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Editors’ Suggestion

Tip-induced creation and Jahn-Teller distortions of sulfur vacancies in single-layer MoS,
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We present an atomically precise technique to create sulfur vacancies and control their atomic configurations
in single-layer MoS,. It involves adsorbed Fe atoms and the tip of a scanning tunneling microscope, which
enables single sulfur removal from the top sulfur layer at the initial position of Fe. Using scanning tunneling
spectroscopy, we show that the STM tip can also induce two Jahn-Teller distorted states with reduced orbital
symmetry in the sulfur vacancies. Density functional theory calculations rationalize our experimental results.
Additionally, we provide evidence for molecule-like hybrid orbitals in artificially created sulfur vacancy dimers,
which illustrates the potential of our technique for the development of extended defect lattices and tailored

electronic band structures.
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Point defects in semiconducting two-dimensional (2D)
transition metal dichalcogenides (TMDs) yield atomically
precise quantum states of matter. Defects can induce isolated
in-gap states [1-3], which are envisioned to have potential as
qubits [4,5] or single-photon emitters [4,6]. Having access to
such isolated levels enables detection of physical properties
related to nanomagnetism [7-9], spin-orbit coupling [10], or
chemical bond formation [10-12].

One way to create an isolated defect is via atom removal.
Vacancies can be introduced in TMDs through impacts of en-
ergetic electrons in transmission electron microscopy [13-15],
ion irradiation [16-19], as well as via annealing in ultrahigh
vacuum (UHV) [1]. While the concentration of vacancies
can be controlled to some extent via ion/electron irradiation
fluence and particle energy, annealing time and sample tem-
perature, these techniques tend to create other types of defects
as well, often with unknown atomic structure. The elevated
temperatures can also lead to diffusion and agglomeration of
vacancies [20]. Hence, a method able to locally create and
probe a single type of vacancy in 2D TMDs remains elusive. It
would allow unambiguous identification of theoretical predic-
tions, such as a Jahn-Teller distortion when an extra electron
occupies one of the in-gap states [6,21,22].

In this paper, we employ an atomic manipulation approach
to create single vacancies in the top sulfur layer of single-layer
MoS,. We use Fe atoms adsorbed on MoS, as atomic-scale
markers for vacancy creation. A detailed characterization of
isolated vacancies reveals two Jahn-Teller distorted states
when the vacancy is charged. Creating a vacancy dimer shows
the formation of hybridized states, while no additional distor-
tion is observed upon charging.

All scanning tunneling microscopy (STM) and spec-
troscopy (STS) measurements were performed in a UHV
low-temperature STM setup with an operating temperature of
6 K. MoS, grown on Gr on Ir(111) is quasi-freestanding, as
evidenced by its large band gap [23], sharp valence band [24],
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and narrow photoluminescence peak [24]. The Ir(111) crystal
was first cleaned by cycles of 1.5 keV Ar™ ion beam exposure
and annealed to 1550 K. Subsequently, single crystal Gr was
grown using the growth method described in Ref. [25]. MoS,
islands were grown according to Ref. [26] using an e-beam
evaporator for Mo and a Knudsen cell for sulfur supply. The
MoS, islands were grown at room temperature with a Mo
flux of 1.14 x10'® %, a deposition time of 600 s and a
sulfur pressure of 6 x 10~° mbar. Afterwards the sample was
annealed in a sulfur pressure of 3 x10~° mbar at 1050 K
for 300 s, resulting in virtually defect-free single-layer MoS;
islands with small second layer islands on top. Single Fe atom
evaporation was performed using an e-beam evaporator at a
sample temperature of 8 K. An STM image of the as-grown
sample is presented in Fig. 1(a). It becomes apparent, that
Fe on MoS,; is nonmobile and does not cluster at low Fe
densities.

Sulfur vacancies can be created with high reproducibility
by the following procedure: First, the STM tip is positioned
over an Fe adatom and approached by decreasing the bias
voltage Wi,s and increasing the tunneling current I, with
closed feedback loop. The tip-adatom separation is reduced
until a sudden change in the measured tip height is detected.
Typical values are Vyi,s & 30 mV and I & 1 nA. After this
event, the tip height is increased to scanning parameters (typ-
ically Wyips = 1 V and Iy = 100 pA). In the large majority of
attempts, this procedure creates a sulfur vacancy. A series of
STM images showing the subsequent creation of two neigh-
boring sulfur vacancies is presented in Figs. 1(b)-1(d).

A model interpreting the observations is shown in Fig. 1(e).
The pick-up event involves the adsorbed Fe atom together
with a single sulfur atom, leaving a sulfur vacancy in MoS,
behind. According to our DFT calculations, the Fe-sulfur
bond alone is not sufficient to create a vacancy. Additional
effects, such as the electric field between tip and surface
[27], as well as vibrations induced by tunneling electrons can

©2024 American Physical Society
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FIG. 1. Local creation of sulfur vacancies. (a) STM image of
single-layer and bilayer MoS, islands on Gr/Ir(111) covered with Fe
adatoms (Voias = 1 V, I = 100 pA, image sizes: 200x90 nm?). [(b)—
(d)] Step-by-step creation of sulfur vacancies. (b) Two adjacent Fe
adatoms on MoS; (Vijas = 1V, I, = 100 pA, image size: 4 x4 nm?).
(c) Upper Fe adatom removed and sulfur vacancy created at its loca-
tion (Viias = 500 mV, iy = 100 pA). (d) Second Fe adatom removed
and vacancy created (Viips = 500 mV, I, = 100 pA). (e) Sketch
visualizing how the STM tip creates sulfur vacancies in MoS,.

facilitate pick-up, though a full picture of the mechanism lies
beyond the scope of the present study. While the chemical
bond between tip and Fe strongly depends on apex geometry
and chemical composition, the Fe-sulfur bond is well defined
for every pick-up event. This leads to high reproducibility of
the vacancy creation process, as long as the bond between Fe
and STM tip is strong enough to initiate the pick-up event.
This is in contrast to direct sulfur pick-up events without Fe
adatoms reported earlier for bulk MoS, [28], which we found
not to be applicable to single-layer MoS, islands.

The electronic characterization of an isolated sulfur va-
cancy created using our atomic manipulation approach is
presented in Fig. 2. An STM image of a single vacancy is
shown in Fig. 2(a). Its appearance depends on the applied bias
voltage, which is discussed in Fig. S1 in Ref. [29]. An STS
point spectrum acquired on pristine MoS, [Fig. 2(b)] displays
its band gap [23]. Point spectra taken on the defect lobes
reveal the existence of three peaks in the band gap of MoS,,
as shown in Fig. 2(c). Corresponding dI/dV maps measured
at the respective peak energies above the Fermi level and pre-
sented in Fig. 2(d) show two nearly-equivalent orbitals with
Cs, symmetry, the lowest unoccupied defect orbitals LUDO
and LUDO+1. In contrast, the dI/dV map measured close
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FIG. 2. Spectroscopic investigation of sulfur vacancies. (a) STM image of a created sulfur vacancy (Vii,s = 1V, Lee = 100 pA, image
size: 3 x 3 nm?). The red spot marks the location where the spectrum presented in (c) was measured. (b) dI/dV spectrum (Vg = 1.3V,
Ly = 100 pA, Vipos = 10 mV) measured on pristine MoS,. (¢) dI/dV spectrum (Vyu, = 1V, Ly = 500 pA, Vines = 2 mV) measured
on the vacancy, revealing three peaks in the band gap of MoS,. (d) Constant-height d//dV maps (size: 3x3 nm?) measured at energies
indicated by black arrows in (c). (e) Constant-height current maps of the two distinct symmetry-broken HODO orbitals and corresponding
DFT simulations. The two types of orbitals are denoted by crosses (x) and circles (O). (f) Series of current maps showing transitions between

the two symmetry-broken states (image sizes: 7x7 nm?).
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to the peak energy below the Fermi level reveals a modified
orbital shape, surrounded by a pronounced ring.

The origin of the peak in the occupied states and the ring
in the d1/dV map is a charging event induced by the STM tip
[30]. Applying a bias voltage between tip and sample implies
an electric field between them and thus causes the in-gap
states of the sulfur vacancy to shift in energy. For large enough
negative bias voltages, the LUDO level is pulled below the
Fermi energy and occupied by an electron, thus becoming
the highest occupied defect orbital (HODO) of the charged
vacancy. The peak in the point spectrum of Fig. 2(c) and
the ring in the dI/dV map in Fig. 2(d) at —510 mV thus
reflect a sudden change in the occupied defect states due to
charging and subsequent distribution of that charge. Similar
results have previously been obtained for sulfur vacancies in
single-layer WS, [1].

The absence of additional states in the MoS, band gap
enables us to access the HODO orbital at high bias voltages
at which the vacancy is stably charged, by measuring the tun-
neling current in constant-height mode. This signal integrates
over all states between the Fermi energy and the bias voltage,
which in our system is dominated by the HODO only, see
Fig. S2 in Ref. [29] for detailed reasoning why constant-height
current maps are used to image the HODO. Constant-height
maps recording the tunneling current of two representative
vacancies are presented in Fig. 2(e). The high-resolution maps
reveal two different types of HODOs, denoted as (x) and
(). Both show a clear symmetry reduction from Cjy to Cs.
A statistical analysis of 16 vacancies reveals that 10 of the
HODOs have the appearance (x ), while the remaining 6 dis-
play the (O) orbital shape. These orbitals can transform from
one to another when neighboring vacancies are charged. This
is demonstrated in Fig. 2(f) for two neighboring vacancies.
Their LUDOs are measured at 500 mV. At —650 mV, only one
of the vacancies is charged, due to differences in the in-gap
state energies of the neutral vacancies, displayed in Fig. S3 in
Ref. [29] (see also Ref. [31] therein). Hence, only one HODO
is observed, in state (x ). Increasing the bias voltage eventually
charges the second vacancy. While the latter is in state (x ), the
other transformed into state ().

The behavior of the vacancies upon charging can be under-
stood with the help of density functional theory (DFT). For
details on the computational methods we refer to Ref. [29]
(see also Refs. [32-38] therein). Negatively charged sulfur
vacancies in MoS, have been predicted to undergo a JT effect,
which distorts the host lattice and spontaneously breaks the
(orbital) symmetry from Cs, to Cg [6,21,22]. To understand
the JT effect in MoS, sulfur vacancies, we simulate the energy
levels of a MoS; vacancy, see Fig. 3(a). The three dangling
bonds from Mo atoms (¢,, ¢p, and ¢.) in C3, symmetry
lead to the following symmetry-adapted linear combinations
(SALCs): @1 = ¢a + ¢ + ¢c, 02 = 20 — P — Pe, and 3 =
dp — @, where ¢ belongs to a; and ¢, and ¢3 to e. The lowest
a state is occupied by two electrons and lies close to the VBM
[not shown in Fig. 3(a)]. The a, state is thus too far away
from the Fermi level to be depopulated by the electric field
of the tip. The two degenerate e states are unoccupied and
fall in the band gap of MoS; [39], see Fig. 3(a) (V(S) without
SOC). The SALCs can be clearly seen in the charge density
plots presented in Fig. S4 [29]. Adding SOC partially lifts the
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FIG. 3. Jahn-Teller distortions in negatively charged sulfur va-
cancies. (a) Evolution of sulfur vacancy levels (blue: spin-up, red:
spin-down) upon introduction of spin-orbit coupling, charge and
lattice distortions. The gray shaded area indicates state occupation
and the red dashed line the Fermi level. Black solid boxes emphasize
which states are accessible in experiment. (b) DFT calculated DOS of
the distorted negatively charged sulfur vacancy. (c) Potential energy
surface of the negatively charged sulfur vacancy. Upon charging, the
vacancy can relax into two different JT distorted states indicated
by crosses (x) and circles (), respectively. (d) Slice through the
potential energy surface along black line displayed in (c). [(e)—(g)]
Structure models of the MoS, lattice around the sulfur vacancy
for the neutral (e) and charged case in JT1 (f) and JT2 (g) states.
The numbers on the dashed lines give the Mo atom separations
(angstroms).

degeneracy of the e states, leading to two doubly-degenerate
levels [Fig. 3(a) (V(s) with SOC)] [40]. These levels correspond
to the LUDO and LUDO+-1 orbitals found in experiment.
Adding an electron to the lowest level lifts all remaining de-
generacies, leaving one uncompensated spin below the Fermi
energy [Fig. 3(a) (Vg I with SOC undistorted)]. Relaxing
the structure spontaneously distorts the atomic configuration
around the vacancy, leading to the energy level configuration
of the JT effect in negatively charged MoS, sulfur vacancies,
presented in Fig. 3(a) (Vg ! with SOC distorted). The corre-
sponding density of states (DOS) is presented in Fig. 3(b).
Note that only the HODO is experimentally accessible [solid
black box in the level scheme in Fig. 3(a)], since we need to
apply a negative bias voltage to charge the vacancy.
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Until now theoretical investigations only predicted the ex-
istence of one type of JT effect for negatively charged sulfur
vacancies in MoS, [6,21,22]. Similarly, two recent exper-
imental works on charged sulfur vacancies in single-layer
MoS; on Gr proposed only one type of distortion to explain
the observed orbital symmetry reduction [41,42]. Our inves-
tigations, however, reveal that there are two distinct types
of JT distortions, denoted JT1 and JT2. They correspond to
two imaginary phonon modes and thus two types of lattice
distortions. Both are local minima in the potential energy
surface (PES) of the system, which is shown in Fig. 3(c).
A direct comparison between our experimental maps and
DFT simulations of the HODO, shown in Fig. 2(e), makes
plain that the two orbitals denoted by (x) and (() corre-
spond to JT1 and JT2. We thus indicate the local minima
of the PES that correspond to JT1 and JT2 by crosses (x)
and circles (), respectively. A cut through the PES along
the horizontal line indicated in black, is shown in Fig. 3(d).
The JT distortion leads to an energy gain of approximately
50 meV compared to the unrelaxed structure, while JT1 and
JT2 distortions have the same energy within the accuracy of
our DFT calculation. Upon charging, the sulfur vacancy thus
spontaneously transitions into one of the JT distorted states
with similar probabilities (blue arrows). The corresponding
structural distortions compared to the neutral vacancy config-
uration [Fig. 3(e)] are shown in Fig. 3(f) and 3(g). A detailed
summary of all simulated JT1 and JT?2 orbitals is presented in
Fig. S5 and S6 [29].

Coming back to the transformation from JT1 to JT2 shown
in Fig. 2(f), we can now infer that it is likely caused by the
strain field created when a neighboring vacancy becomes JT
distorted. Indeed, DFT is able to reproduce the transformation
using a directional strain field, see Fig. S7 [29]. Apparently
the elastic energy is minimized, when the two neighboring
vacancies are in different JT states.

To demonstrate the potential of our vacancy creation tech-
nique for the study of larger tailor-made sulfur vacancy
structures, we created and characterized a vacancy dimer, see
Fig. 4(a). The vacancies are created in next-nearest neighbor
distance d = +/3a, with a being the MoS, lattice constant.
As can be seen in Fig. 4(b) (left column) the d1/dV intensity
distribution of the hybrid orbitals are distinct from the LUDO
and LUDO+1 of isolated vacancies. The observed behavior
is reminiscent of bonding and antibonding molecular orbitals,
which is reproduced in the corresponding DFT maps (right
column). While the measured dI/dV signal seems to suggest
that the antibonding state is lower in energy, as also observed
for coupled quantum corrals confining holelike quasiparticles
[43], an inspection of the total DOS does not allow for such
an unambiguous identification, see Fig. S8 [29]. Nevertheless,
these hybridized orbitals form two unoccupied bands in a one-
dimensional vacancy chain, according to our DFT calculations
presented in Fig. 4(c). Such an assembly of large vacancy
defect structures can be realized with our atomically precise
vacancy creation method, if the adatoms used as markers can
be manipulated laterally with sufficiently high fidelity prior
to pick-up. The chains would have great potential for 2D
devices made from semiconducting TMDs, in which trans-
port properties are often governed by defect states [44,45].
While for Fe adatoms on MoS, the manipulation efficiency is
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FIG. 4. Artificial sulfur vacancy structures in MoS,. (a) STM
image of a sulfur vacancy dimer (Vii,s = 1V, L = 100 pA, im-
age size: 4x2 nm?). (b) Constant-height dI/dV maps measured at
the indicated Vi, compared to DFT simulated DOS maps of the
corresponding hybrid orbitals (image sizes: 2.2x 1.4 nm?). (c) Band
structure of a vacancy chain (model in inset). (d) Constant-height
current map of the vacancy dimer in the charged state (Vii,s =
—280 mV).

limited, it is plausible that several adatom species exist, which
can be laterally manipulated, while simultaneously forming
sufficiently strong bonds with the chalcogen atoms to enable
pick-up.

Applying a negative bias voltage enables us to charge the
dimer. Its HODO is shown in Fig. 4(d), in good agreement
with the corresponding DFT simulation for single electron
charging. DFT simulations for all orbitals of the singly and
doubly charged vacancy dimer are provided in Fig. S9 [29].
The LUDO of the neutral dimer (measured at 180 mV) and
the HODO of the charged dimer (measured at —280 mV)
have the same shape and hence display no JT distortion, in
stark contrast to the spontaneous symmetry breaking observed
in the charged single vacancy. This can be rationalized by
the fact that the dimer geometry reduces the symmetry and
consequently lifts the orbital degeneracy. It emphasizes the
importance of the environment of single vacancies, to enable
detection of their pristine properties.

In summary, we have developed a technique for atomically
precise creation of point defects in 2D TMDs, involving ad-
sorbed atoms and the tip of an STM. Sulfur vacancies in the
top sulfur layer of single-layer MoS, are created by picking up
single Fe adatoms from the surface. Tip-induced gating was
used to manipulate sulfur vacancies into a negatively charged
state, revealing the existence of two types of JT distortions,
which can be transformed into one another by their mutual
interaction. Furthermore, we studied the orbital overlap of
sulfur vacancy states using the described creation approach
and revealed strong hybridization.
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