
PHYSICAL REVIEW B 109, 195433 (2024)

Dirac Landau levels for surfaces with constant negative curvature

Maximilian Fürst,1 Denis Kochan ,2,1,3 Ioachim-Gheorghe Dusa,1 Cosimo Gorini ,4,1 and Klaus Richter 1

1Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
2Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

3Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
4SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

(Received 17 July 2023; accepted 23 April 2024; published 28 May 2024)

Studies of the formation of Landau levels based on the Schrödinger equation for electrons constrained to
curved surfaces have a long history. These include as prime examples surfaces with constant negative curvature,
like the pseudosphere [A. Comtet, Ann. Phys. 173, 85 (1987)]. Now, topological insulators, hosting Dirac-type
surface states, provide a unique platform to experimentally examine such quantum Hall physics in curved space.
Hence, extending previous work we consider solutions of the Dirac equation for the pseudosphere for both the
case of an overall perpendicular magnetic field and a homogeneous coaxial, thereby locally varying, magnetic
field. For both magnetic-field configurations, we provide analytical solutions for spectra and eigenstates. For the
experimentally relevant case of a coaxial magnetic field we find that the Landau levels split and one class shows
a peculiar scaling ∝B1/4, thereby characteristically differing from the usual linear B and B1/2 dependence of the
planar Schrödinger and Dirac case, respectively. We compare our analytical findings to numerical results that we
also extend to the case of the Minding surface.
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I. INTRODUCTION

Topological classification of different states of matter
rapidly evolved from a rare curiosity [1,2] into one of the
hottest fields in physics [3–7]. Nowadays, topology serves as
an essential tool [8–11] to characterize the ground-state prop-
erties of interacting and noninteracting condensed-matter-
based systems, comprising the quantum spin Hall effect
[12–15], topological insulators [16–18], three-dimensional
(3D) semimetals [19–21], topological superconductors [22],
to name a few.

On the other hand, there is also geometry entering into
a local description of the dynamics. In the presence of
a nontrivial metric or an emergent gauge field, either in
real or momentum space, the underlying geometrical struc-
ture shows up in parallel transport. Covariant derivatives
thus enter the stage and play a decisive conceptual role. In
single-particle nonrelativistic quantum mechanics, the non-
trivial geometry emerges when considering Bloch states of
lattice-periodic Hamiltonians that give rise to a geometri-
cal object known as the “Fubini-Study-Berry connection”
[23]. The latter is a silent eminence, for example, behind
the popular family of various quantum Hall effects, includ-
ing integer [24], spin [12–15], and anomalous [25] ones.
For concreteness, semiclassical k-space transport of a wave
packet probes the presence of a local geometrical quantity
reflected in the anomalous velocity [26]. The latter stems
from nontrivial parallel transport itself, due to the emergent
gauge field triggered by a coupling of the wave-packet center-
of-mass momentum with underlying magnetic, spin-orbit,
or exchange-field-generated textures. Complementary, global
quantities, i.e., objects integrated over k space, such as con-
ductances, polarizabilities, or other response functions, reflect
the underlying topological features, as first demonstrated by

the celebrated Thouless—Kohmoto—Nightingale—den Nijs
(TKNN) formula [27]. The latter introduced concepts like
Chern number and topological invariants into the field of
condensed matter.

Apart from nontrivial geometrical features in momentum
space, there are exciting possibilities for curved geometry in
real space. Positive spatial curvature is “naturally realized
in the laboratory” on the surface of a sphere, for exam-
ple, on a buckyball [28,29]. Further options are offered by
three-dimensional topological insulators (3DTIs) nanowires.
The shape of the latter can be controlled at the nanoscale
by growth [30,31] and etching techniques [32], so that the
topological Dirac-type states existing on their surfaces prop-
agate through curved two-dimensional space [33,34]. Indeed,
when immersed in a magnetic field cylindrical TI nanowires
with varying radius offer the possibility of combining non-
trivial real-space geometry with nontrivial reciprocal space
one, characterizing, e.g., the (integer) quantum Hall regime. A
notable consequence is that the nanowires’ spectral and mag-
netotransport properties are governed by the subtle interplay
between quantum confinement and geometry that involves
Aharonov-Bohm (AB) and Berry phases [33–36].

Note that the curvature from such a shaping is smooth on
the interatomic scale, and in particular does not arise from the
distortion of the physical atomic lattice as may be the case,
e.g., in graphene systems. The curvature we consider rather
emerges from the fact that topological states exist throughout
the sample surface, and bends to follow the latter where this
is etched or made to grow with a particular shape.1

1Etching and growth clearly have material- and procedure-
dependent effects on local atomic lattice properties, causing, e.g.,
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Crucially for our purposes, the shape of such 3DTI
nanowire naturally leads to a (locally) negative spatial cur-
vature. Negative curvature is associated with interesting
gravitational and cosmological phenomena, e.g., event hori-
zon and Hawking and Unruh radiation. Its realization in
condensed-matter setups is challenging but possible, for ex-
ample, in certain metamaterials whose dielectric constant
varies in a fashion effectively simulating the presence of a
negatively curved metric [37–39]. It was thus possible to study
analogs of the aforementioned gravitational and cosmological
effects using ultrashort optical pulses [40], acoustic waves
[41], and Bose-Einstein condensates [42]. Effective negative
curvature was also implemented via planar networks of su-
perconducting microwave resonators [43] which allow one
to model strong interactions [44–47] on the hyperbolic back-
ground.

Generally, materials with nanoscale curved geometries
possess many intriguing electronic and magnetic properties
framing the fascinating subject of curved electronics [48]. Fol-
lowing up on recent works by some of us [33,34], we instead
propose shaped 3DTI nanowires as a viable experimental
platform [32] to realize hyperbolic surfaces of (constant) neg-
ative curvature for Dirac-type electronic systems immersed in
(strong) magnetic fields.

Landau levels have already been generally studied for
surfaces with constant Gaussian curvature [49]. More specif-
ically, those with a constant negative curvature in an overall
perpendicular magnetic field includes the examination of
Schrödinger-type [50–56,60] and of Dirac-type [57–59] Lan-
dau levels on a hyperbolic plane, Schrödinger-type Landau
levels on the Poincare disk [60,61], and Dirac-type Landau
levels on a hyperboloid [62,63].

Here we study the formation of Landau levels2 on sur-
faces of revolution with constant negative Gauss curvature
for two prominent geometries, the pseudosphere and Minding
surfaces (see Fig. 1). They both can be embedded in three-
dimensional space and can even be potentially realized by
means of TI nanowires with properly carved radial profiles. In
view of such TI nanowires the Dirac case becomes relevant.
We consider the solutions of the massless Dirac equation on
the curved background and in nontrivial magnetic-field con-
figurations exploring geometrical effects stemming from the
underlying spin and electromagnetic connections. In particu-
lar, we consider two configurations: (i) a magnetic field �B⊥
(with constant field strength B) perpendicular to the surface
of revolution; (ii) a coaxial magnetic field �B‖ parallel to the
rotation axis. The latter is much closer to experimental realiza-
tions, and to the best of our knowledge has not been addressed

local imperfections or surface reconstruction. We neglect this physics
throughout.

2Throughout the paper we will use the terms Landau levels and
quantum Hall states in a loose way to describe the eigenmodes of our
system in a magnetic field, even if the field component orthogonal
to the surface is nonhomogeneous. In this case such eigenmodes
are not necessarily degenerate throughout the surface, and therefore
not organized into globally defined Landau levels [33,34]. Since the
precise situation is described case by case, no confusion should arise.

FIG. 1. Surfaces of revolution embedded in R3: pseudosphere
(a) and Minding surface (b), including their angular and radial
(arc length) parametrizations, the corresponding characteristic radii
rmin = γ and rmax = √

a2 + γ 2 are defining outer and inner surface
rims. For two magnetic configurations, the perpendicular magnetic
field �B⊥ points along the local outer normal �n ∝ �∂φ × �∂r to the
surface, while the coaxial field �B‖ points along the rotational z axis,
we set both fields as positive if �n · �B⊥/‖ > 0. (c) Defining reference
frames for a surface of revolution � rotated along the axial z axis
embedded in the Euclidean 3D space R3. Vectors �∂φ and �∂r ∝ �∂l are
tangential to �. The perpendicular component of the magnetic field
�B points along the outer normal �n ∝ �∂φ × �∂r . (d) Illustration of the
two considered magnetic-field configurations.

before.3 For all geometries and field configurations consid-
ered, we calculate the corresponding eigenenergies and eigen-
functions, in most cases both analytically and numerically.

We find, among other results, that Dirac Landau levels
on the pseudosphere and the Minding surface in a strong
coaxial B field show a Zeeman-type splitting. Most notably,
these Landau levels exhibit a peculiar B1/4 scaling that para-
metrically differs from the common B1/2 dependence of the
planar Dirac case, hence reflecting the effect of the Gaussian
curvature in a measurable spectrum.

The paper is organized as follows: In Sec. II we review
the derivation of the massless Dirac equation for surfaces
of revolution in external magnetic fields, taking into account
concepts of spin connection and minimal coupling. This part
involves elements from differential geometry. It is included to
make our presentation as self-contained as possible, but can be
skipped by the reader not interested in such technical details.
In Sec. III we apply this approach to surfaces of revolution
with constant negative Gaussian curvature, namely, the pseu-
dosphere and the Minding surface. We solve the underlying
Dirac eigenvalue problems analytically in Sec. IV, and numer-
ically in Sec. V. Apart from this we also provide a detailed

3In Ref. [81] very specific electromagnetic potentials have been
addressed not including the two prominent field configurations men-
tioned. Note, on the other hand, that a similar problem on the
standard sphere was recently considered [72].
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implementation scheme for practical lattice discretization of
the underlying Dirac problems in curved spaces. We conclude
in Sec. VI, and to provide a presentation as self-contained as
possible we include three technical Appendixes.

II. DIRAC EQUATION: FROM GENERAL FORMULATION
TO CURVED 2D SURFACES

The formal construction of the Dirac operator for an ar-
bitrary space-time manifold is a standard textbook material
[64]. Therefore, for the sake of brevity, we just summarize
the main conceptual steps and set up notation and convention.
For a (D + 1)-dimensional space-time manifold with a met-
ric tensor gμν expressed in some local coordinates {xμ} the
corresponding Dirac equation for a massless particle reads as
[64,65]

iγ aeμ
a Dμψ = 0, (1)

where eμ
a is the vielbein field, gμν = ea

μeb
νηab that brings the

metric tensor gμν pointwisely into the canonical form ηab =
diag(−1,+1, . . . ,+1). Correspondingly, γ a are the Dirac
matrices with {γ a, γ b} = 2ηab. They generate the underlying
Dirac (Clifford) algebra, and

Dμ = ∂μ + 1
8 ω̂abμ[γ a, γ b] (2)

stands for the covariant derivative including the spin
connection4

ω̂ab
μ = ea

ν

ν
σμeσb + ea

ν∂μeνb (3)

(see also Appendix A).
Throughout the paper we use Einstein’s summation con-

vention over repeated (one upper and one lower) Greek and
Latin indices, while the metrics g and η raise and lower
them, correspondingly. As usual, 
ν

σμ stand for the Christoffel
symbols and [·, ·], {·, ·} for the associated commutators and
anticommutators, respectively. In presence of an additional
electromagnetic U(1)-gauge field, described by the 1-form
A = Aμdxμ that couples to a charge q of the massless parti-
cle, the above covariant derivative Dμ changes to Dμ − i q

h̄ Aμ

(minimal coupling). Later, we consider a static magnetic field
�B and an electron with charge q = −e < 0.

The scalar product of two spinor fields ψ1 and ψ2 is de-
fined as the volume integral over the D-dimensional spatial
domain D :

〈ψ1|ψ2〉 =
∫

D

√|det gspace| dx1 . . . dxD︸ ︷︷ ︸
ωg

(ψ1)I (ψ2)I, (4)

where the index I runs over the number of spinor-field
components and the overbar denotes complex conjugation.
Furthermore, ωg is an associated volume form on the spatial
domain.

4The spin connection looks a priori like a mysterious object, while
it couples spin to the curvature of the manifold, generally it ensures
Hermiticity of the Dirac operator with respect to a scalar product
defined on the spinor fields. For 2D surfaces in Euclidean space the
spin connection has a simple geometrical interpretation explained in
Appendix A.

Particular examples of curved manifolds are two-
dimensional (2D) surfaces � (and waveguides) embedded
in 3D Euclidean space, � ⊂ R3. Curved space-times corre-
sponding to them emerge by building the Cartesian product
of the 2D surface with the time-coordinate line R, i.e.,
R × �. In such a case, the curved space-time metric gμν

is inherited from the flat pseudo-Euclidean metric 〈·, ·〉 =
diag(−v2

F ,+1,+1,+1) of the ambient space-time R × R3,
i.e., gμν = 〈�∂μ|R×�, �∂ν |R×�〉. Here the speed of light gets
substituted by an effective Fermi velocity vF as we intend
to discuss fermions in metallic 2D systems. For practical
computations we assume a value of vF = 5 × 105 m/s, which
is a reasonable value considering topological insulators or
Weyl semimetals. In the 2D case ηab = diag(−1,+1,+1) =
eμ

a eν
bgμν , with the timelike component η00 = −1, and the

spacelike components η11 = η22 = +1, vF becomes absorbed
into the definition of the vielbein fields eμ

a . Moreover, without
loss of generality, we can choose the following representation
of Dirac γ matrices for the given ηab:

γ 0 = iσz, γ 1 = σx, γ 2 = σy, (5)

where σx,y,z are the standard 2 × 2 Pauli matrices (for two
spatial dimensions spinors are just two-component fields). In
what follows, we keep the discussion as simple as possible
and just consider 2D surfaces that emerge as surfaces of rev-
olution, say, with the axial axis chosen along the Cartesian
ẑ axis (see Fig. 1).

The axial symmetry makes it advantageous to choose the
azimuthal angle φ as one coordinate of the surface. There are
many convenient choices for the remaining parameter, say,
radius r (if a surface is not a plain cylinder), the arc length
l when walking along the surface at a fixed azimuthal angle,
or the altitude z measured along the z axis (if a surface is
not flat). It turns out that the radius r offers a substantial
advantage in analytical calculations, while the arc length l
is better for numerical lattice simulations, as discussed in
Ref. [34]. Henceforth, we assume z(r) and l (r) to be well-
defined functions with differentiable inverses for r ranging
from rmin to a rmax, meaning we exclude cylinders, pancakes,
and other surfaces containing them as parts, but consider those
displayed in Fig. 1. Changing parametrization from r to l
is achieved by means of the relation (depending on whether
dl
dr ≷ 0)

dl =
√

dx2 + dy2 + dz2

=
√

1 +
(

dz

dr

)2

|dr| = ± dl

dr
dr. (6)

For a rotationally symmetric spatial domain � ⊂ R3

parametrized by (r, φ) via the map

� : [rmin, rmax] × [0, 2π ] 	→ R3 (r, φ) →
⎛⎝r cos φ

r sin φ

z(r)

⎞⎠, (7)
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the spatial tangent vectors to � in the ambient Euclidean 3D
space (see Fig. 1) are spanned by

�∂φ = ∂�

∂φ
=

⎛⎜⎝−r sin(φ)
r cos(φ)

0

⎞⎟⎠, �∂r = ∂�

∂r
=

⎛⎜⎝cos φ

sin φ
dz(r)

dr

⎞⎟⎠. (8)

Then the space-time coordinates {xμ} on R × � read as
(t, r, φ). We define the orientation on R × � by postulating
{�∂μ} = {�∂t , �∂φ, �∂r} to be the right-handed frame. Note that
these vectors are orthogonal but not normalized in a sense of
the ambient pseudo-Euclidean space-time R × R3, with the
flat metric 〈·, ·〉 = diag(−v2

F ,+1,+1,+1).
The induced metric tensor gμν = 〈�∂μ, �∂ν〉 on the curved

space-time R × � reads as

gμν = diag

[
−v2

F , r2, 1 +
(

dz(r)

dr

)2
]
, (9)

while the vielbein field

ea
μ = diag

⎛⎝vF , r,

√
1 +

(
dz(r)

dr

)2
⎞⎠ (10)

brings the metric tensor g into the corresponding Sylvester
normal form η = diag(−1,+1,+1). Note that the Greek
indices (t, φ, r) stand for the chart coordinates, with the cor-
responding coordinate vector fields �∂t = �∂0, �∂φ = �∂1, �∂r = �∂2,
while the Latin indices label their vielbein counterparts as
captured by eμ

a .
Computing Christoffel’s symbols 
σ

μν (see Appendix B),
the spin connection ω̂ab

μ [Eq. (3)] yields only the nonzero
entries

ω̂12
φ = −ω̂21

φ = 1√
1 + ( dz(r)

dr

)2
= dr

dl
. (11)

Taking all together and assuming a gauge field 1-form A =
Aφdφ, we obtain the following expressions for the covariant
derivatives of spinors on the curved space-time R × �:

D0 = Dt = ∂t , (12)

D1 = Dφ = ∂φ + i

2
ω̂12

φ σz + i
e

h̄
Aφ, (13)

D2 = Dr = ∂r . (14)

Now we can write the final Dirac equation

iγ aeμ
a Dμψ =

(
−σz

1

vF
∂t + iσy ω̂12

φ ∂r + iσx
1

r
Dφ

)
ψ = 0

(15)

for massless charged fermions on R × �. Note that by coin-
cidence ω̂12

φ = er
2.

Making use of Dirac algebra and assuming stationary states
ψ (t, r, φ) = e−iEt/h̄ 
(r, φ), we obtain an eigenvalue problem
for the spatial eigenspinors 
(r, φ) in terms of the equation

Ĥ

h̄vF

 ≡

(
iσx ω̂12

φ ∂r − iσy
1

r
Dφ

)

 = E

h̄vF

. (16)

It remains to specify Aφ for the respective configuration of the
magnetic field �B. We consider two cases:

(i) a magnetic field �B⊥ with a constant magnitude perpen-
dicular to the surface of revolution � (in the sense of the
ambient Euclidean space), and

(ii) a homogeneous coaxial magnetic field �B‖ being
aligned in parallel to the axial z axis of the 3D ambient space,
i.e., �B‖ = (0, 0, B).

The Faraday tensor F at surface � ⊂ R3 [64] for a generic
magnetic-field configuration �B in 3D space takes the form

F = −( �B · �n) ωg, (17)

where ωg is the “volume form” defined on � by the spatial
part of the metric gμν , namely,

ωg =
√

det(g� ) dφ ∧ dr = r

√
1 +

(
dz(r)

dr

)2

dφ ∧ dr.

(18)

Furthermore, ( �B · �n) stands for the Euclidean scalar product
of the 3D vector �B with the outer normal �n to the surface �,

�n = �∂φ × �∂r

||�∂φ × �∂r ||
= 1√

1 + (
dz
dr

)2

(
dz

dr
cos φ,

dz

dr
sin φ, 1

)
,

(19)

taken in the ambient space R3. In Eq. (19), �∂φ and �∂r are
vectors in R3 [see Eq. (8)], × is the usual vector product, and
|| · || denotes the Euclidean length of a 3D vector.

Throughout the text dφ and dr are understood as differ-
ential 1-forms and, correspondingly, ωg and F , proportional
to their wedge product dφ ∧ dr, are 2-forms on �. Using
the exterior derivative d , one can relate the 2-form F to the
electromagnetic potential 1-form A [64]:

dA = F = −( �B · �n) ωg. (20)

As both magnetic-field configurations �B⊥ and �B‖ are axi-
ally symmetric, and � is a surface of revolution along the
axial z axis, ( �B · �n) only depends on the radial coordinate,
i.e., ( �B · �n)[r]. Hence, we use the symmetric electromagnetic
gauge (what happens to be a Coulomb gauge) A = Aφ (r)dφ,
where the function Aφ (r) satisfies

dA = (∂rAφ ) dr ∧ dφ
!= −( �B · �n) ωg. (21)

Its solution can be expressed as an integral

Aφ (r) =
∫ r

( �B · �n)[r′] · r′ ·
√

1 +
(

dz(r′)
dr′

)2

dr′

=
∫ l

( �B · �n)[l ′] · r(l ′)dl ′. (22)

Explicit expressions for Aφ,⊥ and Aφ,‖ corresponding to �B⊥
and �B‖ are provided below.

III. THE DIRAC EQUATION ON THE PSEUDOSPHERE
AND MINDING SURFACE

We apply the geometrical machinery reviewed in the pre-
vious section to surfaces of revolution that possess a constant
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negative Gaussian curvature

κ = − 1

a2
. (23)

Here a > 0, the radius of curvature, sets a natural spatial
length scale of the problem besides the (Fermi) wavelength.
A family of surfaces of revolution � with a constant neg-
ative curvature κ , that are embeddable in R3, � : (r, φ) 	→
(r cos φ, r sin φ, z(r)), are defined through the so-called
Minding equation [66](

dl

dr

)2

≡ 1 +
(

dz(r)

dr

)2

= a2

r2 − γ 2
, (24)

which needs to be solved for z(r) [or l (r)] that enter the
above parametrization of �. The Minding equation has two
parameters controlling the “shape” of �: the radius of curva-
ture a > 0 (or curvature κ = −1/a2 itself) and the parameter
0 � γ < a that restrains “an amount of the embeddable part”
with the ambient space R3. The case γ = 0 defines a pseu-
dosphere or Beltrami surface, a surface of revolution of the
tractrix, whereas the surfaces with γ �= 0 are called Minding
surfaces [66] (see Fig. 1).

While the Schrödinger-type Landau levels for the pseudo-
sphere have been considered before [67,68], we will address
in Secs. IV (analytics) and V (numerics) the case of the
Dirac equation for the pseudosphere and Minding surfaces.
The Dirac scenario acquires importance in view of possible
experimental realizations in shaped 3DTI nanowires. More-
over, we will consider the experimentally relevant spatially
homogeneous axial magnetic field �B‖ aside from the con-
ceptually simpler case of a constant perpendicular magnetic
field �B⊥.

The embeddable part of a surface of revolution with
a constant negative curvature within 3D Cartesian space
only exists for a certain range of radii. Since [dz(r)/dr]2

varies from zero to infinity, the middle part of Eq. (24)
becomes equal or greater than 1. Consequently, the radii r
entering the right-hand side of Eq. (24) should vary only
within the interval (rmin =γ , rmax =

√
a2 + γ 2).5 As men-

tioned above, apart from the r coordinate, also the arc
length coordinate l serves convenient for the parametriza-
tion of �. Integrating the defining differential equation (24),
one gets

l (r) = ±
∫ r

r0

a√
r′2 − γ 2

dr′, (25)

where the ± sign and the reference radius r0 are free to choose.
For the pseudosphere and Minding surface we set l to zero at
the rim with the largest radius rmax =

√
a2 + γ 2 (see Fig. 1).

Then the relation

lγ (r) = a ln

(
a +

√
a2 + γ 2

r +
√

r2 − γ 2

)
(26)

holds equally for both cases γ = 0 and γ �= 0.

5Outside of this range, not considered here, the Minding surfaces
can be treated as complex Riemann surfaces.

In what follows, we derive the eigenstates and eigenval-
ues of the Dirac Hamiltonians for massless particles moving
on the pseudosphere and Minding surfaces subject to the
magnetic-field configurations �B⊥ and �B‖, as specified above.
Analytically, we mainly focus on eigenstates that are localized
well inside the surface of revolution, i.e., their probability
amplitudes are falling off sufficiently fast when approaching
the edges. This sets the boundary conditions of our analytical
spectral problem. For the corresponding numerics, we repre-
sent a part of the surface by a discretized grid and diagonalize
the Dirac Hamiltonians (with Wilson mass term [69]) using
proper boundary conditions (see Sec. V).

As a > 0 sets the natural length scale of the problem, we
rescale all quantities with a spatial dimension with a, using
the tilde symbol, thus,

r̃ = r/a, γ̃ = γ /a, etc. (27)

Using the general results from the previous section, and
Eq. (24) for

√
1 + [dz(r)/dr]2, we obtain the following ex-

pressions for the spin connection, Eq. (11), and for the
corresponding electromagnetic gauge fields, Eq. (22):

ω̂12
φ =

√
r̃2 − γ̃ 2, (28)

Aφ,⊥ = Ba2
√

r̃2 − γ̃ 2, Aφ,‖ = Ba2 r̃2

2
. (29)

Furthermore, E = h̄vF /a sets the natural energy scale. Hence,
we normalize all quantities of dimension of energy by E , but
to avoid a proliferation of new symbols we do not introduce a
new label for that, i.e., H/E → H . While for formulas and
analytics we use the rescaled quantities, when plotting the
spectra and effective potentials, and also for numerics we
rather employ the dimensionful quantities and variables to
grasp the magnitudes and units. In order to compare analytical
and numerical results we use vF = 5 × 105 m/s and consider
one representative pseudosphere (γ = 0) and Minding surface
(γ = 1 nm) with the same radius of curvature a = 60 nm.
This choice implies that, for magnetic fields with magnitude
larger than 0.15 T, the magnetic length lB = √

h̄/e|B| becomes
shorter than the considered curvature radius.

With these rescaling conventions the Dirac Hamiltonian
(16), as a function of γ (γ = 0 → pseudosphere, γ �= 0 →
Minding surface), reads as

Ĥ⊥ = iσx

√
r̃2 − γ̃ 2∂r̃ − iσy

1

r̃
∂φ

+ σy

√
r̃2 − γ̃ 2

r̃

(
1

l̃2
B

+ σz

2

)
, (30)

Ĥ‖ = iσx

√
r̃2 − γ̃ 2∂r̃ − iσy

1

r̃
∂φ

+ σy

(
r̃

2l̃2
B

+
√

r̃2 − γ̃ 2

r̃

σz

2

)
. (31)

Here H⊥, H‖ stand for the Hamiltonian (16) respectively in the
perpendicular and coaxial magnetic-field configuration, while
l̃2
B is the dimensionless magnetic area multiplied by sgn(B).
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Specifically,

1

l̃2
B

= sgn(B)
a2

l2
B

, (32)

where the magnetic length

lB =
√

h̄/e|B| > 0. (33)

These expressions hold for both magnetic-field configura-
tions, where |B| stands for the magnitude of the �B⊥/‖ field.
We introduce the flux quantum �0 = h/2e, the total area
of the embeddable part of �, Area� = 2πa2, as well as its
projection onto the plane orthogonal to its symmetry axis,
Area′

� = πa2 = π (r2
max − r2

min). One obtains for �B⊥ and �B‖
the perpendicular and parallel fluxes |�⊥| = 2πa2|B| and
|�‖| = πa2|B|, correspondingly. Thus, all together

1

l̃2
B

= sgn(B)
a2

l2
B

= sgn(B)
1

�0
×
{

1
2 |�⊥| for �B⊥,

|�‖| for �B‖.
(34)

In what follows we keep the subscripts ⊥ and ‖ also for other
quantities to distinguish and to trace their connections with
the �B⊥ and �B‖ magnetic-field configurations, respectively.

It is instructive to find discrete symmetries of Ĥ⊥/‖ to sim-
plify the spectral analysis. The fact that σz anticommutes with
Ĥ⊥/‖ implies that the Hamiltonians have chiral symmetry:

σz Ĥ⊥/‖ = −Ĥ⊥/‖ σz. (35)

As a consequence, the spectrum is symmetric with respect to
E = 0, and if |ψ〉 is an eigenstate of Ĥ⊥/‖ with an eigenenergy
E , then |�〉 = σz|ψ〉 is also an eigenstate with eigenvalue −E .
Positive- and negative-energy solutions are therefore directly
linked by the chiral symmetry operator σz. Furthermore, hav-
ing an eigenstate |ψ〉 of Ĥ⊥/‖( �B) with eigenenergy E for a
magnetic field �B, the state |χ〉 = σyC |ψ〉 (C stands for the
complex-conjugation operator) is an eigenstate of Ĥ⊥/‖(−�B)
with the same energy, but for the opposite field configuration,
i.e.,

[σy C ] Ĥ⊥/‖( �B) = Ĥ⊥/‖(−�B) [σy C ]. (36)

Thus, it is sufficient to examine only positively oriented mag-
netic fields, and for them to consider only eigenstates with
non-negative energies.

IV. ANALYTICAL SOLUTIONS

A. General considerations

In the following we present analytical eigensolutions of
the Hamiltonians given by Eqs. (30) and (31). For the pseu-
dosphere we get full solutions for the perpendicular field �B⊥
and approximate solutions for the coaxial field �B‖, while for
the Minding surfaces we find only the zero-energy eigenstates
analytically in both magnetic configurations. Numerical solu-
tions and a crosscheck of analytic results with numerics will
be presented in Sec. V.

Since Ĥ⊥/‖ in Eqs. (30) and (31) do not explicitly depend
on φ, we use the separation ansatz


(φ, r̃) =
(


↑(r̃)

↓(r̃)

)
ei(m+ 1

2 )φ, m ∈ Z. (37)

Note that the boundary conditions of the angular part of the
wave function are antiperiodic (see, e.g., discussion in Ap-
pendix A, or Ref. [70]). This is in accordance with a local
trivialization of the associated spin bundle that gives rise to
the spin connection in the form as presented by Eq. (3).
For convenience we introduce effective potentials (in units of
E = h̄vF /a)

V⊥ = 1

r̃

[(
m + 1

2

)
+

√
r̃2 − γ̃ 2

l̃2
B

]
, (38)

V‖ = 1

r̃

[(
m + 1

2

)
+ r̃2

2l̃2
B

]
, (39)

and the auxiliary radial differential operators6

L̂±
⊥/‖ = i

[√
r̃2 − γ̃ 2

(
∂r̃ + 1

2r̃

)
± V⊥/‖

]
. (40)

Using the separation ansatz (37) and E = h̄vF /a units the
eigenproblem for the Dirac Hamiltonians (30) and (31) takes
the form

E

(

↑(r̃)

↓(r̃)

)
=

(
0 L̂−

⊥/‖
L̂+

⊥/‖ 0

)(

↑(r̃)

↓(r̃)

)
. (41)

The effective potentials V⊥/‖ that depend on the angular
quantum number m act as variable mass term within the cor-
responding radial equations [33,34,69]. The radii r̃ where |V |
becomes minimal indicate positions where the wave-function
amplitudes, and hence the corresponding probability densi-
ties, get maximal. Based on physical grounds, only minima
which develop within the embeddable part of � can accept
electrons and thus contribute to the filling factor of the un-
derlying Landau problem, in full analogy with the formation
of quantum Hall states in conventional flat samples. As stated
before, we demand Landau levels to be localized within the
surface, not at the boundary. Hence, we exclude those angular
quantum numbers for which the minimum of |V | is located
at r̃ = 1. Therefore, by requiring r̃ ∈ [γ̃ ,

√
1 + γ̃ 2) one sets a

natural cutoff for the critical value of m. For a positive (neg-
ative) field perpendicular to �, only negative (non-negative)
angular quantum numbers are allowed:

M⊥ =

⎧⎪⎨⎪⎩
{⌈ −

√
1−γ̃ 2

l̃2
B

− 1
2

⌉
, . . . ,−1

}
, for B > 0{

0, . . . ,
⌊ −

√
1−γ̃ 2

l̃2
B

− 1
2

⌋}
, for B < 0

(42)

where �·� and �·� are ceiling and floor functions, respectively.
Contrary to this, for a coaxial field with any sign, negative

and positive angular quantum numbers are possible:

M‖ =
{⌈

− 1

2l2
B

− 1

2

⌉
, . . . ,

⌊
1

2l2
B

− 1

2

⌋}
. (43)

6These operators are adjoined to each other, apart from bound-
ary terms stemming from integration by parts, assuming the spinor
scalar product 〈ψ1|ψ2〉, Eq. (4), that involves the volume form ωg =

ra√
r2−γ 2

dφ ∧ dr.
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FIG. 2. Effective potentials |V⊥(l )|, Eq. (38), displayed as functions of the arc length coordinate l for a pseudosphere with a = 60 nm
in a perpendicular magnetic field �B⊥ pointing along the outer normal �n [see Fig. 1(a)]. Different panels correspond to different strengths B,
equivalently different magnetic lengths lB. The colors code effective potentials for different angular quantum numbers m. For negative m,
minima of |V⊥(l )| move away from the outer rim of the pseudosphere (l = 0) when raising B and lowering |m|.

We illustrate profiles of |V⊥/‖(�)| in the arc length coordi-
nate (25) for the pseudosphere in perpendicular, Fig. 2, and
coaxial, Fig. 3, positive magnetic fields and different angular
quantum numbers m. Obviously, minima of |V⊥(l )| move from
the outer rim (l = 0) towards the cusp of the pseudosphere
when raising B > 0 and lowering |m|. Based on what is said
before, it can be easily seen that the minima within the sur-
face form only for negative m in the case magnetic field is
perpendicular to the surface. In case of a coaxial field, both
signs of m are possible. However, it can clearly be observed
that the potential wells for non-negative m are higher in en-
ergy and show a different shape. Moreover, the confining
potential wells become more pronounced upon increasing the
magnetic-field strengths. Contrary to this, in the absence of
the field, the curves grow monotonously with l and eigenstates
only exist close to the outer rim.

To solve the radial equations (41), and compute
(
↑(r̃), 
↓(r̃))� for a general E , it is convenient to

decouple the underlying system of first-order differential
equations

E 
↑(r̃) = L̂−
⊥/‖ 
↓(r̃), (44)

E 
↓(r̃) = L̂+
⊥/‖ 
↑(r̃) (45)

by plugging one into the other. This leads to two separate
second-order differential equations for the two spinor com-
ponents at eigenenergy E (in units of E = h̄vF /a):

E2 
↑(r̃) = L̂−
⊥/‖L̂+

⊥/‖

↑(r̃), (46)

E2 
↓(r̃) = L̂+
⊥/‖L̂−

⊥/‖

↓(r̃), (47)

that we consider below.
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FIG. 3. Effective potentials |V‖(l )|, Eq. (39), displayed as functions of the arc length coordinate l , for a pseudosphere with a = 60 nm
in a coaxial magnetic field �B‖ = (0, 0, B) [see Fig. 1(a)]. Different panels correspond to different strengths B. The colors denote potentials
for different angular quantum numbers m. Minima of |V‖(l )| move away from the outer rim of the pseudosphere (l = 0) when raising B and
lowering |m|.

B. Pseudosphere

1. Zeroth Landau level

For E = 0, the system of first-order differential equa-
tions (44) and (45) decouples and one needs to solve

L̂+/−
⊥/‖ 
↑/↓(r̃) = 0. (48)

In the following, the solutions of the equations containing the
superscript ± are marked with the same symbol. Substitut-
ing γ̃ = 0 into the expressions for V⊥/‖ and L̂±

⊥/‖ leads to
simple radial equations with straightforward solutions. The
full spinorial solutions (
↑(r̃, φ), 
↓(r̃, φ))

�
for the zeroth

Landau level (n = 0) read as


+
0,⊥(φ, r̃) = r̃

− 1
2 − 1

l̃2B e+ 1
r̃ (m+ 1

2 )+i(m+ 1
2 )φ

(
1
0

)
, (49)


−
0,⊥(φ, r̃) = r̃

− 1
2 + 1

l̃2B e− 1
r̃ (m+ 1

2 )+i(m+ 1
2 )φ

(
0
1

)
, (50)


+
0,‖(φ, r̃) = r̃− 1

2 e
− r̃

2l̃2B e+ 1
r̃ (m+ 1

2 )+i(m+ 1
2 )φ

(
1
0

)
, (51)


−
0,‖(φ, r̃) = r̃− 1

2 e
r̃

2l̃2B e− 1
r̃ (m+ 1

2 )+i(m+ 1
2 )φ

(
0
1

)
. (52)

To check which of them are physical we demand the ampli-
tude of the wave function to vanish when r̃ → 1 and r̃ → 0.

For positive fields, solutions 
+
0,⊥/‖ with negative m are

physically relevant, while for the negative ones, their coun-
terparts 
−

0,⊥/‖ with non-negative m span the zeroth Landau
level. Also for the coaxial field, zero-energy states only exist
for one sign of the angular quantum number m. This is in
accordance with our analysis of the effective potentials since
they are located higher in energy for one branch of m. In
any case, for a nonzero magnetic field �B⊥/‖ the zeroth Dirac
Landau level becomes fully spin polarized with spins pointing
along sgn(B) �n. A similar analysis was done for a 2D sphere
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FIG. 4. Pseudosphere radial probability densities |
|2e− l
a (solid lines, unnormalized) for selected zero-energy eigenstates of Ĥ⊥ [Eq. (30)]

for different angular quantum numbers m. Probability density maxima of these zeroth Landau levels (n = 0) are localized at the minima of the
corresponding effective potentials |V⊥(l )| (dashed lines). Here, radius of curvature of pseudosphere a = 60 nm and perpendicular magnetic
field B = 10 T.

in a homogeneous perpendicular field (see, e.g., [71–73]),
where the zeroth Dirac Landau level is also spin polarized but
electron spins are aligned along −sgn(B) �n.

Figure 4 shows the probability densities of representative
zero-energy eigenstates in the respective effective potentials
for B⊥; results for B‖ look very similar.

2. Higher Landau levels: General

To simplify the analysis, for higher Landau levels we con-
sider just positive magnetic fields, l̃2

B > 0, as the negative ones
can be obtained by means of the σyC symmetry stipulated

by Eq. (36). We start from the second-order differential equa-
tions (46) for the up component

0 =
[

r̃2∂2
r̃ + 2r̃∂r̃ + r̃

∂V⊥/‖
∂ r̃

− V 2
⊥/‖ + 1

4
+ E2

]

↑(r̃),

(53)

and Eq. (47) for the down component

0 =
[

r̃2∂2
r̃ + 2r̃∂r̃ − r̃

∂V⊥/‖
∂ r̃

− V 2
⊥/‖ + 1

4
+ E2

]

↓(r̃).

(54)
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For negative m, we assume that the excited states show the
same asymptotic behavior of the radial part as the zero-energy
solution 
+

0,⊥/‖(φ, r̃) [Eq. (49)]. It turns out to be enough to
only consider the equation for the up component, Eq. (53).
This implies the following ansatz for the perpendicular and
coaxial field, respectively:



↑
⊥(r̃) = p↑

⊥(r̃) r̃
− 1

2 − 1
l̃2B e

1
r̃ (m+ 1

2 ), (55)



↑
‖ (r̃) = p↑

‖ (r̃) r̃− 1
2 e

− r̃
2l̃2B e

1
r̃ (m+ 1

2 ), (56)

where p↑
⊥/‖(r̃) are so far unknown functions. Inserting the

above ansatz into Eq. (53) gives the following differential
equations for p↑

⊥/‖(r̃):

r̃2 d2 p↑
⊥

dr̃2
+
[(

1 − 2

l̃2
B

)
r̃ − 2

(
m + 1

2

)]
d p↑

⊥
dr̃

+ E2 p↑
⊥ = 0,

(57)

r̃2
d2 p↑

‖
dr̃2

+
[
− 1

l̃2
B

r̃2 + r̃ − 2

(
m + 1

2

)]
d p↑

‖
dr̃

+ E2 p↑
‖ = 0.

(58)

For non-negative m in case of the coaxial field, a similar ansatz
for the down component with reversed m turns out to yield
meaningful results:



↓
‖ (r̃) = p↓

‖ (r̃) r̃− 1
2 e

− r̃
2l̃2B e− 1

r̃ (m+ 1
2 ). (59)

Inserting this into Eq. (54) yields

r̃2
d2 p↓

‖
dr̃2

+
[
− 1

l̃2
B

r̃2 + r̃ + 2

(
m + 1

2

)]
d p↓

‖
dr̃

+
(

E2 − 2
(
m + 1

2

)
l̃2
B

− 1

l̃2
B

r̃

)
p↓

‖ = 0. (60)

3. Higher Landau levels: Perpendicular magnetic field

The solutions of Eq. (57) can be expressed in terms of the
associated Laguerre polynomials of order n � 0 as shown in
Appendix C. This constrains the square of the (dimensionless)
energy E to satisfy

E2
n = n

(
2

l̃2
B

− n

)
= n

(
�⊥
�0

− n

)
. (61)

Since only real eigenenergies are physical, we get an upper
limit for the principal quantum number n defining the order
of Laguerre polynomial. This limit is given by �2a2/l2

B� =
��⊥/�0�, i.e., by a ratio of the squares of two character-
istic length scales: the curvature radius a and the magnetic
length lB.

In view of the chiral symmetry (35), the spectrum is
symmetric with respect to zero, and hence the scaled eigenen-
ergies En including the zero mode read as

En = ±
√

n

(
�⊥
�0

− n

)
, n ∈

{
0, . . . ,

⌊
�⊥
�0

⌋ }
. (62)

The up components of the corresponding eigenfunctions read
as



↑
⊥,n(r̃) = r̃nL(−2n+2/l̃2

B )
n

(
−2m + 1

r̃

)



↑
⊥,0(r̃). (63)

The down components are calculated by explicitly evaluat-
ing Eq. (45),



↓
⊥,n(r̃) = 1

En
L̂+

⊥ 

↑
⊥,n(r̃), (64)

yielding again solutions in terms of an associated Laguerre
polynomial:



↓
⊥,n(r̃) = i

1

En

(
−n + 2

l̃2
B

)
r̃n

× L(−2n+2/l̃2
B )

n−1

(
−2m + 1

r̃

)



↑
⊥,0(r̃). (65)

Solutions for negative magnetic fields follow from the σyC
symmetry (36). The latter exchanges up and down compo-
nents of the wave functions and reverses the signs of the
angular momentum quantum number m; otherwise, the spec-
trum remains the same.

To summarize, independent of the sign of the magnetic
field, the eigenenergies are degenerate in m and are given by
(in units of E = h̄vF /a)

En = ±
√

n

( |�⊥|
�0

− n

)
, n ∈

{
0, . . . ,

⌊ |�⊥|
�0

⌋ }
. (66)

However, as mentioned above, physically allowed solutions
only exist for m ∈ M⊥. A figure of this spectrum is shown in
the numerics section of this paper.

Correspondingly, Fig. 5 displays the radial probability den-
sities for the wave functions of the first two excited states with
m = −1. It can be seen that for positive B the up component of
the nth excited state has n zeros (associate Laguerre polyno-
mial of the nth degree) and the down component (n − 1) zeros
[associate Laguerre polynomial of the (n − 1)th degree]. Fur-
thermore, it seems that the wave functions become spatially
more broadened upon rising the principal quantum number n.
We take this observation as numerical evidence without any
rigorous proofs for a generic n.

4. Higher Landau levels: Coaxial magnetic field

The experimentally more relevant case of a homoge-
neous coaxial magnetic field is more complicated since
the B field appears inhomogeneous on the surface of the
pseudosphere and its perpendicular component is arc length
dependent. It turns out that the only relevant parameter in this
case is

η = |2m + 1|
l2
B

= |2m + 1| |�‖|
�0

. (67)

We compute the higher Landau levels in two ways.
First, as shown in Appendix C the eigenfunctions of

Eqs. (58) and (60) can be expressed by means of the
double-confluent Heun functions. Since it is a bit cum-
bersome to work with these functions, we do not give
explicit expressions for the underlying wave functions here;
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FIG. 5. Pseudosphere radial probability densities |
|2e− l
a for the

up component (blue, dashed lines), down component (red, dashed
lines), and the whole spinor (green, solid lines) for the first and
second excited states of Ĥ⊥, Eq. (30), with m = −1. Maxima of
the wave-function probabilities (not normalized) are localized near
the minima of the corresponding effective potentials |V⊥(l )| (black,
dashed lines). The radius of curvature a = 60 nm and the strength of
the perpendicular magnetic field B = 10 T.

rather, we discuss the spectrum. Using asymptotic meth-
ods developed for the double-confluent Heun equation on
the complex plane (see [74,75] and references therein), the
squares of eigenenergies En for l̃2

B > 0 can be estimated
by successive approximations, to the second order in the
semiclassical parameter 1/η. For negative m [see Eq. (53)],
they are given by the following expression (normalized to
E = h̄vF /a):

E2
n,m ≈ 2n

√
η + 1

2
n2 − 1. (68)

For non-negative m [see Eq. (54)], they are given by

E2
n,m − η ≈ (2n + 1)

√
η + 1

2
n2 + 1

2
n − 2. (69)

The approximation works for high values of the argument
under the square root, i.e., large |m| and large magni-
tude of B. In accordance with the chiral symmetry (35),
the eigenenergies are distributed symmetrically around zero

energy:

En,m = ±
√

2n
√

η + 1

2
n2 − 1

≈
n�1

±
√

n

2
(4

√
η + n), (70)

and for non-negative m

En,m = ±
√

η + (2n + 1)
√

η + 1

2
n2 + 1

2
n − 2

≈
n�1

±
√

η + (2n + 1)
√

η + 1

2
n2 + 1

2
n. (71)

Here, it is worth to spell out several observations:
(i) As can be seen, the approximate formula for En,m does

not include the zero-energy eigenstates that are degenerate
in m.

(ii) Contrary to that and also to the case of an overall
perpendicular field the higher Landau levels for �B‖ are no
longer degenerate in m. This can be related to the fact that the
eigenfunctions for different m are spatially centered near dif-
ferent l , the minima of |V‖|, and the field strength component
of �B‖ perpendicular to the surface � at such l , i.e., (�n · �B‖),
varies substantially with the arc length coordinate.7

(iii) Most notably, for strong (positive) magnetic fields,
En,m ∝ |B|1/4 for m < 0 and En,m ∝ |B|1/2 for m � 0. This
peculiar parametric B dependence should be experimentally
observable. For one half of the spectrum, it characteristically
differs from the usual linear scaling with |B| in the pla-
nar Schrödinger case, and also from the characteristic

√|B|
dependence for the corresponding Dirac case in constant per-
pendicular field.

(iv) Moreover, due to the “+” sign in front of the term
n2/2, and contrary to the case of �B⊥ [Eq. (62)], n has no
formal upper limit. However, when demanding that the states
are localized within the surface, it becomes clear that the
eigenenergies must not be larger than the confining effective
potential, which sets a natural upper bound for n.

Second, we obtain the spectrum making a WKB analysis
(see Appendix D). We find that in the limit of strong mag-
netic fields, the spectrum is approximately given by [see also
Eq. (D11)]

En,m ≈
√

η + sgn

(
m + 1

2

)
η + π

(
n + 1

2

)√
η.

Again, a few remarks are worth to be mentioned:
(i) As in the formula obtained from Heun asymptotics, the

zero-energy states are not covered.
(ii) For m < 0, the first two terms under the square root

cancel and the asymptotic behavior for strong magnetic fields
is again given by En,m ∝ |B|1/4.

(iii) For m � 0, the first two terms add and are dominant
in the strong field limit, yielding En,m ∝ |B|1/2.

7Lifting the Landau level degeneracy is also possible in presence of
a nonuniform electrical field [83].
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(iv) The upper limit for the energy relies on the assump-
tion made during the WKB treatment that the two classical
turning points are at a radius smaller than a.

C. Minding surface

In the following we summarize the main spectral findings
for the Minding surface depicted in Fig. 1.

1. Zeroth Landau level

Considering γ �= 0 in Eqs. (44) and (45) for the ef-
fective potentials V⊥/‖ and the auxiliary operators L±

⊥/‖
leads to slightly more involved radial Eq. (48). Introduc-
ing the auxiliary variable ρ = arcsin (r̃/γ̃ ) the expressions
get simplified, and after some math the full spinorial so-
lutions (
↑(r̃, φ), 
↓(r̃, φ))

�
for the zeroth Landau level

on the Minding surface for perpendicular and coaxial fields
read as


+
0,⊥ = r̃

− 1
2 − 1

l̃2B e+ 1
γ̃

(m+ 1
2 ) arcsin( γ̃

r̃ )+i(m+ 1
2 )φ

(
1
0

)
, (72)


−
0,⊥ = r̃

− 1
2 + 1

l̃2B e− 1
γ̃

(m+ 1
2 ) arcsin( γ̃

r̃ )+i(m+ 1
2 )φ

(
0
1

)
, (73)


+
0,‖ = r̃− 1

2 e
−

√
r̃2−γ̃ 2

2l̃2B e+ 1
γ̃

(m+ 1
2 ) arcsin( γ̃

r̃ )+i(m+ 1
2 )φ

(
1
0

)
, (74)


−
0,‖ = r̃− 1

2 e
+

√
r̃2−γ̃ 2

2l̃2B e− 1
γ̃

(m+ 1
2 ) arcsin( γ̃

r̃ )+i(m+ 1
2 )φ

(
0
1

)
. (75)

Since Minding surfaces do not behave singularly and rmin =
γ , both solutions are square integrable. Moreover, in the limit
γ → 0 one indeed recovers the zeroth Landau level solutions
for the pseudosphere given by Eqs. (49)–(52).

2. Higher Landau levels

Unfortunately, employing the same techniques for the
Minding surface as for the pseudosphere does not yield any
closed-form solution. Therefore, we resort to numerics. As
shown and discussed below, we find strong numerical ev-
idence that the energies of higher Landau levels for the
Minding surface in �B⊥ are given by the same expression as
Eq. (66) for the pseudosphere.

This is in accordance with the fact that the area of the em-
beddable part of the Minding surface with radius of curvature
a does not depend on γ and becomes equal to the area of the
pseudosphere possessing the same radius a and, hence, the
total enclosed flux |�| = 2πa2|B|.

V. NUMERICAL CALCULATIONS

Our analytical results for the pseudosphere in a coaxial
field are only asymptotically exact, and we did not manage
to solve the Dirac equation for the Minding surface in �B⊥/‖
for nonzero-energy states. We thus perform numerical cal-
culations following the procedure presented in Refs. [33,34],
adapted to the present context. For the sake of a self-contained
presentation we recall its essentials.

FIG. 6. Landau level spectrum of the pseudosphere in an overall
perpendicular field �B⊥ of strength B. Low-lying eigenenergies En(B)
obtained analytically, Eq. (66), solid lines (color indicates Landau
level quantum number n) are compared to numerical data (black
symbols). (a) Shows a zoom into the low-field regime of the spectrum
shown in (b) for larger B scales. Numerical parameters used: radius
of curvature a = 60 nm, number of angular grid points NW = 8, and
lattice spacing b = 0.5 nm. Note that not all allowed higher-lying
eigenvalues are depicted and, for the sake of clarity, only zero and
positive eigenvalues are displayed.

A. Method and implementation

The continuous Dirac equation (16) is discretized on a
rectangular lattice and treated by means of the tight-binding
package KWANT [76]. The lattice is thus purely numerical,
i.e., it does not represent the underlying atomic lattice of
the TI sample (recall the discussion in the Introduction).
To deal with operators and fields in curvilinear coordinates,
the tight-binding-generating hoppings are nonhomogeneous
and depend on entries of the metric tensor gμν (φ, r) =
diag(r2, a2

r2−γ 2 ). One way to simplify this is to use the angle–
arc length coordinates (φ, l ). Transforming from (φ, r) to
(φ, l ) simplifies the spatial-metric tensor from gμν (φ, r) =
diag(r2, a2

r2−γ 2 ) to gμν (φ, l ) = diag(r2(l ), 1). Consequently,
hoppings along the l direction on the underlying lattice do
not depend on the current surface position, in contrast to
the (φ, r) parametrization. Of course, for both parametriza-
tions, the hoppings along the φ coordinate are position
dependent.

Changing r to l , according to Eq. (26), transforms
the Hamiltonians Ĥ⊥/‖, Eqs. (30) and (31), and also the

195433-12



DIRAC LANDAU LEVELS FOR SURFACES WITH … PHYSICAL REVIEW B 109, 195433 (2024)

FIG. 7. Radial probability densities (unnormalized) for a pseudosphere in perpendicular magnetic field �B⊥. Analytically obtained results
|
|2e− l

a (solid, green lines) are compared to the corresponding numerical solutions (red crosses) for the three lowest Dirac Landau levels
of Ĥ⊥ with the angular quantum number m = −1. Numerical parameters: NW = 20, b = 0.5 nm, pseudosphere radius a = 60 nm, the field
strength B = 10 T. Schematic of the lattice used in the discretization of Ĥ⊥/‖ with NW points along the angular direction, and length le and
lattice constant b along the horizontal arc length direction.

underlying volume form

ωg = √|det gspace| dφ ∧ dl = r(l ) dφ ∧ dl. (76)

Denoting the transformed Hamiltonian as Ĥ (φ, l ), the differ-
ential operators with respect to l and φ entering it should be
substituted by corresponding operators for finite differences
on a discrete lattice. Using the symmetric difference scheme
inherent to the flat Euclidean space leads to Hermitian ma-
trices in the conventional sense [69]. However, applying that
prescription to Ĥ (φ, l ) would lead to a problem: the matrix of
the discretized Hamiltonian Ĥ (φ, l ) would not be Hermitian.
Hence, the Hermiticity with respect to the curved volume form
ωg = r(l ) dφ ∧ dl is required:

〈ψ1, Ĥψ2〉 =
∫

dl dφ r(l ) (ψ1)I (Ĥψ2)I

=
∫

dl dφ r(l ) (Ĥψ1)I (ψ2)I (77)

= 〈Ĥψ1, ψ2〉. (78)

We circumvent this issue by redefining the spinor fields and,
accordingly, the Hamiltonian Ĥ (φ, l ) such that

〈ψ1, Ĥψ2〉 =
∫

dl dφ r(l ) (ψ1)I (Ĥψ2)I

=
∫

dl dφ [
√

r(l )ψ1]I

×
(√

r(l )Ĥ
1√
r(l )

√
r(l )ψ2

)
I

=
∫

dl dφ (ψ̃1)I (H̃ψ̃2)I . (79)

The appropriately rescaled Hamiltonian

H̃ (φ, l ) =
√

r(l ) Ĥ (φ, l )
1√
r(l )

(80)

can now be routinely discretized by the standard symmet-
ric difference scheme leading to a Hermitian matrix in the
conventional (flat-space) fashion. In what follows we calculate
the spectra of such rescaled Hamiltonians for the pseudo-
sphere and Minding surfaces. We also add a Wilson mass term
to the Hamiltonian H̃ in order to avoid fermion doubling (for
details see [69]). Furthermore, we use the hard-wall boundary
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FIG. 8. Landau level spectrum of the pseudosphere in a coaxial
field �B‖ = (0, 0, B). Lowest eigenenergies as functions of the mag-
netic field B obtained analytically [Eqs. (70) and Eq. (71)] (solid,
colored lines labeled by principal quantum number) are compared
with numerical solutions (black symbols) of Eq. (46) for m = −1
(a) and m = 0 (b). Here, the pseudosphere radius a = 60 nm, and
the arc length lattice constant b = 0.5 nm; for the sake of brevity,
only zero and positive eigenvalues are displayed.

conditions along the l direction (see discussion below) and
antiperiodic boundary conditions along φ. For the sake of
compactness we do not provide the explicit expressions of the
rescaled Hamiltonians.

The embeddable part of the pseudosphere is noncompact.
Thus, we can apply the discretization only to a certain fi-
nite domain D of �. For the latter we choose a part close
to the rim (trumpet) of the pseudosphere, i.e., D covers
the part of radii descending from rmax = a up to some end
radius re, or in the arc length parametrization, the lengths
from l = 0 to le = a ln (a/re). So the discrete space is a 2D
rectangular grid within [0, 2π ] × [0, le]. We use NW lattice
points sampling the interval [0, 2π ] and fix the number of
lattice points in [0, le] by introducing a lattice constant b (see
Fig. 7). Using the symmetric difference approximation the
discretization of the derivatives along the φ and l directions is
given by

d
̃i, j

dφ
≈ 
̃i+1, j − 
̃i−1, j

2 2π
NW

, (81)

d
̃i, j

dl
≈ 
̃i, j+1 − 
̃i, j−1

2b
, (82)

where i and j numerate the lattice points in φ and l direction,
respectively.

FIG. 9. Landau level spectrum of the pseudosphere in a coaxial
field �B‖ = (0, 0, B). Lowest eigenenergies as functions of the mag-
netic field B obtained by means of WKB methods [Eq. (D11)] (solid,
colored lines labeled by principal quantum number) are compared
with numerical (black symbols) solutions of Eq. (46). (a) Corre-
sponds to states with m = −1 displaying |B|1/4 asymptotic, while
(b) represents states with m = 0 with |B|1/2 asymptotic. Here, the
pseudosphere radius a = 60 nm, and the arc length lattice constant
b = 0.5 nm; for the sake of brevity, only zero and positive eigenval-
ues are displayed.

In order to compare analytical and numerical results we
consider a pseudosphere and a Minding surface with the ra-
dius of curvature a = 60 nm and, correspondingly, with γ =
0 and 1 nm.8

B. Pseudosphere: Numerical vs analytical results

For the numerics we use, aside from a = 60 nm, as min-
imum radius re = 0.25 nm, corresponding to le = 328.8 nm.
This assumption is justified for wave functions decaying suf-
ficiently fast towards the conically narrowing pseudosphere
singularity at r → 0 (l → ∞), as anticipated by our analytical
ansatz [see Eq. (55)].

Employing hard-wall boundary conditions at l = le and
also at l = 0 we expect certain deviations between the numer-
ical and analytical spectra for small magnetic fields, as can
be anticipated from the shapes and positions of the effective
potentials |V⊥/‖(l )| shown in Figs. 2 and 3. For weak fields the

8The results can be simply rescaled (in length and energy) to obtain
energies, B-field strengths, and length scales for other sizes.
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FIG. 10. Numerically gained pseudosphere radial probability densities |
|2e− l
a for the up component (blue, dashed lines), down com-

ponent (red, dashed lines), and the whole spinor (black, solid lines) for the lowest four states of Ĥ‖, with m = −1 and 0. Maxima of the
wave-function probabilities (not normalized) are localized near the minima of the corresponding effective potentials |V||(l )|. The radius of
curvature is a = 60 nm and the strength of the perpendicular magnetic field equals B = 20 T.

potential minima approach the rim of the pseudosphere and,
correspondingly, the hard-wall boundary conditions at l = 0
will affect the numerically computed eigendata, as opposed
to analytical solutions. However, for sufficiently large fields,

when the minima of |V⊥/‖| are pronounced and sufficiently
far away from the rim, the numerical and analytical results
should coincide and the finite-size effects stemming from the
boundary conditions would diminish.
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FIG. 11. Landau level spectrum of the Minding surface and pseu-
dosphere in a perpendicular magnetic field �B⊥. Lowest eigenenergies
as functions of B are obtained numerically for the Minding surface
(black symbols) and analytically for the pseudosphere (solid, colored
lines) [Eq. (66)], both with the same radius of curvature a. Numeri-
cal parameters: NW = 8, the arc length lattice constant b = 0.5 nm,
radius of curvature a = 60 nm and γ = 1 nm, for the sake of brevity,
only zero and positive eigenvalues are shown explicitly.

We start with the case of the perpendicular magnetic field
�B⊥. In Fig. 6 we compare the numerically computed spectrum
(as a function of field strength B) with the analytical results
based on Eq. (66) when varying the magnitude B of �B⊥.
For the chosen parameter range we find that for B > 2 T the
numerical eigenenergies (black symbols) agree very well with
the corresponding analytical results (solid lines). As expected,
upon increasing the magnetic field, the numerical eigenvalues
rapidly converge to the analytical Landau levels En given by
Eq. (66), in the order given by their principal quantum number
n. For B < 2T we see substantial deviations in the energy
spectrum attributed to the effects of boundary conditions.

Furthermore, Fig. 7 shows numerically computed radial
probabilities for three eigenstates (
↑, 
↓)

�
of the dis-

cretized Dirac Hamiltonian H̃ along with their analytical
counterparts, given by Eqs. (63) and (65). Also, these results
corroborate the excellent matching between numerics and an-
alytics at high(er) magnetic fields.

For the coaxial field �B‖ we employ the same discretization
method. Here, however, the eigenenergies are not degenerate
in the angular quantum number m, so fitting the numerical
data with the help of the asymptotic eigenenergy formula (70)
would be quite messy and nonillustrative due to a substantial
number of scattered points. For this reason we decided to only
implement the radial equations for (
↑, 
↓)

�
[see Eqs. (46)

and (47)], for which the angular number m enters via the
effective wedge potential |V‖| [consult Eq. (39) and Fig. 3].

First of all we compare the numerical results to the spec-
trum from Heun asymptotics, Eq. (70). Figure 8 shows the
resulting numerical spectra for the quantum numbers m = −1
and 0 as functions of the strength B = || �B‖||. The matching
with the numerically obtained spectra becomes very good
and improves, correspondingly, for larger magnetic fields and
higher angular number |m|.

We also compare with the WKB approximation. As can
be observed from Fig. 9, especially for negative m, the levels
obtained from WKB seem to be a bit shifted compared to
the numerical results. However, the asymptotical behavior

FIG. 12. Landau level spectrum of the Minding surface in a
coaxial field �B‖ = (0, 0, B). Lowest eigenenergies En,m(B) (solid,
colored lines labeled by principal quantum number) obtained for
the case of pseudosphere [Eq. (70) for m = −1, and Eq. (71) for
m = 0] are compared to numerically obtained eigenenergies for the
Minding surface (black symbols). (a) For m = −1, (b) for m = 0.
Here, Minding surface radius of curvature a = 60 nm and γ = 1 nm,
the arc length lattice constant b = 0.5 nm; for the sake of brevity,
only zero and positive eigenvalues are displayed.

seems to be correct. Contrary to this, for non-negative m, the
matching is very good.

Figure 10 shows the corresponding wave functions for a
few Landau levels in the coaxial field. As explained before,
we only provide numerical solutions for the associated eigen-
functions, the analytical treatment being fairly complicated.
Nevertheless, the probability maxima of the eigenstates are
developing close to positions, where the effective wedge po-
tentials |V‖| become minimized (see Fig. 3). It can also clearly
be seen that states with negative angular quantum number
(e.g., m = −1) differ from states with non-negative angular
quantum number (e.g., m = 0).

C. Minding surface: Numerical results

For the Minding surface we follow the same proce-
dure as before; for the numerics we use γ = 1 nm and the
same radius of curvature a = 60 nm as before. As the embed-
dable part of the Minding surface is finite, the discretization
lattice samples the whole surface �. In case of the Minding
surface, numerical diagonalization of the Dirac eigenvalue
problem corresponding to the Hamiltonian H̃ with magnetic
field �B⊥ yields the eigenenergies shown in Fig. 11. For high
magnetic fields the Landau level spectrum agrees with the
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analytical results obtained for the pseudosphere in the perpen-
dicular field, Eq. (66), as both carry the same magnetic flux
assuming equal a and B. Hence, we have strong numerical
evidences that Eq. (66) also applies to the Landau level spec-
trum for Minding surface � with γ � a in the perpendicular
magnetic field.

Figure 12 shows the numerical results for a coaxial field
and angular quantum numbers m = −1 and 0. As for the
perpendicular field, we complemented the numerical data ob-
tained for the Minding surface with the plots displaying the
approximate pseudosphere dispersions En,m, namely, Eq. (70)
for m = −1, and Eq. (71) for m = 0. As before, matching is
remarkably very good.

VI. CONCLUSION AND OUTLOOK

We analytically and numerically analyze (integer) quan-
tum Hall states of massless Dirac fermions on prominent
surfaces of revolution with constant negative Gaussian cur-
vature, the pseudosphere and the Minding surface, subjected
to perpendicular and coaxial magnetic fields. In special cases
(zeroth Landau levels in �B⊥/‖ and higher Landau levels for
a pseudosphere in �B⊥) we found explicit eigenfunctions. For
all considered situations we provided numerical tight-binding
calculations that confirm our analytics with high accuracy.

In the following we compare our results from the spec-
tral perspective and for different geometries, namely, for
the flat and positively curved spaces with constant Gaussian
curvature.

The Dirac Landau levels on the flat 2D plane, a surface with
zero Gaussian curvature, in a homogeneous perpendicular
field scales as

En = ±C
√

n|B|, where n = 0, 1, 2, . . . . (83)

Counting both spin projections, each Landau level is degen-
erate by means of equal filling factor |�⊥|/�0, independent
of the principal quantum number. Compared to other curved
geometries, the zeroth Dirac Landau level in flat space is spin
unpolarized.

Similarly, the energies of Dirac Landau levels on a 2D
sphere with radius a in a perpendicular magnetic field (field
of magnetic monopole) read as

En = ± h̄vF

a

√
n

( |�⊥|
�0

+ n

)
, with n = 0, 1, 2, . . . , (84)

where |�⊥|/�0 again represents the number of flux quanta
per a surface of the sphere [72,73] with |�⊥| = 4πa2|B|.
Although the Landau levels are specified by the number
of flux quanta and the principal quantum number n, differ-
ent Landau levels have different degeneracies, particularly,
the nth Landau level for n �= 0 is (2sn + 1) degenerate,
where sn = �|�⊥|/�0� + n − 1/2 and �· � stands for the floor
function. The zeroth Dirac Landau level is fully spin polar-
ized, with spins parallel to −�B⊥.

For the pseudosphere with curvature radius a we found
both by analytical and numerical calculations that the Dirac

Landau levels in a perpendicular field follow

En = ± h̄vF

a

√
n

( |�⊥|
�0

− n

)
. (85)

Contrary to flat space and the positively curved sphere, the
pseudosphere supports only a finite number of Landau lev-
els with n running from 0 up to �|�⊥|/�0�, with |�⊥| =
2πa2|B|. However, just as in flat space, the degeneracy of
each Landau level n is given by a filling factor depending on
the magnitude of B, but is independent of n [see Eq. (42)].
Note that the existence of a finite number of Landau levels
can be guessed by inspection of the effective mass potential
|V⊥/‖(l )| (see Figs. 2 and 3): the potential does not diverge
for l → 0, yielding a well of finite depth. Moreover, we have
very strong numerical evidences that the above formula also
gives the correct Dirac Landau level spectrum for the Minding
surfaces. Similarly to the case of a 2D sphere, the zeroth Dirac
Landau level on the pseudosphere gets fully spin polarized,
though now the spin points along the +�B⊥ direction, i.e., the
opposite compared to the 2D sphere.

Apart from the ranges of principal quantum numbers and
different degeneracies of the Landau levels, the energy spec-
trum of massless Dirac electrons on a surface with constant
Gaussian curvature κ in a perpendicular field �B⊥ reads as in
general

En = ±h̄vF

√
n(Cκ |B| + κn). (86)

It is worth to stress that the 2D sphere considered above
is closed and compact, as opposed to the 2D plane and pseu-
dosphere, therefore considering only its upper hemisphere Cκ

becomes κ independent and equals 2π/�0.
For the case of the perpendicular magnetic field �B⊥ we

highlight the possibility to spectrally split the radial part of
the Hamiltonian (41) in terms of L̂± operators. This can be
interpreted and approached from the point of view of 1D
supersymmetric quantum mechanics [77–79]. However, we
did not follow this approach in our work, but as expected
[78], the zeroth Landau level physics is connected to the index
theorem of the corresponding Dirac operator.

A further central aspect of our work consists of the study
of the coaxial magnetic field configuration. It is, however,
particularly relevant since its experimental realization seems
not too far, considering current capabilities in shaping TI
nanowires [30–32], which host massless Dirac electrons on
their (curved) surfaces. In such a configuration we did not
succeed in finding exact analytical solutions to the problem,
but via asymptotic methods we could determine approximate
eigenspectra. Our results were fully confirmed by numerical
tight-binding calculations.

The spectral structure of the pseudosphere and Minding
surface in a coaxial field can be probed, e.g., optically or
via transport. Moreover, it could have interesting implications
for orbital magnetic phenomena. A general question is indeed
how the magnetic properties of quantum systems in curved
space may be affected by the local (Gaussian) curvature,
and whether, for example, signatures of fractional angular
momentum quantization, as proposed in Ref. [80], can be
identified.
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APPENDIX A: SPIN CONNECTION FOR PEDESTRIANS:
ADIABATIC PARALLEL TRANSPORT

ON SURFACES OF REVOLUTION

Two-dimensional surfaces of revolution � embedded in
3D Euclidean space parametrized by (φ, r) were discussed,
including the tangent vectors �∂φ , �∂r , and the induced metric
tensor gμν , in Sec. II. It is this Euclidean ambient space, and
the fact that the spinor representations in 2D and 3D spaces
are both two dimensional, that allows one to define a spin
connection in a very natural manner. However, the formal
definition as provided by Eq. (3) is intrinsic, i.e., it is valid
for any manifold and is independent of any embedding.

To describe spinor fields on � we need to specify a quan-
tization axis, that we define pointwisely, i.e., at any point
(φ, r) on � the local quantization axis is given by the unit
vector �n, that corresponds to the outer normal �n ∝ �∂φ × �∂r of
the surface � at that point. Here × is the standard vector
product in the 3D ambient Euclidean space. Evaluating �n,
using expressions given by Eqs. (8), one gets

�n = 1√
1 + (

dz
dr

)2

(
dz

dr
cos φ,

dz

dr
sin φ, 1

)
. (A1)

Since 1 + (dz/dr)2 � 1 one can define an auxiliary angle ϑ

that depends on r and dz/dr, such that

cos ϑ = 1√
1 + (

dz
dr

)2
= ω̂12

φ ⇔ sin ϑ =
dz
dr√

1 + (
dz
dr

)2
,

(A2)

or tan ϑ = dz/dr. Doing so one can rewrite the normal vector
in a conventional form

�n = (cos φ sin ϑ, sin φ sin ϑ, cos ϑ ). (A3)

Hence, specifying �n at a given point (φ, r) means to define
pointwisely a spin basis that is framed by spin-up and spin-
down states, |+〉(φ,r) and |−〉(φ,r), which are chosen as the
eigenstates of �n · �σ . Using cos ϑ and sin ϑ that depend on r

and dz/dr, and coordinate φ we can write them in a conven-
tional and very compact way:

|+〉(φ,r) =
(

+e−iφ/2 cos ϑ/2

e+iφ/2 sin ϑ/2

)
, (A4)

|−〉(φ,r) =
(

−e−iφ/2 sin ϑ/2

e+iφ/2 cos ϑ/2

)
. (A5)

This is our particular choice (gauge) of the spin-bundle
trivialization over the surface �. Someone else can,
however, impose a different gauge, i.e., instead of |±〉(φ,r),
use ei f±(φ,r) |±〉(φ,r) with some locally defined phase func-
tions f±(φ, r) (no global definition over the whole � is
required). Moreover, observe that we are picking the “antiperi-
odic gauge,” i.e.,

|±〉(φ+2π,r) = −|±〉(φ,r). (A6)

Having a spinor field 
 on �, therefore, means to define
φ-antiperiodic component fields 
↑(φ, r) and 
↓(φ, r), such
that the full spinor


 = 
↑(φ, r) |+〉(φ,r) + 
↓(φ, r)|−〉(φ,r)

≡
(


↑(φ, r)


↓(φ, r)

)
(A7)

is a global object unambiguously defined over the surface �. It
is this antiperiodic gauge what imposes the ansatz (37), taking
the angular part of 
 in the form ei(m+1/2)φ .

The parallel transport is a rule prescribing to what spinor
will correspond the spinor |±〉(φ−dφ,r−dr) when moved from
the given point (φ − dφ, r − dr) to an infinitesimally close
point (φ, r). Let us denote that parallelly transported spinor at
(φ, r) as PT|±〉(φ,r), and let us decompose it with respect to
the corresponding |±〉(φ,r) states residing at (φ, r), i.e.,

PT|±〉(φ,r) = A±(φ, r)|+〉(φ,r) + B±(φ, r)|−〉(φ,r). (A8)

So, technically, the parallel transport is given by a prescription
for the position-dependent coefficients A± and B±.

From the point of view of 2D surface, the spinors
|±〉(φ−dφ,r−dr) and |±〉(φ,r), which are residing at different
(although nearby) points do not know about each other, so
something like their sum, or inner product, do not have a
priori any sense. However, from the point of view of the
ambient 3D Euclidean space and its flat spin structure one
can move |±〉(φ−dφ,r−dr) and |±〉(φ,r) to the origin of R3 and
perform their scalar product there, etc. The rule we prescribe
for PT|±〉, i.e., rules for A± and B±, relies on that ambient
space, namely, we define

A+ = 〈〈+(φ,r)|+(φ−dφ,r−dr)〉〉 � 1 − i
dφ

2
cos ϑ, (A9)

A− = 〈〈+(φ,r)|−(φ−dφ,r−dr)〉〉 � 0, (A10)

B+ = 〈〈−(φ,r)|+(φ−dφ,r−dr)〉〉 � 0, (A11)

B− = 〈〈−(φ,r)|−(φ−dφ,r−dr)〉〉 � 1 + i
dφ

2
cos ϑ, (A12)

where the meaning of � on the right-hand sides means an
expansion up to the first order in dφ and dϑ ∝ dr. More
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importantly, the scalar product 〈〈 · | · 〉〉 entering the above def-
inition is understood in a sense of the standard two-component
C2 Pauli spinors in the ambient Euclidean space R3, and not
in a sense of Eq. (4). Since the parallel transport preserves
spin projections on infinitesimal distances, A− = 0 = B+,
and preserves norms, |A+| = 1 = |B−|, both up to the first
order in dφ and dr, it is called the spin-adiabatic parallel
transport or spin connection, but in an essence it is the Berry
connection.

Covariant derivatives or, more precisely, their spinor part
components [see Eqs. (13) and (14)], are defined as

∇r|±〉(φ,r) := lim
dr→0

|±〉(φ,r) − PT|±〉(φ,r)

dr

= 0, (A13)

∇φ|±〉(φ,r) := lim
dφ→0

|±〉(φ,r) − PT|±〉(φ,r)

dφ

= ± i

2
cos ϑ |±〉(φ,r)

= i

2
ω̂12

φ σz |±〉(φ,r), (A14)

what is exactly the spin connection we have encountered in
Sec. II. So ∇r and ∇φ “quantify” how much the spin-bundle
trivialization, i.e., states |±〉(φ,r), changes when transported
infinitesimally between neighboring points on �.

APPENDIX B: CHRISTOFFEL SYMBOLS

An elegant way to obtain the Christoffel symbols for a
given metric and curved coordinates is to use the Lagrange
function, kinetic energy of a unit mass particle on the curved
surface [64],

L(φ, φ̇, r, ṙ) = 1

2
(φ̇, ṙ)

(
r2 0

0 1 + ( dz(r)
dr

)2

)(
φ̇

ṙ

)
, (B1)

where the matrix represents the spatial part of the space-time
metric tensor gμν = diag{−v2

F , r2, 1 + [dz(r)/dr]2} and the
dot denotes the derivative with respect to a curve parameter,
say time, on which both coordinates φ and r depend upon.
Writing the corresponding Euler-Lagrange equation for φ one
recovers the Christoffel symbols 
φ

... [64]:

d

dt

(
∂L
∂φ̇

)
− ∂L

∂φ
= 2rṙφ̇ + r2φ̈ = 0. (B2)

This is equivalent to

2
1

r
ṙφ̇ + φ̈

!= 

φ

rφ ṙφ̇ + 

φ

φr φ̇ṙ + φ̈ = 0, (B3)

out of which the nonzero Christoffel symbols read as



φ

φr = 

φ

rφ = 1

r
. (B4)

Repeating the same for the r coordinate, one recovers the
corresponding nonzero 
r

... Christoffel symbols:


r
rr =

dz
dr

d2z
dr2

1 + (
dz
dr

)2 , 
r
φφ = − r

1 + (
dz
dr

)2 . (B5)

APPENDIX C: SOLUTIONS OF THE RADIAL EQUATIONS

The differential equation we need to solve for the E �= 0
states in perpendicular magnetic field [see Eq. (57)] is of the
form

x2 d2y(x)

dx2
+ (αx + β )

dy(x)

dx
+ γ y(x) = 0, (C1)

and its coefficients α, β, and γ follow from Eq. (57). This is
a degenerate double-confluent Heun equation which can be
simplified using the transformation [82]

x̃ = β

x
, y(x̃) = x̃�± ỹ(x̃),

�± = α − 1 ±
√

(α − 1)2 − 4γ

2
. (C2)

This leads to a confluent hypergeometric equation

x̃
d2ỹ(x̃)

dx̃2
+ [(2�± + 2 − α) − x̃]

dỹ(x̃)

dx̃
− �±ỹ(x̃) = 0.

(C3)

For a given �, this equation has two linearly independent
solutions, for instance, Kummer’s function M(a, b, z) and Tri-
comi’s function U (a, b, z). Counting the possibility to choose
�+ or �− in the above transformation, this would seemingly
yield four solutions. Of course, not all of them can be linearly
independent since the original equation is only of second
order. A basis of solutions may be given by

y−(x) = x−�−M

(
�−, 2�− + 2 − α,

β

x

)
, (C4)

y+(x) = x−�+M

(
�+, 2�+ + 2 − α,

β

x

)
. (C5)

Both solutions become polynomials in case the first argument
of M becomes a nonpositive integer. Before we examine this
further, we want to show that for our problem only polynomial
solutions lead to physical, i.e., normalizable, wave functions.
For this we need to inspect the asymptotic behavior of the
whole wave function in the limit r̃ → 0 and hence in par-
ticular M(a, b, z) for z → ∞ and z → −∞, assuming that
the first parameter is not a nonpositive integer. The first limit
z → ∞ is given by

z → ∞ : M(a, b, z) → ezza−b


(a)
. (C6)

For z → −∞, we use Kummer’s transformation

M(a, b, z) = ezM(b − a, b,−z) (C7)

which gives us the relation

z → −∞ : M(a, b, z) = e−zM(b − a, b,−z) → z−a


(b − a)
.

(C8)

Recall that in our original ansatz for 

↑
⊥(r̃) [Eq. (55)] we

used a function which in the present context has asymptotic
behavior e− β

2x . So assuming β is positive (we need the limit
z → ∞), the overall behavior is e+ β

2x , which clearly blows
up when x → 0. In case of a negative β (we need the limit
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z → −∞), the asymptotic behavior is given by e− β

2x , which
also blows up. This clearly shows that only polynomial so-
lutions yield physical wave functions. The condition that at
least one of the two basis solutions behaves polynomially is
given by

�±
!= −n, n ∈ {0, 1, 2, . . . }, (C9)

what gives us the quantization condition for the eigenenergies.
For given α and β, it turns out that this equation can only be
solved for �−. The solution reads as

γ = −n2 − n(α − 1). (C10)

Overall, our solution for the radial differential equation reads
as

y(x) = xnM

(
−n,−2n + 2 − α,

β

x

)
. (C11)

This can be simplified even further employing the associated
Laguerre polynomials L(a)

n (x),

y(x) = xnL(−2n+1−α)
n

(
β

x

)
, (C12)

where we have absorbed some constants into the overall nor-
malization (not shown).

The differential equations needed for the coaxial magnetic
field, Eq. (58), can be brought into the form

x2 d2y(x)

dx2
+ (αx2 + x + β )

dy(x)

dx
+ γ y(x) = 0, (C13)

respectively

x2 d2y(x)

dx2
+ (αx2 + x + β )

dy(x)

dx
+ (γ + αx)y(x) = 0,

(C14)

with the coefficients α, β, and γ stemming from Eq. (58).
Those are double-confluent Heun equations. Contrary to the
previous case, they are not degenerate (for α �= 0, β �= 0)
and hence a transformation into the much simpler confluent
hypergeometric differential equation is not possible. However,
further insight can be gained when performing the rescaling

x̃ = −αx, (C15)

which yields

x̃2 d2y(x̃)

dx̃2
+ (−x̃2 + x̃ − αβ )

dy(x̃)

dx̃
+ γ y(x̃) = 0, (C16)

respectively

x̃2 d2y(x̃)

dx̃2
+ (−x̃2 + x̃ − αβ )

dy(x̃)

dx̃
+ (γ − x̃)y(x̃) = 0.

(C17)

Interestingly, the coefficients α and β do not enter indepen-
dently into the equation. As in our original problem γ plays a
role of the energy eigenvalue, the above equation then asserts
that γ depends only on the product αβ and not on their
separate values. The solutions of the differential equation can
be expressed in terms of the double-confluent Heun function.
Since it is quite involved to work with them, we relax an

attempt to provide the wave functions in analytic form and
rather focus on the eigenenergies. To our best knowledge,
there is currently no exact formula determining the spec-
trum of this equation. However, there are known asymptotic
methods and approximations [75] which allow to get the
eigenvalues expanded in reciprocal powers of

√−αβ, in par-
ticular up to second order,

γn = 2n
√

−αβ + 1

2
n2 − 1, (C18)

respectively

γn = (2n + 1)
√

−αβ + 1

2
n2 + 1

2
n − 2. (C19)

Using this formula and expressing α and β in terms of the
original parameters, one recovers the asymptotic eigenvalue
results as given by Eq. (70).

APPENDIX D: WKB ANALYSIS FOR THE
PSEUDOSPHERE IN A COAXIAL FIELD

In the following we perform a WKB analysis of the spec-
trum of the pseudosphere in a coaxial field starting from
Eq. (46). It turns out to be advantageous to work with the arc
length coordinate l . The Hamiltonian is then given by

Ĥ = −∂2
l + (∂lV ) + V 2, (D1)

with the effective potential

V = m + 1
2

a
exp

(
l

a

)
+ 1

2al̃2
B

exp

(
− l

a

)
. (D2)

Eigenvalues of Ĥ are then ε2 := E2

h̄2v2
F

. As a first approxima-

tion, we can neglect the derivative of V in Ĥ :

Ĥ ≈ −∂2
l + V 2

= −∂2
l +

(
m + 1

2

)2

a2
exp

(
2l

a

)
+ 1

4a2 l̃4
B

exp

(
−2l

a

)

+ m + 1
2

a2 l̃2
B

. (D3)

We then absorb a constant represented by the last term as
a shift of the origin of energy for the states with a given
magnetic number m, therefore,

ˆ̃H = −∂2
l +

(
m + 1

2

)2

a2
exp

(
2l

a

)
+ 1

4a2 l̃4
B

exp

(
−2l

a

)
. (D4)

Performing a shift of the arc length coordinate such that its
origin coincides with the minimum of V 2 simplifies this even
more yielding

ˆ̃H = −∂2
l + η

a2
cosh

(
2l

a

)
, (D5)
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where we introduced η = |m+ 1
2

l̃2
B

|. The classical momentum is

given by

p(ε̃) = h̄

√
ε̃2 − η

a2
cosh

(
2l

a

)
. (D6)

For a given (shifted) energy ε̃, we assume the two turning
points l−, l+ to be located within the pseudosphere (obviously
l− = −l+). We need to calculate the action of a closed orbit
γ :

I (ε̃) =
∮

γ

dl p(ε̃)

= 4
∫ l+

0
dl p(ε̃)

= −i4ah̄ε̃

√
1 − η2

a2ε̃2
E

(
i

2
arcosh

(
a2ε̃2

η

)
,

2η

η − a2ε̃2

)
≈ 4ah̄ε̃ ln

(
a2ε̃2

η

)
, (D7)

where E(φ, k) is the incomplete elliptic integral of the second
kind. The particle motion includes two soft turning points
at l+ and l−, yielding the corresponding WKB quantization
condition

I (ε̃)

2π h̄
!= n + 1

2
. (D8)

Solving for ε̃ and adding the energy shift yields the WKB
spectrum (normalized to E = h̄vF /a)

Enm =

√√√√ π2
(
n + 1

2

)2

4W2
(

π
2

(
n + 1

2

)
η−1/2

) + sgn

(
m + 1

2

)
η, (D9)

where W(x) is the Lambert W function.
To examine the behavior in the strong field limit we assume

1

W2(x)
≈

(
1

x − x2

)2

=
(

1

x
+ 1

1 − x

)2

≈
(

1

x
+ 1

)2

≈ 1

x2
+ 2

x
. (D10)

This yields

En,m ≈
√

η + sgn

(
m + 1

2

)
η + π

(
n + 1

2

)√
η. (D11)

This explains where the different asymptotic behavior of
the spectrum for negative and non-negative angular quantum
numbers originates. For the first mentioned, the first two terms
under the square root cancel and the third term determines
the strong field behavior En,m ∝ |B|1/4. In the case of non-
negative m, the first two terms add and are dominant, leading
to En,m ∝ |B|1/2.
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