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Topological quasiparticles with sophisticated vectorial structures such as skyrmions play a key role in a
variety of physical systems, ranging from quantum fields to magnetic materials. Wherein, optical skyrmions
have attracted great attention due to their potential applications in optical information processing, transfer, and
storage. In this paper, tunable plasmonic skyrmion lattices are demonstrated on graphene surfaces, where the
graphene plasmons are excited using three pairs of dielectric diffractive gratings with radially polarized light
beams. We have found that graphene plasmonic skyrmions with identical field distributions at different excited
wavelengths can be achieved by tuning the Fermi energies without reoptimizing the grating structures, and the
unit cell size of graphene plasmonic skyrmion lattices can also be actively tuned by Fermi energies at fixed
excitation frequencies. Moreover, synthesized doughnut right-circularly polarized beams can also excite the
plasmonic skyrmions in the axial symmetric structure with half the excitation efficiency compared to radially
polarized beams. The proposed devices may find applications in optical information storage and manipulation in
a chip.
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I. INTRODUCTION

Skyrmions, the generalized topological quasiparticle mod-
els proposed by Skyrme [1], have been considered in many
platforms [2]. Over the last decades, magnetic skyrmions have
attracted enormous research interest, due to their nontriv-
ial real-space spin-swirls topologically stabilized at magnetic
fields [3]. The ultracompact size and unique topological
protection properties make magnetic skyrmions fundamen-
tally interesting and technological in topological spintronics,
energy-efficient data storage, and manipulation [4,5]. Very
recently, skyrmionic structures have been observed in optics
[6]. Tsesses et al. [7] have shown that optical skyrmion lattices
can be generated using standing waves composed of evanes-
cent electromagnetic fields. Davis et al. [8] have demonstrated
time-resolved vector imaging of plasmonic skyrmions lattices
with subfemtosecond time steps and a 10-nm spatial scale.
Du et al. [9] have demonstrated that spin-skyrmions can be
generated in the surface plasmon field in the presence of spin-
orbit coupling and the local spin direction in the skyrmion-like
structure can vary on the deep-subwavelength scale. Shen
et al. [10] have demonstrated that supertoroidal pulses also
exhibit skyrmionic structure of the electromagnetic fields.
In addition to the Néel-type photonic skyrmions, Bloch-type
photonic skyrmions have been proposed in optical chiral mul-
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tilayers [11,12], and the characterized topological structures
of bimeron (the quasiparticle homeomorphic to skyrmion)
have also been proposed in free space with Néel, Bloch, and
anti-skyrmion types [13]. Over the last year, Liu et al. [14]
have theoretically illustrated that vectorial holograms can be
used to generate optical skyrmions with different topological
features at will, and Shen et al. [15] have experimentally
implemented a digital hologram system to generate the tun-
able optical skyrmions. However, the manipulation of optical
skyrmions by designing different spatial structures based on
noble metal is too rigid to realize device integration. Besides,
the plasmonic response of noble metal is mainly in the vis-
ible to near infrared range, and thus it is difficult to realize
midinfrared and terahertz applications. Moreover, due to the
weak confinement of surface plasmons existed at the interface
between the air and a conductor, the unit cell of the optical
skyrmions lattices is in the dimensions of the wavelength
scale, which has greatly limited the applications of optical
skyrmions in ultracompact on-chip storage applications.

Graphene plasmons (GPs), the intrinsic collective excita-
tions propagating along graphene sheets, have attracted much
attention due to their highly tunable, extreme electromagnetic
field confinement as well as long plasmonic lifetime [16–18].
Because of the unusually short wavelength relative to the
free light, GPs can be utilized for enhancing light-matter
interactions at deep-subwavelength scales in the midinfrared
to terahertz range. In recent years, plenty of graphene-based
plasmonic devices with unique properties have been pro-
posed theoretically and demonstrated experimentally, such as
photodetectors [19], biosensors [20,21], resonators [22–24],
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perfect absorbers [25,26], and terahertz lasers [27,28]. In the
midinfrared and terahertz regime, one can expect that the
deep-subwavelength tunable graphene plasmonic skyrmion
lattices would exist in graphene sheets. Noticing that the
optical skyrmion lattices can be regarded as coherent su-
perposition of six symmetric transverse-magnetic evanescent
guided waves [7], the key point for exciting the graphene
plasmonic skyrmions is to generate three pairs of collimated
in-phase propagating graphene plasmons with equal ampli-
tudes and designated propagation directions simultaneously
[7]. When using the grating excitation configuration, the in-
cident polarization must be along the periodic direction of
the gratings. However, due to the three pairs of gratings
having different periodic directions, the polarization of inci-
dent light must possess cylindrical symmetry. Normally, an
incident wave with spatially homogeneous states of polariza-
tion, e.g., circularly polarized beams (CPBs), was adopted
to generate the surface plasmon polaritons [7,8]. However,
the plasmonic skyrmions excitation with CPBs possesses
two obvious disadvantages. First, CPBs will introduce extra
phase difference between different gratings, demanding the
wavelength-dependent displacement of the gratings to com-
pensate for the phase difference [7,29]. As a result, each
spatial structure only supports a single wavelength, which
greatly weakens the advantage of the tunability of graphene
plasmons. Next, the azimuthal electric field component is
wasted in the excitation process, which has halved the ex-
citation efficiency. To solve the problems, cylindrical vector
beams (CVBs), specifically, radially polarized beams (RPBs),
are adopted to generate the plasmonic skyrmions. CVBs are
vector beam solutions of Maxwell’s equations that obey axial
symmetry in both amplitude and phase, and rotational sym-
metry in states of polarization. Wherein, the electric fields of
RPBs and azimuthal polarized beams (APBs) are polarized in
radial directions and azimuthal directions, respectively. RPBs
have drawn much interest due to their unique features in
many research fields, for example, sharp focus [30], accel-
eration techniques [31], particles trapping [32,33], detection
and nanolocalization of dielectric particles [34], high reso-
lution microscopy [35], and plasmonic excitation [36]. With
the RPBs, one can effectively excite the graphene plasmonic
skyrmion lattices without shifting the gratings.

In this paper, we report the generation of graphene plas-
monic skyrmion lattices on a graphene surface with uniform
Fermi energies, where the GPs are excited using dielectric
diffractive gratings with phase-homogeneous radially polar-
ized incident light beams. Graphene plasmonic skyrmions
with identical field distribution at different excited frequencies
can be achieved by tuning the Fermi energies, and the unit
cell size of graphene plasmonic skyrmion lattice can also
be tuned at fixed excited frequencies. Moreover, we analyze
and compare the plasmonic skyrmions excited by synthe-
sized doughnut radially polarized beams, azimuthal polarized

FIG. 1. Schematic diagram of the generation of optical
skyrmions on the graphene surface. GPs are excited by radially polar-
ized light with three pairs of ridged diffractive gratings and propagate
toward the center of the structure to form the optical skyrmion lattice.

beams, x-polarized linearly polarized beams (LPBs), and
left-circularly/right-circularly polarized beams (L-CPBs/R-
CPBs), and we find that synthesized doughnut LPBs and
L-CPBs cannot excite the skyrmions in our symmetric struc-
ture, due to the extra phase factor, while R-CPBs can excite
the skyrmions with half the excitation efficiency compared to
RPBs. Our proposed graphene plasmonic skyrmion lattice can
be used for data storage and manipulation in graphene sheets
in an ultracompact way.

II. THEORETICAL DESCRIPTION

The schematic diagram of the graphene plasmon
skyrmions’ generation is shown in Fig. 1. To couple infrared
light from the air into the graphene surface waves at normal
incidence, six ridged diffractive grating arrays with C6v point
group symmetry forming three pairs of gratings on the silica
substrate are designed underneath the graphene monolayer.
The duty cycle of the gratings is maintained at 0.5, and the
grating arrays have the period � and the ridge height h0.
When the three pairs of gratings are illuminated with proper
polarizations, plasmonic waves at the graphene interface with
strong light confinement in the perpendicular direction can
be excited, which will propagate toward the center of the
structure. When the distance between the gratings and the
center of the structure is L, the lossless electromagnetic field
of the GPs along the x-y surface can be expressed as

E =

⎛
⎜⎝

E (ω)
x

E (ω)
y

E (ω)
z

⎞
⎟⎠ = E0eiq′Le−|κz |z

∑
θ=− π

3 ,0, π
3

⎛
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−|κz | cos θ

q′ sin[q′(x cos θ + y sin θ )]

−|κz | sin θ

q′ sin[q′(x cos θ + y sin θ )]

cos[q′(x cos θ + y sin θ )]

⎞
⎟⎠, (1)
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where E0 is a real normalization constant, q = q′ + iq′′ is the
propagation constant, and thus λp = 2π/q′ denotes the GPs

wavelength, κz =
√

q2 − k2
0 is the longitudinal wave number

in vacuum, and k0 = ω/c is the wave number in vacuum. It
is well known that the propagation constant of a supported
graphene monolayer is given by [18]

1√
k2

0 − q2
+ ε̄√

ε̄k2
0 − q2

= 4πσ (ω)

ω
, (2)

where ε̄ is the effective permittivity of the substrate. The
complex surface conductivity σ of the graphene monolayer is
governed by the Kubo formula with the random-phase approx-
imations [37–39], which is related to the photon frequency ω,
the Fermi energy EF , the electron-phonon momentum relax-
ation time τ = µEF /ev2

F , and the ambient temperature T :

σ (ω)

σ0
= 8ikBT ln

[
2 cosh

( EF
2kBT

)]
π h̄(ω + iτ−1)

+ sinh
(

h̄ω
2kBT

)
cosh

( EF
kBT

) + cosh
(

h̄ω
2kBT

)

− i

2π
ln

(h̄ω + 2EF )2

(h̄ω − 2EF )2 + (2kBT )2
, (3)

where σ0 = e2/4h̄, kB is the Boltzmann constant, and h̄ is
the reduced Plank constant. The dimensionless conductivity
can be defined as σ̂ ≡ 2πσ

c = πα
2

σ (ω)
σ0

, and α ≈ 1/137 is the
fine-structure constant. Using the electrostatic limit, the prop-
agation constant can be greatly simplified as q/k0 = 0.5i(1 +
ε̄)/σ̂ . In order to effectively excite the six gratings with the
same intensity, the grating period is required to satisfy the
phase-matching condition

q′

k0
− sin θ = m

λ

�
, (4)

where m is the diffraction order and θ is the incident an-
gle. For normal incidence (θ = 0) and m = 1, the grating
period is � = λp. Incidentally, due to the grating geometry,
the plasmon wavelength λp in the grating region and the free
propagation region (denoted by λ0

p) are unequal.
It is known that the transverse electric field distribution of

fundamental RPBs at the beam waist z = 0 has the following
form [40–42]:

ERPBs(x, y) =
√

2E inc
0 exp

(
− ρ2

w2
0

)(
x

w0
êx + y

w0
êy

)
, (5)

where êx and êy are unit vectors in the x and y directions,
respectively, ρ =

√
x2 + y2 is the radial coordinate, w0 is the

beam waist radius of the fundamental mode, and E inc
0 is a

constant field amplitude. Noticing the associated Laguerre
polynomials fulfill L1

0 (·) = 1, the amplitude profile is exactly
the Laguerre-Gauss LG01 mode without the vortex phase term.
Moreover, the electric field of the RPBs can also be expressed
as the superposition of orthogonally polarized Hermite-Gauss
HG01 and HG10 modes as ERPBs = HG10êx + HG01êy. Be-
sides, RPBs also have the advantage that the incident field
intensity on the optical axis is close to zero; this will minimize
the impact of the incident light on the generated skyrmion

fields, which is good for the data-acquiring process via scan-
ning near-field optical microscopy (SNOM).

The swirling structure of a skyrmion is characterized by the
topological skyrmion number defined by

S = 1

4π

∫
A

ê ·
(

∂ ê
∂x

× ∂ ê
∂y

)
dA, (6)

where the area A covers one unit cell of the lattice; ê(r) =
Re{E(ω)}/|E(ω)| is the real, normalized three-component field;
and the integrand is the skyrmion number density. The
skyrmion number S, being an integer, is robust to deforma-
tions of the field ê.

III. RESULTS AND DISCUSSION

In our calculations, we start by setting the incident wave-
length of the infrared light to 8.6 µm. Unless otherwise
specified, the permittivity of silica at the midinfrared range
is assumed to be 3.9, the grating ridge height h0 is set as
100 nm, the graphene layer is set as the transition boundary
condition with parameters vF = c/300, µ = 3000 cm2/(V s),
T = 300 K, and EF = 0.65 eV. One can find both the opti-
mized grating period � and the plasmon wavelength λp are
305 nm in the grating region (see Appendix A), which cor-
responds to ε̄ = 2.7 according to the simplified propagation
constant formula. In the three-dimensional FEM simulation,
the finite grating width and number of periods are set as
3.5 µm and six, respectively. The maximum element size
in air area and silica substrate are λ/6 and λ/6

√
3.9, re-

spectively, and the maximum element size in the graphene
sheet is refined to 50 nm. Scattering boundary conditions
are adopted to reduce the reflection from the boundary of
the calculation window. Futhermore, the graphene sheet is
modeled as a transition boundary condition with the effective
bulk conductivity σ (ω)/d , where d ≈ 0.3 nm is the thickness
of single-layer graphene. Besides, the extracted propagation
constant is q′ + iq′′ = (16.533 + 0.4i)k0 in the free propaga-
tion region, corresponding to λ0

p = 520 nm and ε̄0 = 1.17,
respectively; here ε̄0 is slightly greater than the unit because
h0 = 100 nm is smaller than the vertical evanescent decay
length of GPs. The RPBs with homogenous phase distribu-
tion are assumed to normally incident on the grating region
from the air side; here we use the beam waist radius w0 = 7
µm to focus the incident light into the grating regions. As a
result, the calculated axial (out-of-plane) electric field Ez and
the transverse (in-plane) electric field

√
E2

x + E2
y close to the

graphene film are shown in Figs. 2(a) and 2(b). The analytical
electric field without loss based on Eq. (1) is also provided
in Figs. 2(d) and 2(e). The two-dimensional (2D) hexagonal
lattice shown in Fig. 2 can be described by rhomboid cells.
The lattice basis vectors can be expressed as −→α 1 = a(

√
3

2 , 1
2 )

and −→α 2 = a(
√

3
2 ,− 1

2 ), where the lattice constant a is the dis-
tance between two adjacent antinodes. Here the Wigner-Seitz
cells are extracted from the antinodes of the Ez pattern, then
the unit cell area satisfies A = |−→α 1 × −→α 2| =

√
3

2 a2. For the
case of skyrmion lattices superposed by three pairs of standing
waves, one has a = 2√

3
λ0

p, and hence the unit cell area sat-

isfies A = 2√
3
(λ0

p)2 ≈ 3.1 × 105 nm2 ≈ 0.0042λ2. To clarify
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FIG. 2. Simulated optical skyrmion lattice created by GPs.
(a) Real part of the axial (out-of-plane) electric field Ez. (b) Am-
plitude of the transverse (in-plane) electric field

√
E 2

x + E 2
y .

(c) Skyrmion number density map of the lattice. (d)–(f) Calculated
axial electric field (d), transverse electric field (e), and skyrmion
number density (f) according to Eq. (1). Here λ = 8.6 µm, EF =
0.65 eV, and the optimized grating period � = 0.305 µm are
adopted. Scale bar: 1 µm.

the topological texture of the optical skyrmions, the calculated
skyrmion number density distribution is shown in Fig. 2(c),
and one can find that the density distribution is not bubble
type and no domain wall exists between two specific field
states. The phenomena are consistent with the phenomena in
traditional optical skyrmion lattice [7] because the transverse
wave vector q′ � k0 is always satisfied in graphene plasmons.
Calculating the skyrmion number in each lattice site, we reach
the result S = 0.94 (see Appendix B), thus demonstrating
the robustness of the optical skyrmions in graphene sheet.
Compared with traditional metallic nanostructures, one of
the most important advantages for graphene is its tunability.
The Fermi energy of the graphene can be tuned dynamically
by the back gate voltage V through EF = h̄vF

√
nπ ∝ √

n ∝√
V ; therefore, it enables us to achieve graphene plasmon

skyrmions for a broadband frequency by tuning the bias volt-
age. When tuning the Fermi energy, one can conclude an
implicit relationship f (�, EF , λ, ε̄) = 0 without considering
the dispersion of silica, where the effective dielectric permit-
tivities ε̄ depend on the duty cycle and the ridge height h0.
Here ε̄ are fixed both in grating regions and in free propagating
regions; one has f (�, EF , λ) = 0. There are two ways to
fulfill the relationship. The first way is to keep the grating
structure unchanged; the optimized � and λp can be kept
unchanged if Im{σ̂ (λ, EF )}λ = 0.56 µm is fixed. At this time,
the plasmon wavelength λ0

p in the free propagation region
also remains unchanged, which means that the properties
of graphene plasmon skyrmions remain unchanged as well.
Therefore, the designed structure can realize skyrmions in
broadband. The explicit relationship λ = λ(EF )|�=0.305 µm for
broadband graphene plasmon skyrmions is shown in Fig. 3(a).
When ignoring the graphene conductivity originating from
interband transition, the expression may be simplified as EF ∝
λ−2 [43]. Specifically, the calculated axial field distribution at
the selected point (0.43 eV, 10.6 µm) is shown in Fig. 3(b).
The lattice parameter a is 518 nm, and the field distribution
is almost entirely consistent with Fig. 2(a). The second way
is to keep the incident wavelength λ unchanged; then the

（a） （b）

（c） （d）

-1 1Ez

-1 1Ez

FIG. 3. (a) Relation between the Fermi energies and the wave-
length of the incident light for the fixed grating structure. The marks
correspond to considered examples in panel (b) and the original
case, respectively. (b) Real part of the axial electric field Ez with
EF = 0.48 eV and � = 0.305 µm at λ = 10.6 µm. (c) Relation
between the Fermi energies and the period of gratings � for the
fixed incident wavelength λ. The marks correspond to considered
examples in panel (d) and the original case, respectively. (d) Real
part of the axial electric field Ez with EF = 1 eV and � = 0.473 µm
at λ = 8.6 µm. Scale bar: 1 µm. The solid lines indicate the calculated
results; for comparison, the approximate formulas EF ∝ λ−2 and
EF ∝ �, respectively, are also shown with broken lines.

optimized � can be calculated by �/Im{σ̂ (EF )} = 4.7 µm.
The explicit relationship between � and EF for graphene
plasmon skyrmions is shown in Fig. 3(c). Similarly, the ex-
pression can be simplified as � ∝ EF without considering
the interband conductivity. At this moment, the period of
graphene plasmon skyrmions is also changed with the tun-
ing of EF . For example, the calculated field distribution at
the selected point (1.0 eV, 0.473 µm) is shown in Fig. 3(d).
The lattice parameter a is about 770 nm, which means that
each graphene plasmonic skyrmion has a larger unit cell
than before. Here the unit cell of skyrmions satisfy A(1.0)

A(0.65) =
[

λ0
p(1.0)

λ0
p(0.65) ]

2 ≈ [ �(1.0)
�(0.65) ]

2 ≈ 1.52. Inherent losses are very impor-

tant to examine the robustness of the topological properties of
the plasmonic skyrmions. Because losses will distort the unit
vector ê and create an unwanted phase difference between
electric field components. Fortunately, due to the relatively
high-quality factor of graphene plasmons, the real part of
the electric field still yields a well-defined skyrmion lattice.
However, in this regime, the skyrmion number S for unit cells
deviates from unity due to the lattice translation symmetry
breaking. There are a lot of damping pathways of GPs, for in-
stance, the GPs can decay via electron-electron scattering γee,
inelastic scattering with acoustic phonons γA, and intervalley
electron-phonon scattering γK. The total relaxation time satis-
fies τ−1 ≈ γee + γA + γK. To demonstrate the influence of the
losses on the plasmonic skyrmions, we plot the dependence of
the axial electric field Ez on the different relaxation times τ in
Fig. 4. One can find that plasmonic skyrmions can hardly be
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(a)

ps

fs

(c)

(b) fs

ps(d)

-1 1Ez -1 1Ez

-1 1Ez -1 1Ez

FIG. 4. Real part of the axial electric field Ez for the relax-
ation times τ = 50 fs, 100 fs, 0.5 ps, and 1 ps, respectively.
Scale bar: 1 µm.

distinguished for τ � 50 fs, when τ reaches more than 100 fs,
it is easy to observe the skyrmion lattice in the system. If τ

is greater than 0.5 ps, the field distribution will not change
significantly. The field distribution at this time is not totally
consistent with the analytical results shown in Fig. 2(d), which
is due to diffraction and some unwanted reflection from the
gratings and boundaries in the system.

Finally, we consider the influence of the states of polariza-
tion on the skyrmions’ excitation. To facilitate comparison,
synthesized doughnut modes with the same intensity dis-
tribution are adopted for all of the incident states of

polarization. Noticing that HG10 =
√

2E inc
0

w0
x exp (− ρ2

w2
0
) and

HG01 =
√

2E inc
0

w0
y exp (− ρ2

w2
0
), the electric field of RPBs, APBs,

x-polarized linearly polarized beams (LPBs), and CPBs can
be superimposed as

ERPBs = HG10êx + HG01êy,

EAPBs = −HG01êx + HG10êy,
(7)

ELPBs = (HG10 + iHG01)êx,

ECPBs = 1√
2

(HG10 + iHG01)(êx ± iêy),

where ± denote left-circularly/right-circularly polarized
beams. The axial electric component Ez excited by RPBs and
APBs are depicted in Figs. 5(a) and 5(b), respectively. One
can clearly find that skyrmions can hardly be excited by APBs,
this is because the polarization direction of the APBs is per-
pendicular to the periodic directions of the gratings, which can
hardly excite the propagating graphene plasmons. Next, the
axial component Ez excited by LPBs, L-CPBs, and R-CPBs
are depicted in Figs. 5(c)–5(e), respectively. To analyze the
excitation mechanism by LPBs and CPBs, we first introduce
radial and azimuthal unit vectors as êρ = êx cos φ + êy sin φ

and êφ = −êx sin φ + êy cos φ, respectively; thus one has êx =
êρ cos φ − êφ sin φ and êx ± iêy = (êρ ± iêφ ) exp(±iφ), and
incidentally, the phase factor exp(±iφ) is the reason why the

(a)

(d) (e)

(b)RPBs APBs LPBs(c)

R-CPBsL-CPBs (f)

FIG. 5. (a)–(e) Real part of the axial electric field Ez excited by
RPBs, APBs, x-polarized LPBs, L-CPBs, and R-CPBs, respectively.
Scale bar: 1 µm. The insets in panels (a) and (e) show the vector
representation of the electric field near the center. (f) Relationship
between the intensity of the axial component |Ez|2 excited by RPBs
and R-CPBs and the beam waist radius w0. The electric field in (f)
is taken from the limit point just above the origin of the coordinate
plane.

extra displacement of the gratings has to be introduced for the
original circularly polarized beams’ excitation. Noticing that
only the radial component contributes to skyrmions’ excita-
tion, one can rewrite the effective electric field distribution of
RPBs, LPBs, and CPBs as

ẼRPBs = |LG01|êρ,

ẼLPBs = LG01êρ cos φ,

ẼCPBs = 1√
2

LG01êρ exp(±iφ). (8)

With LG01 = |LG01| exp(iφ), one can obtain

ẼLPBs = |LG01|êρ cos φ exp(iφ),

ẼL-CPBs = 1√
2
|LG01|êρ exp(2iφ),

ẼR-CPBs = 1√
2
|LG01|êρ. (9)

One can clearly find that LPBs and L-CPBs possess extra
phase factors exp(iφ) and exp(2iφ), respectively, and this
is why LPBs and L-CPBs do not excite the skyrmions in
Figs. 5(c) and 5(d), while R-CPBs can excite the skyrmions
with half the excitation efficiency in terms of intensity as
shown in Fig. 5(e). Lastly, the beam waist radius w0 can also
affect the excitation efficiency. Considering that the center of
the structure is the position where the interference is always
constructive, one can describe the excitation efficiency of
the skyrmions by the induced electromagnetic field near this
point. The intensity of the axial component |Ez|2 excited by
RPBs and R-CPBs as a function of the beam waist radius w0

is shown in Fig. 5(f). It can be seen that, with the increase of
w0, the excitation efficiency first increases and then decreases,
and its peak appears at 6 µm. More importantly, The intensity
of the axial component |Ez|2 excited by RPBs is exactly twice
as much as that excited by R-CPBs, as expected.
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IV. CONCLUDING REMARKS

Looking toward to an experimental observation of our
work, one can obtain the RPBs by superposition of two or-
thogonal linearly polarized light beams TEM10 and TEM01 via
placing some additional optical elements [44] or employing a
Nd:YVO4 rod-based master as a laser medium in the laser
resonator [45], or by applying space-variant subwavelength
gratings [46]. Moreover, if the beam waist radius w0 is large
compared with the propagation distance of GPs, one can use
a focus prism or a Fresnel lens to focus the incident light
into the grating regions. The silica substrate with six gratings
can be fabricated by focused ion beam etching or electron-
beam lithography in conjunction with reactive ion etching.
Graphene sheets can be obtained by mechanical cleavage from
bulk graphite and then transferred to a SiO2 (300 nm)/Si
substrate. The whole graphene film has uniform Fermi en-
ergy and does not require microstructure processing, which
makes tunability of the Fermi energy of the active graphene
flexible in practice. Plasmonic fields are probed point by
point using various techniques, such as SNOM [7,47], pho-
toemission electron microscopy [48], or photo-induced force
microscopy [49].

In conclusion, we have shown that tunable graphene
plasmonic skyrmion lattice in high-quality graphene can be
effectively generated by radially polarized light with diffrac-
tive gratings. The formed skyrmion lattices have a lattice
constant of a = 2√

3
λ0

p and a deep-subwavelength unit cell area

as small as A ≈ 0.0042λ2. Furthermore, graphene plasmonic
skyrmions with identical field distribution at different excited
frequencies can be achieved by tuning the Fermi energies
without reoptimizing the grating structures, and the unit cell
size of plasmonic skyrmion lattice can also be actively tuned
by Fermi energies at fixed excited frequencies. Moreover, the
plasmonic skyrmions can hardly be distinguished for relax-
ation times τ shorter than 50 fs. Besides, we find that none of
the azimuthal polarized beams, synthesized doughnut linearly
polarized beams, or synthesized doughnut left-circularly po-
larized beams can excite plasmonic skyrmion lattice without
shifting the gratings, while radially polarized beams and right-
circularly polarized beams can excite plasmonic skyrmion
lattice in the axial structure, and the excitation efficiency
of plasmonic skyrmion lattice excited by radially polarized
beams is exactly twice as much as that excited by right-
circularly polarized beams.
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FIG. 6. Dependence of the transmission (T ), reflection (R), and
absorption (A) on the grating period �.

APPENDIX A

A 2D unit cell model of the grating shown in Fig. 6 was
investigated by COMSOL MULTIPHYSICS software to achieve
the optimized grating period. Figure 6 describes the transmis-
sion (T ), the reflection (R), and the absorption (A) versus the
grating period � at normal incidence. Based on Eq. (9) with
θ = 0 and m = 1, one can find the optimized grating period
� is 305 nm.

APPENDIX B

In an optical cycle T , the skyrmion number S as a function
of time t is shown in Fig. 7. For an appreciable fraction of the
first half of the optical cycle, S ≈ −1. During the second half
of the cycle, S ≈ 1, corresponding to a reverse winding of the
graphene plasmonic vectors across the surface.
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FIG. 7. Dependence of the skyrmion number S on the normalized
time t/T .
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