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Mechanical Su-Schrieffer-Heeger quasicrystal: Topology, localization, and mobility edge
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In this paper we discuss the topological transition between trivial and nontrivial phases of a quasiperiodic
(Aubry-André like) mechanical Su-Schrieffer-Heeger model. We find that there exists a nontrivial boundary
separating the two topological phases, and an analytical expression for this boundary is found. We discuss
the localization of the vibrational modes using the calculation of the inverse participation ratio and access the
localization nature of the states of the system. We find three different regimes: extended, localized, and critical,
depending on the intensity of the Aubry-André spring. We further study the energy-dependent mobility edge
(ME) separating localized from extended eigenstates and find its analytical expression for both commensurate
and incommensurate modulation wavelengths, thus enlarging the library of models possessing analytical ex-
pressions for the ME. Our results extend previous results for the theory of fermionic topological insulators and
localization theory in quantum matter to the classical realm.

DOI: 10.1103/PhysRevB.109.195427

I. INTRODUCTION

A real crystalline material always possesses some degree
of disorder. Often, the disorder is of Anderson type [1,2],
where a random potential is created by a finite concentration
of impurities dispersed in the material. It is well know that in
three dimensions, there exists a critical value of the potential
intensity � above which a metal-insulator phase transition
occurs [3]. In one dimension, however, all states are localized
for any small but finite value of �, given the system is suffi-
ciently large or in the thermodynamic limit. With the advent of
twisted bilayer graphene [4–7] a new kind of disorder became
easily accessible in condensed matter, dubbed quasiperiodic
disorder. This comes about because, at certain twist angles,
the electrons see a potential which is incommensurate with
the lattice they propagate in, due to the presence of the second
twisted layer. However, quasiperiodicity in electronic systems
is not new, having a long tradition going back to studies by
Aubry and André [8,9]. In their original paper, Aubry and
André proposed a one-dimensional tight-binding model where
electrons are subjected to a sinusoidal electrostatic potential
incommensurate with the system’s lattice. These two authors
showed that a metal-insulator transition takes place for a finite
value of � = 2t , where t is the electronic hopping amplitude.
All eigenmodes are either exponentially localized, if � > 2t ,
or extended, if � < 2t . This result is at odds with the case of
Anderson localization in one-dimensional systems.

Together with metal-insulator transitions due to disorder,
topological phase transitions in one and more dimensions [10]
have also become a field of intense research. For example,
robust quantum-state transfer in superconducting qubit chains
via topologically protected edge states [11] was experimen-
tally realized and quantum-information processing via chiral

Majorana edge modes in Kitaev materials [12] was proposed.
In any spatial dimension, and in the absence of disorder, such
phase transitions are abrupt, as the system suddenly jumps
from a trivial phase, hosting no edge states, to a topological
one hosting edge states. Thus, in the latter case, an electronic
system supports dissipationless charge transport due to chiral
edge states (for an adiabatic cyclic evolution of the Hamil-
tonian we have, for example, the Thouless pumping in 1D
[13]) carried by integer or fractional charge excitations [14]. A
natural question now arises on the interplay between topology
and quasiperiodic disorder.

The Su-Schrieffer-Heeger (SSH) model is the ideal plat-
form for investigating the aforementioned interplay. In
brief, the SSH model is described by the tight-binding
equations [15]

tψB
j−1 + vψB

j = EψA
j ,

tψA
j+1 + vψA

j = EψB
j , (1)

where t, v are two hopping amplitudes that connect lattice
sites labeled by the index j and the sublattice index A/B.
It is the simplest one-dimensional model with topological
features, possessing two topological phases characterized by
winding numbers ν = 0 and ν = 1, the latter being topolog-
ically nontrivial and supporting edge states, eigenstates that
are localized at the boundaries of the system. The existence
(or absence) of edge states can also be predicted through
the bulk-boundary correspondence [16,17]. In fact, it is pos-
sible for variations of this model to host more than one edge
state per edge, by introducing long-range hoppings and in-
ducing a nonequilibrium steady state across the chain, for
example [18]. The topological phases of the SSH model
can be seen as a consequence of its underlying symmetries,
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like chiral, parity, time-reversal, and particle-hole symme-
tries [19]. This is true even for a non-Hermitian variant of
the model [20], with more exotic symmetries like anti-PT
symmetry. Recently, studies have shown that random chiral-
preserving [18,21], chiral-breaking [18,22], and quasiperiodic
intracell hopping modulation [23] can induce topological
phase transitions on SSH-based systems, that would not occur
otherwise. Indeed, in a previous study [24], we have show-
cased how quasiperiodicity can induce complex features in the
topological description of the SSH model. In such a system,
quasiperiodic modulation of intra- and intercell hoppings can
enable the coexistence of topological edge modes linked to
1D and 2D topological invariants. Additionally, when this
model is subjected to quasiperiodicity, nontrivial localization
phenomena, not present in the original Aubry-André (A-A)
model, arise, such as the existence of energy-dependent mo-
bility edges (MEs), and critical phases for multiple values of
disorder strength [23,25,26] appear.

As noted above, Aubry and André studied Anderson local-
ization in a 1D tight-binding model whose disorder applied
to a periodic lattice was of sinusoidal form. The model is
described by

t (ψ j+1 + ψ j−1) + �cos(2πβ j + φ)ψ j = Eψ j, (2)

where j is the lattice index, � is the strength of the
quasiperiodic potential, t is the hopping amplitude between
neighboring sites, φ is the phase parameter, and β is an
irrational number [8]. This model is the simplest model con-
cerning quasiperiodicity in which quasidisorder can induce
abrupt metal-insulator transitions: all eigenmodes are either
exponentially localized if � > 2t or extended plane waves
if � > 2t . At the condition � = 2t , the A-A model is said
to possess self-duality, meaning that the Hamiltonian both in
real and momentum spaces has the same identical form. From
there, different quasiperiodic models have been introduced
and understood theoretically [26–28] and experimentally real-
ized [29–31]. One notable property of the original A-A model
is that the boundary separating the extended and localized
phases is energy independent. Thus, no energy-dependent
mobility edge (ME) (energy value that marks the boundary be-
tween localized and extended states [32,33]) can exist in this
model, unlike in 3D random disordered systems, for example
[2,34]. This is a peculiarity of the Aubry-André model, since,
in general, generalized versions of this model possess energy-
dependent MEs [35,36]. Indeed, it was already shown before
that 1D quasiperiodic models can host energy-dependent MEs
by introducing long-range hopping amplitudes to the base
lattice [27] or by applying some variation of the A-A potential
to the Su-Schrieffer-Heeger model [23,25,26].

In this work, inspired by recent studies of SSH-based
models in classical wave systems, like elastic [21,37–41],
photonic [42,43], acoustic [44–46], and superconducting
systems [47–49], and by exciting localization phenomena
induced by quasiperiodicity [26,35,36], we investigate a me-
chanical version of the SSH model subjected to an A-A
intercell spring constant. We focus on the limit where only
the intercell elastic spring constant is altered by the A-A
modulation. That is, the intracell elastic constant (between
masses u j

A, u j
B) remains fixed, whereas the inter-unit-cell elas-

FIG. 1. Depiction of the mechanical SSH with fixed boundary
conditions. The dashed rectangle contains one unit cell.

tic constant (between u j+1
A , u j

B) is allowed to vary. We study
the 1D topological phases of the chiral version of this model
numerically and analytically, in order to understand how vari-
ations in the strength, periodicity, and relative shift of the
A-A potential affect the topological phases and correspon-
dent winding numbers. Then, we make use of the inverse
participation ratio (IPR) and the fractal dimension to study the
localization properties of both chiral and nonchiral versions of
our model. Finally, the equivalent of mobility edges for our
mechanical system is derived analytically for the nonchiral
system based on Avila’s global theory [50].

This paper is organized as follows. In Sec. II we intro-
duce the mechanical SSH model, without yet considering
quasiperiodicity, and discuss the topological properties of
our classical mechanical model as a function of the ratio
between spring constants and the intensity of the intercell
spring modulation. In Sec. III we discuss the effect of A-A
modulation on the winding number phase diagram and on the
localization of the eigenstates. Next, we derive an analytical
expression of the energy-dependent mobility edge. Finally, we
offer our conclusions and detail some of the calculations in the
appendices.

II. MECHANICAL SSH CRYSTAL

In this section, we introduce our SSH mechanical model
(see Fig. 1), define the notation, and discuss the model topo-
logical properties from a real-space perspective.

A. Model and notation

The system is a finite 1D chain subjected to fixed boundary
conditions (FBCs), composed of N unit cells with two equal
masses m each. Each mass carries with itself two labels:
the sublattice index α = {A, B} and the cell index j ∈ [1, N].
Additionally, two spring constants are defined: the intracell
spring Ka and the intercell spring Kb. These spring constants
correspond to the hopping amplitudes in the original elec-
tronic SSH model and, as will be shown later, tuning their
values can lead to different topological phases in the mechan-
ical model. The equations of motion obeyed by a mass of
the type A and a mass of the type B are obtained from the
Euler-Lagrange method and can be represented in matrix form
as

Ü(t ) = −MU (t ), (3)

where U (t ) = [u1
A, u1

B, u2
A, u2

B, . . . , uN
A , uN

B ] is the displace-
ment vector, and u j

α (t ) is the displacement of the mass j
with sublattice label α = A/B. Since the normal modes have
a well-defined frequency, we can separate the temporal and
spatial parts. This allows us to write ü j

α in terms of u j
α as
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FIG. 2. (a) Evolution of the eigenvalue spectrum of M′ = (M − mω2
0I) for Kb = 1, m = 1. The edge states, depicted in red and blue, are

zero-energy states for Ka < Kb and become bulk states for Kb < Ka. (b) LTMs calculated for Ka = 1, Kb = 0.5 (red curve) and Ka = 0.5, Kb =
1 (blue curve). For unit cells distant from the borders, the LTMs ν( j) converge to the winding number ν = 0, 1. (c) Eigenvalue spectrum of M′

for Kb = 1, Ka = 0.5. (c) (I) Eigenmodes number 100 and number 101 are localized at the borders and are thus labeled edge states. (c) (II) Edge
states are degenerate and are present in the middle of the gap. (d) Eigenvalue spectrum of M′ for Kb = 0.5, Ka = 1. (d) (I) Eigenmodes number
100 and number 101 are now delocalized. (d) (II) For this configuration there are no edge states. Instead, these eigenmodes are extended states.

follows:

u j
α (t ) = Cα, je

−iωt → ü j
α (t ) = −ω2u j

α (t ), (4)

so the equations of motion reduce to the following eigenvalue
problem:

MU (t ) = mω2U (t ), (5)

where M is the dynamical matrix of dimension 2N × 2N . It
has the form

M =

⎡
⎢⎢⎢⎢⎣

Ka + Kb −Ka 0 . . . 0
−Ka Ka + Kb −Kb . . . 0

0 −Kb Ka + Kb. . . 0
. . . . . . . . . . . . −Ka

0 0 0 . . .Ka + Kb

⎤
⎥⎥⎥⎥⎦

2N×2N

. (6)

Differently from the original SSH model Hamiltonian, the
mechanical spring-mass dynamical matrix M has elements in
its diagonal. However, since all diagonal elements are equal,
the system still possesses chiral symmetry, as the diagonal
elements represent only a shift in the eigenvalue spectrum
of the form mω2

0 = Ka + Kb. Then, we can define the matrix
M′ = (M − mω2

0I) that obeys an anticommutation relation
with the chiral operator Γ , and whose eigenvalue spectrum
is centered around mω2 = 0,

Γ
(
M − mω2

0I
) + (

M − mω2
0I
)
Γ = 0,

where I is the 2N × 2N identity matrix, and � is the chiral op-
erator, whose matrix representation for the FBC spring-mass
system is

Γ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 . . .

0 −1 0 0 . . .

0 0 1 0 . . .

0 0 0 −1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

2N×2N

. (7)

The mechanical SSH eigenvalue spectrum is represented in
Figs. 2(c) and 2(d), each corresponding to one different topo-
logical phase, which will be discussed next.

B. Topological characterization in real space

For very large systems, translation symmetry is exact in the
bulk (this is not the case near the system’s terminations). Due
to this property, it is possible to define topological markers
in real space [21,51,52], which allows us to discriminate be-
tween topologically trivial and topologically nontrivial phases
in nonperiodic systems. In the present work we only consider
systems that do not possess translation symmetry. The usual
winding number computation in momentum space for peri-
odic systems [41] must therefore be handled in real space.
For this purpose we use the concept of a local topological
marker (LTM) as defined in [51]. A LTM has a local value
for each unit cell and, when averaged away from the border, it
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converges to the winding number of the periodic system. The
advantage of the LTM is that it can also deal with disordered
systems [21,51,52]. To compute the LTMs for a chain with
N unit cells, a 2N × 2N matrix U = [U1,U2,U3, . . . ,U2N ]
is constructed, whose columns are normalized eigenvectors
of the system in ascending order (the first column is then
the eigenvector corresponding to the smallest eigenvalue). U
can be divided in two: U− = [U1,U2,U3, . . . ,UN ] containing
the first half eigenvectors below band gap at zero energy and
U+ = [UN+1,UN+2,UN+3, . . . ,U2N ] containing the eigenvec-
tors above the band gap at zero energy. With U+ and U− we
can construct the projectors of the bands above and below the
gap: P+ = U+UT

+ and P− = U−UT
− , respectively. The flat-

band Hamiltonian, which is homotopically equivalent to M
[52], is defined as Q = P+ − P−, which can be decomposed
as Q = QAB + QBA = �AQ�B + �BQ�A, where

ΓA =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 . . .

0 0 0 0 . . .

0 0 1 0 . . .

0 0 0 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

2N×2N

,

ΓB =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 . . .

0 1 0 0 . . .

0 0 0 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

2N×2N

(8)

are the sublattice projectors and � = �A − �B is the chiral
operator. Finally, the definition of LTM according to Ref. [51]
is

ν( j) = 1

2

∑
α=A,B

{(QBA[X,QAB]) jα, jα + (QAB[QBA,X]) jα, jα},

(9)

where X is the position operator with dimensions dim(X) =
2N × 2N , in which the masses are mapped to the position
of their unit cell counting from the center of the system:
X=diag[−N,−N,−(N − 1),−(N − 1), . . . , N − 1, N − 1],
where the symbol diag[. . .] stands for a diagonal matrix.

The subindexes jA, jB indicate the entries for a mass of
type A or B of the jth unit cell in the matrix. The average of the
LTM ν( j) over the most central cells results in the quantity 〈ν〉
that converges to the winding number ν of the system which,
in this model, can have two values: ν = 0, 1, characterizing
the topologically trivial and nontrivial phases, respectively.
Each phase corresponds to a specific ratio between Ka and
Kb as we show in Figs. 2(a) and 2(b) ( Ka

Kb
> 1 corresponds to

the trivial phase, while Kb
Ka

> 1 corresponds to the topological
phase). Additionally, in the topological phase with ν = 1, the
system possesses edge states (or rather, end states). They are
not present if ν = 0 or if we have periodic boundary condi-
tions. This property is depicted in Figs. 2(c) and 2(d), where
the energy spectrum and the shape of the edge states, if there
are any, can be seen side by side.

FIG. 3. Depiction of the mechanical SSH subjected to an Aubry-
André modulation on the intercell spring constants. In order to
preserve chiral symmetry, a local spring is added in each mass. It
depends on the mass type and on the unit cell it is in.

III. MECHANICAL MODEL WITH INTERCELL
AUBRY-ANDRÉ SPRING CONSTANTS

In this section we discuss the topological properties,
localization, and energy-dependent mobility edges of our me-
chanical SSH model.

A. Equations of motion

We begin by studying a nearest-neighbor mechanical
model under influence of an Aubry-André modulation
(see Fig. 3). This modulation is characterized by a sinusoidal
term whose wavelength is incommensurate with the lattice,
due to the irrational number Q, chosen here to be the inverse
of the golden ratio τ−1 = 2

1+√
5
. Here, we are interested in

studying how the induced quasidisorder imposed by the A-A
modulation affects the topological properties of the system,
using the local topological marker formalism discussed above.
In our model, the A-A is manifested as a perturbation on the
spring values, rather than an additional local spring attached to
each mass (this would characterize an on-site A-A potential).
This means that the values of the spring constants change due
to the A-A term. In our model, we apply the Aubry-André
modulation only to intercell spring constants, Kb, that con-
nects the masses u j+1

A and u j
B. Thus, the equations of motion

for a unit cell j are as follows (time dependence implicit):

mü j
A = − [Ka + Kb + �cos(2πQ j + φ)]u j

A

+ Kau j
B + [Kb + �cos(2πQ j + φ)]u j−1

B ,

mü j
B = − {Ka + Kb + �cos(2πQ[ j + 1] + φ)}u j

B

+ Kau j
A + {Kb + �cos(2πQ[ j + 1] + φ)}u j+1

A , (10)

where � is the A-A amplitude and j ∈ [1, N] is the unit cell
index. A perturbation on the springs also introduces a term in
the diagonal (this does not happen in the original SSH model),
implying that an off-diagonal A-A potential changes both
diagonal and off-diagonal terms, breaking chiral symmetry.
To avoid this, we add local springs K j

0,α to each mass,

mü j
A = − [

Ka + Kb + �cos(2πQ j + φ) + K j
0,A

]
u j

A

+ Kau j
B + [Kb + �cos(2πQ j + φ)]u j−1

B ,

mü j
B = − {

Ka + Kb + �cos(2πQ[ j + 1] + φ) + K j
0,B

}
u j

B

+ Kau j
A + {Kb + �cos(2πQ[ j + 1] + φ)}u j+1

A , (11)

with K j
0,A = �[1 − cos(2πQ j + φ)] and K j

0,B = �{1 −
cos(2πQ[ j + 1] + φ)}.

This choice of K j
0,A and K j

0,B preserves the chirality of the
dynamical matrix and allows the computation of a quantized
topological marker 〈ν〉. Additionally, this choice guarantees
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that the eigenvalues of the problem are always positive. Normal modes, which, by definition, have well-defined frequency, obey
ü j

α (t ) = −ω2u j
α (t ) and Eq. (10) becomes

mω2u j
A = (Ka + Kb + �)u j

A − Kau j
B − [Kb + �cos(2πQ j + φ)]u j−1

B ,

mω2u j
B = (Ka + Kb + �)u j

B − Kau j
A − {Kb + �cos(2πQ[ j + 1] + φ)}u j+1

A , (12)

or in matrix form

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ka + Kb + � −Ka 0 . . .−[Kb + �cos(2πQ + φ)]

−Ka Ka + Kb + � −[Kb + �cos(4πQ + φ)]. . . 0

0 −[Kb + �cos(4πQ + φ)] Ka + Kb + � . . . 0

. . . . . . . . . . . . −Ka

−[Kb + �cos(2πQ + φ)] 0 0 . . . Ka + Kb + �

⎤
⎥⎥⎥⎥⎥⎥⎦

2N×2N

.

(13)

One important aspect to note is that true quasiperiodic-
ity can only be achieved in infinite systems, in which the
quasiperiodic perturbation never repeats itself. Numerically,
one can only approximate true quasiperiodicity and its prop-
erties by working with sufficiently large systems. However,
we aim to perform finite size scaling analysis and are thus
forced to work with different system sizes. In this scenario,
it is necessary to mimic an infinite-sized chain by imposing
periodic boundary conditions (PBCs) in the original crystal
lattice and defining the appropriate rational approximant, as
detailed in Appendix A, on the additional A-A potential. This
guarantees that the whole system is composed of only one unit
cell, in the sense that the A-A potential never repeats itself
throughout the finite system. Thus, from now on, PBCs are
always imposed.

B. Topological characterization in the incommensurate regime

We begin our discussion of the topological phase as a
function of varying Ka and � for fixed Kb. For each com-
bination of parameters Ka and �, we calculate the quantity
〈ν〉 as described in Sec. I B, which converges to the winding
number. Figure 4 shows the corresponding phase diagram for
Kb = 2, φ = 0, rational approximant Q̃ = 377/610, N = 610
unit cells, Ka ∈ [0, 4], and � ∈ [0, 6]. As expected from the
original SSH model (� = 0), the topological phase transi-
tion occurs for Ka = Kb [16]. As � increases from 0 to 2,
the trivial topological phase becomes available for Ka < Kb

due to the quasiperiodic disorder. For � > Kb = 2, we see
that the boundary between the two phases becomes linear
and the phase diagram acquires a reentrant behavior. In the
limit of very large �, the system becomes unable to ac-
cess the topological phase, as the intracell spring becomes
much greater than the intercell spring and the chain con-
verges to a fully dimerized limit, as if there were no intercell
springs.

Next, we study the behavior of the localization length. It
is well known [52–54] that in electronic systems the topo-
logical phase transitions are accompanied by a divergence
of the localization length at the Fermi level. This coincides
with the closing of the band gap. To confirm that this gen-
eral statement is also valid for our mechanical model, the
localization length  was calculated analytically and verified

to diverge in the region between topological phases, where
the gap closes. In order to simplify the calculation, we cen-
ter the eigenvalue spectrum in zero by subtracting mω2

0 =
Ka + Kb + � from each eigenvalue, such that the states in
the middle of the spectrum become zero-energy states when
the gap closes, that is, mω2 − mω2

0 = 0. Then, the equa-
tions of motion for states with zero energy when the gap closes

FIG. 4. Averaged LTMs calculated for the spring-mass system
with Aubry-André modulation applied on the intercell spring con-
stant for Kb = 2, φ = 0, and m = 1. The blue region corresponds
to the trivial phase with 〈ν〉 = 0 and the red region corresponds to
the topological phase 〈ν〉 = 1. Between the two phases, the white
stripe separates the two phases and corresponds to a set of points
where the averaged LTM did not converge to either 0 or 1 due to the
finite system size. The black line is the analytical result for where the
localization length diverges. The agreement between the white and
black stripes is a manifestation of the fact that the topological phase
transition is accompanied by a divergent localization length.
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read

0 = Kau j
B + [Kb + �cos(2πQ j + φ)]u j−1

B ,

0 = Kau j
A + {Kb + �cos(2πQ[ j + 1] + φ)}u j+1

A . (14)

Now, each equation only has coefficients of the same sublat-
tice. The equation with sublattice A coefficients, for example,
and can be written as

u j+1
A = −Ka

Kb + �cos(2πQ[ j + 1] + φ)
u j

A, (15)

which leads to a recursive relation

uN
A = (−1)N−1

N−1∏
j=1

Ka

Kb + �cos(2πQ[ j + 1] + φ)
u1

A. (16)

Now, the relevant Lyapunov exponent γ , the inverse of the
localization length, can be calculated by [52,55,56]

γ = − lim
N→∞

1

N
ln

∣∣∣∣uN
A

u1
A

∣∣∣∣
= − lim

N→∞
1

N
ln

∣∣∣∣∣∣
N−1∏
j=1

Ka

Kb + �cos(2πQ[ j + 1] + φ)

∣∣∣∣∣∣
= lim

N→∞
1

N

∣∣∣∣∣∣
N−1∑
j=1

ln

∣∣∣∣Kb + �cos(2πQ[ j + 1] + φ)

Ka

∣∣∣∣
∣∣∣∣∣∣. (17)

According to Weyl’s equidistribution theorem and
properties of irrational rotations [57,58], a sequence
2πQ, 4πQ, 6πQ, . . ., mod 2π is uniformly distributed in
the interval (−π, π ), where Q is an irrational number. So, the
summation in Eq. (17) can be converted to an integral over
the phase ϕ ∈ [0, 2π ],

γ = 1

2π

2π∫
0

ln

∣∣∣∣Kb + � cos ϕ

Ka

∣∣∣∣dϕ, (18)

which can be evaluated as

γ =
⎧⎨
⎩ln

Kb+
√

K2
b −�2

2Ka
, Kb > �,

ln �
2Ka

, Kb < �.
(19)

The topological phase transition boundaries can then be
computed by considering when the Lyapunov exponent goes
to zero, which corresponds to a divergent localization length.
Note that with an A-A periodicity incommensurate with that
of the lattice, all information about the phase shift φ which
can be initially present in the modulation is washed out by
the integration over ϕ. This proves that the topological edge
modes of such a system will remain insensitive to phase shifts
in the modulation, so long as is incommensurate with the
lattice. This is not necessarily the case if the modulation is
commensurate, and we shall delve into this point a bit more
deeply in the following subsection.

Regardless of this subtle point, this analytical result can
be verified numerically by computing the localization length

at the central frequency ω = ω0 =
√

Ka+Kb+�
m using a transfer

matrix method [56] as a function of Ka and �. The transfer
matrices T i(ω) are derived from Eq. (12) and have the form[

ui+2

ui+1

]
= T i(ω)

[
ui+1

ui

]
,

T i(ω) =
[

mω2−Ka−Kb−�
Ki+2

−Ki+1

Ki+2

1 0

]
, (20)

where i ∈ [1, 2N − 2] is the index of masses and springs from
left to right, such that u1

A = u1, u1
B = u2, u2

A = u3, and so on.
It is important to notice that the first and the last springs of the
system are K1 = Kb + �cos[2πQ + φ] and K2N+1 = Kb +
�cos(2πQ[2N + 1] + φ). So K2 = K4 = K6 = · · · = K2N =
Ka. Since the transfer matrices of this problem have dimen-
sion two, there exist only two Lyapunov exponents γ1 = −γ2

(this is true if the first and last springs are equal) [56]. The
localization length is then  = 1

|λ1| = 1
|λ2| . The result for the

analytical calculation is shown as a black line in Fig. 4 for

Kb = 2, m = 1, and ω = ω0 =
√

Ka+Kb+�
m , where it is clear

that the divergence of the localization length for when the
gap closes indeed occurs at the boundary between topological
phases for our model. Thus, this property is not exclusive of
electronic models.

C. Topological characterization in the commensurate regime

Here we derive the phase transition boundary for topo-
logical transition in the commensurate case. In a previous
work [24] we have pointed out the relationship between the
1D topological phase of the model with the number of Dirac
cones observed in the 2D spectrum originating from its 2D su-
perspace description. Here, we build on these previous results
by making use of the connection between the mobility edge at
zero energy and the critical points where the winding number
changes values. In this manner, we completely analytically
characterize the 1D topological phase transition boundary, or
equivalently the number of Dirac cones in the superspace
description of this model. We show that this result reduces
to the one obtained in [24] in the limit of long modulation
periodicities.

The starting point of this analysis is, again, Eq. (15). In
the incommensurate case, the summation can be converted to
an integral due to the properties of rotations by an irrational
angle. In the commensurate case this transformation cannot
be performed, but nevertheless some simplifications can be
implemented. We start from Eq. (15) by replacing Q = p/q,
where p and q are relatively prime integers,

γ = − lim
N→∞

1

N
ln

∣∣∣∣∣∣
N−1∏
j=1

Ka

Kb + � cos
(
2π

p
q [ j + 1] + φ

)
∣∣∣∣∣∣.
(21)

Let us define, for simplicity, ϕ
(q)
j = 2π p[ j + 1]/q. Now,

although we cannot convert this expression to an integral such
as in the incommensurate case, the periodicity in q nonethe-
less restricts the number of different terms that appear in the
product. Specifically, j + 1 will yield the same term in the
product if j + 1 mod q = j + 1. This means that the product
can be restricted to q different terms, and each term will
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appear (N − 1)/q times. The resulting product is

γ = − lim
N→∞

1

N
ln

∣∣∣∣∣∣
q∏

j=1

[
Ka

Kb + � cos
(
ϕ

(q)
j + φ

)
](N−1)/q

∣∣∣∣∣∣.
(22)

We can bring a factor (N − 1)/q outside the logarithm,
and in the large-N limit approximate N − 1 ≈ N so that the
dependence in N drops from the expression and the limit can
also be dropped. We find

γ = 1

q
ln

∣∣∣∣∣∣
q∏

j=1

[
Kb + � cos

(
ϕ

(q)
j + φ

)
Ka

]∣∣∣∣∣∣. (23)

Similarly to the incommensurate case, the 1D topological
transition boundary can be found by considering the set of
parameters where the Lyapunov exponent goes to zero. This is
given, in the commensurate case, by the polynomial equation

Kq
a = eiθq

q∏
j=1

[
Kb + � cos

(
ϕ

(q)
j + φ

)]
. (24)

This polynomial equation is of degree q and can be solved
for any commensurate periodicity. eiθq is an arbitrary global
phase which must be chosen so that all relevant parameters
Ka, Kb, and � are real. For small periodicity, i.e., in the limit
pN/q 
 1, we can send p/q → 0, and recover the transition
obtained analytically for the large-periodicity limit in [24].
This is simply the boundary

Ka = ±[Kb + � cos (φ)]. (25)

We see that the possibility of manipulation of the 1D
topological edge modes becomes very rich in the case of a
commensurate modulation, since an additional dependence on
the modulation shift φ appears, whereas in the incommensu-
rate case it is washed out by the angular integral. Thus, by
tuning both the A-A disorder strength as well as this shift, a
rich landscape of topological phase diagrams can appear. An
example of such a phase diagram as a function of � and φ is
given in Figs. 5(a) and 5(b), respectively. In both situations,
an initially topologically trivial system can be driven into
a topological phase via the A-A disorder term by changing
the value of the quasidisorder strength or merely the shift
φ. The fact that the contributions from the product do not
wash out the dependence in φ is showcased in the inset of
Fig. 5(c), where inspecting the symmetry of the distribution
of the angles ϕ

q
j makes it clear that changing φ will result in

measurable effects in the topological phase diagram. This is
illustrated by plotting the analytical result for phase transition
boundary in panel (c) as well as directly via the computation
of the averaged LTM in panel (a).

D. Localization properties, inverse participation
ratio, and finite size scaling analysis

Localization properties can also be accessed analyzing the
inverse participation ratio (IPR). The state IPR is defined as

FIG. 5. (a) Averaged LTMs calculated for the spring-mass sys-
tem with Aubry-André potential applied on the intercell spring
constant in the case of a commensurate modulation of Q = 1/3 as
a function of φ and Ka and for Kb = 2 and � = 2.5. The blue region
corresponds to the trivial phase with 〈ν〉 = 0 and the red region to
the topological phase 〈ν〉 = 1. The white stripe indicates the region
where the topological invariant did not converge to 0 or 1 due to
the system’s finite size, and the black line to the analytical result
for the divergent localization length. (b) Similar phase diagram as
a function of � and Ka. (c) Different topological transition bound-
aries as derived analytically from the divergent localization length.
The inset shows, for each of the three phases φ = 0, 0.2, π/6, the
q = 3 angles ϕ

(q)
j contributing to the product in Eq. (24). (d) Surface

separating the topological and trivial phase in the parameter space
spanned by Ka, �, and φ for q = 3. Panels (a) and (b) can be inter-
preted as phase diagrams with boundaries determined by sections of
this surface along lines with fixed parameters � = 2.5 and φ = 0.5,
respectively.
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FIG. 6. ln(IPR) as a function of the eigenvalues (mω2 − mω2
0 ) for N = 987 unit cells, φ = 0, m = 1, and (a) Kb > Ka in real space;

(b) Ka > Kb in real space; (c) Kb > Ka in momentum space; (d) Ka > Kb in momentum space. In all cases, periodic boundary conditions were
considered. If Kb > Ka, the transition between extended (localized) to localized (extended) phases in real (momentum) space is sharp, while
for Ka > Kb there are regions in which the transition is sharp and regions in which the state IPR does not converge to 1 (0). This could be
an indication that the system is in the critical phase. However, in order to verify this statement, it is necessary to perform a finite size scaling
analysis. See Figs. 7 and 8 and corresponding discussion in the main text.

[59–61]

IPR(|ψ〉) =
2N∑
i=1

|ci|4 (26)

given a normalized eigenstate |ψ〉 with dimension 2N and
components ci. If the eigenmode is an extended state, IPR
� N−1. In the opposite scenario, if the eigenmode is perfectly
localized, IPR � N0 = 1. Additionally, states are said to be in
the critical phase if they are neither fully localized nor fully
extended [26,34,61–63]. The states’ IPR can be represented
in a graph of the energy eigenvalues as a function of the
Aubry-André potential strength �, with the lines colored by
the value of the IPR of the corresponding eigenstate. Such
representation allows us to visualize the transition between
extended, localized, and critical phases, as shown in Fig. 6
for both real and momentum spaces. The transformation to
momentum space is detailed in Appendix B.

When analyzing localization, one convenient quantity
to compute is the fractal dimension �. This quantity is

independent of the system size and controls the asymptotic
behavior of the system’s IPR (defined as the average of all
state IPRs and referred here as sIPR) with N according to the
scaling law

sIPR(N ) ∼ (2N )−�, (27)

in the limit N → ∞. One way of accessing the value of �

from the results for finite-size systems is via the introduction
of the size-dependent quantity D(N ), that converges to � in
the thermodynamic limit

lim
N→∞

D(N ) = �, (28)

where D(N ) is defined as the average fractal dimension

D(N ) = − ln(sIPR)

ln(2N )
, (29)

where 2N is the size of the system. For the extended phase,
� = 1, and for the localized phase, � = 0. If 1 > � > 0, the
system is said to be critical [23,34]. Numerically, one can
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FIG. 7. Fractal dimension D(N ) as a function of � and the system size 2N for φ = 0 and (a) Kb > Ka in real space; (b) Ka > Kb in real
space; (c) Kb > Ka in momentum space; (d) Ka > Kb in momentum space. In cases (a) and (b) the system begins in an extended phase, since
D(N ) approaches 1 with increasing N . Then, it transitions rather quickly to a localized phase as � increases, since D(N ) approaches 0 with
increasing N . In (c) the system begins in a localized phase and transitions slowly to an extended phase. In (d) the behavior for � < 2 is similar
to case (c). After this point, however, the value of D(N ) is the same independently of N. This indicates that the system is indeed in the critical
regime.

study the behavior of the quantity D(N ) that, for increasing N ,
approaches �. The advantage of computing D(N ) over com-
puting only the IPRs or sIPR is that it gives a clear criterion
for distinguishing between critical, extended, and localized
phases, thus making it possible to predict the phase of the sys-
tem in the thermodynamic limit. We then should expect that,
for a given �, D(N ) converges to 1 with increasing N if the
system is in an extended phase (all eigenstates are extended).
On the contrary, D(N ) converges to 0 in the localized regime
(where a finite fraction of the states are localized). If the
system is in the critical regime, D(N ) assumes a finite value
between 0 and 1 independent of N . For the cases depicted
in Fig. 6 we compute D(N ) as a function of � and different
system sizes, namely N = 144, 377, 610, and 987 unit cells.
Results are shown in Fig. 7. In the real space, as seen in
Figs. 7(a) and 7(b), the system seems to be in the extended
phase for small �, since the greater the system size, the closer
D(N ) is to 1. At around � = 1.5, there is a transition to the
localized phase, hinted at by the fact that D(N ) approaches 0
for increasing N . This means that the critical states in Fig. 6(b)
will become progressively localized for larger system sizes. In

momentum space, as seen in Figs. 7(c) and 7(d), the system
begins localized for small �. In the case Ka = 2, Kb = 4,
there is a transition to the extended phase close to � = 3.
Interestingly, for Ka = 4, Kb = 2, and � > 2, the ratio D(N )
oscillates around a constant value between 0 and 1 indepen-
dent of N . This is a strong evidence that the system tends to
the critical phase in the thermodynamic limit.

Now, we can predict the fractal dimension � for a given �.
We do so by plotting −ln(sIPR) against ln(2N) for specific val-
ues of � and different system sizes. The resulting curve is lin-
ear, with slope D(N ), which, we stress, is the scaling exponent
of the average sIPR. As N increases, the slope tends to � = 1
for the extended phase, � = 0 for the localized phase, and to
1 > � > 0 for the critical phase. These curves are shown in
Fig. 8 with the corresponding slope and confidence interval.
For each case, we calculated −ln(sIPR) for � = 1 and � = 4
and for N = 233, 377, 610, 987, 1597, 2584, 4181, 6765 unit
cells. In Figs. 8(a) and 8(b) � = 1 corresponds to the extended
phase and � = 4 to the localized phase, just as we would qual-
itatively expect from Figs. 7(a) and 7(b) [and from Figs. 6(a)
and 6(b)]. We also expect that, if more points (corresponding
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FIG. 8. Plot of −ln(sIPR) versus ln(2N) for φ = 0, � = 1 (blue curves), � = 4 (red curves), and for the following configurations: (a) Kb >

Ka in real space; (b) Ka > Kb in real space; (c) Kb > Ka in momentum space; (d) Ka > Kb in momentum space. The slopes of the curves
correspond to the quantity D(N ), a quantity that converges to the fractal dimension � in the thermodynamic limit. In cases (a) and (b) the blue
curve indicates that for � = 1 the system is in the extended phase and that for � = 4 the system is in the localized phase. In case (c), � = 1
corresponds to the localized phase and � = 4 to the extended phase. The case (d) differs from the others in the sense that we have the value of
D(N ) between 0 and 1 (see detailed discussion in the text).

to greater N) are added to the plot, the slope of the blue curve
will become progressively closer to 1 and the slope of the red
curve will become 0. In Fig. 8(c), � = 1 corresponds to the
localized phase and � = 4 to the extended phase. In Fig. 8(d)
the value for the slope of the red curve is in agreement with
the result in Fig. 7(d), which shows that for � = 4, the system
average scaling dimension, with D(N ) ≈ 0.75, is dominated
by the critical states. At first glace it may seem strange that the
slopes of the red curves in Figs. 8(b) and 8(d) apparently lead
to different conclusions for � = 4, where we have D(N ) ≈ 0
in real space and D(N ) ≈ 0.75 in momentum space. This
happens because of the same role played by the critical states
in real space and in momentum space [see Figs. 6(b) and 6(d)].
In real space, and for � = 4, we have the coexistence of local-
ized and critical states [see Fig. 6(b)] and in momentum space,
also for � = 4, we have the coexistence of extended and
critical states [see Fig. 6(d)]. The critical state IPR scales with
N−�c and N−�ck in real and momentum space, respectively,
with 0 < �c, �ck < 1 [64,65]. Since extended and localized
states scale with exponents � = 1 and � = 0, respectively, we

will have a finite D(N ) = �ck value in momentum space and
D(N ) ≈ 0 in real space.

At last, one relevant question is whether there exists a
correlation between topological and localized phases. To in-
vestigate this, we calculate an sIPR phase diagram for Ka =
[0, 4], � = [0, 5], Kb = 2, and φ = 0 in real space. We know
that, in real space, the system is in the extended state for
small values of �, meaning all its states are extended. Then,
the sIPR associated with these values of � will be 0. As �

increases, the system can have extended and localized states
coexisting, as shown in Fig. 6(a) for � = 2, which would
result in an sIPR > 0. Although the sIPR does not say which
states are localized and which are extended, it provides infor-
mation on whether the system has already transitioned from
extended to localized (sIPR > 0) or whether all states are still
extended (sIPR = 0). Thus, if sIPR > 0, the localization phase
transition for at least some states has occurred. Thus, this
allow us to separate the phase diagram between the fully ex-
tended phase (sIPR = 0) and nonextended phase (sIPR > 0).
In Fig. 9 we compare this boundary with the topological one,
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FIG. 9. Averaged IPR calculated for the spring-mass system with
Aubry-André modulation applied on the intercell spring constant
for Kb = 2, φ = 0, and m = 1. The blue region corresponds to the
extended phase, in which all eigenstates of the system are extended
and sIPR = 0. The red region corresponds to configurations for which
some or all states have transitioned from extended to localized and
thus sIPR > 0. The white line corresponds to the boundary between
topological phases. Apparently, there exists no correlation between
both phases.

as shown in Fig. 4, depicted in white. Above this line, the
topological phase is trivial, and below it the nontrivial phase
exists. The blue colored area of the phase diagram locates the
extended phase (sIPR = 0) and the red colored area indicates
that the phase transition has occurred for some or all states
(sIPR > 0). We can see that there is no correlation between
localization and topology in this model. Configurations of pa-
rameters Ka, Kb, and � that characterize a certain topological
phase do not determine one specific localization phase. It is
then possible, for example, to have the system in the extended
phase and tune it to be either topological or trivial.

E. Calculation of the mobility edge

The mobility edge (ME) is another property of quasiperi-
odic models that is well known in the literature of electronic
systems [23,27,28,66,67]. This property refers to the exis-
tence of a boundary separating extended from localized states.
MEs exist in quasiperiodic one-dimensional systems, unlike
in models subjected to Anderson disorder in one and two
dimensions. Here we present an analytical derivation of MEs,
which was previously thought not to be possible [68], based
on Avila’s global theory [50]. We note, however, that this
derivation is only valid for the original, nonchiral version of
our model, as in Eq. (10), setting KA

0, j = KB
0, j = 0. This is

due to the fact that, in the chiral version, the imposed local
spring removes the eigenvalue dependence in the diagonal
of the dynamical matrix, making it impossible to obtain the
localization length as a function of the eigenvalues mω2 in
analytical form (see, however, the methods used in Ref. [69]).
To obtain the MEs analytically, we begin with the nonchiral
equations of motion,

mω2u j
A = [Ka + Kb + �cos(2πQ j + φ)]u j

A − Kau j
B − [Kb + �cos(2πQ j + φ)]u j−1

B ,

mω2u j
B = {Ka + Kb + �cos(2πQ[ j + 1] + φ)}u j

B − Kau j
A − {Kb + �cos(2πQ[ j + 1] + φ)}u j+1

A , (30)

where j ∈ [1, N] is the unit cell index. Then, we isolate u j
B and u j−1

B as a function of u j
A and u j+1

A ,

u j
B = Kau j

A + {Kb + �cos(2πQ[ j + 1] + φ)}u j+1
A

Ka + Kb − mω2 + �cos(2πQ[ j + 1] + φ)
, u j−1

B = Kau j−1
A + [Kb + �cos(2πQ j + φ)]u j

A

Ka + Kb − mω2 + �cos(2πQ j + φ)
. (31)

For cleaner notation, we define Z = mω2 − Ka − Kb and f j = �cos(2πQ j + φ). Substituting u j
B and u j−1

B in the equation for
u j

A, we obtain

mω2u j
A = (Ka + Kb + f j )u

j
A − Ka

(
Kau j

A + (Kb + f j+1)u j+1
A

f j+1 − Z

)
− (Kb + f j )

(
Kau j−1

A + (Kb + f j )u
j
A

f j − Z

)
. (32)

Rearranging terms it is easy to see that

u j+1
A = (Z − f j )2(Z − f j+1) − K2

a (Z − f j ) − (Kb + f j )2(Z − f j+1)

Ka(Kb + f j+1)(Z − f j )
u j

A − Ka(Kb + f j )(Z − f j+1)

Ka(Kb + f j+1)(Z − f j )
u j−1

A . (33)

Now, with Eq. (33) we can define a transfer matrix T j as[
u j+1

A

u j
A

]
= T j

[
u j

A

u j−1
A

]
, T j (ω, φ) =

[
(Z− f j )2(Z− f j+1 )−K2

a (Z− f j )−(Kb+ f j )2(Z− f j+1 )
Ka(Kb+ f j+1 )(Z− f j )

−Ka(Kb+ f j )(Z− f j+1 )
Ka(Kb+ f j+1 )(Z− f j )

1 0

]
. (34)
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The maximal Lyapunov exponent γ (ω) can be calculated by computing the limit [70]

γ (ω) = lim
N→∞

1

N
ln

∣∣∣∣∣∣
∣∣∣∣∣∣

N∏
j=1

T j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, (35)

where ln ||M||2 denotes the natural logarithm of the spectral radius of the matrix M, i.e., the maximum of the absolute values of
its eigenvalues [70]. We proceed by writing T j as a product,

T j (ω, φ) = Aj (ω, φ)B j (ω, φ), Aj (ω, φ) = K2
a

Ka(Kb + f j+1)
,

B j (ω, φ) =
⎡
⎣ (Z− f j )2(Z− f j+1 )−K2

a (Z− f j )−(Kb+ f j )2(Z− f j+1 )
K2

a (Z− f j )
−Ka(Kb+ f j )(Z− f j+1 )

K2
a (Z− f j )

Ka(Kb+ f j+1 )
K2

a
0

⎤
⎦. (36)

Note that all terms must be dimensionless, a multiplication
by K2

a is required in Aj , and a division by K2
a is required in

B j . Using these elements, we seek to calculate the Lyapunov
exponent: γ (ω) = γA(ω) + γB(ω), where

γA(ω) = lim
N→∞

1

N
ln

N∏
j=1

K2
a

|Ka{Kb + �cos(2πQ[ j + 1] + φ)}| ,

γB(ω) = lim
N→∞

1

N
ln ||

N∏
j=1

B j (ω, φ)||2. (37)

For γA(ω) we apply ergodic theory, as usual in this type
of calculation [23,67]. This allows us to write γA(ω) as an
integral over the phase ϕ:

γA(ω) = 1

2π

∫ 2π

0
ln

∣∣∣∣ K2
a

Ka[Kb + �cos(ϕ)]

∣∣∣∣dϕ

=

⎧⎪⎪⎨
⎪⎪⎩

− ln

(
Kb+

√
K2

b −�2

2Ka

)
, Kb > �,

− ln
(

�
2Ka

)
, Kb < �.

(38)

As for γB(ω), we start by complexifying the phase
of the cosine terms in B j (ω, φ): �cos(2πQ j + φ) →
�cos(2πQ j + φ + iε). As ε → ∞, f j (ε) = �cos(2πQ j +
φ + iε) → �

2 e−(2π iQ j+iφ)eε , since the exponential propor-
tional to e−ε vanishes. In this scenario it is easy to see that

Z − f j+1(ε)

Z − f j (ε)
ε→∞−→

�
2 e−(2π iQ[ j+1]+iφ)eε

�
2 e−(2π iQ j+iφ)eε

= e−2π iQ. (39)

Then, the matrix B j (ω, φ, ε) becomes

B j (ω, φ, ε)

=
[

[Z− f j (ε)]2e−2π iQ−K2
a −[Kb+ f j (ε)]2e−2π iQ

K2
a

− [Kb+ f j (ε)]e−2π iQ

Ka
Kb+ f j+1(ε)

Ka
0

]
.

(40)

Working with each term explicitly, substituting Z =
mω2 − Ka − Kb, f j (ε) = �

2 e−(2π iQ j+iφ)eε , and keeping only

the highest power in ε,

B j (ω, φ, ε) = e−(2π iQ[ j+1]+iφ)eε

[−�(mω2−Ka )
K2

a
− �

2Ka
�

2Ka
0

]
.

(41)

The Lyapunov exponent γB(ω, ε) is the natural logarithm of
the spectral norm of B j (ω, φ, ε),

γB(ω, ε) = ln ||B j (ω, φ, ε)||2

= ε + ln

∣∣∣∣∣∣∣
�
(

Ka − mω2 +
√

mω2(mω2 − 2Ka)
)

2K2
a

∣∣∣∣∣∣∣.
(42)

By the global theory [50], γB(ω) =
ln |�(Ka−mω2+

√
mω2(mω2−2Ka ))

2K2
a

|. Then, the Lyapunov exponent
is

γ (ω) =

⎧⎪⎪⎨
⎪⎪⎩

ln
∣∣�(Ka−mω2+

√
mω2(mω2−2Ka ))

Ka(Kb+
√

K2
b −�2 )

∣∣, Kb > �,

ln
∣∣ (Ka−mω2+

√
mω2(mω2−2Ka ))
Ka

∣∣, Kb < �.

(43)

At the MEs, the localization length  diverges [67]. Since
 = γ −1(ω), the condition for obtaining the MEs is γ (ω) =
0. Thus, solving for mω2 yields

mω2 =
{

Ka(Kb+�)
�

, Kb > �,

2Ka, Kb < �.
(44)

In Fig. 10 we match our analytical results with the diagram
of ln(IPR) as a function of � and mω2. The diagram was
calculated for a chain with 987 unit cells. One interesting
property of this model is that all three localization regimes
coexist within very well defined boundaries. For all cases
studied, we note that above the mobility edge curve (pink
curve in Fig. 10) all eigenstates are localized; below the curve,
if � < Kb, all states are extended, and if � > Kb, all states
are critical. Furthermore, critical states are always located
below the threshold value mω2 = 2Ka, such that the rectangle
defined by � > Kb, mω2 = 2Ka always predicts the location
of critical eigenmodes.
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FIG. 10. ln(IPR) as a function of the eigenvalues mω2 for the
nonchiral version of our model for N = 987 unit cells, φ = 0, m = 1
and (a) Kb > Ka, (b) Ka > Kb. The pink line is the result of our
analytical calculation and precisely predicts the border between
localized and nonlocalized eigenmodes. The black dashed line corre-
sponds to � = Kb. To the left of this dashed line, the MEs correspond
to mω2 = Ka (Kb+�)

�
and to the right of it, to mω2 = 2Ka.

IV. FINAL REMARKS

In this work we studied topological transitions and local-
ization properties of a mechanical SSH model with intercell
spring constants subjected to an Aubry-André modulation.
We applied an additional local spring on each mass to ensure
chiral symmetry and used a topological invariant obtained
from the real-space eigenmodes to understand and visual-
ize the topological phases. An analytical computation of the
Lyapunov exponents allowed us to predict for which values
of the spring constants Ka, Kb and Aubry-André amplitude
� the 1D topological phase transitions occur. The analytical
result confirmed the numerical calculation of the boundary
between phases. Additionally, with a detailed analysis in both
real and momentum spaces using the state IPRs, we were
able to associate each eigenmode of the chiral version of

our model with a given localization regime as a function of
�, showing that it supports extended, localized, and critical
states. Also, averaging all state IPRs and computing the fractal
dimension D(N ) allows us to study the localization properties
of the system as a whole and perform consistent finite scaling
analysis of quasiperiodic models.

As for the nonchiral version of our model, we calcu-
lated the mobility edges analytically for a SSH-based system,
perfectly predicting the border between localized and non-
localized (either extended or critical) eigenstates. However,
because of the rectangular boundaries bounding the critical
phase, the system can only present the coexistence of extended
and localized states or, alternatively, critical and localized
states. We also observe that, for this model, it is possible to
consistently predict the localization regime of each eigenstate
based solely on the value of the tunable parameters Ka, Kb, and
�. Our results extend what is known in quantum electronic
topological systems and quantum electronic localization the-
ory to the classical realm.
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APPENDIX A: PERIODIC BOUNDARY CONDITIONS
AND RATIONAL APPROXIMANTS

As stated in the main text, true quasiperiodicity can only be
achieved in infinite systems. For finite size scaling analysis,
we impose periodic boundary conditions to mimic an infi-
nite system. This also allows us to perform transformations
between real and momentum spaces. PBCs require the first
and last spring constant to be equal (φ was set to 0 in this
derivation for simplicity),

Kb + �cos(2πQ) = Kb + �cos(2πQ[N + 1]). (A1)

If the the Aubry-André potential carried a truly irrational Q,
this condition would never be satisfied because the cosine
would never repeat itself. Then, it is clear that we need a
rational approximant of Q, defined in such a way that Eq. (A1)
is satisfied. The inverse of the golden ratio can be approxi-
mated by dividing two consecutive numbers of the Fibonacci
sequence: Q̃ = Fn−1

Fn
, where Q̃ is the rational approximant such

that the greater the index n, the closer Q̃ is from Q. Now, we
can expand the cosine on the right-hand side of Eq. (A1) and
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try to find a condition for Q̃,

cos(2πQ̃[N + 1]) = cos(2πQ̃N )cos(2πQ̃)

− sin(2πQ̃N )sin(2πQ̃). (A2)

Now, any choice of the type Q̃ = Fn−1

Fn
= qs

2N , s = 1, 2, 3, . . .,

qs ∈ Z, makes the term sin(2πQ̃N ) vanish (Q̃N becomes an
integer). This means that, to obey cos(2πQ̃) = cos(2πQ̃), we
have to choose a rational approximant whose denominator Fn

is related to the size of the system. The constants s and q are
still to be determined though. Proceeding, we have

1 = cos(2πQ̃N ) = cos
(

2π
[ qs

2N

]
N
)

= cos(πqs). (A3)

Naturally, quasiperiodicity requires no repetition of the cosine
arguments throughout the chain. Because of this we need
the smallest value of Q̃ that satisfies Eq. (A3). If s = 1,
some approximants with odd numerator (Fn−1) would result in
1 = cos(πq), which is false. Then, we need s = 2 such that,
independent of the Fibonacci numbers chosen, we get a cosine
equal to 1,

cos(2πQ̃N ) = cos
(

2π
[ qs

2N

]
N
)
s=2= cos(2πq) = 1. (A4)

This means that the rational approximant of choice has to
be Q̃ = Fn−1

Fn
= q

N , where N is the number of unit cells in
the system and q its predecessor in the Fibonacci sequence.
Thus, the size of the system is determined by the rational
approximant chosen and vice versa. Finally, the dynamical
matrix for the PBC system with off-diagonal A-A modulation
is

M =

⎡
⎢⎢⎢⎢⎣

Ka + Kb + � −Ka 0 . . . −(Kb + �cos[2πQ + φ])
−Ka Ka + Kb + � −(Kb + �cos[4πQ + φ]) . . . 0

0 −(Kb + �cos[4πQ + φ]) Ka + Kb + � . . . 0
. . . . . . . . . . . . −Ka

−(Kb + �cos[2πQ + φ]) 0 0 . . . Ka + Kb + �

⎤
⎥⎥⎥⎥⎦

2N×2N

.

(A5)

APPENDIX B: TRANSFORMATION TO MOMENTUM SPACE FOR HOPPING-MODULATED
SSH-BASED QUASIPERIODIC SYSTEMS

Our goal in this section is to transform the equations

mω2u j
A = (Ka + Kb + �)u j

A − Kau j
B − [Kb + �cos(2πQ j)]u j−1

B ,

mω2u j
B = (Ka + Kb + �)u j

B − Kau j
A − {Kb + �cos(2πQ[ j + 1])}u j+1

A (B1)

to momentum space. We begin by introducing the transformation

u j
α =

∑
k

e2π iQk jψk
α, (B2)

where j ∈ [1, N] is the unit cell index in real space and k ∈ [1, N] is the unit cell index in momentum space. α can be A, B,
depending on the sublattice type.

1. Type-A mass equation

We begin by transforming the equation for the A sublattice, inserting Eq. (B2) for α = A,

mω2u j
A = (Ka + Kb + �)u j

A − Kau j
B − [Kb + �cos(2πQ j)]u j−1

B , (B3)

mω2
∑

k

e2π iQk jψk
A = (Ka + Kb + �)

∑
k

e2π iQk jψk
A − Ka

∑
k

e2π iQk jψk
B − [Kb + �cos(2πQ j)]

∑
k

e2π iQk( j−1)ψk
B (B4)

= (Ka + Kb + �)
∑

k

e2π iQk jψk
A −

∑
k

(Ka + Kbe−2π iQk )e2π iQk jψk
B − �cos(2πQ j)

∑
k

e2π iQk( j−1)ψk
B. (B5)

Writing the cosine as a sum of exponentials

= (Ka + Kb + �)
∑

k

e2π iQk jψk
A −

∑
k

(Ka + Kbe−2π iQk )e2π iQk jψk
B − �

2

∑
k

e2π iQ je2π iQk( j−1)ψk
B − �

2

∑
k

e−2π iQ je2π iQk( j−1)ψk
B.

(B6)

195427-14



MECHANICAL SU-SCHRIEFFER-HEEGER QUASICRYSTAL: … PHYSICAL REVIEW B 109, 195427 (2024)

Now, we put e2π iQ j in evidence in the last two terms,

= (Ka + Kb + �)
∑

k

e2π iQk jψk
A −

∑
k

(Ka + Kbe−2π iQk )e2π iQk jψk
B − �

2

∑
k

e2π iQ j(k+1)e−2π iQkψk
B

− �

2

∑
k

e2π iQ j(k−1)e−2π iQkψk
B. (B7)

Since the system is closed, we can change the index of the summation. We then make the following transformations:

k + 1 → k′,
N∑

k=1

→
N−1∑
k′=0

,

k − 1 → k′′,
N∑

k=1

→
N+1∑
k′′=2

. (B8)

But due to PBCs, the 0th cell is the last one and the (N + 1)th cell is the first one. Then, the summations over m′ and m′′ are
equivalent to summations in m. Applying this reasoning we obtain

= (Ka + Kb + �)
∑

k

e2π iQk jψk
A −

∑
k

(Ka + Kbe−2π iQk )e2π iQk jψk
B − �

2

∑
k

e2π iQ jke−2π iQ(k−1)ψk−1
B

− �

2

∑
k

e2π iQ jke−2π iQ(k+1)ψk+1
B . (B9)

Lastly, the terms of the sum that multiply e2π iQk j have to be equal. We then obtain the final result

mω2ψk
A = (Ka + Kb + �)ψk

A − (Ka + Kbe−2π iQk )ψk
B − �

2
e−2π iQ(k−1)ψk−1

B − �

2
e−2π iQ(k+1)ψk+1

B . (B10)

This is the result for the type-A mass equation.

2. Type-B mass equation

For the B sublattice, inserting Eq. (B2) for α = B,

mω2u j
B = (Ka + Kb + �)u j

B − Kau j
A − {Kb + �cos(2πQ[ j + 1])}u j+1

A , (B11)

mω2
∑

k

e2π iQk jψk
B = (Ka + Kb + �)

∑
k

e2π iQk jψk
B − Ka

∑
k

e2π iQk jψk
A − {Kb + �cos(2πQ[ j + 1])}

∑
k

e2π iQk( j+1)ψk
A

(B12)

= (Ka + Kb + �)
∑

k

e2π iQk jψk
B −

∑
k

(Ka + Kbe2π iQ)e2π iQk jψk
A − �cos(2πQ[ j + 1])

∑
k

e2π iQk( j+1)ψk
A.

(B13)

Expanding the cosine as the sum of two exponentials, we get

= (Ka + Kb + �)
∑

k

e2π iQk jψk
B −

∑
k

(Ka + Kbe2π iQ)e2π iQk jψk
A − �

2

∑
k

e2π iQ( j+1)e2π iQk( j+1)ψk
A

− �

2

∑
k

e−2π iQ( j+1)e2π iQk( j+1)ψk
A. (B14)

Now, we group exponentials with j in the exponent

= (Ka + Kb + �)
∑

k

e2π iQk jψk
B −

∑
k

(Ka + Kbe2π iQ)e2π iQk jψk
A − �

2

∑
k

e2π iQ j(k+1)e2π iQ(k+1)ψk
A

− �

2

∑
k

e2π iQ j(k−1)e2π iQ(k−1)ψk
A. (B15)

The change in the summation index is performed exactly as for the A-type equation,

= (Ka + Kb + �)
∑

k

e2π iQk jψk
B −

∑
k

(Ka + Kbe2π iQ)e2π iQk jψk
A − �

2

∑
k

e2π iQ jke2π iQkψk−1
A − �

2

∑
k

e2π iQ jke2π iQkψk+1
A .

(B16)
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Lastly, the terms of the sum that multiply e2π iQk j have to be equal,

mω2ψk
B = (Ka + Kb + �)ψk

B − (Ka + Kbe2π iQ)ψk
A − �

2
e2π iQkψk−1

A − �

2
e2π iQkψk+1

A . (B17)

We then obtain the final result,

mω2ψk
A = (Ka + Kb + �)ψk

A − (Ka + Kbe−2π iQk )ψk
B − �

2
e−2π iQ(k−1)ψk−1

B − �

2
e−2π iQ(k+1)ψk+1

B ,

mω2ψk
B = (Ka + Kb + �)ψk

B − (Ka + Kbe2π iQ)ψk
A − �

2
e2π iQkψk−1

A − �

2
e2π iQkψk+1

A . (B18)

With this set of equations, we can produce the diagrams in Fig. 6.
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