valley-Zeeman
SOC offers an ideal platform for charge-to-spin conversion
via the (U)REE [29,32,36].
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To explore the latter, we explicitly investigate the potential
of the different graphene/NbSe2 supercells for charge-to-spin
conversion. By using the Kubo formula in the Smrcka-Streda
formulation, we evaluate at what twist angles the potential for
measuring REE or UREE is the highest. Our findings sup-
port the intuitive picture following from the SOC parameters:
the highest yield for REE is possible for � = 30◦ (maxi-
mal Rashba SOC, minimal valley-Zeeman SOC). The highest
yield for UREE is possible for � ≈ 22◦ (maximal Rashba
phase angle �, high Rashba SOC).

The paper is structured as follows. In Sec. II, we show
the supercells used for the DFT calculations and the model
Hamiltonian used for the fitting. Section III discusses the
band alignments and the challenges linked to the metallic
nature of the NbSe2. In Sec. IV, the twist-angle dependence
of the proximity SOC parameters is presented. The potential
for charge-to-spin conversion is explored in Sec. V within
linear response theory. In Appendixes A and B, the effects of
an external electric field and relaxation are discussed respec-
tively. Finally, in Appendix C, we present some details on the
calculations done in Sec. V.

II. STRUCTURES AND METHODS

Combining monolayer graphene (lattice constant aGr =
2.46 Å) and a monolayer of NbSe2 (lattice constant aNbSe2 =
3.48 Å [46] and thickness dXX = 3.358 Å [20]), we construct
the supercells listed in Table I implementing the coincidence
lattice method [47,48]. The chosen interlayer distance (we
study the effects of structural relaxation in Appendix B) is
d = 3.3 Å. The integer attributes (n, m) determine the lattice
vectors of the (graphene or NbSe2) supercell

aS
(n,m) = n · a + m · b, (1)

bS
(n,m) = −m · a + (n + m) · b, (2)

where a and b are the primitive lattice vectors (of graphene or
NbSe2). These new supercell lattice vectors in turn determine
the twist angle � and strain ε of the heterostructure (for
details on this notation, see Ref. [11]). Two examples of such
heterostructures are shown in Fig. 1. Assuming that the lateral
degree of shifting plays a minor role for larger supercells (see
Refs. [11,12]), we use the convention of a shifting position
where at the corner of the supercell a Nb atom sits on top of
a C atom. In order to achieve a commensurate heterostruc-
ture suitable for DFT calculations, we need to introduce the
strain ε in either the NbSe2 or the graphene. Since graphene’s
electronic structure is less affected by strain [49–52], we
choose to put all the strain on graphene and leave the NbSe2

unstrained. Finally, we add a vacuum of 20 Å to avoid in-
teractions between periodic images in our slab geometry.
Electronic structure calculations are then performed by den-
sity functional theory (DFT) [53] with QUANTUM ESPRESSO

[54]. Self-consistent calculations are carried out with a k-
point sampling of nk × nk × 1. The number nk is listed in
Table I for all twist angles. We use charge density energy
cutoff 350 Ry and wave function energy cutoff 60 Ry for
the scalar relativistic pseudopotential with the projector aug-
mented wave method [55] with the Perdew-Burke-Ernzerhof
exchange correlation functional [56]. Graphene’s d orbitals

TABLE I. Structural information of all investigated
NbSe2/graphene heterostructures. We list the integer attributes
(n, m) (graphene) and (n′, m′) (NbSe2), the strain ε imposed on
graphene, the twist angle � between graphene and NbSe2 and the
number of atoms in the supercell Nat. The (n, m) marked by a star
indicates the supercells where n − m = 3 k, k ∈ Z and therefore the
Dirac cone is folded back to �. The k-mesh density nk × nk × 1
used in the self-consistent calculations is also listed.

� (n, m) (n′, m′) ε Nat nk

[◦] [%]

0.00000 ( 4 0) ( 3 0) 6.0976 59 30
0.00000 ( 7 0) ( 5 0) 1.0453 173 3
1.87177 ( 3 4) ( 2 3) 1.3725 131 6
3.30431 ( 6 1) ( 4 1) −1.1402 149 6
5.20872 ( 3 1) ( 2 1) 3.8058 47 30
5.20872 ( 2 4) ( 1 3) −3.6090 95 15
8.94828 ( 1 5) ( 0 4) 1.6303 110 12
10.89339 ( 2 1) ( 1 1) −7.3905 23 30
11.30178 ( 4 3) ( 2 3) 1.3725 131 6
12.51983 ( 7 1)* ( 4 2) −0.8516 198 3
13.89789 ( 2 6) ( 0 5) −1.9128 179 3
13.89789 ( 5 0) ( 3 1) 2.0107 89 12
16.10211 ( 6 2) ( 3 3) 1.9352 185 3
16.10211 ( 3 3)* ( 1 3) −1.8401 93 15
19.10661 ( 4 0) ( 2 1) −6.4308 53 18
19.10661 ( 1 2) ( 0 2) 6.9363 26 30
20.48466 ( 5 2)* ( 2 3) −1.2610 135 6
23.41322 ( 2 3) ( 0 3) −2.6382 65 21
26.99551 ( 4 2) ( 1 3) −3.6089 95 15
26.99551 ( 3 1) ( 1 2) 3.8058 47 30
30.00000 ( 5 0) ( 2 2) −1.9913 86 12
30.00000 ( 4 4)* ( 0 5) 2.0924 171 3

are not included in the calculations. We used D-2 van der
Waals corrections [57–59].

To quantify the proximity induced SOC in graphene’s
Dirac bands due to the coupling with the NbSe2 monolayer,
we fit the DFT band structures at the Dirac points to a model

(a) 5.2°

(c)

(b) 23.4°

dXX

d graphene
Nb

Se

FIG. 1. Crystal structure models of graphene/NbSe2 commen-
surate heterostructures. [(a) and (b)] Bottom view of the 5.2 (deg)
and the 23.4 (deg) supercells. (c) Side view of a heterostructure with
interlayer distance d and NbSe2 thickness dX X .
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Hamiltonian [7]. The Hamiltonian H comprises the orbital
part Horb and the spin-orbit part Hso. The latter is composed of
the intrinsic spin-orbit coupling Hso,I and the Rashba coupling
Hso,R:

H (k) = Horb(k) + Hso = Horb(k) + Hso,I + Hso,R. (3)

The orbital part describes the dispersion of the graphene Dirac
cone; it is linearized around the K/K ′ point, therefore k is the
electron wave vector measured from K/K ′. It also includes a
staggered potential �, taking into account any asymmetrical
influence of the NbSe2 substrate on the graphene A and B
sublattices:

Horb(k) = h̄vF (κσxkx + σyky) + �σz. (4)

Here, vF is the Fermi velocity of the Dirac electrons and σx, σy

and σz are the Pauli matrices operating on the sublattice (A/B)
space. The parameter κ determines, whether the Hamiltonian
describes the band structure near K or K’ (κ = 1 for K and
κ = −1 for K ′).

The intrinsic spin-orbit Hamiltonian

Hso,I = [λKMσz + λVZσ0]κsz, (5)

and the Rashba spin-orbit Hamiltonian

Hso,R = −λR exp

(
− i�

sz

2

)
[κσxsy − σysx] exp

(
i�

sz

2

)
,

(6)
both include spin Pauli matrices sx, sy and sz acting on the
spin space; λVZ and λKM are the valley-Zeeman [7,9] SOC
(sublattice-odd) and the Kane-Mele [60] SOC (sublattice-
even), respectively. The Rashba SOC term is defined by two
parameters: the magnitude |λR| and the phase angle �. The
latter is present in C3 symmetric structures [11,26,27] and
rotates the spin texture about the z axis, adding a radial com-
ponent to the Rashba field.

We only construct heterostructures with angles between
0◦and 30◦. The parameters for all other twist angles can be
obtained by the following symmetry rules:

λVZ(−�) = λVZ(�), (7)

|λR(−�)| = |λR(�)|, (8)

�(−�) = −�(�), (9)

�(−�) = �(�), (10)

λVZ(� + 60◦) = −λVZ(�), (11)

|λR(� + 60◦)| = |λR(�)|, (12)

�(� + 60◦) = �(�), (13)

�(� + 60◦) = −�(�). (14)

We note that NbSe2 exhibits charge density wave (CDW)
[61–63]. In Appendix B, we discuss a typical 3 × 3 CDW in
NbSe2 with the same atomic rearrangement in the heterostruc-
ture with graphene. Since the CDW does not significantly
influence the proximity SOC in graphene, in the main text,

(a) (b)

(c) (d)

K

K'

-5% strain

+5% strain 0°
30°

FIG. 2. Influence of the strain ε in graphene on the energetic
alignments in the heterostructure. The band offsets of both the
graphene Dirac cone (a) and the NbSe2 K band (b) with respect
to the NbSe2 � band are fitted linearly (solid black line). Each of
the solid circles represents one of the heterostructures in Table I.
(c) shows the first Brillouin zone of NbSe2 with the k points to which
the Dirac cone couples by generalized Umklapp processes for twist
angles between 0◦ and 30◦. We show the paths for three different
strains (blue, black, red). In (d) the energies of the states close to the
Dirac cone along the three paths (blue, black, red) in (c) are shown.
For reference, we additionally indicate an estimation of the position
of the Dirac cone [using the fit from (a)] as vertical lines for different
strains (again blue, black red). Note that for all cases the applied
strain is still always applied to graphene.

we perform simulations on unrelaxed structures to facilitate
systematic comparison between different twist angles.

For DFT calculations of heterostructures, the varying band
offsets induced by strain (see Sec. III) can be relevant for the
extracted SOC parameters. In Refs. [11,12], we used electric
fields to correct for the strain-induced band offsets. However,
in this paper we use only supercells with built-in strain ε <

5% for the determination of the SOC parameters. Therefore,
we find a much lower variance in band offsets [see Fig. 2(a)]
and hence rather follow the approach of Refs. [13,29] and
deem these corrections unnecessary. In Appendix A, we ex-
plore how a transverse electric field can influence the SOC
parameters and orbital contributions for one particular exam-
ple. Our findings indicate that the electric field’s main effect
is a change of the Rashba phase angle �.

III. ENERGETIC ALIGNMENTS

We calculate the band structures of our supercell
graphene/NbSe2 heterostructures using DFT. Two examples
can be seen in Figs. 3(a) and 3(b). In contrast to semicon-
ducting graphene/TMDC heterostructures (Ref. [7,8,11,64])
the graphene Dirac cone (solid black lines) lies buried within
the NbSe2 bands (grey bands) for most cases. However, in
some cases, the Dirac cone lies above these bands. To better
describe the energetic alignments we define the band offsets
as follows: E� and EK are the band edges of the NbSe2

states near the Fermi level at � and K respectively. ED is
the energy level of the Dirac cone. In Fig. 2(a), we show
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5.2° 23.4°
(a) (b) 

(c) (d) 

(e) (f) 

FIG. 3. Band structure of two examples of graphene/NbSe2 het-
erostructures (� = 5.2 (deg) and 23.4 (deg)). (a) and (b) show the
calculated band structure along high-symmetry points. Grey bands
originate from the NbSe2, while the black lines originate from
graphene. (c) and (d) show a zoom to the graphene Dirac cone, with
color coded spin-z expectation value. The dots represent DFT data
points and the solid line shows the fit by the model Hamiltonian
H (k), see Eq. (3). (e) and (f) show the in-plane spin structure around
a circular k-path around the Dirac cone (red arrows: energetically
lower valence band, blue arrows: energetically higher valence band).

the (approximately linear [52]) relation between the strain ε

in graphene and the band offset ED − E� . If this band offset
is positive, the Dirac cone lies above the NbSe2 bands. By
applying a linear fit we can extract a zero-strain band offset
ED − E� = −109 meV. Defining the band offset as ED − EK

would yield very similar results. Nevertheless, we need to dis-
tinguish between E� and EK because the NbSe2 band structure
also changes by the proximity of the graphene. In fact, we see
a similar behavior [linear with strain ε, see Fig. 2(b)] of the
internal band offset EK − E� . Depending on ε, this band offset
can also be negative or positive. This can be interpreted in the
following way: compressing the graphene (ε < 0) creates a
more dense barrier of graphene pz orbitals pushing the (out-
of-plane orbital dominated) NbSe2 � bands further down in
energy than the (more in-plane) K bands.

Although for most of the heterostructure supercells the
Dirac cone lies within the NbSe2 bands, this does not neces-
sarily mean that the Dirac cone hybridizes with NbSe2 bands
in a way that makes it impossible to describe the Dirac cone
with our model Hamiltonian. The reason for this is that the
NbSe2 bands, which are energetically close to the Dirac cone,
hardly interact with it. Following the theory of generalized
umklapp processes [65] the bands interacting the most with
the Dirac cone are energetically well separated from it. This
is illustrated in Figs. 2(c) and 2(d): depending on strain and
twist angle, the Dirac cone interacts with a different k point
in the first Brillouin zone of the primitive NbSe2 [shown in

(a) (b)

(c) (d)

FIG. 4. Twist-angle dependencies of (a) the staggered potential
� and the SOC parameters λR, λV Z , λKM , (b) dependence of �.
Upward/downward pointing triangles indicate data points with ten-
sile (ε > 0)/compressive (ε < 0) strains. The dotted lines in (a) and
solid line in (b) are a mere guide to the eyes. For data points with
a Dirac cone backfolded to �, the sign of λV Z cannot be determined
and is assumed to be positive in accordance with the other supercells.
(c) shows what NbSe2 orbitals appear in the proximitized Dirac cone
of heterostructures with different twist angles. (d) shows the orbital
decomposition of the nearest NbSe2 bands interacting with the Dirac
cone by generalized umklapp processes [see Fig. 2(d)].

Fig. 2(c)]. We are now concerned with the NbSe2 bands at
this k-point, which are energetically closest to the Dirac point;
their energies are shown in Fig. 2(d). The Dirac cone energy
resides between the blue and red dotted line (depending on
ε) and is always at least 200 meV away from the relevant
NbSe2 state. Another factor changing by the same mechanism
is the orbital composition of the relevant NbSe2 states. This is
shown in Fig. 4(d) and discussed in Sec. IV.

While we showed why there are only crossings (instead of
anti-crossings) between the Dirac cone and any nearby NbSe2

bands, there is still the issue of distinguishing proximitized
graphene transport properties from NbSe2 transport properties
in experiments. For example, in a charge-to-spin conversion
experiment, this distinction can be made by shifting the Fermi
level by gating. A sign change of the signal, which is expected
for the Dirac cone [see Fig. 5(a)], is a clear indicator that the
signal is coming from the proximitized graphene rather than
the NbSe2.

IV. PROXIMITY SOC

Fitting the low energy Dirac bands to the model Hamil-
tonian [see Eq. (3)] gives the SOC parameters listed
in Table II and shown in Fig. 4. As for other unre-
laxed TMDC/graphene heterostructures (with semiconduct-
ing TMDCs, see Ref. [11]), the Kane-Mele SOC λKM and the
staggered potential � are negligibly small. Starting at � = 0◦
twist angle, both Rashba SOC (λR) and valley-Zeeman SOC
(λV Z ) have very similar size of about 0.5 meV to 1 meV. They
stay at this level, until at � ≈ 15◦ λR starts to increase up
to a value of λR ≈ 2.5 meV at � = 30◦. Simultaneously λV Z

decreases and vanishes at � = 30◦, which is a feature also
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(a) 5.2°

(d) (e)

(b) 23.4°

(c)

FIG. 5. Calculated charge-to-spin conversion efficiencies in graphene on NbSe2. (a) Band structure in vicinity of the Dirac cone with spin-z
color coded and UREE and REE dependencies for the twist angle � = 5.2 (deg); (b) similar as in (a) but for � = 23.4 (deg). (c) Conversion
efficiencies as a function of the twist angle averaged over 12 meV (EF = 0 to EF = 12 meV). (d) shows the Fermi-energy dependence of
UREE for all twist angles with strain ε < 5%. (e) shows the same as (d), but for REE.

seen in TMDC/graphene heterostructures with semiconduct-
ing TMDCs. Moreover, at roughly the same mark of � ≈ 15◦,
the Rashba phase angle � increases as well, peaking at about
� = 22◦ with a value of � = −25◦. After this peak, � rapidly
decreases to � = 0◦ at � = 30◦, which is demanded by
symmetry.

We argue that the main contribution of the proximity effect
comes from the bands depicted in Fig. 2(d). This seems plau-
sible since they are the energetically closest bands coupled to
the Dirac cone through generalized umklapp processes (see
Ref. [65]). Additionally, an orbital analysis shows that the
orbital composition of these bands [Fig. 4(d)] compares well
to the orbital composition of the NbSe2 orbitals found in
the proximitized graphene’s Dirac cone [Fig. 4(c)]. Note that
although both in Figs. 4(c) and 4(d) the twist-angle depen-
dence is depicted, the data points in Fig. 4(c) come from the
heterostructure calculations and the data points in Fig. 4(d)
come from calculations of a NbSe2 monolayer along the black
path depicted in Fig. 2(c). The twist-angle dependence takes
the following form in both cases. While s-orbital contribution
is negligible, p and d orbitals contribute similarly, with p
orbitals more dominant at twist angles near 0◦. There is one
notable difference between the orbital composition of NbSe2

along the twist angle path and the orbital composition found
in the actual heterostructures. Namely, that the ratio of p and
d orbitals is slightly shifted in favour of the p orbitals for
the latter case for all twist angles. This can be attributed to

the fact that the NbSe2 d orbitals come exclusively from the
Nb atoms and are therefore located farther away from the
graphene.

Assuming these bands are responsible for the proximity
SOC in the Dirac cone leads us to a plausible explanation for
the twist-angle dependence seen in Fig. 4(a). For moderate
strain [see black curve in Fig. 2(d)], the relevant contributing
bands move towards the Dirac cone in energy, when going
from � = 0◦ to � = 30◦. At the same time, the splitting
between the two spin-split subbands decreases and finally
vanishes for � = 30◦. The general increase of the proximity
SOC, while twisting from � = 0◦ to � = 30◦ can be seen as
a consequence of the first point; if the contributing states are
closer in energy, their influence and therefore the proximity
SOC is expected to grow. Nevertheless, the decrease of the
spin-splitting causes a decrease of the valley Zeeman SOC.
This is to be expected, as the proximity valley-Zeeman SOC
is mainly driven by a spin split in the NbSe2 substrate bands.
However, this explanation is not complete, since it does not
fully account for a possible change of orbital overlap between
the Dirac cone and the NbSe2 bands. Especially, the large
increase in Rashba SOC exceeds the expectation one might
have from this simple picture. Also, the increase of the Rashba
phase angle �, which arises from a rather complex interfer-
ence of phases, cannot be explained by such a handwaving
argument. This underlines the need for the full DFT treat-
ments, as done in this paper.
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TABLE II. Parameters extracted from the band structure calculations. For all angles, we list the extracted model Hamiltonian [Eq. (3)]
parameters and the band offset �E = ED − E� of the Dirac cone with respect to the NbSe2 � band [see Fig. 2(a)]. The parameters are
staggered potential �, Kane-Mele SOC λKM , valley-Zeeman SOC λV Z , magnitude of the Rashba SOC |λR|, and Rashba angle �. For some
of the supercells the Dirac cone is folded back to � (n − m = 3 k, k ∈ Z). As a consequence, the sign of the λV Z cannot be determined
unambiguously and is presented with a ±.

� (degrees) ε � � λKM λV Z |λR| �E
(%) (degrees) (meV) (meV) (meV) (meV) (eV)

0.0 6.10 0 0.081 −0.001 0.913 0.846 −0.345
0.0 1.05 0 0.045 0.002 0.817 0.681 −0.055
1.9 1.37 0 0.013 −0.005 0.902 0.791 −0.202
3.3 −1.14 −1 0.049 0.003 0.925 0.716 −0.155
5.2 −3.61 −3 0.021 0.002 0.807 0.538 −0.022
5.2 3.81 2 0.060 0.019 0.619 0.934 −0.272
8.9 1.63 1 0.039 0.010 0.601 0.833 −0.209

10.9 −7.39 −19 −0.016 0.003 0.452 0.225 0.159
11.3 1.37 0 0.036 0.012 0.542 0.848 −0.222
12.5 −0.85 −7 0.023 0.002 ±0.555 0.481 0.057
13.9 −1.91 −12 0.019 0.003 0.524 0.433 0.058
13.9 2.01 −2 0.028 0.021 0.460 0.937 −0.210
16.1 1.94 −7 0.017 0.010 ±0.507 0.877 −0.095
16.1 −1.84 −14 0.015 0.004 0.516 0.619 −0.082
19.1 6.93 −10 −0.002 0.035 −0.438 1.973 −0.347
19.1 −6.43 −33 0.009 0.006 0.315 0.467 0.082
20.5 −1.26 −23 −0.014 0.015 ±0.438 1.361 −0.132
23.4 −2.64 −24 0.018 0.067 0.366 1.726 −0.036
27.0 −3.61 −14 0.009 0.043 0.214 2.17 0.016
27.0 3.81 −15 −0.019 0.054 −0.249 2.562 −0.229
30.0 −2.00 0 0.000 0.053 0.000 2.468 −0.035
30.0 2.09 0 −0.173 0.052 ±0.134 2.638 −0.179

V. CHARGE-TO-SPIN CONVERSION EFFICIENCIES

The Rashba SOC (and the resulting in-plane spin struc-
ture) in graphene based heterostructures enables the Rashba
Edelstein effect [35–37,66] (REE) and unconventional Rashba
Edelstein effect [28–34] (UREE) as efficient ways for charge-
to-spin conversion. In the REE, the accumulated spins are
perpendicular to the charge current, while they are collinear to
it in the UREE. We analyze the potential of graphene proxim-
itized by NbSe2 for this kind of charge-to-spin conversion. By
using the Kubo formula [67,68] in the Smrcka-Streda [69–71]
formulation, we calculate the REE and UREE.

We assume weak disorder scattering describe by phe-
nomenological parameter γ [29,71–73]. The change δO in the

observable O is given by

δO = E

4π2

∫
d2k

[
χ surf

O (k) + χ sea
O (k)

]
, (15)

with the electric field strength E and Fermi sea and Fermi
surface susceptibilities χ surf

O and χ sea
O . Writing the formula in

this form assumes that the electric field points only in one
direction (in our case x direction). In a more general form, the
susceptibilities need an additional index, effectively forming
a susceptibility tensor.

The integral is performed around K and K ′ points ensuring
to cover all the relevant states (151 × 151 square grid with
a side length of �k = 0.03 1

vF h̄ ≈ 2.5 × 10−3 2π
a ). The inte-

grands χ surf
O and χ sea

O are given by

χ surf
O (k) = h̄

π
γ 2

∑
n,m

Re(〈nk|Ô|mk〉〈mk| − ev̂x|nk〉)

[(εnk − EF )2) + γ 2] · [(εmk − EF )2) + γ 2]
(16)

and

χ sea
O (k) = h̄

∑
n �=m

( fn,k − fm,k )
Im(〈nk|Ô|mk〉〈mk| − ev̂x|nk〉)

(εnk − εmk )2
. (17)

Here, εnk and |nk〉 are the eigenenergy and eigenstate of band
n as represented by the model Hamiltonian Eq. (3) at k. We
set the broadening γ of the states to γ = 0.1 meV and the

electronic temperature of the Fermi functions fnk to kBT =
0.01 meV. In our setup, the perturbation is always given by
an electric field in the x direction, hence we used −ev̂x in
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the second matrix element for χ surf
O and χ sea

O . The physical
observables are either O = sx/y for spin accumulation in x or
y direction, with

Ô = ŝx/y = h̄

2
σx/y, (18)

or O = jx for the charge density response, with

Ô = ĵx = −ev̂x = −e
1

h̄

∂H

∂kx
= −evF κσx. (19)

As in Ref. [29], we calculate the efficiency of the REE (or
UREE) as the spin-y (or spin-x) accumulation normalized by
the charge density response, so

αREE = vF e

h̄

δsy

δ jx
and αUREE = vF e

h̄

δsx

δ jx
. (20)

Figures 5(a) and 5(b) show the Fermi-energy dependent
charge-to-spin efficiencies (REE and UREE) for two twist
angles. Since for both cases Rashba SOC is dominating, the
pattern (in accordance with Ref. [29]) is the following. First,
we note that as reported by other groups [29,36] both REE
and UREE are anti-symmetric with respect to the Fermi level
position. This means, that if the Fermi level lies in the Dirac
cone valence bands, the sign of the charge-to-spin conversion
is opposite compared to the case where the Fermi level lies
in the conduction bands [see Figs. 5(a) and 5(b)]. Hence, the
charge-to-spin conversion in the middle of the small band gap
is zero. However, as soon as the Fermi level coincides with
one of the inner bands, there is a peak in the charge-to-spin
conversion. After this initial peak the efficiencies plateau,
only to decrease again after the Fermi level touches the sec-
ond band. The reason for the initial peak is the flatness of
the bands at this energy, which comes from the presence of
the valley-Zeeman SOC. In the plateau region the slope of the
bands is constant and although δsx/y increase (with increasing
radius of the relevant contributing band), since δ jx increases
at the same rate, the total charge-to-spin efficiencies stay con-
stant. As soon as the second band starts contributing, the total
efficiencies decay, because contributions from the two bands
are of opposite sign. From this point on, the finite difference
in contribution from the two bands stops the growth of δsx/y.
Therefore the charge-to-spin conversion vanishes in the limit
of EF → ±∞, since δ jx keeps increasing. This pattern is the
same for both REE and UREE. While (a) presents a case
where the Rashba phase angle � is very small and (b) shows
a case where � = −24◦. Therefore there is almost no sign of
UREE in (a), while in (b), UREE and REE are comparable in
size.

Figures 5(d) and 5(e) show UREE and REE respectively
for all different investigated angles with strains |ε| < 5%.
From these plots, one can already see the two main obser-
vations.

(1) UREE peaks at � ≈ 22◦, the same twist angle that �

peaks at. This is very natural, since � enables the radial in-
plane spin structure and therefore UREE.

(2) Although the maximum value for the REE does not
change drastically throughout all twist angles, the length of
the plateau between the two conduction bands grows after
� = 15◦ and is largest at � = 30◦. This will lead to larger
charge-to-spin yields, since in experiment the Fermi level

cannot be fine tuned with the precision needed to exactly meet
the peak.

We visualize both points by plotting the (U)REE efficien-
cies averaged over 12 meV (EF = 0 to EF = 12 meV) in
Fig. 5(c). Using the peak efficiency instead of the average
efficiency will give different results. We show those along
with the results of an alternative (U)REE calculation (using
Ref. [32]) in Appendix C.

VI. SUMMARY

We performed DFT calculations on several twisted
graphene/NbSe2 supercells and extracted SOC parameters
using a model Hamiltonian. Based on those fittings, we addi-
tionally performed Kubo formula calculations giving us spin
responses to an electric field and therefore (collinear and
perpendicular) charge-to-spin conversion efficiencies. Since
the heterostructure supercells have different twist angles �,
we can establish a twist-angle dependence for all SOC pa-
rameters and charge-to-spin conversion efficiencies. We find
Rashba SOC λR to increase by a factor of 3 going from
� = 0◦ to � = 30◦. Furthermore, the Rashba phase angle �

peaks at � ≈ 23◦. Consequently the perpendicular (REE) and
collinear (UREE) charge-to-spin conversion efficiencies are
also maximal at � = 30◦ and � ≈ 23◦, respectively.

Additional investigations on the effect of external electric
field and relaxation were performed on sample heterostruc-
tures. They indicate that the main effect of the electric field
is an increase of the Rashba phase angle �, while the main
effect of relaxation is the change of interlayer distance and the
resulting increase in general SOC strength. The typical 3 × 3
rearrangement (linked to a CDW state) is observed, but does
not change the proximity SOC significantly.
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APPENDIX A: EFFECTS OF ELECTRIC FIELD

The exact position of the Dirac cone with respect to the
NbSe2 bands can have a very relevant influence on the prox-
imity SOC. In order to study the band offset effect (as defined
in Sec. III), we apply a transverse electrical field. The re-
sulting SOC parameters are shown in Figs. 6(a) and 6(c).
While the Dirac cone is moved from very close vicinity to
the NbSe2 bands (ED − E� = 0.021 eV) to well within the
band gap (ED − E� = 0.391 eV), the Rashba SOC λR and
valley-Zeeman SOC λV Z are decaying slightly. This decay
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(a) (b)

(c)

FIG. 6. Effect of a transverse electric field on the proximity
SOC of the 10.9◦ supercell. The band offset (determined by the
electric field) is plotted against the valley-Zeeman and Rashba
SOC (a) as well as the Rashba phase angle � (c). (b) shows the
change of the NbSe2 orbitals which are contributing to the Dirac
cone.

seems to be rather weak since the lower bound for the band
offset is almost zero (Dirac cone nearly touching the NbSe2

states). However, this is more understandable considering that
those very close NbSe2 states do not interact with the Dirac
cone. The nearest states actually interacting with the Dirac
cone are 800 meV lower in energy. Contrary to the rather
small change of λR and λV Z , the Rashba phase angle �

nearly doubles in magnitude, while the Dirac cone is being
shifted further into the band gap. Figure 6(b) shows which
NbSe2 bands contribute to the Dirac cone. Except for a slight
shift towards d orbitals, the orbital composition stays roughly
constant.

APPENDIX B: EFFECTS OF RELAXATION

All results in the main paper are concerned with ideal-
ized structures with a fixed interlayer distance and unrelaxed
structures of both graphene and NbSe2. The results of
Ref. [11] indicate that the relaxation of graphene/transition-
metal dichalcogenide heterostructures has little direct effect
on the proximity SOC. Instead it enhances the unwanted ef-
fects (such as an increase of the staggered potential �) of
the strain necessary to construct the commensurate supercell.
However, NbSe2 is known to exhibit a periodic lattice distor-
tion with charge density wave for 3 × 3 supercells [61–63],
where the atoms rearrange in a triangular or possibly other

FIG. 7. Relaxed structures for two examples of graphene/NbSe2

heterostructures. Nb atoms are dark green, Se atoms are light green,
carbon atoms are omitted. To show the subtle atomic reconstructions
in the two supercells, we only plot bonds between Nb atoms, if they
are less than 3.48 Å apart. The black lines indicate the (3 × 3 or√

7 × √
7) supercell. More details and SOC parameters are listed in

Table III.

[74] structure. Since this might introduce relevant changes
in electronic structure, we performed additional relaxation
calculations on 3 × 3 and larger

√
7 × √

7 heterostructures.
The results of these relaxations are shown in Fig. 7, where
we plot the most prevalent Nb-Nb bonds (bond lengths must
be bigger than the unrelaxed Nb-Nb distance of 3.48 Å). By
doing this, we show the rearrangement of the 3 × 3 supercell
into filled hexagons. It is the same pattern, which arises, if
we perform the relaxation calculations without the graphene
layer. This shows that (at least regarding the rearrangement)
the CDW phase is unchanged by the nearby layer of graphene.
The other supercell for comparison shows another pattern,
which is most likely caused by the nearby graphene layer. Its
maximal difference in Nb-Nb bond length is much smaller
(about 7.66 m Å) than the one of the 3 × 3 supercell (about
72.44 m Å).

Naturally, the question arises: does this rearranging change
the proximity SOC in either of the two heterostructures? For
both heterostructures λR and λV Z decrease by about 35%
(see Table III). However, this can be attributed to the change
of the interlayer distance between graphene and NbSe2,
which we apparently slightly underestimated in the calcula-
tions of the main paper. The equilibrium interlayer distance
as determined by the relaxation calculations is about 3.5%
larger than the one we assumed. According to the interlayer
distance study presented in Ref. [8] the decrease in SOC is
roughly what can be expected for such an increased interlayer
distance. Additionally, as expected, through the relaxation
there is an increase in the parameters λKM and �, which
are suppressed in the idealized structures. Based on our

TABLE III. Comparison of the fitting parameters of the two heterostructures shown in Fig. 7 for both the relaxed and the idealized
(unrelaxed) structure. The first two lines describe the structure with a 3 × 3 NbSe2 supercell.

(n, m) (n′, m′) � ε Relaxed � � λKM λV Z |λR|
(deg) (%) (deg) (meV) (meV) (meV) (meV)

(4,0) (3,0) 0.0 6.10 no 0 0.081 −0.001 0.913 0.846
(4,0) (3,0) 0.0 6.10 yes 0 −0.649 −0.018 0.559 0.571
(3,1) (2,1) 5.2 3.81 no 2 −0.060 0.019 0.619 0.934
(3,1) (2,1) 5.2 3.81 yes 2 0.491 −0.091 0.409 0.604
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(b) (d)(c)

(h)(g)(f)(e)

(a)

FIG. 8. Comparison of the numerically calculated and analytical charge-to-spin convergence efficiencies as a function of twist angle.
(a) and (b) show UREE and REE efficiencies respectively for a few selected Fermi levels. Each line can be seen as a cut through the data points
of Figs. 5(d) or 5(e) at a specific Fermi level. (c) and (d) also show the twist-angle dependency of the UREE and REE efficiencies, respectively.
Here, we plot two different quantities describing an overall efficiency independent of the Fermi level. The green line shows the efficiencies
averaged over 12 meV [EF = 0 to EF = 12 meV, as in Fig. 5(c)], while the purple line shows the maximal efficiency that has been reached for
any of the Fermi levels. (e)–(h) show the same as (a)–(d) only calculated by an alternative formula given in Ref. [32] in arbitrary units. Instead
of αUREE and αREE, the spin responses are measured in Kxx and Kyx , respectively. Here, the range of Fermi energies in which both the average
and maximum are taken is 6 meV < EF < 18 meV instead of 0 meV < EF < 12 meV.

limited relaxation calculations, we estimate that the forma-
tion of the rearranged triangular pattern typical for CDW
can largely be considered not relevant for the proximity SOC
effects.

APPENDIX C: DETAILS OF CHARGE-TO-SPIN
CALCULATIONS

In Sec. V, we calculated efficiencies for the Rashba Edel-
stein effect (REE) and the unconventional Rashba Edelstein
effect (UREE) using a Kubo formula approach. Since these
efficiencies depend on both the twist angle and the Fermi
energy, we plotted the data in a fence plot [see Figs. 5(d)
and 5(e)]. Here, we present alternative presentation forms.
Figs. 8(a) and 8(b) show the data as cuts of different Fermi lev-
els through the fence plot data. In Figs. 8(c) and 8(d), we plot
two different measures for the total (U)REE (more precise:
the value with maximal absolute value) of the (U)REE and
the value averaged over 12 meV (EF = 0–12 meV). The latter
is the same as shown in Fig. 5(c). For the UREE [Fig. 8(c)]
both measures convey the same message, since the total value
is far from being capped by the maximally possible value.
Taking into account only Rashba SOC, which is the source
of both UREE and REE, this maximally possible value is
αUREE = αREE = 0.5. Other terms like λV Z can bend the band
structure in a way that flat bands give rise to a local maximum
surpassing a certain Fermi level, while diminishing it for other
Fermi levels. This can give a distorted picture of the truth,
since in reality, fine tuning the Fermi level this precise might
be impossible. Hence, for the REE [Fig. 8(d)], the averaged
curve gives a better overall picture of the true physics, as
realizing an efficient REE device is easier with the broad high
plateau of the 30◦ case. The drawback of plotting the averaged
efficiency is that a range has to be specified over which the
average has been taken. We assume that at EF = 12 meV

the (U)REE has decayed enough and no new physics will
emerge. Therefore this is the measure we use in the main
paper.

We additionally use a different formula, which was given
in Ref. [32], to calculate a measure for the charge-to-spin
response of the system. It is derived within linear response
theory as well and has an easy analytical form. It takes the
same parameters, i.e., the parameters of the model Hamilto-
nian plus the Fermi level. The resulting quantities Kxx and
Kyx can broadly be compared to the charge-to-spin conversion
efficiencies (αREE and αUREE) we calculate. However, they are
not normalized by the charge density responses. The figure of
merit � given in Ref. [32] is more adequate to compare to
and also has the correct sign. But since this would require
information about the charge density response, we opt to use
Kxx and Kyx instead. By showing the results in arbitrary units,
we avoid the problem of having to give estimates for the
other parameters of their model, which represent impurity
strength and impurity density. Since we only want to compare
the values of different twist angle, we deem this approach
valid. We use the same set of parameters (determined by our
fittings) as we used for the numerical approach. The results are
shown in Figs. 8(e)–8(h). Because the analytical formula is
only valid for a Fermi level, where both subbands are already
occupied, we change the range of Fermi levels to fulfill this
condition for all twist angles (6 meV < EF < 18 meV). For
our set of parameter data we can conclude that both models
qualitatively give the same intuitive results. However, there
are two differences we can see:

(1) the analytical formula estimates the peak of the UREE
to be slightly (about 3◦) to the right of the one determined by
our numerical approach;

(2) the overall twist-angle tuneability is en-
hanced compared to the predictions of the numerical
approach.
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