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In the absence of disorder and interactions, fermions move coherently and their associated charge and energy
exhibit ballistic spreading, even at finite energy density. In the presence of weak interactions and a finite energy
density, fermion-fermion scattering leads to a crossover between early-time ballistic and late-time diffusive
transport. The relevant crossover timescales and the transport coefficients are both functions of interaction
strength, but the question of determining the precise functional dependence is likely impossible to answer
exactly. In this work we develop a numerical method (fDAOE) which is powerful enough to provide an
approximate answer to this question, and which is consistent with perturbative arguments in the limit of very
weak interactions. Our algorithm, which adapts the existing dissipation-assisted operator evolution (DAOE) to
fermions, is applicable to systems of interacting fermions at high temperatures. The algorithm approximates the
exact dynamics by systematically discarding information from high n-point functions, and is tailored to capture
noninteracting dynamics exactly. Applying our method to a microscopic model of interacting fermions, we
numerically determine crossover timescales and diffusion constants for a wide range of interaction strengths. In
the limit of weak interaction strength (�), we demonstrate that the crossover from ballistic to diffusive transport
happens at a time tD ∼ 1/�2 and that the diffusion constant similarly scales as D ∼ 1/�2. We confirm that
these scalings are consistent with a perturbative Fermi’s golden rule calculation, and we provide a heuristic
operator-spreading picture for the crossover between ballistic and diffusive transport.
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I. INTRODUCTION

Understanding the transport properties of materials is a
central task in physics, providing an essential link between
experiment and theory in condensed matter systems. The
theoretical study of transport is also deeply connected to
fundamental ideas in quantum chaos and many-body ther-
malization [1]. More recently, somewhat less obvious but
nevertheless powerful connections have been drawn between
transport and the study of entanglement growth, scrambling,
and information spreading in many-body body systems [2–5].

One unexpected result of the above connections has been
to inspire new approaches to calculating transport proper-
ties numerically. Simulating quantum transport on classical
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computers exactly is a difficult task because it requires
simulating real-time dynamics to late times, and the mem-
ory required to store a time-evolved state tends to grow
exponentially in time. On the other hand, in generic sys-
tems one expects that universal transport features emerge
at late times which are captured by hydrodynamics, due to
the system locally approaching thermal equilibrium [6]. Im-
proved understanding of the generic behavior of operators
under Heisenberg evolution has inspired new approximation
schemes aimed at bridging these two levels of description
in order to calculate transport coefficients from microscopic
models with high accuracy [4,7–11].

So far these methods have focused on systems of lattice
spins, such as Ising or Heisenberg spin chains. However, given
that the archetypal condensed matter system is, arguably, the
interacting electron gas, developing numerical methods for
the transport properties of fermionic systems is equally im-
portant. Such methods could be of use in taming outstanding
experimental mysteries relating to the transport properties
of strongly correlated electron systems (e.g., [12]), but also
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help in quantitatively reconciling effective theories with ex-
periment and predicting trends in transport properties with
changes in experimental conditions. They would also be of use
in guiding and benchmarking transport experiments in analog
quantum simulators [13–16].

In this paper we generalize one such method to fermions,
and use it to probe the physics of an interacting fermion
system. The method, called “dissipation-assisted operator
evolution” (DAOE), evolves observables in real time, using
the Heisenberg picture, and applies a truncation scheme based
on the size of their spatial support. The intuition behind
this approximation, substantiated by numerical and analytical
calculations in Refs. [7,11], is that the contribution to trans-
port coefficients from highly nonlocal observables decreases
sharply (indeed, exponentially [11]) with their support.

The original formulation of DAOE [7] does not directly
apply as it is formulated in terms of spin rather than fermionic
variables. However, we expect that similar approximations
should apply to systems of interacting fermions. While, at
least in one dimension (which is where DAOE currently
applies), the two can be related by the Jordan-Wigner trans-
formation, the relevant notion of “operator support” is very
different in the two cases, due to the nonlocality of the trans-
formation; indeed, 2-body fermionic operators map onto long
nonlocal strings in the spin language. As a consequence,
applying DAOE in the naive way fails to capture the limit
of weakly interacting fermion systems, including the exactly
solvable free-fermionic case, as we demonstrate explicitly
below. Instead, we develop a modified approximation scheme,
named fermionic DAOE (fDAOE), which keeps few-body
fermionic observables exactly, while truncating higher order
ones in a tunable way (tuned by the strength of an artifi-
cial dissipation). It is therefore exact for free fermions and
provides a good starting point to incorporate the effects of
fermion-fermion scattering.

A particularly interesting test case for our fermionic
method is in the limit of weak, but nonvanishing interac-
tions. In the fully noninteracting limit, and in the absence
of disorder, electrons propagate ballistically and coherently
(i.e., the fermion propagator exhibits a characteristic interfer-
ence pattern due to quantum mechanical effects). However,
when many electrons interact, their collisions tend to wash
out interference effects at long times, typically leading to
a diffusive charge transport at finite temperatures [17]. One
therefore expects a ballistic to diffusive crossover which hap-
pens at parametrically late times when interactions are weak
(correspondingly, the resulting diffusion constant is also para-
metrically large in this regime). These characteristically large
timescales make it challenging to capture the behavior of these
systems accurately. Novel numerical approaches are therefore
needed. The fact that fDAOE becomes exact when interactions
are turned off makes it a promising candidate to tackle this
challenge.

In the weakly interacting regime, it is possible to use per-
turbation theory [in the guise of Fermi’s golden rule (FGR),
as we will discuss in Sec. V] to argue that diffusion constants
and scattering timescales scale as O(1/�2) where � is the
interaction strength. However, such arguments are ultimately
uncontrolled, as witnessed by the fact that weakly interact-
ing integrable models have interactions but do not exhibit

diffusion at small �. So, while FGR can be used to estimate
the timescales when a free-fermion approximation breaks
down,1 it does not give access to transport features at asymp-
totically late times, which are inherently nonperturbative. This
lack of analytical control makes necessary the development of
the numerical tools in this work.

In this work, we consider a nonintegrable one-dimensional
model of fermions with a tunable interaction strength �. We
demonstrate the power of fermionic DAOE by showing that
it can obtain well-converged results for a whole range of
interactions, from free to strongly coupled fermions, unlike
either brute-force matrix product state methods [18,19], which
fail to capture the interacting case due to the rapid growth of
entanglement, or spin-based DAOE, which fails already at the
noninteracting level. By following the dynamics to late times,
we find the expected crossover to diffusive transport, and fit its
timescale to be tD ∝ 1/�2. We also fit the diffusion constant
itself and find evidence of similar scaling with �. Finally we
outline a Fermi’s golden rule perturbative calculation, which
supports this scaling, and provide a picture for the ballistic to
diffusive crossover in the language of operator spreading.

II. DAOE METHOD

DAOE [7] is an algorithm for calculating dynamical corre-
lation functions in interacting quantum systems. It can be used
to extract transport coefficients via linear response theory.
In this paper we focus on calculation of the diffusion con-
stants, which measures how initial perturbations in globally
conserved densities (charge, spin, etc.) spread throughout the
system. We first describe how this is done in the existing
version of DAOE (which we will refer to as “spin DAOE”),
before describing its modification in the fermionic context.

A. Spin DAOE

Denote by qx the local density at site x of the globally
conserved quantity Q. We consider one-dimensional systems
of length L, and take x = 0 to label the site in the center of
the chain. Without loss of generality assume that 〈qx〉 = 0
at equilibrium, and is normalized such that

∑
x〈q0qx〉 = 1,

where 〈A〉 = tr(Aρ) and ρ is the equilibrium density matrix.
We work at infinite temperature throughout, so that 〈A〉 =
tr(A)/N , N being the Hilbert space dimension. The asso-
ciated diffusion constant is then given by D ≡ limt→∞ D(t )
where

D(t ) = lim
L→∞

∂t

∑
x

x2

2
〈qx|U (t, 0)|q0〉. (1)

Here the superoperator U evolves operators in the Heisenberg
picture,

〈A|U (t2, t1) ≡ 〈U †(t2, t1)AU (t2, t1)|, (2)

and we introduced an inner product between operators
〈A|B〉 ≡ 〈A†B〉.

1Even this estimate is quite delicate, and difficult to make rigorous,
at least in one dimension, as we discuss in Sec. V.
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The difficulty of evaluating Eq. (1) lies in the fact that
in generic systems, the memory required to accurately store
the time-evolved operator, for example in a matrix product
operator representation, grows exponentially in time, due to
the linear Lieb-Robinson light cone, which makes an exact
evaluation of the necessary correlation functions prohibitively
expensive [20,21]. In DAOE, this is circumvented by trun-
cating the operator content, on the premise that much of
the information stored in nonlocal operators is irrelevant for
computing the overlaps 〈qx(t )q0〉 between local observables,
as elaborated below.

The algorithm is implemented as follows. In Eq. (1), we
replace the unitary evolution U (t, 0) with the periodically
dissipated evolution Ù (t, 0) ≡ ∏t/T −1

j=0 [U (t j+1, t j )G�∗,γ ]. The
dissipation superoperator G�∗,γ is applied with a period T
(with t j = jT and t/T assumed to be integer) and designed
to suppress operators larger than some cutoff length �∗. In a
spin-1/2 system, G�∗,γ can be defined by its action on Pauli
strings |σμ〉. These are tensor products of matrices I, σ x,y,z on
the different sites of the chain, which form a basis (of size 4L)
for the space of all operators acting on the spin chain. The
dissipator then takes the form

G�∗,γ |σμ〉 = e−γ max (0,�(μ)−�∗ )|σμ〉, (3)

where �(μ)—the “length” of operator σμ (also known as the
Pauli weight)—is the number of nonidentity matrices in the
string σμ. Using this nomenclature, note that the operator
σ z

1σ x
27 has length � = 2, even though it is spread over a large

spatial region (of diameter 27). This is the form of DAOE that
appeared in Refs. [7,11].

How does this artificial dissipation help in evaluating
Eq. (1)? As was shown in Ref. [7], the dissipation cuts off the
growth of the effective entanglement of the state |qx(t )〉 (the
operator space entanglement entropy, or OSEE [20,22]). This
means that |qx(t )〉 can be efficiently represented as a matrix
product state (MPS), which allows one to use standard tensor
network techniques, such as time-evolving block decimation
(TEBD) [23], to perform the time evolution efficiently; the
errors made by truncating to a finite bond dimension will
depend only on the amount of dissipation used, and they
will remain bounded at all times, unlike the case for purely
unitary dynamics where entanglement grows without bound
[20,21]. The operator G�∗,γ defined by Eq. (3), itself has a
compact representation as a matrix product operator (MPO)
representation with bond dimension �∗ + 1, which makes its
application efficient.

While the introduction of the dissipation renders the
numerical calculation of correlations feasible, it will also
introduce errors; i.e., the diffusion constant of the dissipa-
tive dynamics, D�∗,γ , will be different from the true physical
diffusion constant D. The insight behind DAOE is that the
error made in this approximation should be well controlled
when the dissipation is sufficiently weak, allowing for an
accurate estimation of the true diffusion constant. The reason
behind this is that once an operator becomes highly nonlocal,
its contribution to correlation functions of local observables
becomes suppressed, due to a combination of entropic and
interference effects [11]. More quantitatively, in Ref. [11]
some of us conjectured, based on numerical evidence and

analytical arguments, that this error is suppressed exponen-
tially, as |D − D�∗,γ | � ae−b�∗ at large �∗. More practically,
one calculates D�∗,γ for decreasing values of γ until the limit
of the available numerical resources is reached,2 and then uses
the results to perform an extrapolation back to the nondissipa-
tive case: D = limγ→0 D�∗,γ . This limit should be independent
of the choice of �∗, which provides a further consistency check
on the results [7].

B. Modified DAOE for fermions (fDAOE)

The spin DAOE we just described is formulated for sys-
tems of lattice spins, appropriate for simulating transport in
quantum magnets [24–26]. However, one often wants to ob-
tain information about transport in systems of fermions, where
we can ask about the transport of electric charge. The physi-
cal intuition behind DAOE is general enough that it should
apply to this case as well, assuming that one is at a finite
temperature where electron scattering should render transport
incoherent. Thus, it is natural to formulate a fermionic version
of DAOE, which is what we obtain here, working still in one
dimension.

We consider Hamiltonian dynamics which conserve the
total fermion charge, [H,

∑
x nx] = 0, with nx = f †

x fx the lo-
cal charge density and f †

x , fx the standard spinless fermion
creation-annihilation operators. To calculate charge trans-
port, we need to evaluate connected correlations of the form
〈nx(t )ny(t ′)〉c. In one-dimensional systems, one possibility is
to make use of the Jordan-Wigner transformation to rewrite
fermionic operators in terms of spins, and then apply spin
DAOE in this new formulation. However, this is complicated
by the fact that the transformation between the two variables
is nonlocal; thus, the notion of Pauli weight that we used
to truncate nonlocal observables in spin DAOE is not the
appropriate measure of locality.

The problems with this naive approach can be observed
already at the level of noninteracting fermions. In this case
the time evolution of a single-fermion operator f †

x maps into
a coherent superposition of 1-body operators

f †
x →

∑
y

Ky,x(t ) f †
y , (4)

where K is the noninteracting lattice Feynman propa-
gator. The time-evolved charge density takes the form
nx(t ) = ∑

y,y′ Kxy(t )K∗
xy′ (t ) f †

y fy′ . For translationally invariant
Hamiltonians on the lattice, the free Feynman propagator
Kxy(t ) is generically nonvanishing only within a light cone
|y − x| < vt , where it has amplitude roughly 1/

√
t . The result

of this is that density spreads ballistically; i.e., 〈nx(t )ny(t ′)〉c

is nonvanishing only when |x − y| < vt (and has typical
size ∼1/t within the light cone). By Eq. (1), this implies
that the time-dependent diffusion constant grows linearly
as D(t ) ∼ t .

2The weaker the dissipation, the larger the maximum of the OSEE
reached during the dynamics, implying that one will need increas-
ingly large bond dimensions to get accurate results.
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FIG. 1. For the noninteracting case � = 0, h = 2 of the model
defined in (7), we show D(t ) vs t as determined by different methods.
The red dotted line is the exact result calculated from the free-
fermion propagator K (t ), with the ballistic scaling D(t ) ∼ t . Fermion
DAOE agrees with the exact result provided �∗ � 2. Spin DAOE,
however, gives incorrect diffusive behavior past short times even in
the � = 0 case, due to heavily truncated Jordan-Wigner strings. The
DAOE parameters were taken as γ = 0.1, �∗ = 2, δt = 0.5 in both
cases (the fDAOE results are independent of the parameters in the
noninteracting case, provided �∗ � 2).

To apply spin DAOE to this problem, we can make use of
the Jordan-Wigner transformation

f †
x =

[∏
s<x

σ z
s

]
σ+

x . (5)

This turns the operators f †
y fy′ , appearing in the calculation

of nx(t ), into strings of spin variables stretching from y to
y′. As we say, the typical terms contributing to nx(t ) have
|y − y′| = O(t ), and hence � = O(t ). Therefore at sufficiently
late times compared to �∗, nx(t ) contains long strings of spin
operators which will be subject to the DAOE dissipation under
the existing scheme. This suggests that the existing DAOE
approach, while effective in capturing the diffusive part of the
dynamics, will fail to correctly account for the ballistic spread
of charge in the limit of weak interactions.

This expectation is confirmed in Fig. 1 where we show
the measured time-dependent diffusion constant of the charge
density for free-fermion dynamics [h = 2, � = 0 in the
model defined in Eq. (7) below], with DAOE truncating ac-
cording to Pauli weight of the Jordan-Wigner transformed
operators (green line). The results show a very rapid onset of
diffusion, whereas the true behavior, as calculated from the
noninteracting propagator K (t ), is ballistic (red dotted line).

As previously alluded to, the issue lies in the use of the
Pauli weight for truncating fermionic systems. A natural gen-
eralization of DAOE is instead to truncate operators based on
their fermion operator weight (Fermi weight). To make this
notion precise, we introduce the Fermi strings |oμ〉, in analogy
to the Pauli strings |σμ〉. A complete on-site basis of opera-
tors is given by the four operators o1,2,3,4 = I, f †, f , [ f †, f ],
which have Fermi weights 0,1,1,2 respectively. In the

following we use the variable z as a shorthand for [ f †, f ] =
2 f † f − I . The Fermi strings oμ ≡ ⊗roμr

r are tensor products
of the local basis operators on L sites, and we define the Fermi
weight of oμ as the sum of its on-site weights. For example,
the string f2 f †

6 f6 has Fermi weight � = 3. Now, quadratic
operators such as f †

y fy′ (t ) evolved under noninteracting dy-
namics have weight � = 2 for all times, even if y, y′ are well
separated. The only change needed in the definition of the
DAOE dissipator [Eq. (3)] is replacing the Pauli weight with
the Fermi weight.

Provided we choose cutoff �∗ � 2, dissipation will not
interfere with the early-time ballistic behavior of correlation
functions. In the case of � = 0, comparing D(t ) calculated
using fermion DAOE in Fig. 1 (black line), we observe perfect
agreement with the exact result. We refer to the Fermi weight
truncated DAOE as fDAOE. In Appendix A we provide fur-
ther comparison between the spin and fermion algorithms
for different interaction strength �, showing that spin DAOE
remains inaccurate in the weakly interacting regime �  1,
while the two methods begin to agree around � = O(1).

In order for fDAOE to remain efficient, we still need to be
able to write the dissipator in a compact MPO format. This
turns out to be possible, following the method of [27], as we
now describe.

We first design a “finite-state automata” W that takes as
its input a Fermi string |oμ〉 (equivalently a Pauli string |σμ〉,
as the two can be mapped via the Jordan-Wigner transform),
calculates the corresponding Fermi weight �(μ), and outputs
a weighted copy e−γ max(0,�(μ)−�∗ ) |oμ〉. The automata’s calcu-
lation can be visualized as a machine that moves along the
input string |oμ〉, reading the operator at each position x from
left to right, and updating its internal state based on this new
information and its current state, finally outputting the desired
weighting. Having constructed our finite-state automata, we
finally have to convert it into an MPO. This can be done with
virtual bond dimension �∗ + 1, as in the spin DAOE case. We
explain the case �∗ = 4 in detail, with the extension to other
�∗ straightforward. We restrict ourselves to the case where
all Fermi strings have even parity, which provides no loss of
generality when the system obeys charge conservation.

The fDAOE automata for �∗ = 4 is drawn on the left of
Fig. 2. We consider the automata’s action on the example
fermion string given in the top row of the table on the right
of Fig. 2. The fermion string is mapped to the Pauli string
in the second row via the Jordan-Wigner transform (this step
is required as numerically our MPO must operate on Pauli
strings). The machine starts at the first site of the string in an
initial state s = 1+. It then reads the operator at the current
site. Following the map on the left of Fig. 2, there are then
three possibilities: if the operator is I , the automata remains
in state 1+; if the operator is σ z, the automata updates its state
to s = 2+; otherwise, the operator is either σ+ or σ−, and the
automata sets its new state as s = 1− (the ± index can be read
as a parity label, in a sense made clear below). It then moves
to the second site of the chain, and repeats the above steps,
following the new directions based on its current state. The
state label allows us to keep track of the Fermi weight and
whether �∗ has been exceeded: for every red dashed line the
automata follows (e.g., from state 3+ to 2−), the input string is
multiplied by a damping factor e−2γ . The resulting automata
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FIG. 2. Left: A 5-state finite automata for fDAOE with �∗ = 4. See text for details. Right: Example fermion string |oμ〉, corresponding
Jordan-Wigner mapped Pauli string |σμ〉, and automata trajectory s.

“trajectory” for the example string above is given in the third
row of the table in Fig. 2: the string |oμ〉 has Fermi weight
� = 6 and is correctly weighted by the automata with a factor
e−2γ . In general, for a given (even) �∗, the automata has states
i+ for 1 � i � �∗/2 + 1, and states i− for 1 � i � �∗/2.

The key point is that to correctly account for the nonlocal-
ity of the Jordan-Wigner transform, the automata must keep
track of the fermion parity, i.e., the number of fermions to
the left of its current position. A pair of spatially separated
fermions f †, f (connected by a string of identity operators)
maps to a pair of σ± operators connected by a string of
σ z operators in the Pauli basis. In order for these σ z to not
count toward the Fermi weight, the automata must switch
to the negative-parity branch 1−, 2−, . . . where the roles of
σ z and I are exchanged. This parity switching is the reason
why fDAOE correctly captures the noninteracting fermion
dynamics, while spin DAOE truncates quadratic strings.

Given the finite-state machine, it is then simple to construct
the corresponding MPO. We refer to [27] for details and sim-
ply state the result for �∗ = 4. The local MPO tensor W ii′

ab acts
diagonally on the physical leg index i = I,+,−, Z , W ii′

ab ∝
δii′ , and as a matrix on the virtual leg index a = 0, . . . , �∗.
Owing to the even-parity constraint, �∗ must be even. Explic-
itly the matrices are given by

W II =

⎛
⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0 1
0 κ

⎞
⎟⎟⎟⎟⎠,

W ZZ =

⎛
⎜⎜⎜⎜⎝

0 1 0
0 0 1
0 0 κ

1 0
0 1

⎞
⎟⎟⎟⎟⎠,

W ±± =

⎛
⎜⎜⎜⎜⎝

1 0
0 1
0 κ

0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎠. (6)

Here we split the matrices into parity blocks ++, +−, −+,
−−: the even-parity (+) indices run from 0 to �∗/2, and
the odd-parity indices (−) from �∗/2 + 1 to �∗. For exam-
ple, the W II matrix right-multiplies the machine state 1− =
(0, 0, 0, 1, 0) and returns the state 2− = (0, 0, 0, 0, 1). The

damping factor κ = e−2γ is applied on transitions correspond-
ing to the red dashed lines in Fig. 2. The MPO is contracted
on the left boundary with the vector vL = (1, 0, . . . , 0)—
representing the initial state 1+—and with vR = (1, 1, . . . , 1)
on the right.

The fDAOE dissipator can hence be applied in an efficient
way to operators represented as matrix product states |q(t )〉.
This is the first main result of this work.

While above we assumed spinless fermions in 1D for
simplicity, the algorithm can easily be extended to more
complicated setups. First, we may treat the case of spinful
fermions: this can be done by doubling the number of lattice
sites and treating the spin label as an additional sublattice
label when applying the automata. Hence, for example, the
string f1,↑ f1,↓ f †

3,↑ becomes f1 f2 f †
5 and the fDAOE automata

is applied just as in the spinless case, giving the correct
weighting � = 3. The extension to higher dimensions also
follows straightforwardly once the Jordan-Wigner string or-
dering has been defined. For example, in 2D we can order
the sites along a 1D “snake” winding over the lattice, and
apply the fDAOE MPO in this ordering. The dimension of
the MPO tensors remains �∗ + 1 and hence the fDAOE step
is efficient. The more serious problem arises from the uni-
tary time evolution step, since local couplings in 2D will
be mapped to nonlocal couplings under the Jordan-Wigner
map, a standard problem in higher-dimensional simulations.
In the cases where the time evolution step can be im-
plemented efficiently (such as for quasi-1D cylinders of
small width), we expect the fDAOE algorithm to remain
efficient.

III. MODEL

For the rest of this work we focus on the physics of hopping
spinless fermions with a staggered chemical potential:

H = −
∑

x

(
J

2
( f †

x+1 fx + H.c.) + h(−1)x(1 − 2nx )

)
︸ ︷︷ ︸

H0

+ �
∑

x

(1 − 2nx )(1 − 2nx+1)

︸ ︷︷ ︸
�×V

. (7)
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FIG. 3. (a) Growth of time-dependent diffusion constant D(t ), for eight different interaction strengths �, as marked on the right-hand
color bar (note the log scale). For increasing �, the timescale at which transport becomes diffusive decreases, with a late-time diffusive
plateau reached for the strongest interactions around t = 200–300. Inset: Scaling collapse of rescaled diffusion constant �2D(�2t ). The
diffusion constant grows linearly at early times �2t  1, before a crossover to diffusive transport occurs at late times �2t � 1, where
the curve saturates. (b) Zoom on �2D(�2t ) for short times, with TEBD simulations (dashed lines) overlayed. For all �, TEBD fails to
reach the crossover timescale �2t ∼ 1, due to an accumulation of truncation errors arising from unchecked entanglement growth. For both
figures, we fix DAOE parameters γ = 0.1, �∗ = 2 and maximum bond dimension χ = 96 for fDAOE, χ = 128 for TEBD.

By the Jordan-Wigner mapping, the Hamiltonian can also
be written as the staggered-field XXZ Hamiltonian,

H =
∑

x

(
J

2
(σ+

x σ−
x+1 + H.c.)+h(−1)xσ z

x

)
+ �

∑
x

σ z
x σ z

x+1.

(8)

This model (first introduced in [28]) is nonintegrable if all
three couplings J, h,� are nonzero. In particular, switching
on the staggered field h breaks the integrability of the XXZ
model. We will focus on the regime where �  J, h. At � =
0 the fermions are noninteracting, and exhibit the ballistic
transport we observed in Fig. 1. Turning on � turns this into a
problem of interacting fermions. We will be interested in how
charge transport is affected by these interactions.

IV. NUMERICAL RESULTS

We now use fDAOE to study the ballistic to diffusive
crossover in the model of interacting fermions in Eq. (7). We
fix the model parameters J = 1 and h = 2, and vary the inter-
action strength �. As explained above, the model is no longer
integrable when � �= 0, and diffusive transport is expected at
late times.

We use fDAOE to simulate the evolution of the
infinite-temperature density-density correlator C(x, t ) =
〈qx(t )|q0(0)〉, with qx = σ z

x , and x = 0 denoting the central
site. This spin correlator is related to the connected fermion
charge-charge correlator by C(x, t ) = 4〈nx(t )n0(0)〉c. We
then calculate the time-dependent diffusion constant D(t )
using Eq. (1). All of our simulations are done using the
TeNPy package [29] which allows us to make use of the

system’s charge conservation property for more efficient
simulations. Throughout the rest of the paper we fix the (2nd
order) TEBD time step δt = 0.1, DAOE truncation period
T = 0.5, and chain length L = 300, which is large enough
that boundary effects are not observable on the times we
study (the maximum times we reach are around t = 350,
using around 100 h of wall time).

In Fig. 3(a) we plot the growth of the time-dependent
diffusion constant D(t ) against time t , for different �. We
fix DAOE parameters as γ = 0.1, �∗ = 2 and show results
for eight logarithmically spaced � in the interval (0.01, 0.1).
The data shown are for bond dimension χ = 96; we provide
additional convergence data in Appendix B. The crossover
behavior is evident for sufficiently large �, with an initial
ballistic growth D(t ) ∝ t , followed by a late-time plateau to
diffusion D(t ) ∼ D (the value of which generally depends on
� as well as the DAOE parameters; see below). The results
for the smallest � values remain approximately ballistic up to
the largest times simulated.

To determine how D(t ) depends on �, we perform a rescal-
ing of the time t → �2t and the diffusion constant D(t ) →
�2D(�2t ). In the inset to Fig. 3(a), we plot the rescaled
dependence. We observe a clean scaling collapse of the data,
consistent with the approximate scaling D ∝ �−2 and a bal-
listic to diffusive crossover time (when the coherent transport
of charge crosses over to diffusive transport) tD ∼ �−2. This
scaling is consistent with a perturbative argument following
Fermi’s golden rule which we outline in Sec. V.

We next attempt to extrapolate the infinite-time diffusion
constant D ≡ limt→∞ D(t ), as a further check on the scaling
result. We consider the five largest � values in the same
dataset (for smaller �, the simulations do not reach far enough
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FIG. 4. (a) Late-time diffusion constant D ≡ limt→∞ D(t ) as a function of interaction strength � (we show only the largest five �, as the
smaller � data are not sufficiently diffusive at the maximum run-time to obtain accurate extrapolation). The data are extrapolated in γ → 0.
The fit is the function D = d�−2, with the fit parameter d = 0.01. (b) Extrapolation of D: We fit D(t ) to a cubic polynomial in the inverse
time variable 1/t at late times, with D as the y-axis intercept. Solid lines are data and dashed lines are the fit. Data shown are for γ = 0.05.
Inset: Extrapolation in γ → 0: For each data point the diffusion constant is obtained by the previous method, then we fit the data to a quadratic
polynomial in powers of γ (dashed lines).

into the diffusive regime to achieve a reliable estimate), and
fit the late-time data to a cubic polynomial in the inverse
time variable, i.e., D(t ) ∼ D − a/t + b/t2 + c/t3. The result-
ing diffusion constants D are then extrapolated in γ → 0 for
the four values γ ∈ (0.03, 0.05, 0.1, 0.2), for each �. We use
a quadratic fit for the extrapolation in γ . The result is shown
in Fig. 4(a), with the scaling D ∼ �−2: the black line is the fit
D = 0.01�−2. In Fig. 4(b) we show additional details of the
extrapolation process, with the 1/t extrapolation for γ = 0.05
shown in the main figure and the subsequent γ extrapolation
in the inset.

Our results for the diffusion constant D ∼ �−2 and
crossover timescale tc ∼ �−2 provide a convincing picture of
how diffusion arises from weak fermion-fermion scattering at
late times. However, given the basic nature of the above result,
one may wonder whether the same answer could have been
obtained based on simpler evolution methods, such as the
“pure” TEBD algorithm without any truncation from DAOE.
After all, in the free-fermion limit � = 0, the system’s
entanglement remains low for all times, which is the regime
in which TEBD is expected to be efficient. In Fig. 3(b) we test
this notion by plotting �2D(�2t ) as calculated from TEBD
simulations against the same fDAOE data shown in Fig. 3(a):
we find that for all �, truncation errors accumulate signifi-
cantly before the evolution reaches the crossover timescale
�2t = 1 and TEBD fails catastrophically, with D(t ) nosediv-
ing toward unphysical negative values. We note that while
the bond dimension used for TEBD (128, compared to 96
for fDAOE) is relatively low, to completely avoid truncation
errors the required bond dimension must grow exponentially
in time. The success of DAOE for simulating long times lies
in the fact that the required bond dimension is bounded for
all times by a value controlled by the dissipation parameters.

Thus, fDAOE allows us to efficiently reach diffusive
timescales that remain unavailable to more standard methods.

We make two additional observations from the data in
Fig. 4(b): first, observe that for the larger �, D(t ) exhibits
strong plateaus (in 1/t) toward the final value (visible for the
three largest �). This is unexpected, as the hydrodynamic the-
ory would predict power law tails as we discuss in Sec. V; see
also [30,31]. We do not have a satisfying explanation of this;
it might be an artifact of the fDAOE dissipator suppressing
hydrodynamic tails, or those tails might just be small in this
system.

Second, we note that the predicted diffusion constant gen-
erally increases as the parameter γ is increased. At first glance
this is also somewhat surprising, as dissipation (such as be-
tween the system and an environment) is generally expected to
lead to increased loss of coherence and faster approach to dif-
fusion. We provide a heuristic interpretation of this behavior
as akin to a dissipation-induced “diffusive Zeno effect”: when
�∗ = 2, fDAOE acts to suppress growth of larger fermion
strings, while leaving quadratic strings invariant. Is is easy to
see that for γ → ∞, interactions are completely blocked and
no diffusive transport can occur. For large γ , fermions remain
“confined” within the quadratic free-fermion space and charge
continues to be transported ballistically for long times. We
show additional results for this effect in Appendix C.

V. FERMI’S GOLDEN RULE, AND AN
OPERATOR-SPREADING PICTURE
FOR THE DIFFUSIVE CROSSOVER

Our numerical simulations suggest that the ballistic-
diffusive crossover time and diffusion constant both scale as
�−2. Here we show that the same scaling is obtained perturba-
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FIG. 5. An operator path integral for the single-particle Green’s
function G(x, t ) = 〈 fx (t )| f0〉 consists of a sum of operator trajecto-
ries starting at fx on the left, and evolving to f0 at time t . (a) In
the absence of interactions, the number of fermion operators is
conserved, and this remains approximately true at early times when
interactions are unimportant. (b) At later times, interactions cause
1-body operators to grow in Fermi weight, which leads to an (expo-
nential in time) suppression of the amplitude G(x, t ).

tively using a Fermi’s golden rule style of argument. We first
argue that the lifetime of a single-fermion Green’s function
goes as �−2, and then use that result to deduce that the diffu-
sion constant has the same scaling. However, this argument is
ultimately uncontrolled in ways we discuss, showing the need
for the numerical methods developed above.

Along the way it is useful to interpret the ballistic-diffusive
crossover in an operator-spreading picture [11], which we now
introduce. The correlation functions used to determine the
diffusion constant can all be written as inner products on the
space of operators 〈A(t )|B〉 where A, B are operators, and A
is evolved in the Heisenberg picture. This inner product is a
quantum transition amplitude in the space of operators (rather
than the more familiar space of states). It is the amplitude for
an operator A to Heisenberg-evolve to an operator B at a time
t . By Trotterizing the Heisenberg time evolution and inserting
a complete set of states, we can express 〈A(t )|B〉 as a sum over
operator histories (see Fig. 5 for an illustration of some such
histories). Each history has the same boundary condition: The
initial/final configurations are A, B respectively. In the present
case, a complete set of states can be represented by a string
oμ ≡ ⊗roμr

r , where o0,1,2,3 = I, f †, f , [ f †, f ] is a complete
on-site basis of operators. The fermion creation/annihilation
operators o1,2 are represented by horizontal lines with orienta-
tions →,← respectively. On the other hand o3 = 1 − 2n is
represented by a double line (a natural notation given that
it is bilinear in fermion operators). o0 is represented by the
absence of a line (Fig. 5). There are rules constraining the
allowed histories. For example, unitarity implies the lines
cannot start or end in a region of I’s. U(1) symmetry implies
that difference between the number of f ’s and f †’s remains
constant in time.

In the absence of interactions, the f , f † operators evolve
into a linear superposition of single f , f † operators re-
spectively, according to the equation Eq. (4). This is a
property special to quadratic Hamiltonians. In the correspond-
ing operator-spreading picture, this means that one only need
sum over histories where a single-fermion operator changes
position [Fig. 5(a)]. In the presence of interactions new
operator histories become relevant, where the number of op-
erator world lines increases or decreases [Fig. 5(b)], and the
histories become more “complicated” in a sense we describe
shortly.

We now argue that there is a �−2 timescale associated with
fermion operators becoming more complicated. To be more
precise, consider the Green’s function G(x, t ) ≡ 〈 fx(t )| f0(0)〉.
This transition amplitude is associated with operator histories
that begin with f at position x and end with an f at posi-
tion 0 at time t . In the absence of interactions G(0)(x, t ) =
K (x, t ) behaves ballistically; it is supported in a region |x| <

vt , and has typical size 1/
√

t , consistent with a sum rule∑
x |G(0)(x, t )|2 = 1. The corresponding simple operator his-

tories are shown in Fig. 5(a). However in the presence of
interactions, the Green’s function is expected to decay much
faster (indeed, exponentially) with time [32], and this is as-
sociated with the appearance of more complicated diagrams,
Fig. 5(b). The reasoning (see [11]) is that once operators
are allowed to branch, the initial operator fx is much more
likely to grow in Fermi weight than it is to end up as the
Fermi weight 1 operator f0, which implies that the transition
amplitude/Green’s function decays in time.

We conjecture that in the presence of interactions, the
Green’s function decays exponentially as G(x, t ) ∼ e−O(�2t ).
We can argue for this using the memory matrix (MM) for-
malism [6]. In the MM formalism, one divides the set of
observables into two categories, “fast” and “slow” modes.
In our case, we choose the latter to be linear combinations
of single-fermion operators; the fast space is taken to be the
orthogonal complement to the slow space. One can then derive
an exact equation of motion for G in momentum space [6]
which takes the following form:

∂t Gk − imkGk +
∫ t

0
ds�k (s)Gk (t − s) = 0. (9)

Here, mk represents the free (quadratic) part of the dynam-
ics, such that [H0, fk] = −mk fk .3 �k (s) represents a memory
term, arising from operators leaving and then later reentering
the slow subspace. It is defined as

�k (s) = 〈 fk|LQe−iQLQsQL| fk〉, (10)

where L = [H, ·] is the many-body Liouvillian generating the
dynamics in the Heisenberg picture, and Q is the projector
onto the fast space. Using the fact that the noninteracting
terms do not induce any transitions from slow to fast opera-
tors, we can further simplify the above expression to

�k (s) = �2�k (s) ≡ �2〈[V, fk]|Qe−iQLQsQ|[V, fk]〉,
where V is the interaction term and � is the interaction
strength appearing in the Hamiltonian Eq. (7). It is readily ver-
ified that [V, fk] is a 3-fermion operator; therefore �k (s) is a
3-fermion autocorrelation function with dynamics constrained
to the fast space (i.e., dynamics generated by QLQ). Since �k

only involves dynamics in the fast subspace, we expect that it
decays quickly in time. Putting this together, we have

∂t Gk − imkGk + �2
∫ t

0
ds�k (s)Gk (t − s) = 0. (11)

3Our Hamiltonian has unit cell of size 2, so m, G, �,� are each
2 × 2 matrices, and fk, f †

k also carry sublattice indices. We suppress
the corresponding sublattice index, which is unimportant for our
discussion. Note mk is a Hermitian matrix.
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A Fermi’s golden rule scaling emerges from this equation of
motion if �k decays over a timescale κ−1 that is independent
of interactions in the small-� limit. This allows one to trun-
cate the integral in Eq. (11) to obtain

∂t Gk − imkGk + �2

κ
Gk ≈ 0. (12)

This implies ∂t |Gk|2 ≈ − 2�2

κ
|Gk|2, so that the single-fermion

operators have a lifetime scaling as �−2, in agreement with
the data presented in Fig. 3.

In fact, this argument is delicate, especially in 1D. It
turns out that in the noninteracting approximation4 the 3-
fermion correlator decays as |�k (s)| ∼ 1/s (consistent with
dimension counting), which is not sufficiently quick to safely
truncate the time integral. A self-consistent resolution to this
issue is to include the effects of interactions on � through
the ansatz |�k (s)| ∼ e−c�2s/s, which has the expected 1/s
decay at early times, and the expected exponential decay
at later times. This ansatz leads to the advertised FGR
lifetime for Gk but with a weak additional logarithmic de-
pendence |Gk (t )| ∼ e−O(�2 log(�−1 )t ). Our numerical data are
insufficiently resolved to confirm or exclude such subtle
logarithmic corrections, so henceforth we will ignore them
here.5

The uncontrolled argument above suggests that that
fermion operators propagate freely and ballistically up until
time tG ∼ 1/�2, past which interactions become important.
In the operator-spreading language, the world lines of fermion
operators become complicated on said timescale. What are the
consequences for the diffusion constant? Conflating tG with
a mean free time for particle collisions, and substituting the
result into the Drude formula, we expect the diffusion constant
to also scale as tG.

In what follows we make a more explicit argument that
D ∼ tG. We start from the Kubo formula for the diffusion
constant, and evaluate it using an operator-spreading picture
and the above results. We argue that the time derivative of
the diffusion constant Ḋ(t ) is O(1) early times t � tG, but
starts to decay algebraically once t � tG. As a result D(t ) =
D + poly(t−1) at late times, where D scales as tG. The Kubo
formula [equivalent to Eq. (1) in the thermodynamic limit]
implies that the time derivative of D(t ), as defined in Eq. (1),
is Ḋ(t ) = 〈J (t )|J (0)〉/L, where J is the total current J =∑

x[i f †
x fx+1 + H.c.] = ∑

x jx, which is quadratic in fermion
operators. Therefore Ḋ(t ) involves a sum of correlations of
the form

〈( f †
x fx+1)(t )| f †

y fy+1〉. (13)

This expression can be read as a propagator in the space
of operators; it represents the amplitudes for the operators
f †
x fx+1 to end up in the configuration f †

y fy+1 at time t under
Heisenberg dynamics (Fig. 6).

4Obtained by replacing QLQ with QL0Q in the definition of �

where L0 = [H0, ·].
5For more details, see the forthcoming work by von Keyserlingk

et al. [33].

FIG. 6. A diagram of contributions to the current-current correla-
tor. (a) At early times, the dominant contribution to transport comes
from paths where the fermion operators do not grow in Fermi weight
but instead ballistically spread according to the noninteracting dy-
namics. We identify two sorts of paths at later times. (b) Those paths
where the initial fermions propagate independently, but undergo
forking events due to interactions are expected to decay exponen-
tially. (c) Paths where the fermions combine into a hydrodynamical
operator (local charge n and energy h densities, and their derivatives)
are expected to decay as a power law according to hydrodynamics.
Contributions of type (c) are expected to dominate at late times.

At early times, interactions are unimportant and each
f , f † making up jx evolves according to Eq. (4). In this
case, a straightforward analysis of the propagator K (which
corresponds to coherent/ballistic dynamics of the fermion
operators) shows that 〈 jx(t ) jy〉 ∼ 1/t for |x − y| < vt , which
implies Ḋ(t ) is O(1) at early times. Thus D(t ) grows lin-
early in t at early times. In the operator-spreading picture,
the fermion operators spread independently and ballistically
in this regime, undergoing essentially no branching events
[Fig. 6(a)].

However at later times interactions become important,
and the fermion operators comprising J branch into more
complicated superpositions of higher Fermi weight operators
[Fig. 6(b)]. As mentioned above, this process is difficult to re-
verse (in ergodic systems) [11]. So the amplitude that f †

x , fx+1

separately evolve to f †
y , fy+1 while having many branching

events in the interim [Fig. 6(b)] ends up decaying exponen-
tially in time as e−O(t/tG ). In other words, the world lines of
each fermion operator in the expressions for Ḋ(t ) become
costly; they develop a linear line tension.

In this later-time regime, a different class of operator
history becomes dominant: the paths where the fermion op-
erators making up jx coalesce into hydrodynamical variables
[Fig. 6(c)]; these operators decay more slowly (as a power
law in time, rather than exponentially), and so effectively
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have a lower line tension.6 The simplest and most relevant
hydrodynamical operators in ergodic systems involve prod-
ucts and derivatives of the local energy (ε) and charge (n)
densities of the form ∂a

x na′
∂b

x εb′
. The ones relevant to this

discussion are ε∂xn, ε2∂xn, . . ., although which of these are
present can generally depend on discrete symmetries, filling,
and temperatures [30,34]. These operators have less costly
world lines, because of the underlying local conservation
laws, and their correlations decay as power laws 1/tα rather
than exponentially.7 We expect the crossover time (where both
types of path balance) to obey e−t/tG ∼ C/tα , consistent with
crossover tD ∼ tG with possible logarithmic enhancements.
In conclusion, we expect Ḋ(t ) = O(1) until a time O(tG) at
which point Ḋ(t ) will start to decay as a power law. This
suggests that D ∼ 1/�2 as expected, and that D(t ) approaches
this final value as a power law 1/tα−1.

VI. CONCLUSIONS

We investigated the transport of interacting one-
dimensional fermions using a numerical scheme that
we developed building on the earlier DAOE method
[7]. This method, which we named fDAOE, evolves
fermionic observables in time, applying to them a truncation
which discards observables that involve large numbers of
creation/annihilation operators, thus making the dynamics
tractable. In one dimension, this truncation scheme has a
simple representation in a matrix product operator language,
which allows for efficient numerical simulations.

Unlike the existing DAOE method, fDAOE is exact for
free fermions, and we presented numerical evidence that it
is able to correctly capture long-time transport properties for
a range of interaction strengths. In particular, we focused
on a regime where interactions are weak, which results in
parametrically long timescales that are difficult to simulate
using brute force approaches. We showed that fDAOE can
overcome this limitation, and obtain the expected crossover
from ballistic to diffusive transport. We used fDAOE to extract
both the crossover timescale and the value of the diffusion
constant, both scaling as �−2 with the interaction strength �.
We further justified this scaling by outlining a perturbative
Fermi’s golden rule calculation, suggesting that it is at this
O(�−2) timescale that the free-fermion approximation breaks
down. We also provided an operator-spreading picture of the
crossover to the late-time diffusive regime.

Our results open the way toward more thorough investi-
gations of charge transport in interacting fermionic systems.
There are various directions in which the method could be
further extended to bring it closer to describing experimen-
tally relevant systems. One obvious extension would be to
two-dimensional systems. Here, MPS methods are routinely
used to study the quasi-1D limit of thin cylinders [35]: time

6Here it is important that j has a charge-neutral component; other-
wise it would not be able to develop an overlap with hydrodynamical
slow modes [11]. This is ultimately the reason why 〈 jx (t ) | jy〉
correlators decay as a power law, while the single-particle Green’s
function 〈 fx (t ) | fy〉 decays exponentially.

7One always finds α � 3/2 [11,30,34].

evolution of genuine 2D systems is hard because the bond
dimensions for the associated MPOs typically scale with the
cylinder width [36]. However, as mentioned in Sec. II, the
fDAOE MPO has a constant bond dimension independent of
the spatial dimension, so this step does not entail additional
complexity. Applying the 2D fDAOE to spinful fermions (as
described in Sec. II) could allow study of the paradigmatic 2D
Hubbard model [37], for example. Another open problem is
to extend the validity of fDAOE from the infinite-temperature
limit we considered to finite temperatures and study its effect
on transport. Finally, one could consider including interac-
tions with phonons [38].

Note added. We would like to bring the reader’s attention
to a related, independent work of Kuo et al. [39].
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APPENDIX A: SPIN AND FERMION DAOE AT FINITE �

The fermionic DAOE method is expected to correctly
capture transport dynamics for models with approximate
long-lived fermionic quasiparticles, as argued in Sec. V. In
contrast, the spin DAOE method of Ref. [7] fails to capture
even the free-fermion limit (� = 0) of the model in Eq. (7),
as we showed in Fig. 1. It is natural to ask at what point the
fermion nature of the problem is lost and it becomes practical
to use the spin DAOE method. We know, for example, that
certain spin models (e.g., the spin ladder model studied in
Ref. [7]) can be accurately studied using spin DAOE even
though they admit local fermionic descriptions.

To answer this question, in Fig. 7 we compare the time-
dependent diffusion constants for the model of Eq. (7), for
both spin and fermion DAOE methods. We show results
for three interaction strengths ranging from weak to strong
interactions, � = 0.01, 0.1, 1. The system size is L = 100;
otherwise parameters are the same as in Fig. 3(a). Results are
for bond dimension χ = 96; for � = 1 we show data also
at χ = 192 to ascertain convergence. For weak interactions
(� = 0.01, 0.1), we observe a clear disparity between fermion
and spin algorithms. The former show the extended period
of ballistic behavior which is expected on physical grounds,
while the latter rapidly revert to diffusion. For � = 1, the
two methods are in approximate agreement, predicting a rapid
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FIG. 7. Time-dependent diffusion constant D(t ) vs time t , com-
paring fermion DAOE (fDAOE) and spin DAOE (sDAOE) for
different interaction strengths �. System size L = 100, DAOE pa-
rameters γ = 0.1, �∗ = 2, and bond dimension χ = 96. Spin DAOE
fails to capture the ballistic dynamics for small �, but is consistent
with fermion DAOE in the strongly interacting regime � = O(1).
For � = 1 we show additional data with χ = 192 (light blue)

onset of diffusive dynamics. Note, however, that a quantita-
tive comparison of the two methods only makes sense in the
γ → 0 limit.

These results agree with our intuition that spin DAOE is
less efficient than fDAOE at capturing transport in regimes
with long-lived fermionic quasiparticles, which in the present
case are responsible for the extended period of ballistic be-
havior. Here by less efficient we mean that spin DAOE will
require a smaller γ (and consequently more memory) to
capture the relevant ballistic physics, which is encoded in
operators with long Jordan-Wigner strings (see Sec. II). How-
ever both fDAOE and spin DAOE perform similarly when
the quasiparticles have short lifetimes, for example when the
strength of fermion interaction terms becomes comparable

to that of the noninteracting terms. The spin ladder model
in Ref. [7] in fact contains O(1) density-dependent hop-
ping terms, in the fermion language, which explains why the
spin algorithm produced physically meaningful results in that
case.

APPENDIX B: CONVERGENCE WITH BOND
DIMENSION AND �∗

Here we report additional data for different �∗ and different
bond dimensions χ = 64, 96, 128 (�∗ = 2) and χ = 256, 512
(�∗ = 4). In Fig. 8 we plot the time-dependent diffusion con-
stant D(t ) for �∗ = 2 and different bond dimensions, for γ =
0.03 in Fig. 8(a) and γ = 0.05 in Fig. 8(b). We show data
for the four largest � considered in the main text: for de-
creasing �, or increasing γ , entanglement growth is reduced
and errors are smaller. We see clear evidence of truncation
error for χ = 64, � = 0.1, and γ = 0.03 at early times, as
expected. However, even in this case, the late-time diffusive
dynamics is well converged with the larger bond dimension
χ = 128 results. The diffusive transport appears to “recover”
from early-time errors as DAOE continuously suppresses en-
tanglement growth.

We show the same data but for �∗ = 4 in Fig. 9. Here the
story is similar although the truncation errors are larger; this
is expected, because increasing �∗ implies that that higher
weight operators (specifically, with Fermi weight � 4) are
kept rather than discarded, and thus more entanglement can
be generated. Given the large bond dimensions (256 and 512),
we are limited to shorter times and it is difficult to assess the
convergence for late times. Note that we do not use the �∗ = 4
data anywhere in the main text, but these results act as a check
on whether our �∗ = 2 results are sensible.

The data for different �∗ are not necessarily expected to
agree for finite γ . To compare the two cases, we plot D(t )
curves extrapolated with a quadratic fit in γ → 0, in Fig. 10,
for χ = 128 (�∗ = 2) and χ = 256 (�∗ = 4). For � �= 0.1 we
extrapolate in γ ∈ (0.03, 0.05, 0.1, 0.2), while for � = 0.1
we ignore the 0.03 data point, due to the visible truncation
effects in Figs. 8 and 9. We obtain a reasonable quantitative

FIG. 8. (a) For �∗ = 2, we plot D(t ) for different bond dimensions, χ = 64 (dotted line), χ = 96 (dashed), χ = 128 (solid), and γ = 0.03.
For larger �, the data are less well converged at early times, but converged at late times in the diffusive regime. (b) Same plot for γ = 0.05.
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FIG. 9. (a) For �∗ = 4, same as Fig. 8 with χ = 256 (dashed line), χ = 512 (solid), and γ = 0.03. The convergence is slightly worse
compared to the �∗ = 2 case. (b) Same plot for γ = 0.05.

convergence; i.e., the difference between �∗ = 2, 4 is much
smaller than the difference between different �.

We conclude that the data used in the main text (χ = 96,
�∗ = 2) are reasonably well converged in bond dimension, and
the extrapolated diffusion constants in Fig. 4 are not seriously
affected by truncation errors or the small �∗ cutoff.

APPENDIX C: ENTANGLEMENT DYNAMICS
AND DIFFUSIVE ZENO EFFECT

In this Appendix we study the dynamics of operator space
entanglement entropy (OSSE) growth under fDAOE, and give
an argument for the “diffusive Zeno effect” mentioned in the
main text.

We bipartition the system into left and right subsystems A
(x < 0) and B (x � 0), and define the (half chain) operator
entanglement of a Heisenberg-evolved operator q(t ) as

SvN [q] = −Tr
(
ρ

q
A log ρ

q
A

)
, (C1)

FIG. 10. D(t ) for �∗ = 2, χ = 128 (solid lines) vs �∗ = 4, χ =
256 (dashed lines), for the different � used in the main text. The D(t )
curves are extrapolated in γ ∈ (0.03, 0.05, 0.1, 0.2) for � �= 0.1 and
γ ∈ (0.05, 0.1, 0.2) for � = 0.1, due to the larger truncation errors
for γ = 0.03 and � = 0.1.

where ρ
q
A is the “density operator” of the vectorized MPS

representation of q after tracing out B, i.e.,

ρ
q
A = TrB(|q〉〈q|). (C2)

Under generic unitary evolution, the entanglement grows lin-
early in time, and storing this highly entangled state is the
main obstacle to “exact” evolution schemes like TEBD. Ap-
plying the DAOE dissipator decreases this entanglement, and
its late-time value remains bounded by a cutoff depending on
the parameters �∗ and γ . This suppression is the reason for the
success of DAOE in simulating long-time transport [7,11].

In Fig. 11 we plot the half-chain OSSE (normalized by
log 2) for the time-evolved operators q0(t ) = σ z

0 (t ) we study
in the main text, for different �. The solid lines are with
�∗ = 2 and the dotted lines with �∗ = 4, γ = 0.03 in the main
figure. We observe a linear growth toward the value SvN ≈

FIG. 11. Half chain operator entanglement growth for γ = 0.03
and �∗ = 2 (solid lines), �∗ = 4 (dotted lines). Entanglement rapidly
approaches a 2 log 2 plateau, before slowly increasing at a rate set
by � (for �∗ = 4) and eventually decreasing toward log 2 due to
the DAOE dissipation. Inset: Entanglement growth for γ = 0.2. The
stronger dissipation leads to frozen dynamics, with entanglement
decaying more slowly compared to the γ = 0.03 case.
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2 log 2, after which the entanglement dynamics depends on
�∗ and the interaction strength �. For �∗ = 2, the entan-
glement plateaus around the value 2 log 2 up to a timescale
that decreases with �, before slowly decaying to SvN = log 2
consistent with diffusion [7]. The plateau can be understood
as arising from the noninteracting physics as follows: σ z

x is
bilinear in fermion operators; at early times, the two fermion
operators essentially evolve under free dynamics, each be-
coming a superposition of single fermions within a light cone.
Each of these fermion operators has entropy ∼ log 2 across
the central cut, and the entropy of their product σ z

x (t ) is ap-
proximately the sum of their entropies, namely 2 log 2. The
decay then follows as weight is slowly converted through
interactions into higher weight terms, which fDAOE removes.

For �∗ = 4, operators are allowed to grow into larger
strings (of Fermi weight 4) before truncation begins. This
leads to a growth of entanglement away from the 2 log 2
plateau, with faster rate of entanglement production for larger
�. At late times, DAOE overcomes the rate of entanglement

generation and SvN falls again toward the expected log 2
asymptotic value [7].

We now discuss why the diffusion constant is observed to
increase with γ , as we show in the inset to Fig. 4. Again, a
naive picture of DAOE as “dissipation” would suggest that
the method destroys the system coherence and stabilizes dif-
fusion. In the inset to Fig. 11 we plot the OSEE growth
for �∗ = 2, but now for larger γ = 0.2. The entanglement is
essentially “frozen” at the free-fermion entanglement value
SvN = 2 log 2, with the entanglement in the case of strong
� decaying much slower that for the smaller γ case. When
the dissipation is strong, the operator is prevented from ever
leaving the free-fermion subspace of length � = 2 operators.
This can be interpreted as a freezing of the interactions,
� → 0, which leads to a diverging diffusion constant and
purely ballistic dynamics in the limit γ → ∞. We dub this
phenomena the “diffusive Zeno effect” as it is suggestive of
the phenomena where a repeatedly measured state exhibits
frozen evolution.
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