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Direct topological insulator transitions in three dimensions are destabilized
by nonperturbative effects of disorder
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We reconsider the phase diagram of a three-dimensional Z2 topological insulator in the presence of short-
ranged potential disorder, with the insight that nonperturbative rare states destabilize the noninteracting Dirac
semimetal critical point separating different topological phases. Based on our numerical data on the density of
states, conductivity, and wave functions, we argue that the putative Dirac semimetal line is destabilized into a
diffusive metal phase of finite extent due to nonperturbative effects of rare regions. We discuss the implications
of these results for past and current experiments on doped topological insulators.
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I. INTRODUCTION

The inclusion of topology in understanding the na-
ture of electronic band structures has revolutionized our
perspective of materials [1–4]. Following the discov-
ery of three-dimensional (3D) topological insulators [5,6]
(TIs) in the weakly correlated semiconductors Bi1−xSbx,
Bi2Se3, Bi2Te3,and Sb2Te3 (reviews are in Refs. [7,8]), a cen-
tral question has been the stability of these phases to disorder.
At this point, it is now rigorously established that the 3D Z2

TI is stable in the presence of disorder [9] that preserves the
protecting time-reversal symmetry. While Anderson localized
Lifshitz states fill the electronic band gap, producing a finite
but exponentially small density of states [10], the transport
gap remains nonzero, resulting in a vanishing conductiv-
ity, thus converting the system into a topological Anderson
insulator [11,12].

In the absence of disorder, it is possible to tune an effective
“Dirac mass” to induce band inversion within the band struc-
ture [13,14]. This realizes a Dirac semimetal critical point
(with an odd number of Dirac cones) separating trivial (or
weak TI) and strong TI phases [15–17] as depicted along the
Dirac mass m2 axis in Fig. 1. There are now a number of
experiments that have attempted to tune this mass parameter
in various strong spin-orbit coupled insulators by doping the
system [18–21]. While this does renormalize the mass of the
band structure it also introduces disorder into the system. This
raises the question of the stability of the Dirac semimetal
critical point in the presence of small but nonzero disorder
and the generic structure of the phase diagram of disordered
3D TIs, e.g., does the clean critical point remain and evolve
into a line as depicted in Fig. 1(a)?

In the clean limit, the topological critical point realizes
a gapless Dirac semimetal, making the question of the ef-
fects of short-ranged quenched disorder surprisingly subtle;
the semimetal is more susceptible to the effects of disorder

compared to its gapped counterparts [25,26]. Disorder is per-
turbatively irrelevant in a 3D Dirac semimetal [27–52], so it
was originally thought that the semimetallic phase was stable.
However, nonperturbative effects arising from rare regions
of the random potential destabilize the 3D Dirac semimetal
[22,53]. Instead, it becomes a diffusive metal for any nonzero
disorder strength due to rare regions of the random potential
creating quasilocalized resonances; these rare regions induce
a finite density of states at the Dirac node with random matrix
theory level statistics [22,23,54–61]. This immediately raises
a rather general question as to whether or not the transition
between 3D topological and trivial phases is direct (i.e., they
are separated by a Dirac semimetallic critical point) or if there
is an intervening diffusive metal phase that separates them,
as depicted in Fig. 1(b). The former scenario in Fig. 1(a) we
dub the “perturbative phase diagram” as it can be described
using the self-consistent Born approximation [11,30], which
is perturbative in the disorder strength. Whereas, the latter
scenario [in Fig. 1(b)] we dub the “nonperturbative phase
diagram” as it is dominated by the effects of rare regions of
the random potential. In the vicinity of these rare regions, the
low-energy wave functions can qualitatively be described as
Lifshitz states [10,53,62,63] that are Anderson localized (i.e.,
exponentially bound) in the presence of a mobility gap and
are instead quasilocalized (i.e., power-law bound) when the
gap vanishes in the semimetal regime. The lack of stability
of the Dirac semimetal phase [26] implies there is no sharp
distinction between the weakly disordered Dirac semimetal
and the diffusive metal phase that is produced after the insu-
lating phases have been destroyed, so it is natural to expect
that the diffusive metal phase will penetrate all the way down
to infinitesimal disorder. Demonstrating this diffusive phase
with a concrete calculation on a model Hamiltonian for a 3D
TI, i.e., distinguishing between Figs. 1(a) and 1(b), is the main
focus of this work.
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(a) (b)

FIG. 1. Scenarios for the phase diagram of 3D disordered TIs
as a function of the Dirac mass parameter m2 and disorder strength
W . (a) The perturbative scenario: the Dirac semimetal line is stable
(though it need not remain a straight vertical line as depicted) to
weak disorder and remains a line of critical points separating the
two insulating phases. (b) The nonperturbative case: rare regions
of the random potential that are ignored in perturbative approaches
destabilize the semimetallic critical line into a diffusive metal phase.
As a result, the avoided quantum critical point (AQCP) [22–24] is
rounded out and occurs in the diffusive metal phase at a nonuniversal
location that depends on the strength of the avoidance. The dashed
arrow denotes a trajectory that different doped samples will take
through the phase diagram.

This motivates us to reconsider the effects of disorder on
the phase diagram of 3D Z2 topological insulators. In order
to ascertain the effects of rare regions on the 3D TI phase
diagram, we compute the density of states and the DC con-
ductivity on large system sizes (up to a volume of L3 = 2003

lattice sites) by utilizing the kernel polynomial method (KPM)
[64] and handling all matrix-vector multiplication on graph-
ical processing units (GPUs). As a result, we are able to
demonstrate that the density of states and conductivity at the
band center remain finite (albeit exponentially small) along
the previously expected perturbative semimetal (PSM) line.
This demonstrates the presence of an intervening diffusive
metal [whose level statistics at finite energy are those of the
Gaussian symplectic ensemble (see Appendix B)], invalidat-
ing the perturbative expectations of a vanishing density of
states and conductivity. To study the transitions out of this
diffusive metal phase, we turn to analyzing the multifractal
spectrum of eigenstates [65] at the band center. Thus, we
find the nonperturbative phase diagram in Fig. 1(b) to be the
correct physical picture. The size and shape of the intervening
metallic phase is nonuniversal and depends on the choice of
disorder distribution and microscopic model.

The remainder of the paper is organized as follows: In
Sec. II we describe the model we consider and the methods
used to compute its properties. In Sec. III we discuss the
nature of the avoided transition in the model as it appears in
the density of states and the conductivity. In Sec. IV we use
the nature of the eigenfunctions to estimate the localization
transitions separating insulating and diffusive metal phases,
and we conclude in Sec. V. In Appendix A we discuss how
we suppress finite-size effects and in Appendix B we present
level statistics at finite energy.

II. MODEL AND APPROACH

We study a well-known model on a simple cubic lattice in
the presence of disorder that realizes a Z2 TI and has been

FIG. 2. Schematic phase diagram labeling the phases, the pertur-
bative semimetal line WPSM(m2) (red dashed line), and the avoided
quantum critical point [blurred red dot near Wc(m2 ≈ −1.75) =
0.85t], black lines are drawn for the nonperturbative scenario that is
qualitatively consistent with all of the data presented here. The color
shows log ρ(0), which is a qualitative proxy for each phase. Density
of states ρ(0) is computed with system size L = 151 with KPM order
NC = 2048. Each data point is averaged from more than 100 samples
with random twisted boundary conditions. The phase boundaries
separating Anderson insulating and diffusive metal phases are shown
schematically; this will be discussed in detail in Sec. IV.

considered previously [11,12], which is defined as

Ĥ = Ĥ0 + V̂ . (1)

The topological band structure is due to

Ĥ0 =
∑

r,μ=x,y,z

(
i

2
tμψ†

r αμψr+μ̂ − 1

2
m2ψ

†
r βψr+μ̂ + H.c.

)

+
∑

r

ψ†
r [(m0 + 3m2)β]ψr, (2)

where tμ denotes the nearest-neighbor hopping strengths and
the topological gap is controlled by the “mass parameters”
m0 and m2, here we take tμ = t to be isotropic for periodic
boundary conditions and for twisted boundaries we have tμ →
teiθμ/L (where θμ ∈ [0, 2π ) is the twist in the μ direction). In
the following we set t = m0 = 1, and the lattice spacing is
also one. We have introduced the four-component spinor ψr
made of electron annihilation operators cr,τ,s at site r with
parity τ = ±, spin s =↑ / ↓, and the Dirac matrices αμ and β

are given by

αμ = τx ⊗ σμ, β = τz ⊗ σ0. (3)

For V̂ = 0 this model at the topological transition (m2 =
−2m0) has a single Dirac point at the 
 point (i.e., zero
momentum); moving m2 away from this value opens a gap,
making a Z2 topological or trivial (weak in the clean limit)
insulator as shown in Fig. 2.

The potential disorder is described by

V̂ =
∑

r

ψ†
r V (r)ψr, (4)
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where V (r) is a random potential. This puts the Hamilto-
nian in symmetry class AII with Z2 topological classification
[1–4]. Previous studies focused on sampling a box distribution
V (r) ∈ [−W,W ], however, bounded distributions are known
to reduce the probability to generate rare events [23,53] as
now a finite-size cluster needs to have a total disorder strength
that is sufficiently strong (e.g., relative to the electronic band-
width), which requires much larger system sizes in order to
numerically witness. As a result, sampling bounded disorder
distributions can artificially mask rare region effects. To avoid
these challenges we instead sample the potential from a Gaus-
sian disorder distribution that has zero mean and standard
deviation equal to strength W , which is unbounded and known
to increase the probability to find rare states.

To solve the model numerically, we compute spectral and
transport properties using the KPM. In addition, we study
the properties of eigenfunctions near the band center obtained
using exact diagonalization or Lanczos.

To understand the effects on the low-energy states near the
band center we compute the density of states averaged over
disorder samples. This is defined as

ρ(E ) = 1

4L3

[∑
i

δ(E − Ei )

]
, (5)

where the linear system size is L, the exact eigenvalues
Ei, and [. . . ] denotes an average over disorder realizations.
The density of states (DOS) is evaluated through expanding
this expression in terms of Chebychev polynomials up to
an order NC that is filtered using the Jackson kernel [64].
The coefficients of the KPM expansion are computed using
matrix-vector operations that utilize the recursive nature of the
Chebyshev polynomials.

To understand transport properties, we compute the DC
conductivity as a function of the Fermi energy at zero tem-
perature using the KPM. Setting e = 1 = h̄ throughout,1 we
calculate the DC conductivity using the Kubo formula [66]

σ (E ) = 2

L3

∫
f (ε)dε Im Tr

[
vx

dG−

dε
vxδ(ε − H )

]
, (6)

where f (ε) = [eβ(ε−E ) + 1]−1 is the Fermi function at inverse
temperature β and chemical potential E (since we work at
zero temperature E is the Fermi energy), vx is the velocity
operator in the x direction, G− is the retarded Green function,
and we average over disorder samples denoted [. . . ]. We focus
on the zero-temperature limit and handle the double KPM
expansion of Eq. (6) that is truncated to an order NC via GPU’s
for the matrix-vector multiplication allowing us to reach large
system sizes.

To accurately compute the localization phase boundary,
we utilize a multifractal finite-size scaling approach to wave
functions from Ref. [65]. We first coarse grain the wave-
function probability density across cubic bins of size 3 < L3.
After this partition of the system into (L/l )3 ≡ λ−3 cubes we

1Note that this implies e2/h = 1
2π

.

introduce the probability in cube k

μk (E ) =
∑

j∈cube k

|ψ j (E )|2. (7)

From this a generalized inverse participation ratio Rq and its
derivative Sq = dRq/dq are defined as

Rq(E ) ≡
∑

k

μk (E )q, Sq(E ) =
∑

k

μk (E )q log μk (E ). (8)

At an Anderson localization transition the wave functions
become multifractal; this manifests in Rq via the power-law
dependence on system size

[Rq(E )] ∼
(



L

)τq (E )

, (9)

and the nonlinear dependence of τq on q is the hallmark of
multifractality. To compute the location of the localization
transitions, we focus on the multifractal spectrum

αq(E ) = dτq(E )

dq
. (10)

Despite the universal multifractal scaling relations only hold-
ing at the critical point, it is useful to extend them to the close
vicinity of the transition following Ref. [67]. This allows us to
estimate αq in the critical regime via

αq(E ) = [Sq(E )]

[Rq(E )] log(/L)
. (11)

In the following we use the scaling properties of αq to esti-
mate the phase boundaries to the Anderson localized phases
between either the trivial or topological Anderson insulating
states and the diffusive metal. This quantity is particularly
useful in the limit of weak disorder that we are focusing on
as the spectral gap of each insulating phase will be filled in
by an exponentially small contribution coming from nonper-
turbative and exponentially localized Lifshitz states [10]. It is
precisely the delocalization of these states that we are after in
the following.

III. AVOIDED CRITICALITY

As discussed previously, in the clean limit the topological
band structure can be tuned through a strong to weak TI tran-
sition that is the focus of this work. As the weak TI phase has
a trivial Z2 index, we regard this as a phase transition between
an Anderson topological insulator and a trivial Anderson in-
sulator in the presence of finite disorder (though the weak TI
phase with disorder remains a rich problem [68]) (see Fig. 1).
The critical point separating these two phases in the absence
of disorder is a Dirac semimetal with a single Dirac cone in
the bulk. The lack of stability of the 3D Dirac semimetal to
disorder implies that this should become a diffusive metal for
infinitesimal disorder; we explore this regime in the following
section.

A. Density of states

The lack of stability of the Dirac semimetal to disorder
is signaled by a nonzero density of states at the Dirac node
(which occurs at energy E = 0). In the perturbative picture
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[Fig. 1(a)], a Dirac semimetal line (shown in Fig. 2) separates
the trivial and topological Anderson insulating phases that
terminate at a putative tricritical point separating it from a
diffusive metal phase. In the following, we explore the density
of states across the phase diagram and focus in the vicinity
of the perturbative Dirac semimetal line that we will show is
unstable to disorder due to a finite but exponentially small
density of states. The density of states at the band center
across the phase space of W − m2 is a helpful diagnostic for
a finite system size [55] to locate this regime as the den-
sity of states is larger here than in the insulating phases. [It
should be noted that this diagnostic would work even if the
semimetallic phase was stable due to broadening of states in
the KPM calculation of ρ(0).] Thus, we can label the line of
maximum density of states at the band center as our estimate
of the perturbative Dirac semimetal “line”; as a function of
m2 it is denoted as WPSM(m2) (see Fig. 2). WPSM(m2) can be
computed perturbatively [11], e.g., using the self-consistent
Born approximation; however, from the nonperturbative per-
spective this is really more a measure of the center of the
disorder-induced diffusive metal phase. To clearly identify
this regime as a diffusive metal we also investigate the DC
transport properties and the nature of the wave functions in
the following. The level statistics showing the diffusive metal
is consistent with the Gaussian symplectic ensemble (GSE)
random matrix theory ensemble are shown in Appendix B.

The rounding of the perturbative critical point along the pu-
tative Dirac semimetal line can be probed through the analytic
properties of the density of states. Assuming the transition is
avoided allows us to Taylor expand the energy dependence of
the density of states (along this line):

ρ(E ) = ρ(0) + 1

2
ρ ′′(0)E2 + 1

4!
ρ (4)(0)E4 + · · · (12)

and if this assumption is invalid the density of states will be-
come nonanalytic, signaled by a divergence in the derivatives
of the density of states. As has been shown in several lattice
models of Dirac and Weyl semimetals, the avoided quantum
critical point can be located by the maximum in ρ ′′(0) as a
function of W , and the strength of avoidance is measured by
the size of this peak once it has been saturated in system size
and KPM expansion order [22,23].

To establish the location of the avoided transition, denoted
WAQCP, we compute ρ ′′(0) across the phase diagram in the
space of W − m2 as shown in Fig. 3(a). We find a broad max-
imum in the space of W − m2 and estimate the AQCP from
where it is maximal along the the line defined by WPSM(m2),
which yields WAQCP(−1.75 ± 0.05)/t = 0.85 ± 0.05 though
the peak there in ρ ′′ vs W is quite weak. As we show in
Sec. III B, this estimate of the location of the AQCP is con-
sistent with the appearance of a critical scaling regime of the
conductivity. To demonstrate the transition is avoided in the
thermodynamic limit, we consider two larger system sizes
(L = 120, 200) and saturate the peak of ρ ′′(0) in the KPM
expansion order (NC) as shown in Fig. 3(b), demonstrating the
density of states remains a smooth function in this regime, and
the putative transition is avoided.

Having located the avoided transition we can now “follow”
the density of states down the putative semimetal line. As
shown in Fig. 4, we find the density of states is nonzero but

FIG. 3. Avoided transition seen through a converged ρ ′′(0). (a) A
map of the second derivative of the density of states (on a logarithm
scale) across the phase diagram in W and M = m2/m0 is shown for
system size L = 200 and KPM expansion order NC = 2048. The
appearance of the PSM is clear from the “ridge” of local maxima
in ρ ′′(0) near M = −2. (b) We show the average second derivative
of the density of states for several KPM expansion orders and two
system sizes L = 120 and 200 along the PSM line, showing that the
peak is converged in L and NC and that it has only a weak maximum
roughly around Wc(m2 = −1.75) ≈ 0.85. Beyond W > 0.9 the PSM
can no longer clearly be found but ρ ′′(0) decreases for larger W
indicating the weak maximum as shown in the top figure.

becomes exponentially small at weak disorder and we find it
follows the rare region form (that is qualitatively consistent
with the instanton analysis [53])

log ρ(0) ∼ −
(

t

WPSM(m2)

)2

(13)

along the PSM following WPSM(m2). This demonstrates that
the density of states is nonzero along this line stretching down
to weak disorder. Importantly, we are able to converge ρ(0)
in system size and KPM expansion order, and the resulting
data follow Eq. (13) across close to five orders of magnitude
in ρ(0).
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FIG. 4. Density of states along the perturbative semimetal line.
We show the average density of states at E = 0 for three systems
sizes (denoted by the symbol type) and several KPM expansion
orders along the PSM line, showing that it is converged in L and
NC at these values of W and that it follows the nonperturbative rare
region form log ρ(0) ∼ −(t/W )2.

The presence of nearby Anderson insulating states makes
identifying the presence of the diffusive metal phase solely
through the density of states insufficient as localized Lifshitz
states occur away from the mobility edge and contribute to a
finite density of states. Therefore, we now turn to computing
the DC conductivity along this perturbative Dirac semimetal
line paying particular attention to where we demonstrated the
nonzero density of states.

B. Conductivity

We now turn to the DC conductivity at zero temperature.
Having demonstrated the presence of an AQCP in the density
of states we now consider how signatures of the perturbative
transition show up in the scaling of the conductivity. If the
transition was not avoided then the DC conductivity at the
transition should vanish at E = 0 as a power of |E | [34], but
we find this is rounded out for W ≈ WAQCP(m2 = −1.75t ) =
0.85t , in particular a finite-energy crossover scale (that is
generated by nonperturbative effects) exists (E∗), such that at
energies above it the conductivity looks critical, namely,

σ (|E | � |E∗|) ∼ |E |1/z. (14)

We find that z ≈ 1.5, as shown in Fig. 5, in excellent agree-
ment with previous estimates of z at the AQCP [25,26].
However, as the transition is avoided and the phase at E = 0
is a diffusive metal [σ (E = 0) > 0], we expect that at low
enough energies (|E | < |E∗|) this scaling will be spoiled by
the finite value of σ (0) as E → 0 defining a crossover scale
|E∗| > 0. In Fig. 5(b), E∗ appears as the rounding of the
conductivity from power law to essentially E independent at
small |E |.

To extract the rare-region contribution to the DC conduc-
tivity, we find it useful to use twisted boundary conditions
with a twist of θ = (π, π, π ) with even system size L to
induce the largest possible finite-size gap in σ . This allows the
rare-state contribution to populate the finite-size gap (similar

FIG. 5. Observing the AQCP in the scaling of the conductivity.
The DC conductivity as a function of the Fermi energy E computed
with KPM. (a) For several values of the disorder strength W and
NC = 2048 with L = 85. Near the avoided transition found from the
peak WPSM(m2 ≈ −1.75) ≈ 0.85t in ρ ′′(0) we find that above a low-
energy crossover scale (E > E∗) the conductivity scales like σ ∼
E 1/z with z ≈ 1.5 in excellent agreement with the expectation of z
based on the known nature of the AQCP. (b) Shows for W = 0.85
and M = −1.8 at various larger NC that by increasing NC , the scaling
does not change and the low-energy rolloff at the crossover scale E∗

is due to a nonzero DC conductivity in the zero-energy limit.

to what has been successful for the density of states [35]).
We average σ over 100 samples for L = 150 and 50 samples
for L = 200, utilizing large system sizes and KPM expansion
orders enabled by our GPU implementation. To remove the
leading perturbative, finite-size effect, we ensure that each
random sample that has a potential that sums exactly to zero
by shifting the random potential by its average. We discuss
these effects in more detail in Appendix A.

Using this approach, we converge the rare-region contribu-
tion to the DC conductivity along the PSM line in system size
and KPM expansion order. Our results are shown in Fig. 6(a).
We see that at disorder strengths on the order of the AQCP
(1/W 2 ≈ 1.3) the conductivity is well converged at small NC

and L, as W decreases along the perturbative semimetal line,
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FIG. 6. A diffusive metal with a finite conductivity along the
PSM line. (a) Along the line WPSM(m2) we are able to converge the
DC conductivity at the largest system sizes (L) and (NC) down to an
order ∼10−5. While it is much more challenging to converge this as
far along the line as the density of states in Fig. 3, we are still able to
find a converged DC conductivity down to W = 0.6t , well below our
estimate of the AQCP at W = 0.85t . (b) Comparison of the scaled
conductivity [

√
σ (0)] for L = 200 and NC = 6144 and the density of

states [ρ(0)] for L = 80 and 120 with NC = 4096 in the rare-region
regime yielding ρ(0) ≈ 0.03

√
σ (0).

we see the data remains converged at our largest system size
L = 200 and expansion order NC = 6144 down to weak dis-
order strengths, well below the AQCP to W ≈ 0.6t . We find
in the band center (and in the regime 0 � E < E∗) that the
converged DC conductivity is exponentially small and follows
the nonperturbative rare-region form similar to the density of
states

log σ (E = 0) ∼ −
(

t

WPSM(m2)

)2

. (15)

Thus, our results are consistent with the entire PSM line
being a diffusive metal phase with a nonzero density of
states and DC conductivity due to rare regions of the random

potential. Comparing the fits of the rare-region functional
forms in Eqs. (13) and (15), namely. log ρ(0) ≈ −a/W 2 + b
and log σ (0) ≈ −a′/W 2 + b′, yields a = 3.6 and b = 0.7 for
the density of states and a′ = 6.4 and b′ = 6.7 for the con-
ductivity, which approximately yields the relationship σ (0) ≈
[ρ(0)/0.03]2 in the rare-region dominated regime as shown in
Fig. 6(b).

Thus, we conclude that in the rare-region dominated
regime, at weak disorder, transport is facilitated by tunneling
between these rare regions with large probability amplitude
resulting in

σ (0) ∼ ρ(0)2. (16)

In this regime, the diffusion constant apparently behaves as

D = σ (0)/ρ(0) ∼ ρ(0), (17)

which is also exponentially small and follows Eq. (13). These
results represent the first direct demonstration that the rare-
region dominated regime yields diffusive transport properties,
which is a central result of this paper. It is interesting to
compare this result with a self-consistent T -matrix calculation
[56], which obtained an effectively constant diffusivity, in
contrast to our finding in Eq. (17). We have not developed
any theoretical understanding of this difference, and leave this
question for future work.

By varying the mass parameters of the model we can tune
the system out of this diffusive metal phase at weak disorder
into either topological or trivial insulating phases, which we
now turn to.

IV. ANDERSON LOCALIZATION TRANSITIONS

In the following section, we explore the Anderson lo-
calization transitions in close proximity to the diffusive
metal regime that we have identified along the perturbative
semimetal line. Starting in either insulating phase and turning
on a weak disorder potential will fill in the spectral gap, but
the density of states and the conductivity will remain expo-
nentially small (in the disorder strength W ), which makes a
precise estimate of the conductivity a challenging computa-
tional task. Due to this, we find that the KPM approach to
the DC conductivity has trouble precisely locating the local-
ization phase boundaries, as the finite KPM-expansion order
broadens the low-energy and finite-size scaling of the DC
conductivity. As a result, to provide a separate identification of
the Anderson localization phase boundaries we systematically
study the nature of eigenfunctions near the band center across
the transition, as described in Eq. (10). Because the density
of states is so small here, eigenfunctions near the band center
can be obtained efficiently using Lanczos-based approaches
and thus computed over a large number of samples that allow
us to estimate the Anderson insulator (trivial and topological)
to diffusive metal transition over a narrow energy window at
the band center.

We first show, in Fig. 7, the conductivity across the phase
diagram on a logarithm scale that more clearly shows a finite
diffusive metal phase separating two regimes with a vanish-
ingly small conductivity. We explore several cuts across this
phase diagram in this section.
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FIG. 7. Anderson localization phase boundaries. A zoom into the
region near the transition, the color is the value of log σ (0) at the
band center for L = 101 and NC = 1024 displaying the insulating
phases (topological for M = m2/m0 > −2 and trivial for M < −2)
in blue and the metallic phase in yellow. Based on the multifractal
properties of the eigenfunctions near the band center, we use the
crossing of the two largest sizes to estimate a bound for the localiza-
tion transition shown in red (see Fig. 8). For the vertical cuts along W
this acts as an upper bound on the transition and importantly for the
data points in the yellow region of the color plot the crossings drift
outward away from the center of the metallic wedge. Taken together,
we are able to discern the presence of a finite but narrow metallic
phase between the two red phase boundaries. While this becomes
even more narrow at weak disorder, our data are consistent with the
nonperturbative scenario in Fig. 1.

To estimate the localization transition at the critical disor-
der strength Wl and energy E near the band center (practically,
we take a small but finite-energy window to be |E | < 0.001)
as a function of W we use the finite-size scaling ansatz on αq

from Eq. (11) to obtain

αq(E ) ∼ gq(E , |W − Wl |L1/ν ), (18)

where gq is an unknown scaling function and ν is the lo-
calization length exponent. This ansatz implies the data on
αq for various system sizes will cross at Wl , allowing for an
unbiased estimate of the localization transition. This makes
this object more useful then the inverse participation ratio as
the latter has an overall scaling dimension which results in a
more complicated finite-size scaling analysis to estimate Wl .

We present two distinct cuts across the phase diagram in
Fig. 2 from an Anderson topological insulator to a diffusive
metal in Fig. 8(a) and a trivial Anderson insulator to diffusive
metal in Fig. 8(b). As can be seen from the data, there is a
clear drift in the crossing of each pair of increasing system
sizes. Due to the large drift and the available system sizes used
in the numerics we are unable to provide an accurate estimate
of Wl . Instead, we use the location of the crossing between the
two biggest system sizes as an upper bound on Wl as the drift
in the crossing is towards smaller W .

In Fig. 8(c), we present a cut as a function of M = m2/m0

at fixed disorder strength well below the AQCP. We first start
at weak disorder strength (W = 0.54t), where the perturbative
picture would predict a direct transition between a topological
and trivial Anderson insulator. However, this is inconsistent
with our results. Instead, we find that on this range of system
sizes there are two clear crossings, with a clear drift outward
away from the PSM line on the two sides of the diffusive
metal “sliver” in Fig. 7, providing strong evidence for the ap-
pearance of an intervening delocalized phase. We then follow
this upwards along the PSM line [e.g., following WPSM(m2)]
allowing us to track the two separate estimates of the phase
boundary bounds that are placed with red data points in the
conductivity color map in Fig. 7. This intervening delocalized
phase is precisely the diffusive metal phase penetrating down
the space between the two insulating phases that we have
previously identified with the converged DC conductivity that
is exponentially small in Fig. 6 and described by Eq. (15). This
in conjunction with the converged DC conductivity on large
system sizes provides numerical evidence for the absence of
a direct transition between trivial and topological insulating
phases in the presence of disorder.

FIG. 8. Wave functions near the band center exhibiting the localization transition through multifractral finite-size scaling. At fixed M =
m2/m0 we consider a cut along the topological-Anderson-insulator to diffusive-metal transition (a) at M = 1.6, and along the trivial Anderson
insulator to diffusive metal transition (b) for M = 2.1. We expect that αq will cross for several system sizes at the transition. Instead, we see a
clear drift in the crossing as we increase the system size. This demonstrates there are large finite-size corrections to the crossing at these sizes.
Therefore, we take the crossing between the largest pair of system sizes as an estimate of the bound (from above) of the localization transition.
(c) A cut at fixed W = 0.54 as a function of M. Here we identify two separate crossings in αq demonstrating the presence of two separate
transitions. We also find a clear drift in these crossings; here the drift is importantly outward away from the perturbative semimetal line. We
take q = 1.2 in the data presented.
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V. DISCUSSION AND CONCLUSION

In this work, we have explored the possibility of an in-
tervening diffusive metal phase separating 3D trivial and
topological Anderson insulators at weak disorder. By fol-
lowing the line of maximal density of states on finite-size
simulations, we are able to track the perturbative semimetal
“line” that ends with a strongly avoided transition at larger
disorder strength. Along this line, we are able to converge the
density of states and DC conductivity to a nonzero but expo-
nentially small value down to disorder strengths well below
the estimate of the avoided transition. This work provides an
estimate of the exponentially small but finite rare-region con-
tribution to the DC conductivity below the avoided transition.
To ascertain the location of the Anderson transitions of the
trivial and topological insulating phases, we used the finite-
size multifractal scaling of the wave functions to provide
strong evidence of two separate localization transitions due to
the diffusive metal phase penetrating down the phase diagram
below the avoided transition. The finite density of states and
conductivity demonstrate that the diffusive metal regime of
the phase diagram is self-averaging in the thermodynamic
limit, which we expect will produce a finite typical density
at the band center that is exponentially small and follows the
average in Eq. (13) (thus going beyond the perturbative picture
in Ref. [35]) and multifractal-like wave-function properties
[69] will be cut off at the longest length scales.

Our work points to a strong dichotomy between doping-
tuned topological transitions and those that are tuned by
pressure or optical means. In fact, disorder introduced by
doping will lead to an intrinsic broadening of the expected
semimetal point into a metallic phase and experimentally it is
expected to be represented as a regime of finite extent. Indeed,
in experiments on BiTl(S1−δSeδ )2, the finite regime of doping
0.4 < δ < 0.6 was identified as separating the two trivial and
topological insulating phases [18], directly in line with the
expectations based on our results. In contrast, pressure tuned
or optically activated topological phases [70] in nominally
undoped samples should have a very narrow metallic phase
being set by the intrinsic disorder in the sample. This cat-
egorical difference between doped and undoped topological
phase transitions suggests a quantitative difference that can be
explored experimentally.

Last, we comment on the role of weak repulsive Coulomb
interactions that are present in each of the TI materials previ-
ously mentioned, though we have ignored them in this study
that focuses on the effects of disorder. First, if the metal-
insulator transitions remain continuous in the presence of
interactions, there are several interesting effects worth con-
sidering. The first is to incorporate charged disorder [71,72]
to go beyond the short-ranged disorder we have considered so
far. This will effectively dope the Dirac cones and this will
lead to a broadened, even larger intervening metallic phase
due to percolating electron and hole puddles [73]. Second,
at the same time if the interactions are screened to make
them sufficiently local, the nonperturbative quasilocalized res-
onances will pay a large interaction energy cost and therefore
we expect local interactions to suppress these rare regions
and should narrow the metallic sliver. It will be fascinating
to study these competing effects in future work.
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APPENDIX A: PUSHING STATES AWAY
FROM ZERO ENERGY

In this Appendix, we discuss some useful details that are
important to accurately get the rare-region contribution to
the conductivity. This is based on the approach described in
Ref. [22].

First, consider the leading perturbative correction to the
energy eigenvalues in the disorder potential. This is equal to∑

r V (r) ∼ W/L3/2 (random sign), and even though it aver-
ages to zero, it broadens any features in ρ(E ) or σ (E ) to
the leading order. We remove this perturbative correction by
ensuring that each sample has a random potential that sums
exactly to zero. This amounts to working with the shifted
potential Ṽ (r) = V (r) − L−3 ∑

r′ V (r′).
We now focus on introducing the largest finite-size gap

possible in the numerics to allow for rare-region effects to
dominate near low energy. To do so we apply twisted bound-
ary conditions with a twist of θ = (π, π, π ) to push the
low-energy states as far away from zero energy as possible. As
can be seen in the density of states in Fig. 9, the twist creates
a finite-size gap and averaging over random twists gives a
smooth interpolation through this gap, and just applying pe-
riodic boundary conditions produces a large finite-size effect
due to the states at or near zero energy. We take advantage
of this Appendix when computing the conductivity along the
perturbative semimetal line.

APPENDIX B: FINITE-ENERGY LEVEL STATISTICS

In this Appendix we study the level statistics of the
diffusive metal phase. Here, we present results on the energy-
resolved adjacent gap ratio

r(Ei) =
[

max(δi, δi+1)

min(δi, δi+1)

]
, (B1)
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FIG. 9. Comparison of three choices of the treatment of the
boundary condition [periodic boundary conditions, averaging over
twisted boundary conditions, and a twist of (π, π, π ) labeled “no
twist,” “avg twist,” “twist pi,” respectively] on the finite-size density
of states in the clean limit (i.e., no disorder) at the Dirac semimetal
critical point m2/m0 = −2. Shown is a KPM expansion order of
NC = 210 and a linear system size of L = 60.

where δi = Ei − Ei−1, that is a dimensionless measure of the
level statistics of the model. We compute this from the full
spectrum and therefore focus on small sizes using exact diag-
onalization, with periodic boundary conditions. For the data
presented here, we averaged over 200 samples. In Fig. 10,
we fix the disorder strength and vary m2 for W = 0.7 and
1.0 that are below and above the avoided transition. Due
to the small finite size, we find it challenging to accurately

FIG. 10. Average adjacent gap ratio r(E ) as a function of energy
for W = 0.7 (top) and W = 1.0 (bottom) for several values of m2,
for L = 10 computed using exact diagonalization. The data show that
the finite-energy level statistics clearly follows the GSE prediction of
rGSE ≈ 0.6750 [76] shown as a black dashed line.

resolve the low-energy level statistics near the band center. At
finite energy, however, we find very nice agreement with the
Gaussian symplectic ensemble of random matrix theory.
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