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Exciton polaritons are hybrid particles of excitons (bound electron-hole pairs) and cavity photons, which are
renowned for displaying Bose-Einstein condensation and other coherent phenomena at elevated temperatures.
However, their formation in semiconductor microcavities is often accompanied by the appearance of an incoher-
ent bath of optically dark excitonic states that can interact with polaritons via their matter component. Here we
show that the presence of such a dark excitonic medium can dress polaritons with density fluctuations to form
coherent polaronlike quasiparticles, thus fundamentally modifying their character. We employ a many-body
Green’s function approach that naturally incorporates correlations beyond the standard mean-field theories
applied to this system. With increasing exciton density, we find a reduction in the light-matter coupling that
arises from the polaronic dressing cloud rather than any saturation induced by the fermionic constituents of the
exciton. In particular, we observe the strongest effects when the spin of the polaritons is opposite that of the
excitonic medium. In this case, the coupling to light generates an additional polaron quasiparticle—the biexciton
polariton—which emerges due to the dark-exciton counterpart of a polariton Feshbach resonance. Our results can
explain recent experiments on polariton interactions in two-dimensional semiconductors and potentially provide
a route to tailoring the properties of exciton polaritons and their correlations.
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I. INTRODUCTION

The concept of quasiparticles has revolutionized our un-
derstanding of complex quantum systems. A famous example
is Landau’s quasiparticles within Fermi liquid theory [1,2],
which describe the collective behavior of interacting fermions
and which have provided a remarkably successful description
of Fermi systems ranging from liquid 3He to the semicon-
ductors that underpin modern electronics. Another important
example is the so-called polaron quasiparticle, which forms
when a mobile impurity particle becomes dressed by excita-
tions of a background quantum medium. This latter scenario
was initially confined to the case of electrons interacting with
phonons in a crystal lattice [3] but has since emerged in a
variety of systems, including ultracold atomic gases [4,5] and,
most recently, doped semiconductors [6,7].

In this paper, we extend the quasiparticle paradigm, as em-
bodied by polarons and Landau’s quasiparticles, and show that
it provides a framework for understanding hybrid light-matter
systems in semiconductor microcavities, as depicted in Fig. 1.
Here cavity photons are strongly coupled to excitons—bound
electron-hole pairs—in a two-dimensional (2D) semicon-
ductor, leading to the formation of exciton polaritons (or
polaritons), emergent hybrid particles that are superpositions
of light and matter [8–11]. Most notably, polaritons possess a
small mass inherited from their photonic component, allowing
them to Bose condense at high temperatures [12], while their
excitonic component can potentially generate strong optical
nonlinearities [13–15].

The polaritons’ hybrid nature makes this platform attrac-
tive for the investigation of a rich variety of phenomena rang-
ing from superfluidity [16–19] and topological effects [20–23]

to the emulation of the classical XY and Kardar-Parisi-Zhang
models [24,25]. Polaritons also have potential applications in
optoelectronics [26–30], while the recent advent of atomically
thin materials with robust exciton bound states further widens
the capabilities of light-matter systems [31,32]. On the other
hand, it is well-known that such microcavity polaritons are
often accompanied by a dark reservoir [10,11] consisting of
excitons which are not coupled to light (e.g., momentum for-
bidden) yet can interact with polaritons via their excitonic part
and thus impact the behavior of polaritons. Furthermore, the
density of dark excitons can be substantial [33,34], even when
polaritons are directly excited with a resonant laser [35–39].

We show here that the presence of a dark excitonic medium
can fundamentally modify the polaritons themselves by dress-
ing them to form polaronlike quasiparticles, as illustrated in
Fig. 1(a). In addition to shifting the energy of the polari-
tons, the polaronic dressing cloud can reduce the polariton’s
light-matter coupling and lifetime, as well as generate a new
quasiparticle—the biexciton polariton—a polaron that is adi-
abatically connected to the biexciton (two bound excitons)
at vanishing exciton density [Fig. 1(b)]. Reservoir-induced
energy shifts have already been observed experimentally and
have been exploited to create on-demand potentials for polari-
tons via a spatially varying laser pump [34,40–47]. Our theory
of polaronic polaritons goes further and suggests that the very
character of the polariton quasiparticle can be controlled by
varying the reservoir density.

To describe the many-body polariton-reservoir system, we
formulate a Green’s function approach involving one and
two-body correlators that allows us to incorporate the exact
low-energy scattering between polaritons and reservoir exci-
tons for arbitrary spin. In particular, it captures the coherent
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FIG. 1. (a) Schematic of a polaronlike quasiparticle in a semi-
conductor optical microcavity. An exciton polariton—a superposi-
tion of an exciton (purple circle) and a photon (purple cylinder)—is
dressed by its interaction with a dark excitonic medium in a 2D
semiconductor (green layer). The medium may have two different
spins (red and blue circles). Depending on its spin and energy, the
polariton either attracts or repels the excitons, resulting in an in-
crease or decrease in the local exciton density, respectively, leading
to a polaronic dressing cloud (white dashed circle). (b) A typical
energy spectrum at zero photon-exciton detuning that shows how the
upper (UP) and lower (LP) polaritons at energies EUP, ELP evolve
into dressed polarons with increasing dark medium density. The
bare Rabi splitting 2�0 is indicated by the white double-headed
arrow. Below the exciton energy EX , additional polaron quasiparti-
cles emerge that, at vanishing density, connect to the biexciton with
binding energy εB. As illustrated in the figure, the resulting biexciton
polaritons (BPs) are sensitive to the spin composition of the medium
and can exhibit significant Zeeman splitting.

scattering of excitons out of the bright (light-coupled) state,
leading to a polaron quasiparticle that is a superposition of
photons, bright excitons, and scattered dark excitons (dressing
cloud). This provides a natural mechanism for reducing the
light-matter coupling with increasing exciton density which
does not rely on Pauli blocking between the electrons and
holes within the excitons, in contrast to conventional theo-
ries [48–50]. Indeed, a fully microscopic theory involving
electron-hole pairs finds no evidence of a Pauli-blocking-
induced reduction of the light-matter coupling [51]. We expect
our theory to provide a good description of typical exper-
iments which are conducted below the Mott density such
that we can neglect the internal structure of the excitons and
account for fermionic effects only at the level of the effective
exciton-exciton interactions.

Figure 1(b) summarizes the key implications of our pola-
ronic polariton quasiparticles for the optical spectrum. We find
that the upper and lower polaritons (UP and LP) are affected
differently by the interactions with the medium, such that
the UP polaron generally broadens with increasing density
while the LP polaron shifts upwards in energy. This results in
an effective reduction in the Rabi splitting between polariton
branches, which mirrors the diminished light-matter coupling
in the polarons and which is consistent with observations in
experiments [52,53]. Crucially, this differs from the standard
picture of saturation since the loss of the Rabi splitting is
primarily accomplished by the disappearance of the UP quasi-
particle rather than the merger of two quasiparticle branches.
We show that this result can explain recent experimental

measurements of polariton interactions in transition metal
dichalcogenides (TMDs) [54].

We furthermore see the appearance of the biexciton po-
lariton (BP) at lower energies, which exhibits a pronounced
Zeeman splitting since it relies on the presence of the biexci-
ton bound state and is thus sensitive to the spin composition
of both the reservoir and the polariton. This is associ-
ated with resonantly enhanced opposite-spin interactions that
emerge from the dark-exciton-analog of a polariton Feshbach
resonance [55–58]. Remarkably, we find that coherent BP
polarons exist even though the excitonic medium is incoher-
ent, and that such quasiparticles are stabilized by the strong
coupling to light.

The paper is organized as follows. In Sec. II, we outline the
model and present the Green’s function formalism used in our
paper. We use this to solve the two-body problem exactly. In
Sec. III, we generalize our result to the many-body case of an
incoherent excitonic reservoir and discuss the key properties
of the resulting quasiparticle branches, the BP, LP, and UP
polarons. We consider two particular experimental configura-
tions in Sec. IV, both of which have recently been explored
in microcavities containing a MoSe2 monolayer as the active
medium [54,59]. While those experiments were interpreted
fully in terms of polaritons, we argue that an incoherent ex-
citon reservoir could have played a key role in both cases. We
conclude in Sec. V.

II. MODEL AND FEW-BODY PROPERTIES

We consider a 2D semiconductor embedded in an optical
microcavity, as depicted in Fig. 1(a). To describe an exciton
polariton immersed in an incoherent dark excitonic medium,
we employ the Hamiltonian Ĥ = Ĥ0 + V̂ , which consists of
the following single-particle and interaction parts (we set the
system area and h̄ to 1):

Ĥ0 =
∑

σ

{ ∑
k

εkx̂†
kσ x̂kσ + �0ĉ†

σ ĉσ

}

+�0

∑
σ

[x̂†
0σ ĉσ + ĉ†

σ x̂0σ ], (1a)

V̂ =
∑

k,k′,q,
σ,σ ′

vσσ ′ (q)

2
x̂†

kσ x̂†
k′σ ′ x̂k′+qσ ′ x̂k−qσ . (1b)

Here the bosonic operator x̂†
kσ creates an exciton with in-plane

momentum k and pseudospin σ = ↑,↓, corresponding to the
spin of the electrons involved in the optical excitation of the
exciton. We assume that we are close enough to the band edge
that the excitonic dispersion is given by εk = |k|2/2mX ≡
k2/2mX with exciton mass mX . All energies are with respect to
the exciton energy at k = 0. Equation (1b) describes the inter-
actions between excitions via the interaction potential vσσ ′ (q).
Importantly, this depends on the exciton spin, where we obvi-
ously require v↑↓ = v↓↑ and we also assume that v↑↑ = v↓↓.
A complete description of the exciton-exciton interactions is
presented in Sec. II B.

In our model (1), we treat the excitons as feature-
less bosons, which is reasonable as long as the exciton
binding energy is large compared to the energy scales of
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interest, as is typically the case in 2D semiconductors such
as TMD monolayers and single GaAs quantum wells—see,
e.g., Refs. [54,57]. The advantage of such an approximation
is that it allows us to construct a theory that is simple to im-
plement, yet clearly exposes the polaronic physics involved.
Furthermore, the strength of interactions is reduced in multi-
layer systems [58], making monolayers the optimal system in
which to observe polaronic effects. However, we emphasize
that the restriction to a single semiconductor layer is not a
necessary condition for the existence of polaronic effects, and
thus we expect our theory to be at least qualitatively accurate
for multilayer systems.

For simplicity, we consider a single cavity mode of the mi-
crocavity, which is described by the photon creation operator
ĉ†
σ with polarization (spin) σ and detuning �0 with respect

to the energy of the exciton at k = 0. The cavity photon is
assumed to be at normal incidence to the semiconductor and
thus it only couples to the exciton at k = 0 via the Rabi
coupling �0 in Eq. (1a). The excitons with k �= 0 remain
uncoupled to light and can thus naturally form a reservoir of
optically dark excitons. Note that this scenario also applies
to planar microcavities where the cavity photons have in-
plane momenta, since the light-coupled excitons have k much
smaller than the typical momentum scales in the semicon-
ductor. Hence, we can simply incorporate the effect of finite
photon momentum by varying the light-matter detuning.

To connect our theory with the optical spectrum that is
observed in experiments, we use the retarded photon Green’s
function, which can be defined as

GCσ (t ) = −i�(t ) 〈ĉσ (t )ĉ†
σ (0)〉 , (2)

where �(t ) is the Heaviside function and the average 〈· · · 〉
is taken over the state of the microcavity system assum-
ing a small or negligible photon number, e.g., an incoherent
medium of dark excitons. Here we work within the Heisen-
berg picture such that we have time-dependent operators
ĉσ (t ) = eiĤt ĉσ e−iĤt . The Fourier transform, GCσ (ω), of the
photon Green’s function then gives us access to the spectrum
for each photon polarization σ . In particular, the absorption is
related to the spectral function, given by

Aσ (ω) = − 1

π
ImGCσ (ω + i0), (3)

while the transmission is proportional to |GCσ (ω)|2 [60]. The
frequency is shifted by an infinitesimal positive imaginary part
due to the Heaviside function in Eq. (2).

Importantly, while the Green’s functions are diagonal in the
spin basis, experiments are free to consider any polarization
angle, which will, in general, probe the spectrum associated
with both GC↑(ω) and GC↓(ω). For example, when the photon
is of the form ĉθ = cos(θ )ĉ↑ + sin(θ )ĉ↓, the spectral function
becomes a weighted sum

Aθ (ω) = cos2(θ )A↑(ω) + sin2(θ )A↓(ω), (4)

where A↑ and A↓ are the spin-resolved spectral functions
defined in Eq. (3).

A. Noninteracting light-matter system

In the absence of exciton-exciton interactions, the photon
Green’s function in Eq. (2) takes a particularly simple form.
Due to the Rabi coupling, the Heisenberg equations of motion,
i∂t ĉσ (t ) = [ĉσ (t ), Ĥ0] and i∂t x̂0σ (t ) = [x̂0σ (t ), Ĥ0], result in
coupled equations for the photon and (zero-momentum) exci-
ton operators. Fourier transforming to the frequency domain,
we find the corresponding noninteracting Green’s matrix (for
details, see Appendix A):

G(0)(ω) =
(

ω −�0

−�0 ω − �0

)−1

. (5)

We have dropped the spin label since the Green’s functions
are spin independent in the absence of interactions. For ease of
notation, in the following we define the noninteracting exciton
Green’s function at zero momentum:

G(0)
X (ω) ≡ G(0)

11 (ω) = 1

ω − �2
0

ω−�0

, (6)

as well as the corresponding photon Green’s function:

G(0)
C (ω) ≡ G(0)

22 (ω) = 1

ω − �0 − �2
0

ω

. (7)

We can also define the noninteracting exciton Green’s func-
tion at finite momentum, k �= 0, which is uncoupled to light
and thus has the form

G(0)
X (k, ω) = 1

ω − εk
. (8)

Physically, the poles of the Green’s matrix in Eq. (5)
correspond to the eigenmodes of the system, i.e., the lower
and upper polariton branches, with corresponding energies
relative to that of the zero-momentum exciton:

εLP,UP = 1
2

(
�0 ∓

√
�2

0 + 4�2
0

)
. (9)

It is often useful to consider the partial fraction decomposition
of the noninteracting Green’s function in terms of the eigen-
modes. This yields

G(0)
C (ω) = |C0|2

ω − εLP
+ |X0|2

ω − εUP
, (10a)

G(0)
X (ω) = |X0|2

ω − εLP
+ |C0|2

ω − εUP
. (10b)

Here we have defined the excitonic and photonic Hopfield
coefficients, X0 and C0, via

|X0|2 = 1

2

⎛
⎜⎝1 + �0√

�2
0 + 4�2

0

⎞
⎟⎠, (11)

with |C0|2 = 1 − |X0|2. This implies that the photonic fraction
of the lower and upper polariton branches are |C0|2 and |X0|2,
respectively. In the noninteracting case, the spectral function
in Eq. (3) then corresponds to Dirac delta function peaks at
the corresponding energies, weighted by the photon fraction.
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B. Two-body problem

We now consider the effect of exciton interactions in the
two-body limit, which has the advantage that the correspond-
ing modification of the Green’s functions can be calculated
exactly. To proceed, we consider the scenario in which the
medium consists of a single (dark) exciton of momentum Q
and spin σ ′. Hence, the averages in the Green’s function are
taken with respect to the state |Qσ ′〉 = x̂†

Qσ ′ |0〉.
In analogy with the photon Green’s function in Eq. (2), the

exciton Green’s function reads

GXσ (t ) = −i�(t )eiεQt 〈x̂0σ e−iĤt x̂†
0σ 〉 , (12)

where we have used Ĥ |Qσ ′〉 = εQ |Qσ ′〉. Note that we have
explicitly included spin here, since the interaction part of the
Hamiltonian is asymmetric with respect to spin. Upon Fourier
transformation, one obtains

GXσ (ω) =
〈
x̂0σ

1

ω + εQ − Ĥ + i0
x̂†

0σ

〉
. (13)

Using the Born series expansion in terms of V̂ , one has the
identity

1

ω + εQ − Ĥ
=

(
1 + 1

ω + εQ − Ĥ
V̂

)
1

ω + εQ − Ĥ0
, (14)

which allows us to express the Green’s function as

GXσ (ω) = G(0)
X (ω)

[
1 +

〈
x̂0σ

1

ω + εQ − Ĥ
V̂ x̂†

0σ

〉]
. (15)

We see that the effect of interactions is encoded in the second
term in brackets, which we now evaluate. The corresponding
procedure is illustrated in Fig. 2 for the case of distinguish-
able excitons. The extension to indistinguishable excitons is
straightforward. Using the definition of V̂ in Eq. (1b), we have

〈
x̂0σ

1

ω + εQ − Ĥ
V̂ x̂†

0σ

〉
= [vσσ ′ (0) + δσσ ′vσσ (Q)]GXσ (ω) +

′∑
k

vσσ ′ (k)

〈
x̂0σ

1

ω + εQ − Ĥ
x̂†

kσ x̂†
Q−kσ ′ x̂Qσ ′

〉
, (16)

where the prime on the sum implies that we have removed terms with k = 0 and, for the case of σ = σ ′, k = Q. Here, the first
term on the right-hand side corresponds to the Born approximation of scattering that is usually employed in the literature [61],
with the part proportional to δσσ ′ due to the particle exchange that can occur when the medium exciton is identical to the
light-coupled exciton.

To go beyond standard theories of polaritons, we need to include the second term on the right-hand side of Eq. (16) which
depends on a two-body correlator. Using Eq. (14), we find that the corresponding sum satisfies the equation depicted in Fig. 2(b):


σσ ′ (p, Q, ω) ≡
′∑
k

vσσ ′ (k − p)

〈
x̂0σ

1

ω + εQ − Ĥ
x̂†

kσ x̂†
Q−kσ ′ x̂Qσ ′

〉

= GXσ (ω)
′∑
k

vσσ ′ (k − p)[vσσ ′ (k) + δσσ ′vσσ (Q − k)]

ω + εQ − εk − εQ−k
+

′∑
k

vσσ ′ (k − p)
1

ω + εQ − εk − εQ−k

σσ ′ (k, Q, ω).

(17)

The formal solution of this equation can be obtained by considering its iteration. At p = 0, this takes the form


σσ ′ (0, Q, ω) = GXσ (ω)[Tσσ ′ (Q/2, Q/2; Q, ω + εQ) − vσσ ′ (0) + δσσ ′ (Tσσ (Q/2,−Q/2; Q, ω + εQ) − vσσ (Q))]. (18)

Here, the two-body T matrix T (p1, p2; Q, ω), as illustrated in
Fig. 2(c) and discussed further in Appendix B, is the sum of all
scattering processes with center-of-mass momentum Q, total
energy ω, and relative incoming (outgoing) momentum p1

(p2). Again, the last two terms on the right-hand side originate
from exchange of identical bosons.

Comparing Eqs. (16) and (18), we see that the inclusion of
the two-body correlator in 
 exactly replaces the contribution
from the Born approximation by the full scattering T matrix,
and thus the exciton Green’s function satisfies the Dyson
equation [62]

GXσ (ω) = G(0)
X (ω) + G(0)

X (ω)�2body
σ (ω)GXσ (ω), (19)

with the self-energy

�2body
σ (ω) = Tσσ ′ (Q/2, Q/2; Q, ω + εQ)

+ δσσ ′Tσσ (Q/2,−Q/2; Q, ω + εQ). (20)

Equations (19) and (20) constitute an exact analytical result
for the interacting Green’s function in the two-body problem.
Note that this is equivalent to the usual expression for the
two-body Green’s function from scattering theory [63] once
we consider the fact that the self-energy is vanishingly small,
scaling as inverse area. Hence GXσ on the right-hand side of
Eq. (19) can be replaced by G(0)

X , such that we recover the
standard relation vG = T G(0). However, the advantage of our
formulation is that it naturally connects to the Dyson equa-
tion in the many-body problem [62], where the self-energy
can instead scale with the density of the medium and thus
be significant. Furthermore, our Green’s function approach
can be straightforwardly generalized to include higher body
correlations such as those associated with triexcitons (three-
exciton bound states) [64,65].

In general, the T matrix depends on the details of the
interaction potential. However, a crucial simplification occurs

195432-4



POLARONIC POLARITON QUASIPARTICLES IN A DARK … PHYSICAL REVIEW B 109, 195432 (2024)

FIG. 2. Feynman diagrams for a spin-σ polariton interacting
with a single spin-σ̄ reservoir exciton, where σ̄ �= σ . The double-line
propagators correspond to the interacting exciton Green’s function,
while the single horizontal lines represent its noninteracting counter-
part [corresponding to Eqs. (6) and (8) at zero and finite momentum,
respectively]. The exciton-exciton interaction potential is represented
by a wiggly line, and the dotted loops indicate that the reservoir
exciton has the same outgoing and incoming momenta. Panel (a) rep-
resents a combination of Eqs. (15) and (16), (b) corresponds to
Eq. (17), (c) is the standard definition of the two-body T matrix
(see Appendix B), and (d) represents the relationship between the
two-body correlator 
 and the T matrix in Eq. (18).

for short-range potentials, such as the van der Waals type
interaction between excitons, when the energy scale of inter-
actions (set by the exciton binding energy) greatly exceeds all
other relevant energy scales in the problem. In this case, the
T matrix is characterized by just a single parameter εσσ ′ , and
takes the form [58]

Tσσ ′ (p1, p2; Q, ω) 
 Tσσ ′ (Q, ω) ≡ 4π

mX ln
( − εσσ ′

ω−εQ/2

) ,

(21)

where Tσσ ′ (Q, ω) is the universal low-energy scattering T
matrix in 2D [66]. To logarithmic accuracy, the energy scale
εσσ ′ can be associated with a characteristic scale of the inter-
actions. For interactions between same-spin excitons, σ = σ ′,
this characteristic scale is the exciton binding energy and
we have ε↑↑ = ε↓↓ ≡ εX . On the other hand, for σ �= σ ′,
the low-energy scattering is controlled by the existence of
an ↑↓ bound state—the biexciton—and thus the energy ε↑↓
corresponds to the biexciton binding energy εB. We emphasize
that the validity of the analytical formula (21) for σ = σ ′
is supported by microscopic calculations which include the
composite nature of the excitons [67,68], while similar ana-
lytic formulas for polariton-electron scattering have also been
verified by microscopic calculations [69–71].

FIG. 3. Feynman diagrams for the many-body problem of a
spin-σ polariton interacting with a dark excitonic medium. Panel
(a) represents Dyson’s equation (22a) for the interacting exciton
Green’s function in terms of noninteracting Green’s functions, where
the effect of interactions is encoded in the spin-dependent self-energy
�σ . Panel (b) represents Eq. (32) and shows how the self-energy
involves interactions with both same-spin and opposite-spin (σ̄ �= σ )
reservoir excitons. These are described by the low-energy T matrices
Tσσ and Tσ σ̄ , respectively, where there is an extra same-spin diagram
due to particle exchange.

The energy dependence of the T matrix is a key ele-
ment of our low-energy theory that is absent in descriptions
of polariton and exciton interactions based on the Born ap-
proximation [11,61]. In particular, it implies that the relative
strengths of the polariton-polariton, polariton-exciton, and
exciton-exciton interactions are not only dependent on the
exciton fraction but are also affected by the collision ener-
gies appearing in the T matrix. For bare 2D excitons, the
two-body T matrix vanishes logarithmically in the limit of
zero momenta because the collision energy vanishes [66].
By contrast, the strength of polariton-polariton and polariton-
exciton scattering remains sizable at low momenta due to the
shifted collision energy in the presence of strong light-matter
coupling [58]. Finally, our low-energy approach can capture
the broadening in the spectrum due to matter interactions since
the structure of the T matrix can lead to an imaginary part
in the self-energy.

III. POLARON QUASIPARTICLES

We now turn to the many-body problem and discuss how
the interaction with a dark excitonic medium can strongly in-
fluence the behavior of exciton polaritons due to the formation
of polaron quasiparticles. Our predictions include nontrivial
shifts of the lower and upper polariton energies, modifica-
tions of their exciton fraction and associated light-matter
coupling strength, saturation of their Rabi splitting, and even
the emergence of new light-matter-coupled quasiparticles in
the spectrum.

Similarly to the exact two-body formulation in Eq. (19),
the effects of the dark medium are all encoded in the self-
energy �σ (ω), such that the exciton Green’s function satisfies
the Dyson equation [Fig. 3(a)] [62]:

GXσ (ω) = G(0)
X (ω) + G(0)

X (ω)�σ (ω)GXσ (ω) (22a)

= 1

ω − �σ (ω) − �2
0

ω−�0

. (22b)
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This modifies the Green’s matrix in Eq. (5) to the spin-
dependent interacting form

Gσ (ω) =
(

ω − �σ (ω) −�0

−�0 ω − �0

)−1

, (23)

where the interaction with the medium only affects the exci-
tonic component. Thus, we obtain the spin-dependent photon
Green’s function:

GCσ (ω) = 1

ω − �0 − �2
0

ω−�σ (ω)

. (24)

Before proceeding to consider the specific form of the
self-energy that arises from interactions with a dark excitonic
reservoir, let us first make some general observations that
are valid for any medium, dark or otherwise. Provided the
imaginary part of the self-energy is sufficiently small such that
the upper and lower polaritons remain well-defined quasiparti-
cles, we can treat the effect of the medium by considering their
modified quasiparticle properties. The new medium-dressed
and light-matter-coupled quasiparticles may be found by con-
sidering the poles of the Green’s functions, i.e., we require
Re[G−1

C,Xσ (ωp)] = 0 [72]. For frequencies close to such a pole,
we then have

GXσ (ω) 
 Zσ

ω − �Xσ − �2
σ

ω−�0
+ i
σ

(25)

and

GCσ (ω) 
 1

ω − �0 − �2
σ

ω−�Xσ +i
σ

. (26)

Here we have introduced the quasiparticle residue Zσ , a key
quasiparticle parameter that is defined as [62]

Zσ =
(

1 −
[
∂Re[�σ (ω)]

∂ω

]
ω=ωp

)−1

, (27)

and satisfies 0 � Zσ � 1. Comparing Eqs. (25) and (26) with
the non-interacting Green’s functions in Eqs. (6) and (7), we
find that Zσ changes the weight of the exciton Green’s func-
tion and leads to the effectively reduced light-matter coupling:

�σ = √
Zσ�0. (28)

Physically, Zσ corresponds to the fraction of the matter
component of the polaron quasiparticle that remains in the
bright k = 0 exciton, while the remaining fraction (1 − Zσ )
is in the polaronic dressing cloud composed of dark k �= 0 ex-
citons and scattered medium particles. This physics relies on
the frequency dependence of the self-energy, since a constant
self-energy simply gives Zσ = 1 according to Eq. (27). The
interactions with the medium also cause the exciton resonance
to shift and broaden according to

�Xσ = ωp + Zσ

(
Re[�σ (ωp)] − ωp

)
, (29)


σ = −Zσ Im[�σ (ωp)], (30)

respectively. In particular, we see that whether the exciton
strongly shifts or broadens depends sensitively on whether the
self-energy is predominantly real or imaginary. The former
typically happens when the quasiparticle is detuned from a

continuum of states, which is the case for the lower polariton.
Conversely, the latter occurs when the quasiparticle sits in
a continuum of states, as is typically the case for the up-
per polariton due to its upwards shift from the bare exciton
line. Hence, the medium typically shifts the lower polariton
while broadening the upper polariton, leading to a modified
Rabi splitting, as illustrated in Fig. 1(b). For most parameter
regimes, the Rabi splitting is reduced by the interaction with
the medium; however, we show below that it is even possible
to enhance the splitting between lower and upper polaritons
in certain cases, even though the underlying light-matter cou-
pling is reduced as per Eq. (28).

Let us contrast our ideas with the conventional treatment of
polaritons in a (dark) excitonic reservoir [13,25,38,46]. Here
it is assumed that the shifts of the lower and upper polaritons
have the simple mean-field form

�LP = g|X0|2n, �UP = g|C0|2n, (31)

where n is the reservoir density and g is a constant exciton-
exciton interaction strength, such as might be obtained in the
Born approximation. This corresponds to taking the constant
self-energy �σ (ω) = gn and assuming gn/�0 � 1. Expres-
sions like in Eqs. (31) are often used when modeling effective
reservoir-induced potentials for an exciton-polariton super-
fluid. However, this approach does not properly describe the
full energy-dependent scattering of excitons and thus misses
the polaronic physics we describe here. In particular, it gives
Zσ = 1 and it does not capture the different interactions for
the upper and lower polaritons. For instance, close to zero
detuning where |X0|2 = |C0|2 = 1/2, Eqs. (31) predict that
both branches shift equally and thus the Rabi splitting re-
mains constant. Therefore, to explain any reduction of the
Rabi splitting between upper and lower polariton branches
(i.e., saturation), one must invoke phase-space filling due to
the fermionic nature of the electronic constituents of the ex-
citons [48]. By contrast, our polaron theory naturally yields a
saturation of the Rabi splitting, without the need to appeal to
Pauli exclusion.

To make our discussion more concrete, we now consider
a specific excitonic self-energy based on the exact solution of
the two-body problem presented in Sec. II B above. Specifi-
cally, we perform a weighted sum over the possible momenta
and spins of the excitons in the reservoir, such that we obtain
the self-energy depicted in Fig. 3(b),

�σ (ω) =
∑
Q,σ ′

(1 + δσσ ′ )nQσ ′Tσσ ′ (Q, ω + εQ), (32)

where nQσ is the occupation of a dark exciton with momentum
Q and spin σ . Here, we have assumed that the relevant energy
scales are such that we can take the universal expression for
the T matrix in Eq. (21). This self-energy corresponds to
a so-called ladder approximation [73]. As such, it neglects
higher order correlations between the impurity and multiple
excitations of the dark excitonic medium, as is reasonable
for an incoherent reservoir where nQσ is approximately a
Boltzmann distribution.

A further important simplification arises from the strong
light-matter coupling combined with the fact that the dark
medium particles are much heavier than the polaritons
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FIG. 4. Spectral function as a function of total medium density, with Aσ (ω) evaluated using the self-energy in Eq. (33). We consider a
dark excitonic medium with n↑ = 3n↓ and detunings (a), (b) �0 = 0; (c), (d) �0 = −1.2�0; (e), (f) �0 = −1.8�0. The dashed white lines
represent the corresponding low-density approximations for the energies of the UP, LP, and BP polaron branches [Eqs. (44), (34), and (40),
respectively]. We have used parameters relevant to an MoSe2 monolayer, where �0 
 14meV [54], such that εB = 1.5�0 and εX = 34�0, with
exciton and photon linewidths 
X = 
C = 0.15�0 [74].

themselves. This implies that the collision energy in Eq. (32)
is naturally dominated by the Rabi coupling rather than the
exciton kinetic energy. Neglecting εQ in Eq. (32), the self-
energy takes the particularly simple analytic form

�σ (ω) 
 2εnσ

ln
(

εX
−ω

) + εnσ̄

ln
(

εB
−ω

) , (33)

where we have defined εnσ
= 4πnσ /mX , with nσ the density

of dark excitons for a given spin σ . The factor of 2 in the
first term originates from the indistinguishability of same-
spin excitons, while the second term involves opposite spin
interactions with σ̄ �= σ . Provided ω is not resonant with the
biexciton, we find that Eq. (33) is an excellent approximation
when

∑
Qσ nQσ�(εQ − �0) � n, with n the total density of

the dark medium.
Using our analytic expression for the self-energy, Eq. (33),

we can immediately plot the evolution of the ↑ and ↓ spectral
functions with increasing total reservoir density, as parame-
terized by εn ≡ 4πn/mX . The result is shown in Fig. 4 for
a reservoir with spin proportions n↑ = 0.75n and n↓ = 0.25n.
We see that each spectrum features three lines rather than two,
and that the two lower branches can either blueshift or redshift
with increasing density. Furthermore, the corresponding lines
in A↑ and A↓ can be Zeeman split with respect to each other.
We now discuss each of these features in detail.

A. Lower polariton polaron

We first consider the polaron quasiparticle that contin-
uously evolves from the lower polariton with increasing

medium density. This lower polariton polaron can be char-
acterized by its medium-induced energy shift, as well as the
relative weights of its excitonic and photonic components. In
the following, we assume that we are away from any biexciton
resonance, which will be discussed in Sec. III B when we
consider the biexciton polariton.

1. Energy shifts

To understand the behavior of the LP polaron energy, we
start by focusing on the low-density limit, where we can
obtain analytic expressions. In this regime, the polariton is
only weakly perturbed by its interaction with the medium, and
consequently we can evaluate the self-energy in Eq. (33) at
εLP. We then obtain the in-medium LP polaron energy by a
series expansion around the unperturbed value, yielding (see
Appendix C for details)

εLPσ (n) 
 εLP + |X0|2
[

2εnσ

ln
(

εX
|εLP|

) + εnσ̄

ln
(

εB
|εLP|

)
]
. (34)

This expression is plotted in Fig. 4 and is seen to match the
numerical results well at low density. It is linear in the density
of the reservoir and proportional to the excitonic fraction. We
therefore see that the low-density limit of our theory super-
ficially resembles the commonly used mean-field expression
of Eq. (31). However, in Eq. (34), the interaction strength
depends on the light-matter coupling via εLP, which differs
from the constant g in the standard treatment. As we now
discuss, this qualitative difference can have profound effects.

195432-7



CHOO, BLEU, LEVINSEN, AND PARISH PHYSICAL REVIEW B 109, 195432 (2024)

According to Eq. (34), the LP energy shift can involve dark
excitons of the same and opposite spins. While the former
always leads to a blueshift, since the exciton binding energy
exceeds any other relevant scale in the problem, the latter
only leads to a blueshift if the lower polariton lies above the
biexciton, εLP > −εB [Figs. 4(a) and 4(b)]; otherwise it leads
to a redshift. Therefore, depending on the spin proportions of
the reservoir and on the precise detuning, it is possible for
the lower polariton to have an overall redshift with increasing
density, as illustrated in Figs. 4(c)–4(f). This prediction is
qualitatively different from that of the conventional picture,
which assumes that interactions are determined by lowest
order exchange processes and phase-space filling [50,75,76],
and only ever predicts blueshifts of the lower polariton. While
the redshift leads to an increase of the splitting between
upper and lower polaritons, we caution that this should not
be interpreted as an increased light-matter coupling, since
in this configuration a third quasiparticle peak, the biexciton
polariton, appears in the spectrum above the lower polariton
(see Fig. 4 and Sec. III B).

Furthermore, in the regime |εLP| ∼ εB, as is often the
case in 2D TMDs or single-quantum-well semiconductors,
the energy shift (blue or red) due to opposite-spin inter-
actions can strongly dominate. This effectively corresponds
to a dark-exciton analog of the polariton Feshbach reso-
nance [55,57,58,77], where the polariton-exciton interaction
is resonantly enhanced due to the biexciton. Notably, a strong
polarization dependence of the lower polariton peak was
recently observed in a 2D TMD [54], with the strongest
blueshift occurring for linear polarization in accordance with
this prediction. This behavior cannot be explained by the
usual theory of saturation (based on the fermionic constituents
of the excitons) [54], but it is well captured by our polaron
theory—see Sec. IV A.

By comparing the A↑ and A↓ spectra in Fig. 4, we also see
that when the reservoir is spin imbalanced, the ↑ and ↓ lower
polariton polarons are split. This splitting can be interpreted
as an effective Zeeman splitting, induced by interactions with
the exciton medium. At low density, the size of the splitting is

εLP↑ − εLP↓ 
 4π |X0|2
mX

ln
( ε2

B
|εLP|εX

)
ln

(
εX

|εLP|
)

ln
(

εB
|εLP|

) (n↑ − n↓), (35)

where the sign and strength of the prefactor in Eq. (35)
are dependent on �0 and �0 through εLP. Such a reservoir-
induced Zeeman splitting of the lower polariton has recently
been observed in a GaAs microcavity [78,79], and a similar
interaction-induced Zeeman splitting for excitons has been
reported in WSe2/MoSe2 bilayers [80].

Beyond the low-density limit, the LP polaron energy is ob-
tained from the poles of the photon Green’s function, Eq. (24),
which must be evaluated numerically. In the case where
εLP > −εB, there exist two limiting cases for the high-density
behavior of the lower polariton branch: If �0 � 0, εLPσ (n)
asymptotically approaches the photon energy, as shown in
Figs. 4(a) and 4(b), while for �0 > 0 it is instead bounded
from above by the exciton energy, as can be seen from the
form of the self-energy in Eq. (33). Conversely, if εLP < −εB

as in Figs. 4(c)–4(f), the LP polaron eventually becomes

completely matter dominated, and its energy satisfies
εLPσ (n) = �σ (εLPσ (n)) in the high-density limit.

2. Exciton and photon fractions

Next, we discuss the impact of the reservoir on the matter
and photonic components of the LP polaron. Similarly to the
noninteracting case, Eqs. (10), one can show that Eqs. (25)
and (26) reduce to

GXσ (ω) 
 Zσ |Xσ |2
ω − ωp

, (36a)

GCσ (ω) 
 |Cσ |2
ω − ωp

(36b)

in the vicinity of the LP polaron pole, where we have used the
fact that the broadening 
σ is negligible for the LP polaron.
Here we have

ωp = 1
2

(
�0 + �Xσ −

√
�2

σ + 4�2
σ

)
, (37)

and the modified excitonic and photonic Hopfield coefficients,
Xσ and Cσ , given by

|Xσ |2 = 1 − |Cσ |2 = 1

2

(
1 + �σ√

�2
σ + 4�2

σ

)
, (38)

in terms of the modified detuning �σ = �0 − �Xσ and re-
duced light-matter coupling �σ = √

Zσ�0. These describe
the weights of the LP polaron’s excitonic and photonic com-
ponents, where |Xσ |2 corresponds to the total exciton fraction
involving both the bright k = 0 exciton and the scattered
exciton in the polaronic dressing cloud.

We can gain further insight into the structure of the LP
polaron by considering its behavior at low density. To leading
order in n, the shifted exciton energy and (inverse) residue can
be expressed as

�Xσ 
 2εnσ

ln
(

εX
|εLP|e

)
ln2

(
εX

|εLP|
) + εnσ̄

ln
(

εB
|εLP|e

)
ln2

(
εB

|εLP|
) , (39a)

Z−1
σ 
 1 + 1

|εLP|

(
2εnσ

ln2
(

εX
|εLP|

) + εnσ̄

ln2
(

εB
|εLP|

)
)

, (39b)

with e Euler’s number. In particular, like the LP polaron
energy in Eq. (34), we see that the bright exciton energy
can either blueshift or redshift depending on the presence of
opposite-spin dark excitons and the position of the biexciton.
However, note that we only have the simple relation εLPσ (n) 

εLP + |X0|2�Xσ when |εLP| is much smaller than the relevant
interaction energy scales in the low-density regime. We also
see that the residue Zσ is always smaller than unity, as ex-
pected, indicating the transfer of weight to the dressing cloud.

Figure 5 displays our numerical results for the spectral
weights of the LP polaron quasiparticle, corresponding to the
bare polariton component, without the dressing cloud, as well
as its exciton and photon fractions. We consider a reservoir
with the same spin composition as in Fig. 4 and we focus
on the spin-↓ LP polaron where the energy shifts are most
pronounced. We see that the total spectral weight always
decreases from 1 with increasing medium density, owing to
the decreasing Z↓ and associated reduction in light-matter
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FIG. 5. Total spectral weight (i.e., bare-polariton component) of
the spin-↓ LP polaron (red) along with its excitonic (blue) and pho-
tonic (orange) fractions. Panel (a) corresponds to the parameters in
Fig. 4(b) where �0 = 0 and the LP polaron blueshifts, while (b) cor-
responds to the parameters in Fig. 4(f) where �0 = −1.8�0 and
the LP polaron redshifts. The dashed lines represent the low-density
perturbative result obtained by combining Eqs. (39) with (38).

coupling. This is regardless of whether the lower polariton
blueshifts (a) or redshifts (b). Furthermore, the low-density
behavior is well captured using Eqs. (39) in Eq. (38).

The evolution of the relative photon and exciton fractions,
|C↓|2 and Z↓|X↓|2, depends on the interplay between Z↓ and
the shift in the exciton energy �X↓. In Fig. 5(a), we see that
both fractions initially decrease at low reservoir density, thus
being dominated by the loss of weight to the dressing cloud.
But, eventually, the photon fraction |C↓|2 increases with in-
creasing density since the exciton energy blueshifts, resulting
in a more negative effective detuning �↓ = �0 − �X↓. This
effect can also be observed in Fig. 4(b) by noticing that the
intensity of the LP polaron in the photon spectral function
increases with increasing reservoir density. On the other hand,
if �X↓ and the lower polariton redshifts, the photon fraction
always decreases, as can be seen in Figs. 5(b) and 4(f). In this
case, the exciton fraction increases but only relatively slowly
because of the strong loss of spectral weight due to enhanced
exciton-exciton scattering near the biexciton resonance.

B. Biexciton polariton

In addition to the LP polaron, the spectral function Aσ

features another peak below the exciton that continuously

evolves into the biexciton at vanishing medium density (see
Fig. 4). The resulting polaron quasiparticle—the biexci-
ton polariton—can be viewed as the neutral analog of the
so-called trion polariton which can form when a polariton is
immersed in an electron gas [6,81–83]. Importantly, it only
exists when the density of reservoir excitons with opposite
spin σ̄ is nonzero and thus its existence inherently relies on
both light-matter coupling and on the reservoir. Signatures
of such a quasiparticle have already been observed in pump-
probe measurements on semiconductor quantum wells [84,85]
and indicate physics beyond the usually employed mean-field
theories.

In this section, we provide insight into the biexciton polari-
ton by presenting analytical results for the BP polaron energy
in the low-density limit, using the approximate self-energy
Eq. (33). We then show that the momentum distribution of
medium excitons, captured in Eq. (32), can give rise to a
substantial broadening of the spectral lines appearing below
the bare biexciton energy, which has implications for the very
existence of the biexciton polariton quasiparticle.

1. Low-density limit

We first assume that we have a low density of excitons
and consider frequencies where ω ∼ −εB. In this case, the
term εnσ̄

/ ln (−εB/ω) in the self-energy (24) is near diver-
gent [86] such that we can ignore the contribution to the
self-energy from excitons of spin σ . If the lower polariton
is sufficiently far detuned from the biexciton energy, then we
can straightforwardly expand the denominator of the photon
Green’s function in the vicinity of ω = −εB, and we find
an additional root corresponding to the biexciton polariton.
In the low-density limit, the corresponding energy is (see
Appendix C)

εBPσ (n) 
 −εB

⎛
⎝1 + εnσ̄

εB − �2
0

�0+εB

⎞
⎠. (40)

Similarly to the LP polaron, we see that the energy is sensitive
to the reservoir excitons’ spin, and that there is an effective
Zeeman splitting proportional to any spin imbalance n↑ − n↓
of the reservoir. Such a splitting can clearly be seen by com-
paring the spin-↑ and spin-↓ panels of Fig. 4.

Our perturbative result (40) also shows how the BP polaron
energy can either redshift or blueshift depending on the rela-
tive position of the lower polariton. Specifically, we see that
the biexciton polariton redshifts in the case where εLP > −εB,
as depicted in Figs. 4(a) and 4(b). In this regime, the LP and
BP quasiparticles can be interpreted as repulsive and attractive
polaron branches, respectively, where the former repels the
surrounding medium particles, while the latter attracts them.
This is a hallmark of the behavior of Bose and Fermi polarons
in ultracold atomic gases [5], and also appears when consid-
ering Fermi polarons in TMDs [6,7].

The situation where εLP < −εB is more subtle, since it is
now possible for the photon to become resonant with the biex-
citon, �0 = −εB, in which case we see that the BP polaron
energy is independent of density according to Eq. (40). This
singular behavior implies that the BP polaron either redshifts
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FIG. 6. (a) Spectral function for a fully polarized opposite-spin
medium at effective temperature kBT/εB = 0.33 and �0 = εB at res-
onance (εLP = −εB). The white dashed lines are the corresponding
low density energies given by Eq. (41), and the red dot represents the
point where the BP polaron becomes a well-defined quasiparticle.
(b) Existence of the biexciton polariton quasiparticle at finite tem-
perature, at resonance (εLP = −εB ). The lines represent the boundary
where the quasiparticle start to be defined for different ratios of
kBT/εB. To calculate the boundaries, we used the self-energy given
in Eq. (43). Below the lines, there is no well-defined quasiparticle
(no QP), while above the lines, there is a well-defined quasiparticle.
The red dot marks the boundary for the ratio �0/εB used in (a).

or blueshifts depending on whether �0 < −εB or �0 > −εB,
respectively, as shown in Fig. 4.

In the resonant case where εLP = −εB, the lower polariton
and biexciton are naturally entwined, which modifies the pole
expansion of the photon Green’s function in the vicinity of
ω = −εB. This gives rise to two branches with energies (see
Appendix C)

ε±,σ (n) 
 −εB

⎛
⎝1 ±

√
εnσ̄

εB

1 + �0/εB

2 + �0/εB

⎞
⎠, (41)

which scale as
√

n rather than being linear in density, in
agreement with the behavior in Fig. 6(a). The same scal-
ing was predicted in the situation where the medium was a
coherent state of ↓ lower polaritons [64] instead of an exci-
tonic reservoir. Note, further, that this scaling implies that the

effective Zeeman splitting between these branches in this case
is ε±↑ − ε±↓ ∝ √

n↓ − √
n↑.

Our analytic expressions accurately describe the energy
shifts in the low-density limit and even capture the qualitative
behavior obtained from the full self-energy (32). However, to
obtain the linewidths, we need to go beyond the approxima-
tion of Eq. (33).

2. Existence of the polaron quasiparticle

For an incoherent excitonic reservoir, the large spread
of possible collision energies can substantially broaden the
biexciton polariton, ultimately destroying the polaron quasi-
particle. This effect arises from the fact that the biexciton
resonance occurs when ω + εQ/2 = −εB for a given momen-
tum Q of a reservoir exciton, and thus there is not a single
resonant frequency when there is a distribution of momenta
in the reservoir. Indeed, this picture provides a natural ex-
planation for why the biexciton resonance often features a
substantial linewidth. The resulting broadening is not captured
by the approximate self-energy (33) that we have considered
so far, and hence we must instead turn to the self-energy in
Eq. (32), which explicitly takes the momentum distribution of
the incoherent medium into account.

To be concrete, in the following we focus on the case where
the exciton reservoir and the polariton are of opposite spins,
and we assume that the medium is sufficiently thermalized
such that we can use a Boltzmann distribution with tempera-
ture T :

nQσ̄ = εnσ̄

2kBT
exp

(
− εQ

kBT

)
. (42)

With this distribution, we can now ask the question: For
what combination of physical parameters does the biex-
citon polariton exist as a well-defined quasiparticle? To
address this important point, we will use the following cri-
terion: For a quasiparticle to exist, its energy must satisfy
Re[G−1

Cσ (ωp)] = 0 [62,87]. While we could equally well con-
sider a similar criterion for the exciton Green’s function, here
we focus on the photon since the associated spectral function
is closely related to experimental observables.

For a Boltzmann gas, the self-energy (32) in the vicinity of
ω ∼ −εB is well approximated by the analytic expression [88]

�σ (ω) 
 −2
εnσ̄

kBT
εB exp

(
2
ω + εB

kBT

)

×
[

Ei

(
−2

ω + εB

kBT

)
+ iπ�(−ω − εB)

]
, (43)

where Ei is the exponential integral. Thus, we see that
the temperature-induced imaginary part of the self-energy is
much stronger for energies immediately below the biexciton
than above, as can be seen from the Heaviside function in
Eq. (43). This asymmetry implies that the broadening induced
by the finite temperature mostly affects the spectral function
for ω < −εB, as can clearly be seen in Fig. 6(a).

To investigate the existence of the polaron quasiparticle, we
consider the resonant case, εLP = −εB, where the effect of the
biexciton is the most pronounced in the spectrum. In this case,
according to Eq. (41), there are two branches that emerge from
the biexciton at low density, which both have mixed characters
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of lower polariton and biexciton. However, the upper of these
solutions lies above the biexciton and thus does not suffer
from any broadening induced by finite-momentum excitons.
Therefore, we consider the regimes of quasiparticle existence
for the lower (attractive) branch, as illustrated in Fig. 6. We
see that the polaron quasiparticle is destroyed by thermal
fluctuations (i.e., the broad distribution in momenta) if the
temperature scale kBT is sufficiently large compared to εn.
Therefore, for a fixed temperature, the quasiparticle can be
stabilized by increasing the reservoir density, as in Fig. 6(a).
Furthermore, the coupling to the photon also favors the exis-
tence of a quasiparticle, and remarkably we see in Fig. 6(b)
that a biexciton polariton quasiparticle can emerge even when
no polaron quasiparticle exists in the absence of light-matter
coupling.

C. Upper polariton polaron

Finally, we consider the behavior of the upper polariton
in the presence of a dark excitonic medium. As highlighted
previously, the upper polariton sits in a continuum of exciton-
exciton scattering states, causing the UP polaron to broaden
more than shift. In contrast to the biexciton polariton above,
this effect can be captured by the simplified self-energy in
Eq. (33), which becomes complex when ω > 0. To clearly see
this effect, we perform a perturbative expansion at low density
(for details, see Appendix C) to find the medium-induced shift
of the energy:

εUPσ (n)


 εUP + |C0|2
[

2εnσ
ln

(
εX
εUP

)
ln2

(
εX
εUP

) + π2
+ εnσ̄

ln
(

εB
εUP

)
ln2

(
εB
εUP

) + π2

]
. (44)

Comparing this with the corresponding expression for the
low-density shift of the LP polaron, Eq. (34), we clearly see
that the energy shift of the upper polariton is typically much
smaller. For instance, at zero detuning, where |X0|2 = |C0|2
and |εLP| = εUP, the difference is solely due to the presence of
the factor π2 of Eq. (44), which for almost all experimentally
relevant parameters will dominate the denominator. As a re-
sult, the Rabi splitting between the two branches is typically
reduced, which mirrors the reduction in light-matter coupling,
�σ 
 √

Zσ �0.
The associated exciton broadening (30) at low density

takes the form


σ 
 2πεnσ

ln2
(

εX
εUP

) + π2
+ πεnσ̄

ln2
(

εB
εUP

) + π2
. (45)

For typical experimental parameters, this interaction-induced
broadening is larger than the energy shift, and leads to a
strongly broadened spectral function as clearly seen in Fig. 4.

Despite the significant broadening, we may still analyze
the exciton and photon fractions of the UP polaron. Confining
ourselves to the regime 
σ � �0, we perform an expansion
around the quasiparticle pole which yields

GXσ (ω) 
 Zσ |Cσ |2
ω − ωp + iγX

, (46a)

GCσ (ω) 
 |Xσ |2
ω − ωp + iγC

, (46b)

where we have for the UP polaron

ωp 
 1
2

(
�0 + �Xσ +

√
�2

σ + 4�2
σ

)
, (47)

and the definitions of |Xσ |2, |Cσ |2 are as in Eq. (38) (but
where �σ and �σ are now evaluated for the UP polaron).
In the absence of intrinsic linewidths, 
C , 
X , the effective
broadenings in Eqs. (46) are

γX 
 |Cσ |2
σ , (48a)

γC 
 |Xσ |2 4�2
σ
σ(

�σ + √
�2

σ + 4�2
σ

)2 . (48b)

Thus, we once again obtain exciton and photon Green’s func-
tions that resemble those in the noninteracting case, Eqs. (10),
with Hopfield coefficients appropriately reversed for the
upper polariton. Note that the approximate form of the pho-
ton Green’s function requires 2
σ/|�σ + √

�2
σ + 4�2

σ | � 1.
This originates from the fact that when 
σ increases, the pole
of GCσ starts to differ from that of GXσ . Interestingly, we see
that when �σ = 0 we have γC 
 γX .

The resulting width of the UP polaron is shown in Fig. 7(a),
where we also include an intrinsic linewidth. We see that
Eq. (48b) captures the quasiparticle width at low densities,
while it overestimates the broadening for larger densities. Fur-
thermore, the width of the peak is relatively insensitive to the
precise spin composition of the medium, since the logarithms
in the self-energy, Eq. (32), take similar values for positive
frequencies.

The upper polariton can also cease to be a well-defined
quasiparticle in a similar manner to the biexciton polariton.
However, in the case of the UP polaron, this is predominantly
due to interactions rather than temperature. This is illustrated
in Fig. 7(b), where we see that the quasiparticle existence
depends strongly on εn relative to the Rabi coupling, with
larger densities leading to a less well-defined quasiparticle as
the UP polaron is shifted further up into the exciton scattering
continuum. On the other hand, similarly to the width of the
UP polaron, the existence of the quasiparticle only weakly
depends on the spin composition of the exciton medium. The
loss of the UP polaron quasiparticle is qualitatively different
from the loss of strong coupling due to saturation of the
emitters, since the lower and upper polariton polarons in our
case do not merge with increasing density.

Finally, we stress that the broadening of the UP polaron
considered here is qualitatively different from the broadening
that generically happens when the upper polariton is shifted
into the electron-hole continuum in a 2D semiconductor mi-
crocavity [89] (or, in the case of an organic material, when
the upper polariton enters a continuum of molecular excita-
tions [90]). While the loss of the quasiparticle in our scenario
is distinctly a many-body phenomenon, the other scenario de-
pends solely on the properties of the fundamental excitations
of the semiconductor.

IV. EXPERIMENTAL SCENARIOS

We now consider two experimentally relevant scenarios of
particular interest. In the first, we assume that the exciton
reservoir is polarized along the same angle as the polariton and
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FIG. 7. (a) The half width at half maximum of the spin-↓ UP
polaron (solid blue line) extracted from the spectral function in
Fig. 4(a). At low-density, this matches γC obtained from the pole
expansion in Eq. (48b) for the parameters in Fig. 4(a), where we have
added |Xσ |2
C to account for the intrinsic linewidth (black dashed
line). (b) Existence of the UP polaron quasiparticle for �0 = 0
and using Eq. (33). The lines represent the boundary of where the
quasiparticle (QP) is well defined, for different ratios nσ̄ /n. The blue
line corresponds to the ratio used in Fig. 4(a), where the loss of the
quasiparticle occurs at εn/εB ≈ 1.4 (red dot) for the particular �0/εB

considered.

determine the spectral function as a function of polarization
angle. This allows us to clearly identify the contributions
to interactions due to same and opposite spin interactions,
including the effect of the biexciton resonance, as well as the
polarization-dependent reduction of the effective light-matter
coupling. Second, we consider a ↓ polariton in a fully polar-
ized spin-↑ dark reservoir and we investigate signatures of the
biexciton polariton as a function of the detuning.

Such scenarios have recently been experimentally real-
ized in MoSe2 monolayers embedded in microcavities—see
Refs. [54,59]. In both cases, the medium was assumed to
consist of bright polaritons, rather than dark excitons. How-
ever, we find that we can capture the main features of these
experiments using our polaron theory with a dark excitonic
reservoir, thus suggesting that dark excitons could have played
a role. Therefore, in the following we will discuss these
two experimental scenarios using parameters from the experi-
ments.

A. Polariton in a copolarized exciton medium

First, we apply our theory to the setup reported in Ref. [54],
which investigated the response of the lower and upper
polariton branches to changes in two parameters: the inten-
sity of the pump laser, and the polarization of that laser. To
establish a connection between the laser power and reservoir
density, we assume that the dark exciton reservoir density is
proportional to the laser pump power. We also assume that the
reservoir is polarized in the same manner as the polariton [91].
For a given polarization angle θ [as defined in (4)], this results
in a reservoir spin imbalance given by

εn↑ − εn↓ = εn cos(2θ ). (49)

These assumptions are valid if the laser is itself populating
the momentum-forbidden dark excitonic reservoir, which is
reasonable for the case of a broad pump centered around the
exciton energy, as in the experiment.

We estimate the proportionality factor between the laser
pump power and the reservoir density using the results for
circular polarization, which has the advantage that it only
involves εn as a free parameter. We determine the LP po-
laron energy from the peak of the spectral function using the
self-energy in Eq. (33) and we then match this theoretical pre-
diction to the reported energy shift [54] of the lower polariton
branch at a pump power of 451 pJ. All other parameters (exci-
ton binding energy, Rabi coupling, and detuning) are taken
from the experiment [54]. This procedure yields εn 
 2�0

at this pump power; thus, by taking the commonly accepted
value for the exciton mass, mX = 1.14me [92], we find a
reservoir density of n ≈ 3 × 1012 cm−2, which is comparable
to the density reported in the experiment. Note that the fit only
depends logarithmically on the scattering energy scale εX , and
is therefore insensitive to the precise value.

1. Reduction of light-matter coupling

In Figs. 8(a)–8(c), we show a comparison between theory
and experiment for the lower and upper polariton energies
as a function of εn [93]. Importantly, we show here the re-
sults for linear polarization, which depend both on the same-
and opposite-spin interactions, allowing us to demonstrate the
predictive power of our theory. Compared with the circular
polarization results above, the theory now depends on one ex-
tra parameter, the biexciton binding energy, which was taken
to be 20 meV, consistent with various experiments [94,95].
This results in the condition εLP � −εB, and we therefore
expect the contribution from opposite-spin interactions to be
dominant and repulsive.

We see that the theory predicts the blueshift of the lower
polariton in Fig. 8(a) very well across a large range of den-
sities. Furthermore, the observed reduction in light-matter
coupling (Rabi splitting), due to the substantial blueshift of
the lower polariton and minimal blueshift of the upper po-
lariton in Figs. 8(b) and 8(c), is also quantitatively described
by our low-density expressions (34) and (44). We note that
including the effects of finite temperature does not substan-
tially alter the quantitative predictions in Figs. 8(a)–8(c) as
the resulting temperature broadening mostly affects features
below the biexciton binding energy. Nevertheless, the reported
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FIG. 8. Comparison to experimental results in Ref. [54] for (a)–(c) linear polarization and (d), (e) varying polarization. (a) The observed
blueshift of the lower polariton branch (blue dots) is compared to the peak of the spectral function calculated using Eq. (33) (line, solid)
and to the low-density expression in Eq. (34) (purple line, dashed) [96]. (b), (c) The low-density data compared to both Eqs. (34) and (44)
(dashed lines) and the theoretical predictions for the peaks (solid lines) for the lower and upper polariton branches, respectively. (d) Calculated
spectral function at fixed density (corresponding to εn = 2�0) as a function of polarization angle [97]. (e) The corresponding experimentally
observed transmission spectrum [as a result, the color scales are not the same in (d) and (e)]. The white dotted line is the unshifted lower
polariton energy (1635 meV corresponding to −1.04 ω/�0), and the plot range is adjusted to be the same in both panels. Parameters: |X0|2 =
0.48, �0 = 14.0 ± 1.5 meV, εX = 33.6�0 (470 meV [98]), εB = 1.43�0 (20 meV [94]), exciton and photon linewidths 
X = 0.1�0 and

C = 0.1�0 [74].

experimental temperature of 127 K is sufficiently high that the
biexciton polariton is unlikely to be visible in this experiment.

2. Polarization dependence of the lower polariton blueshift

We now turn to polarization-dependent measurements.
At the same laser power as mentioned above, 451 pJ, the
polarization of the incident light was varied continuously,
corresponding to changes in the polarizer angle.

The resulting spectral function is shown in Fig. 8(d),
together with the experimental transmission spectrum in
Fig. 8(e). We see that both spectra have a similar structure,
with a signal that oscillates as a function of polarization
angle, the smallest blueshift occurring for circular polariza-
tion (θ = 0 mod π/2) and the largest for linear polarization
(θ = π/4 mod π/2). This behavior is highly nontrivial, since
the larger linear-polarization blueshift cannot be captured
by conventional theories based on the Born approxima-
tion [50,56,61,99], which predict a negligible ↑↓ interaction.
In the experiment, the large observed blueshift for linear po-
larization was attributed to an anomalously large saturation;
however, this could still not explain the fact that the blueshift
was largest for linear polarization [54].

On the other hand, within our theory, the larger linear-
polarization blueshift observed in the experiment follows
naturally from the resonantly enhanced interactions in the
vicinity of the biexciton, which are not present for circular po-
larization. Furthermore, our calculated spectrum in Fig. 8(d)
matches the experiment well without needing to introduce
any additional fitting. It is thus likely that a dark excitonic
reservoir was present in the experiment and dominated the
observed interactions.

The full effect of the biexciton resonance is somewhat
obscured in this scenario, because the reservoir is copolarized
with the polariton. As such, one never has the situation where
there are only opposite-spin interactions. In the following sec-
tion, we shall see how a pump-probe scenario, which allows
one to vary the polarization of the reservoir separately from
that of the polariton, provides a clear demonstration of the
resonantly enhanced interactions.

B. ↓ polariton in a ↑ exciton medium

In the second experimental scenario, we consider a pump-
probe setup where a spin-↑ dark exciton medium is populated
by a circularly polarized pump and then probed by a po-
lariton of the opposite polarization (↓). This scenario is
ideally suited to observing the effects of the biexciton res-
onance, and it can even potentially be used to probe more
exotic few-body resonance phenomena due to triexcitons [64].
Similar pump-probe experiments have been previously real-
ized in semiconductor microcavities [57,59,84,100]; however,
these previous works considered the medium to be predomi-
nantly polaritonic rather than dark and excitonic. Note that an
important distinction between these two cases is that the biex-
citon resonance in the dark excitonic medium (εLP = −εB) is
significantly shifted from the polariton Feshbach resonance
relevant to previous works, where the resonance condition is
εLP = −εB/2 [55,58].

Figure 9 shows our calculated spectral function in the
vicinity of the biexciton resonance as a function of bare lower
polariton energy εLP, which is equivalent to changing the
light-matter detuning. We see that the spectrum displays a
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FIG. 9. (a) Spectral function A↓(ω) for a spin-↓ polariton in a
spin-↑ incoherent excitonic reservoir. The green dashed lines indi-
cate the energies of the attractive and repulsive polaron branches,
calculated using the approximate self-energy as given in Eq. (33).
The white dashed line indicates the biexciton energy, −εB, below
which the reservoir-induced broadening primarily occurs. (b) Spec-
tral function at εLP = −1.225εB [indicated by the red arrow in
(a)], showing that around resonance both LP and BP polarons can
coexist, and that both the existence and broadening of these two
features can be attributed to interactions with the dark excitonic
medium. Parameters: εB = 20 meV, εn = 0.17εB (corresponding to
n ≈ 5 × 1011 cm−2), kBT = 0.25εB, �0 = 0.375εB, 
C = 0.005εB,

X = 0 [74].

significant avoided crossing when the total collision energy
matches the energy of the biexciton bound state, i.e., for the
resonance condition that occurs in the vicinity of ω 
 −εB.
For the purposes of this illustration, we have used parameters
for MoSe2 relevant to the experiment of Ref. [59], and we
have introduced a reservoir temperature T 
 60 K to demon-
strate how the incoherence of the reservoir naturally leads to a
broadening of the quasiparticles. In particular, this broadening
is substantial compared to the case without interactions with
the reservoir [Fig 9(b)], thus providing a natural explanation
for why the biexciton feature is often broad in experiment.
As discussed in Sec. III B, this broadening occurs primarily
below the biexciton energy. It should be noted that our theory
also predicts a small temperature-dependent energy shift in
the spectrum, which is why the peaks of the spectral function
calculated using the approximation in Eq. (33) do not entirely
align with those of the finite-temperature spectra in Fig. 9(a).

Qualitatively, our spectra presented in Fig. 9 resemble
those observed in Ref. [59]. Specifically, Fig. 9(a) resembles
their Fig. 2(d), while Fig. 9(b) resembles the transmission
spectrum shown in Fig. 2(b). However, due to the different

resonance condition in the dark reservoir scenario discussed
here, we do not need to consider a biexciton that is tighter
bound than in previous experiments on monolayer MoSe2.
This is unlike the experiment [59], which took the biexciton
binding energy to be 29 meV, which is even larger than previ-
ous reports of the trion binding energy (around 25 meV) [81].
We stress that the experiment is likely to contain both po-
laritons as well as a dark excitonic reservoir, and therefore
a quantitative comparison with experiment would need to
account for both contributions and is beyond the scope of the
present paper.

V. CONCLUSIONS

In conclusion, we have developed a theory of exciton po-
laritons in an incoherent excitonic reservoir which exposes
the polaronic nature of the light-matter coupled quasiparticles.
By incorporating the exact low-energy interactions with the
medium into a many-body Green’s function formalism, we
have demonstrated that interactions with the reservoir lead
to a wealth of intriguing effects, many of which are missed
by standard mean-field approaches. Our predictions include
a medium-induced reduction of the light-matter coupling and
Rabi splitting, without needing to invoke Pauli blocking, and
the appearance of a new quasiparticle, the biexciton polariton
polaron. We expect the physics that we have uncovered here
to apply to polariton systems more generally, thus providing a
unique understanding of the physical mechanism responsible
for the saturation of the Rabi splitting.

The presence of an excitonic reservoir is already likely to
play a nontrivial role in current experiments, particularly those
with a nonresonant pump where the reservoir density may be
significant or those where the lower polariton is close to the
biexciton resonance such as is generally the case in monolayer
TMD microcavities. Our simple analytic expressions for the
modifications of energies, exciton and photon fractions, and
lifetimes are likely to aid future experiments in ascertaining
the impact of the reservoir on the observed physics.

We have furthermore analyzed two particular experimen-
tally relevant scenarios related to recent experiments carried
out in MoSe2 monolayer microcavities [54,59]. For the case
of a polariton copolarized with the reservoir, we have demon-
strated that the blueshift of the lower polariton can be largest
for linear polarization due to the presence of the biexciton
resonance. Our results are in quantitative agreement with
those of Ref. [54] with only a single fitting parameter, the
reservoir density, which is particularly remarkable given that
the polarization-dependent behavior of the blueshift could not
even be qualitatively explained by conventional mean-field
theories [54]. In the case of a counter-polarized reservoir,
we have shown that the incoherent nature of the reservoir
can lead to a significant broadening of the biexciton feature,
in agreement with the observations of Ref. [59] as well as
previous measurements [57,84]. Thus, the significant biexci-
ton linewidth observed in experiment may arise from the tail
of the exciton momentum distribution, rather than due to an
intrinsic property of the biexciton.

Our results open up possibilities to engineer and ma-
nipulate exciton-polaritons as well as their interactions.
For example, they have immediate implications for optical
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trapping of polariton condensates, a key experimental tech-
nique due to its great flexibility [41,101]. Recently, there
have been experimental studies on reservoir optics, i.e.,
nonresonantly pumping the system across a spatial area,
and using the resulting reservoir to focus and trap polariton
condensates [102–104]. Our paper suggests that since the
polariton-reservoir interaction can be dramatically enhanced
and even its sign reversed, these reservoir optics devices can
be engineered to provide strong responses through the manip-
ulation of the laser spin and photon-exciton detuning, while at
the same time maintaining the flexibility and predictability of
systems in which the laser alone provides a well-understood
trapping potential. In particular, this potentially provides a
versatile platform for achieving strongly correlated photons
via reservoir engineering of the polariton polarons’ mutual
interactions [105].
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APPENDIX A: EQUATION OF MOTION AND GREEN’S
FUNCTIONS IN THE ABSENCE OF INTERACTIONS

In this Appendix, we consider the light-matter coupled
system in the absence of exciton-exciton interactions. In
this case, the operators evolve according to the noninteract-
ing Hamiltonian (i.e., ĉσ (t ) = eiĤ0t ĉσ e−iĤ0t ). The photon and
k = 0 exciton Green’s functions take the form

G(0)
C (t ) = −i�(t ) 〈ĉσ (t )ĉ†

σ (0)〉 , (A1a)

G(0)
X (t ) = −i�(t ) 〈x̂0σ (t )x̂†

0σ (0)〉 , (A1b)

where, for simplicity, we drop the spin labels on the Green’s
functions since these are independent of spin in the absence
of interactions. We also have the two off-diagonal Green’s
functions:

G(0)
XC (t ) = −i�(t ) 〈x̂0σ (t )ĉ†

σ (0)〉 , (A2a)

G(0)
CX (t ) = −i�(t ) 〈ĉσ (t )x̂†

0σ (0)〉 . (A2b)

These are conveniently arranged into a matrix in the
exciton-photon basis:

G(0)(t ) =
(

G(0)
X (t ) G(0)

XC (t )

G(0)
CX (t ) G(0)

C (t )

)
. (A3)

The Heisenberg equations of motion i∂t x̂0σ (t ) =
[x̂0σ (t ), Ĥ0] and i∂t ĉσ (t ) = [ĉσ (t ), Ĥ0] yield

i∂t x̂0σ (t ) = �0ĉσ (t ), (A4a)
i∂t ĉσ (t ) = �0ĉσ (t ) + �0x̂0σ (t ), (A4b)

respectively. Then, combining the equations of motion with
the definitions of the Green’s functions gives

i∂t G
(0)
C (t ) = δ(t ) + �0G(0)

C (t ) + �0G(0)
XC (t ), (A5a)

i∂t G
(0)
X (t ) = δ(t ) + �0G(0)

CX (t ), (A5b)

i∂t G
(0)
XC (t ) = �0G(0)

C (t ), (A5c)

i∂t G
(0)
CX (t ) = �0G(0)

CX (t ) + �0G(0)
X (t ). (A5d)

Here, the Dirac delta function δ(t ) comes from taking the
derivative of the Heaviside function �(t ), and we have used
the fact that 〈x̂σ ĉ†

σ 〉 = 0 and 〈x̂σ x̂†
σ 〉 = 〈ĉσ ĉ†

σ 〉 = 1. Fourier
transforming this set of equations yields an explicit result for
Eq. (A3):

G(0)(ω) = 1

ω(ω − �0) − �2
0

(
ω − �0 �0

�0 ω

)
. (A6)

This is Eq. (5) of the main text.

APPENDIX B: TWO-BODY T MATRIX

The two-body T matrix, Tσσ ′ (p1, p2; Q, ω), corresponds to
the sum of all scattering processes of two particles, where
particle 1 has spin σ and incoming (outgoing) momentum
Q/2 − p1 (Q/2 − p2), particle 2 has spin σ ′ and incoming
(outgoing) momentum Q/2 + p1 (Q/2 + p2), while ω is the
total frequency. This satisfies the relation depicted in Fig. 2(c):

Tσσ ′ (p1, p2; Q, ω) = vσσ ′ (p1 − p2) +
∑

P

vσσ ′ (p1 − P)
1

ω − ε−P+Q/2 − εP+Q/2
vσσ ′ (P − p2) + . . . (B1a)

= vσσ ′ (p1 − p2) +
∑

P

vσσ ′ (p1 − P)
1

ω − ε−P+Q/2 − εP+Q/2
Tσσ ′ (p1, P; Q, ω). (B1b)

To make connection to Eq. (17), we first note that the solution
of that equation separates into two parts, with the exchange
contribution being proportional to δσσ ′ . We then recognize
that the momenta in Eq. (17) correspond to the particular
choices P = Q/2 − k, p1 = Q/2 − p and p2 = ±Q/2, with
the plus and minus signs corresponding to the direct and

exchange terms, respectively. Finally, upon formally expand-
ing Eq. (17) similarly to Eq. (B1), we note that the series
contains precisely the same terms as Eq. (B1), apart from
the leading interaction vσσ ′ (GXσ just acts as a multiplicative
prefactor). Taking ω → ω + εQ and p = 0 we then finally
arrive at Eq. (18).
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APPENDIX C: DERIVATION OF THE POLARON
ENERGIES AT LOW-DENSITIES

In the limit of a small reservoir density and a minimal
occupation of excitons for which εQ > �0 (such as at low
temperature), we can derive perturbatively exact results for the
energy shifts of the polariton branches. Let us first consider
the shift of the lower and upper polariton branches, assuming
that the lower polariton is not resonant with the biexciton. At
low density, we can use the self-energy (33) which, since the
energy is approximately εLP,UP, takes the form

�σ (ω) 
 �σ (εLP,UP) = 2εnσ

ln (−εX /εLP,UP)
+ εnσ̄

ln (−εB/εLP,UP)
.

(C1)

To obtain the quasiparticle energies, we then apply the
condition Re[G−1

Cσ (ω)] = 0. Since the self-energy is now
approximately a constant, it simply provides a rigid shift of the
exciton energy. Furthermore, the imaginary part of the self-
energy only enters into the quasiparticle energies at higher
order in the density. Therefore,

εLP,UPσ (n) 
 1

2

(
�0 + Re[�σ (εLP,UP)]

±
√

(�0 − Re[�σ (εLP,UP)])2 + 4�2
0

)


 εLP,UP + 1

2
Re[�σ (εLP,UP)]

⎛
⎜⎝1 ± �0√

�2
0 + 4�2

0

⎞
⎟⎠

=
{
εLP + |X0|2�σ (εLP) LP
εUP + |C0|2Re[�σ (εUP)] UP

, (C2)

where the upper and lower signs correspond to the UP and
LP. In the last step, we recognized the exciton fractions of the
lower and upper polaritons, |X0|2 and |C0|2, respectively; see
Eq. (11). Upon explicit evaluation of the self-energy, Eq. (C2)
yields the expressions Eqs. (34) and (44).

In the case of the biexciton polariton polaron, we cannot
follow the same procedure and simply substitute the value
of the biexciton energy for ω, as the logarithm in the self-
energy diverges at this point. Instead, we perform a pole
expansion around this point, i.e., we replace ω → −εB + η

for some small parameter η. In the vicinity of the resonance,
the contribution from interactions with same-spin excitons can

be ignored as the resonant contribution from the biexciton is
far greater. From the equation for the quasiparticle energies,
Re[G−1

C (ωp)] = 0, we then find an equation for η:

(−εB + η − �σ (−εB + η))(−εB + η − �0) − �2
0 = 0.

(C3)
Using the fact that to leading order, we have

�σ (−εB + η) 
 εBεnσ̄

η
, (C4)

one can expand Eq. (C3) and, keeping the leading order term
in η, we obtain

−�2
0 + (�0 + εB)εB + εnσ̄

εB
�0 + εB

η
= 0. (C5)

Solving for this equation for η and remembering that we have
ω = η − εB, we obtain the BP energy

εBPσ (n) 
 −εB

⎛
⎝1 + εnσ̄

εB − �2
0

�0+εB

⎞
⎠, (C6)

which is Eq. (40) of the main text.
Finally, we can also obtain perturbative results for the en-

ergies when the lower polariton energy is tuned to be resonant
with the biexciton, i.e., when εLP 
 −εB. Here again, we have
to do a pole expansion near ω 
 −εB, but this time we also
impose the resonance condition εLP = −εB, which requires
us to keep higher order terms in η when approximating the
self-energy:

�σ (−εB + η) 
 εnσ̄

η

εB
+ η2

2ε2
B

. (C7)

Substituting this expression into Eq. (C3), and keeping the
leading order terms in η, one obtains the quadratic equation:(

�0

εB
+ 2

)
η2 + εnσ̄

η − εnσ̄
(εB + �0) = 0. (C8)

To the leading order in εnσ̄
, the two solutions of this equa-

tion allows us to find

ε±,σ (n) 
 −εB

⎛
⎝1 ±

√
εnσ̄

εB

1 + �0/εB

2 + �0/εB

⎞
⎠, (C9)

which is Eq. (41) of the main text.
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