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Generation of charge current by the inverse Stern-Gerlach effect in semiconductors
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The spin-orbit interaction is popular for spintronic applications since, through the mechanism of spin-
dependent asymmetric scattering, spin currents are generated from charge currents (spin Hall effect) or charge
currents are generated from spin currents (inverse spin Hall effect). The discovery of spin, a century ago, relied
on a magnetic field gradient to separate opposite spins; this mechanism has received scant attention as a means
for generating spin and charge currents in semiconductors. Through the derivation of a set of coupled spin-charge
drift-diffusion equations, our paper shows that magnetic field gradients can be used to generate charge currents
from nonequilibrium spin polarization in confined solid state systems. We predict, in GaAs, a longitudinal
“Stern-Gerlach” voltage. Nonintuitively, we find the spin diffusion length is reduced by the magnetic gradient,
which has ramifications for interpreting spin transport experiments. This suppression is understood by invoking
the idea of cocurrent and countercurrent exchange, which is a concept found in fields as disparate as animal
physiology and thermal engineering.
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I. INTRODUCTION

In 1922, Stern and Gerlach discovered quantized spin
angular momentum in neutral silver atoms when an inho-
mogeneous magnetic field spatially separated discrete spin
states [1–3]. The Stern-Gerlach experiment’s detection of spin
was indirect as it measured the spin of a neutral atom and
not the spin of a free charge. Debate arose in the early days
of quantum theory whether the spin of a free electron could
be verified with a Stern-Gerlach experiment [4–6]. The con-
ventional wisdom that emerged (despite [7,8]), repeating the
arguments of Bohr and Mott (see [9–11]), is that Lorentz
forces obscure any magnetic moment deflections; since ∇ ·
B = 0, the Lorentz force cannot be avoided by directing mo-
tion of spin carriers parallel to B since a gradient field force
transverse to the motion also exists. What is overlooked, aside
from a few authors [12–14], is these arguments apply for free
electrons, which is not the condition in which electrons exist
in solid state systems. In a confined geometry, the Lorentz
force, which is the primary obstacle to spin separation, and the
transverse gradient force (due to ∇ · B = 0) would be negated
by the classical Hall effect. Fabian and Das Sarma studied
the effect of inhomogeneous fields on one-dimensional con-
duction spin currents by solving the Boltzmann equation for
a limited set of boundary conditions [12]. Their calcula-
tions suggest the spin current generated is constrained by
the time for a carrier to diffuse across the sample and the
spin relaxation time. Our focus is on the generation of more
experimentally accessible charge currents. A similar system
that has garnered interest is nonuniform spin-orbit interactions
where spins are deflected in a Stern-Gerlach manner [15–18].
The prospect of generating spin or charge currents, via a
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spin-dependent interaction independent of the spin-orbit ef-
fect [19–25], is alluring as it offers up a wider variety of
materials for inspection.

What will be demonstrated in this paper, by formulat-
ing and solving a system of spin and charge drift-diffusion
equations, is that magnetic field gradients induce charge cur-
rents which are predicted to be measurable by a longitudinal
voltage difference. One can view the original Stern-Gerlach
experiment as an unpolarized beam generating a transverse
spin current; here we propose a spin polarization generating
a charge current—a process we term as the inverse Stern-
Gerlach effect. After a general treatment of spin and charge
drift diffusion equations with magnetic field gradients, the
calculations described in this paper demonstrate the inverse
Stern-Gerlach effect for the one-dimensional geometry shown
in Fig. 1(a). This geometry is chosen for two reasons

(1) The magnetic field chosen, B(x, z) = Bc + B⊥, where
Bc = bzẑ and B⊥ = −bxx̂, is nondivergent and is an approx-
imation for the inhomogeneous magnetic field either of the
original Stern-Gerlach experiment or between four current
carrying wires [6]. We choose a conducting one-dimensional
channel to lie along ẑ; the field inside the channel is then
Bc since x = 0 in the channel. Even when the velocity of a
carrier is not completely constrained along ẑ||Bc or if B⊥ is
finite within the channel, the Lorentz force is negated by the
classical Hall effect.

(2) The second advantage gained by having the channel
at x = 0 is that carriers injected into the channel with their
spin along the magnetic field, B(0, z) = Bc(z) + B⊥(0, z) =
Bc(z), will not precess. While the field, B⊥, is zero in
the channel, the Stern-Gerlach force has two components
due to the inhomogeneities along x and z as depicted in
Fig. 1(a). Despite the transverse gradient along x being
nonzero at x = 0, no transverse force is exerted on the
spin ensemble due to the constrained geometry (motion only
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(a)

FIG. 1. (a) Geometry of a one-dimensional conductive chan-
nel in magnetic field, B(x, z) = bzẑ − bxx̂. Within the channel,
B(0, z) = Bc, which lies along the injected spin direction. Spin in-
jection leads to deviations of up and down densities away from their
equilibrium value n0/2. Since Bc is nonuniform, there is a magnetic
field gradient force causing spin up and spin down carrier densities
to separate as shown in panel (b) for three different times after an
initial Gaussian spin injection at the origin. (d, e) Identical to panels
(b) and (c) except spin relaxation is included. (b–e) Insets: The
nonuniform magnetic field bzẑ considered in this paper. Red arrows
in panels (d) and (e) show presence of additional antinodes when spin
relaxation is strong. Direction of packet motion is determined by νb
which is chosen here as νb < 0. Ordinate quantities in panels (b)–(e)
are per δN↑/A.

permitted along z). The term bzẑ does lead to a longitudinal
force.

The force from the longitudinal gradient along z is the
focus of this paper. Figure 1(b) displays transient responses
of up/down spin densities, due to the longitudinal gradient,
after a Gaussian impulse of spin density (at origin) in the
absence of spin relaxation; unequal amounts of up and down
spin travel in opposite directions leading to a charge current
and voltage, VSG, across the length of the channel. Figure 1(c)
depicts charge surplus (black line) moving to the right. The
role spin relaxation plays [Figs. 1(d) and 1(e)] is subtle; aside
from reducing amplitude as one might naturally expect, ad-
ditional structure is formed (red arrows pointing to new local
minima). We understand this phenomenon by analogy with
the concept of countercurrent exchange [26] from the fields of
physiology [27–30] and fluid/thermal dynamics [31–33].

II. SPIN AND CHARGE DRIFT-DIFFUSION EQUATIONS IN
THE PRESENCE OF MAGNETIC FIELD GRADIENT

We approach the problem in a semiclassical manner by
solving for spin-dependent velocities resulting from a Stern-
Gerlach-like force generated by a nonuniform magnetic field.
Given the magnetic moment of an electron, μ = − 1

2 g∗μBσ,
and its dipole potential energy, V = −μ · B, we write a Stern-
Gerlach force operator as

F̂SG = −∇V = − 1
2 g∗μB∇(σ · B). (1)

The force is spin dependent—the force on ↑ / ↓ spins (z quan-
tization axis) is F↑/↓

SG = ∓ 1
2 g∗μB∇Bz. The inclusion of this

force into a Drude-like model yields steady-state velocities:

v↑ = F↑
SGτ

m
= −g∗μBτ

2m
∇Bz = −ν∇Bz (2)

where ν = g∗μBτ

2m has units of m2/(T s) which we define as
the magnetic mobility (in contrast to charge mobility), τ is the
momentum relaxation time, m is the carrier mass, and g∗ is
the effective g factor. Note the velocity does not depend on the
charge q in congruence with the force being moment and not
charge dependent. The spin current is jz

SG,s = j↑SG − j↓SG =
−q(n↑ + n↓)ν∇Bz = −qnν∇Bz where n is the conduction
charge density. Similarly for other directions of spin, the di-
rection of spin couples to the same direction of magnetic field:
ji
SG,s = −qnν∇Bi. We follow the same process for charge

current: jSG,c = −qν(sx∇Bx + sy∇By + sz∇Bz ) where si are
components of spin density.

Following the usual prescription [34–38], the continuity
equations for charge and spin are as follows:

∂n

∂t
= −1

q
∇ · jc, (3)

∂si

∂t
= −1

q
∇ · ji

s − si

τs
+ sgn(q)

g∗μB

h̄
[s × B(r)]i (4)

in which we substitute the following: diffusion ( jdiff =
−qD∇n), drift [ jdrift = sgn(q)qnµE], and Stern-Gerlach
( jSG,c) where μ = |q|τ/m is the charge mobility, D is the
diffusion constant, and τs is the spin relaxation time. Spin
current versions for diffusion and drift are found by n → si.
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After inserting into the continuity equations we obtain a set of
four coupled drift-diffusion equations for charge and spin:

∂n

∂t
= D∇2n − sgn(q)μ[n∇ · E + (∇n) · E]

+ ν
∑

i∈{x,y,z}
[(∇si ) · ∇Bi(r) + si∇2Bi(r)], (5)

∂si

∂t
= D∇2si − sgn(q)μ[si∇ · E + (∇si ) · E] − si

τs

+ ν[(∇n) · ∇Bi(r) + n∇2Bi(r)]

+ sgn(q)
|g∗|μB

h̄
[s × B(r)]i. (6)

In two or three dimensions, the full B(x, z) = bzẑ − bxx̂ must
be used, which entails a complex dynamics between charge
density and the three components of the spin density; it is only
in one dimension where charge and a single component of
spin density evolve if spin is initialized along B(0, z).

To understand the ramifications of the field gradient, in
this paper we focus on the simplest case of one dimension
(z) with electron carriers in a uniform electric field along z, an
external magnetic field pointing along the one dimension such
that B(z) = Bc(z) = bzẑ (a uniform field B0ẑ can be added but
has no effect), and any injected spin being oriented along z as
shown in Fig. 1(a). With these simplifications, Eqs. (5) and (6)
reduce to

∂n

∂t
= D∂2

z n + μEz∂zn + νb∂zsz, (7)

∂sz

∂t
= D∂2

z sz + μEz∂zsz + νb∂zn − sz

τs
. (8)

Boundary and initial conditions are determined by the specific
experiment.

III. TRANSIENT SPIN DYNAMICS

In n-doped semiconductors, carriers can be spin polarized
through methods of optical orientation [39]. To summarize
the process, circularly polarized light excites partially spin-
polarized electrons, nex, into the conduction band, which
has equilibrium concentration n0 
 nex. Conduction elec-
trons rapidly recombine with conduction holes on a time
scale τr << τs. Since there are more unpolarized electrons
than polarized electrons, mostly unpolarized electrons recom-
bine, which leaves a net spin density in the conduction band
while the concentration of conduction electrons has returned
to equilibrium, n(0, z) = n0, after recombination [40]. It is
after recombination, while a finite conduction spin density
[sz(0, z) = 2 S0

A δ(z)] remains, that we consider our starting
point as we solve Eqs. (7) and (8); 2S0 is the initial difference
in spin up (N↑) and spin down (N↓) electrons and A is the
cross-sectional area of the channel.

It is instructive to examine the time-dependent solutions to
Eqs. (7) and (8) in terms of n↑,↓, through the relations n↑ =
(n + sz )/2 and n↓ = (n − sz )/2:

∂n↑
∂t

= D∂2
z n↑ + μEz∂zn↑ + νb∂zn↑ − n↑ − n↑

2τs
, (9)

∂n↓
∂t

= D∂2
z n↓ + μEz∂zn↓ − νb∂zn↓ − n↓ − n↑

2τs
. (10)

The coupling between n↑ and n↓ comes from spin-flip pro-
cesses alone. When there is no spin relaxation, Appendix A
shows the solutions for n and s are

n(t, z) = n0 + S0

A

e− [z+(νb+μEz )t]2

2(2Dt+σ2 ) − e− [z+(−νb+μEz )t]2

2(2Dt+σ2 )

2
√

2π
√

2Dt + σ 2
(11)

and

sz(t, z) = S0

A

e− [z+(νb+μEz )t]2

2(2Dt+σ2 ) + e− [z+(−νb+μEz )t]2

2(2Dt+σ2 )

2
√

2π
√

2Dt + σ 2
(12)

where σ is the width when the spin impulse is Gaussian.
Figures 1(b) and 1(c) display these traveling Gaussian packets
for up and down spin densities and s and n.

Figures 1(d) and 1(e) show the effects of spin relaxation:
peaks are reduced as expected but also additional broad peaks
form (e.g., at red arrows). This is further seen in Fig. 2(a)
where a narrow peak quickly falls off while a much broader
trailing peak rapidly forms and then slowly decays in time. At
long times only these broad peaks remain [Fig. 2(a) inset]; n↑
and n↓ are approximately odd functions with peaks that slowly
diminish. The peaks on either side of the origin move in op-
posite directions for both n↑ and n↓ in seeming contradiction
to the Stern-Gerlach forces. The cause of this behavior can
be understood by considering two up spins moving right. One
flips and begins moving left (via Stern-Gerlach), separating
from its partner. It may then flip again, causing it to move
right but still trailing its partner. This process continues with
the net result being what we observe in the Fig. 2(a) inset.

We find quantitative results by successive Fourier and
Laplace transforms on Eqs. (7) and (8) or Eqs. (9) and (10)
if D and impulse width are set to zero (which do not change
the pertinent results). Appendix B provides details showing
that, in the long-time limit,

δn↑/↓ = δN↑ e− γsz2

4(νb)2t

4A(νb)2
√

π t3/2

[
−sgn(νb)z

√
γs ±

√
γsz2

2|νb|t ∓ |νb|√
γs

]

(13)

or, when desiring to express the spin density,

sz = e− γs (z+μEzt )2

4(νb)2t

2
√

π |νb|√γs t3/2

(
γs(z + μEzt )2

2|νb|2t
− 1

)
δN↑
A

. (14)

From these results we find [see also Fig. 2(a) inset] the sep-
aration between the n↑ and n↓ peaks is ≈2|νb|τs; if spin
relaxation is strong, flipped spins do not have time to back-
track so the n↑ and n↓ peaks coincide and the spin density
is zero. The broad pulses also exist for sz (dashed, orange);
their peak positions are zs = ±√

6tτs|νb|, which suggests spin
relaxation induces diffusivelike transport as spins flip between
the up and down channels.

When an electric field is present, both spin species expe-
rience the same electric force, which acts like a change of
reference frame for the spin packets. Figure 2(b) displays a
transient where both the gradient force and electric force exist.
Depending on the relative sizes of the two forces, the up and
down spins move parallel or antiparallel to one another and
move at different speeds (in the figure, down is faster than
up).
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FIG. 2. (a) Examples of δn↑/↓ = n↑/↓ − n0/2 and sz carrier mo-
tion (up, red; down, blue; spin, orange) for moderate spin relaxation
at four different times. The initial Gaussian peaks move ballistically
but are reduced quickly due to spin relaxation. A slowly decaying,
broad, shallow peak follows in its wake as spins flip back and forth.
Inset: Up and down spins at longer time when the narrow peak has
vanished. Left behind are broad diffusive peaks that maintain sepa-
ration due to opposite Stern-Gerlach forces on them. (b) Temporal
snapshots of δn↑/↓ carrier motion for different combinations of μEz

and νb when spin relaxation is weak; up and down spin travel at
different velocities depending on Ez and νb. Snapshots are after
a Gaussian impulse, with width σ = 0.2 µm, at the origin. (c, d)
Results, at three different instances, from Monte Carlo simulation
of up spins (red) injected into a one-dimensional channel under the
condition of (c) spin countercurrent exchange and (d) spin cocurrent
exchange. Due to spin relaxation, up spins (red) convert to down
spins (blue) and vice versa.

The interchannel diffusive behavior observed above in the
Fig. 2(a) inset (b 
= 0 and Ez = 0) is not present when b = 0
and Ez 
= 0 where purely exponential in time behavior arises.
We understand these contrasting phenomena by analogy with
the concepts of cocurrent and countercurrent exchange [26]
from the fields of physiology [27–30] and fluid/thermal

dynamics [31,33]. Cocurrent/countercurrent exchange occurs
when interacting bipartite flows are either parallel (co-) or
antiparallel (counter-) to each other. One of many examples
is oxygen transport between arterioles and venules where
blood flows in opposite directions and diffusion of O2 occurs
between the microvessels; oxygen is transported quicker be-
tween the two microvessels when the blood flows are counter.
Intuitively, countercurrent exchange can be thought of as more
efficient than cocurrent exchange since to increase oxygen in
a deficient vessel blood in that vessel should move toward the
source (oxygen rich blood) and not away. The form of the dif-
ferential equations used to model the oxygen partial pressure
of the microvessels is identical to Eqs. (9) and (10) [41]. An-
other example, elaborated in Appendix C, is fish respiration
where intake water flows opposite to blood flow in order to
maximize blood oxygenation. The flow of up and down spins
is analogous where the exchange process is spin flips between
up and down spin channels.

Figures 2(c) and 2(d) are Monte Carlo simulations of
countercurrent (c) and cocurrent exchange (d) where the red
and blue filled circles represent up and down spins that flow
in directions dictated by the magnetic gradient and electric
field. All spins are initially up at the origin. The gradient
field causes a rapid spreading of the packet since spin flips
induce opposite spins to move apart. The electric field drives
each spin in the same direction, which reduces the packet’s
spreading since spin flips do not force separation of opposite
spins. Figures 2(c) and 2(d) make this apparent: the up and
down spin populations separate from one another for pure
countercurrents (Ez = 0) in Fig. 2(c), which means a down
spin is unlikely to contribute to the primary packet when it
flips back up. For cocurrent exchange (b = 0) in Fig. 2(d),
spin flips are less severe as up and down spins stay proximal
so the packet’s integrity is maintained over longer distance.

IV. STEADY STATE

We also consider continuous optical pumping of spin into
the conduction band [39,42] to determine steady-state spin
and charge concentrations:

0 = D∂2
z n + μEz∂zn + νb∂zsz, (15)

0 = D∂2
z sz + μEz∂zsz + νb∂zn − sz

τs
+ 2gδ(z), (16)

where g is the rate per cross-sectional area of continuously
injected nonequilibrium spins at the origin. The solutions of
Eqs. (15) and (16) can be written, when Ez = 0, in the follow-
ing form:

sz = gτs
e
− |z|

	2
0

√
(	2

b+	2
0 )√

	2
b + 	2

0

, (17)

δn = sgn(zνb)	b

sz − gτs√
	2

b+	2
0√

	2
b + 	2

0

(18)

where 	0 = √
Dτs is the spin diffusion length and 	b = |νb|τs

is the magnetic gradient drift length. When 	b 
 	0, the dif-
fusion lengths become 	2

0/	b = D/|νb|, which explains the
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FIG. 3. Calculations of steady-state spin density in the (a) ab-
sence, using Eq. (17), and (b) presence of a uniform electric field for
different field gradients; the black curve (νb = 0) is Eq. (19). A delta
source of spin injection at the origin is assumed. (a), (b) Curves are
normalized to demonstrate how b influences spin decay length.

behavior for spin decay lengths seen in Fig. 3(a) for three
values of the magnetic field gradient. Though spin-flip cou-
pling between the two channels (up and down) is the same
for all three, when νb 
= 0, the transport length is severely
suppressed due to spin countercurrent exchange.

Without the gradient field but with the electric field turned
on, sz is uncoupled to n, and after a delta impulse the time-
dependent solution for sz(t ) is one in which a diffusive packet
drifts at speed μEz while also undergoing exponential spin
relaxation, e−t/τs . In the steady state,

sz = gτs
e
−sgn(Ez )

	d
	0

z
	0

−
√

4	2
0+	2

d
|z|

2	2
0√

	2
d + 	2

0

(19)

where 	d = μ|Ez|τ is the spin drift length. There are two
decay lengths (upstream and downstream), as found by [43],
characterizing the black curves in Fig. 3(b). The electric field
supplies an identical force to both spins, which is indicative of
a cocurrent.

Inclusion of the gradient and electric fields leads to a situa-
tion between purely countercurrent and cocurrent exchange.
In Fig. 3(b), the gradient field suppresses the downstream
transport length (z > 0) but enhances the much shorter up-
stream length (z < 0). To analyze the effects of countercurrent
exchange for any b and Ez, we rewrite the drift-diffusion
equations for n↑,↓ in dimensionless form:

∂n↑
∂t ′ = D′∂2

z′n↑ + ∂z′n↑ − n↑ − n↑
2τ ′

s

, (20)

∂n↓
∂t ′ = D′∂2

z′n↓ + 
∂z′n↓ − n↓ − n↑
2τ ′

s

(21)

where t ′ = t (μEz + νb)/	0, D′ = D/	0(μEz + νb), τ ′
s =

τs(μEz + νb)/	0, and z′ = z/	0 are dimensionless units; 
 =
μEz−νb
μEz+νb is the spin countercurrent exchange parameter, which
gives the degree of opposition present between up and down
spin currents; and μEz and νb are assumed to have the same
sign. Appendix E provides the same equations but for n
and s. 
 = 1 (b = 0) implies pure spin cocurrent exchange

FIG. 4. (a) Allowable steady-state normalized spin density re-
gion for possible spin countercurrent exchange parameters, 
, for
τ ′

s = D′ = 1. The brown (orange) line denotes spin cocurrent (coun-
tercurrent) exchange given by Eqs. (17) and (19). The influence of
countercurrent exchange is to reduce the (longer) downstream spin
diffusion length and slightly increase the (much shorter) upstream
spin diffusion length. (b) Predicted dependence of Stern-Gerlach
voltage, VSG, on magnetic gradient length, 	b.

[34,43,44], and 
 = −1 (Ez = 0) implies pure spin counter-
current exchange. When both electric and gradient fields are
present an intermediate situation exists where −1 < 
 < 1.
Figure 4(a) shows any deviation from purely cocurrent con-
ditions (black line) reduces the downstream spin diffusion
length; the strongest suppression occurs for purely countercur-
rent exchange (orange line). Consideration of countercurrent
exchange should be made when interpreting spin transport
experiments where magnetic field gradients are known to
exist [45–47].

V. STERN-GERLACH POTENTIAL DIFFERENCE

Although the magnetic field gradient may be an obstacle
for spin transport, it nevertheless does give rise to a Stern-
Gerlach charge current jSG,c. The potential difference across
the sample is found by considering the Stern-Gerlach force
as an effective electric force such that jSG,c = σcEeff where
σc = |q|µn is the charge conductivity. We then write �VSG =∫ ∞
−∞

jSG,c

σc
dz. With an electric field absent, we use sz of Eq. (17)

to obtain

|�VSG| = 2g

μn0
	b

	2
0

	2
0 + 	2

b

(22)

where we use n ≈ n0 since n0 
 δn. Figure 4(b) demonstrates
the relationship between �VSG and the magnetic gradient
drift length. Voltage is maximum when 	0 = 	b; under such
a condition, the voltage scales as 	b. No dependence on the
excitation pulse width σ is found, as shown in Appendix F. In
general, |�VSG| depends on Ez through sz. A detailed analysis
of the voltage dependence on electric field is a subject for
future work.

To estimate the potential we consider g = sex f as
the rate of generated spins per cross-sectional area. We
approximate the excited cross-sectional spin density as
(1014 cm−3)2/3 ≈ 109 cm−2 and use a pump repetition rate
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f ≈ 100 MHz [43,48]. A typical spin diffusion length in
GaAs is 10 µm [49,50]. Using μ = 1000 cm2/V s and n0 ≈
1016 cm−3, the maximum voltage is ≈10 µV, which is well
within the range of measurement [51]. To achieve 	b = 	0 ≈
10 µm, b would need to be ≈106 T/m, which is large but
comparable gradients have been produced by the stray fields
of certain patterned magnetic films [52–54]. Rashba-field gra-
dients offer even larger gradients ≈108 T/m, which have
been used to produce spin separation in InAs quantum point
contacts [17]. Smaller, though still significant, are gradients
produced by spin polarized nuclei [37,39,45,55,56]. Advan-
tages to these latter two are avoidance of Lorentz forces in two
or three dimensions and, if appropriately oriented, avoidance
of spin precession effects.

VI. CONCLUSION

The force of magnetic field gradients on conduction spin
magnetic moments has been incorporated into a series of spin
and charge drift-diffusion equations. We suggest an optical ap-
proach to measure an appreciable voltage difference generated
by spin and charge dynamics in the magnetic gradient. The
predicted Stern-Gerlach voltage, in competition with an in-
verse Spin Hall voltage, may also be measured electrically in a
two-dimensional geometry where a gradient field is transverse
to a spin current. A full analysis in two or three dimensions is
needed due to the necessity of spin precession in higher di-
mension. A reported dependence of potential on dynamically
polarized nuclei is suggestive of this inverse Stern-Gerlach
effect [57].
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APPENDIX A: TIME-DEPENDENT SOLUTIONS

Our initial conditions are n(0, z) = n0 and sz(0, z) =
2 S0

A δ(z). The solutions for n and sz can be later convolved
with a more realistic Gaussian injection pulse of width
σ . The 2S0 comes from 2S0 = N↑ − N↓ = ( N0

2 + δN↑) −
( N0

2 + δN↓) = ( N0
2 + δN↑) − ( N0

2 − δN↑) = 2δN↑ where A is
the cross-sectional area of the quasi-one-dimensional sys-
tem and δN↑ = N↑ − N0/2. So the factor of 2 is coming
from the number of surplus up spins injected being equal to
the number of deficit down spins. The Fourier transforms,
f̂ (k) = 1√

2π

∫ ∞
−∞ f (z)e−ikzdk, for these initial conditions are√

2πn0δ(k) and 2√
2π

S0
A for charge and spin, respectively.

When spin relaxation is not present, the up and down
spin equations are two independent partial differential equa-
tions with solutions shown in Figs. 1(b) and 1(c). Equa-
tions (5) and (6) can be solved exactly when there is no spin
relaxation. Taking the Fourier transform of Eqs. (5) and (6)
leads to

∂ n̂

∂t
= −k2Dn̂ + ik(νbŝz + μEzn̂), (A1)

∂ ŝz

∂t
= −k2Dŝz + ik(νbn̂ + μEzŝz ), (A2)

or in the spin up and down picture
∂ n̂↑
∂t

= −k2Dn̂↑ − ik(νbn̂↑ + μEzn̂↑), (A3)

∂ n̂↓
∂t

= −k2Dn̂↓ + ik(νbn̂↓ + μEzn̂↓). (A4)

The solutions to these now ordinary differential equations are

n̂(t, k) = [n̂(0, k) cos(νbkt ) + iŝz(0, k) sin(νbkt )]

× e−k2Dt eikμEzt , (A5)

ŝz(t, k) = [n̂(0, k) sin(νbkt ) + iŝz(0, k) cos(νbkt )]

× e−k2Dt eikμEzt . (A6)

After inserting the initial conditions in Fourier
space, we use the inverse Fourier transform ( f (z) =

1√
2π

∫ ∞
−∞ f̂ (k)eikzdk) to obtain the following solutions:

n(t, z) = n0 + S0

A

e− [z+(νb+μEz )t]2

4Dt − e− [z+(−νb+μEz )t]2

4Dt

4
√

πDt
(A7)

and

sz(t, z) = S0

A

e− [z+(νb+μEz )t]2

4Dt + e− [z+(−νb+μEz )t]2

4Dt

4
√

πDt
, (A8)

which in either case are seen to consist of two diffusive wave
packets moving at velocities ±νb + μEz in the z direction.

For a Gaussian impulse of width σ , convolution yields

n(t, z) = n0 + S0

A

e− [z+(νb+μEz )t]2

2(2Dt+σ2 ) − e− [z+(−νb+μEz )t]2

2(2Dt+σ2 )

2
√

2π
√

2Dt + σ 2
(A9)

and

sz(t, z) = S0

A

e− [z+(νb+μEz )t]2

2(2Dt+σ2 ) + e− [z+(−νb+μEz )t]2

2(2Dt+σ2 )

2
√

2π
√

2Dt + σ 2
. (A10)

APPENDIX B: LONG-TIME LIMIT FOR SPIN
AND CHARGE DENSITIES

Equations (7) and (8) written in terms of up and down spin
densities are

∂n↑
∂t

= D∂2
z n↑ + μEz∂zn↑ + νb∂zn↑ − n↑ − n↑

2τs
, (B1)

∂n↓
∂t

= D∂2
z n↓ + μEz∂zn↓ − νb∂zn↓ − n↓ − n↑

2τs
(B2)

through the use of n↑ = (n + sz )/2 and n↓ = (n − sz )/2. Dual
Fourier and Laplace transformations of these equations yield

s ˜̂n↑ + n0

2

√
2πδ(k) + δN↑e− σ2k2

2√
2πA

= −k2D ˜̂n↑ − ik(νb ˜̂n↑ + μEz ˜̂n↑) −
˜̂n↑ − ˜̂n↓

2τs
, (B3)

s ˜̂n↓ + n0

2

√
2πδ(k) − δN↑e− σ2k2

2√
2πA

= −k2D ˜̂n↓ + ik(νb ˜̂n↓ + μEz ˜̂n↓) −
˜̂n↓ − ˜̂n↑

2τs
. (B4)
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From this we find solutions in the Fourier-Laplace spaces to
be

˜̂n↑/↓ = n0

2

√
2πδ(k)

± δN↑
e− 1

2 k2σ 2

√
2π

Dk2 ± iνbk + s

(νb)2k2 + (Dk2 + s)(Dk2 + γs + s)

(B5)

where we have substituted Ez = 0 for the time being. Constant
electric field can be added later by simply z → z + μEzt .

To perform the inverse Fourier transform, f (z) =
1√
2π

∫ ∞
−∞ f̂ (k)eikzdk, we need to assume a delta initial condi-

tion so σ = 0 and no diffusion (D = 0). To retain a Gaussian
initial condition, one can perform a convolution later. The
inverse Fourier transform delivers

ñ↑/↓ = n0

2s
± δN↑

2A(νb)2
e−|z|

√
s(s+γs )
|νb|

(
s

|νb|√
s(s + γs)

∓ νb sgn(z)

)
.

(B6)

One approximation is to assume a fast spin relaxation, or
equivalently the long-time (small s) limit, such that

ñ↑/↓ ≈ n0

2s
± δN↑

2A(νb)2
e−|z|

√
sγs

|νb|

( |νb|√s√
γs

∓ νb sgn(z)

)
, (B7)

which has an inverse Laplace transform that can be performed
analytically:

n↑/↓ = n0

2
+ δN↑ e− γsz2

4(νb)2t

4A(νb)2
√

π t3/2

×
[
−sgn(νb)z

√
γs ±

√
γsz2

2|νb|t ∓ |νb|√
γs

]

= n0

2
+ δn↑/↓. (B8)

From these expressions, Eq. (14) and

δn = δn↑ + δn↓ = −sgn(νb)
√

γs(z + μEzt )e− γs (z+μEzt )2

4(νb)2t

2A
√

π |νb|2 t3/2
δN↑

(B9)
are ascertained.

The two asymptotic spin accumulation pulses have peak
positions zs = ±√

6tτs|νb|. The two asymptotic charge
accumulation/deficit pulses have peak positions zn =
±√

2tτs|νb|. The broad peak heights decay differently as well;
the spin peaks according to 1/(2 e3/2 √

πγs |νb| t3/2) and the
charge peaks according to −sgn(νb)/(2 e1/2

√
2π |νb| t ).

The separation between the peaks stays nearly constant at
2|νb|τs. On timescales much shorter than 1/γs, the narrow
peak amplitude decays with a rate γs/2 for nonzero νb
whereas the rate is γs if νb = 0.

APPENDIX C: COUNTERCURRENT EXCHANGE
IN FISH RESPIRATION

An example of countercurrent exchange is fish respiration
where O2 rich water flows between gill filament lamellae as
shown in Fig. 5. Gas exchange occurs in the lamellae as CO2

FIG. 5. Example of countercurrent exchange of CO2 and O2 in
fish gills.

in blood is exchanged for O2 in the water. In this manner, oxy-
gen enters the bloodstream. The exchange is efficient because
the blood flows through the lamellae opposite to the flow of
water. Intuitively, countercurrent exchange can be thought of
as more efficient than cocurrent exchange since to increase
oxygen deficient blood should move toward the source of
oxygen (countercurrent) and not away (cocurrent).

APPENDIX D: STEADY-STATE SOLUTIONS

We seek out solutions to

0 = D∂2
z n + μEz∂zn + νb∂zsz, (D1)

0 = D∂2
z sz + μEz∂zsz + νb∂zn − sz

τs
+ 2gδ(z) (D2)

where g is the rate per cross-sectional area of continuously
injected nonequilibrium spins at the origin. Solutions are
obtained using the Fourier transform method or elementary
methods for second order ordinary differential equations.

Note that the charge deviation, found from these equations,
does not decay to zero at large z. However, the charge devia-
tion δn is expected to be minuscule compared to equilibrium
charge density, n0.

Figure 6 shows how the magnetic field gradient (or coun-
tercurrent exchange) affects the up and down spin densities
under the same conditions as in Fig. 3(a). In the presence of
the gradient field, spin-flip coupling ties the up and down spin
channels together and the spin diffusion length is drastically
shortened.

APPENDIX E: COUNTERCURRENT EXCHANGE
PARAMETER

The equations of the main text

∂n↑
∂t ′ = D′∂2

z′n↑ + ∂z′n↑ − n↑ − n↑
2τ ′

s

, (E1)

∂n↓
∂t ′ = D′∂2

z′n↓ + 
∂z′n↓ − n↓ − n↑
2τ ′

s

(E2)
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FIG. 6. Equivalent to Fig. 3(a) except in terms of δn↑ and δn↓
variables. The ordinate quantities are per g, the spin injection rate
per cross-sectional area.

can be written in terms of sz and n as

∂sz

∂t ′ = D′∂2
z′sz + 1

2
(1 + 
)∂z′sz + 1

2
(1 − 
)∂z′n − sz

τ ′
s

, (E3)

∂n

∂t ′ = D′∂2
z′n + 1

2
(1 + 
)∂z′n + 1

2
(1 − 
)∂z′sz. (E4)

If μEz and µb are opposite signs, the dimensionless equa-
tions are expressed as

∂n↑
∂t ′ = D′∂2

z′n↑ + 
−1∂z′n↑ − n↑ − n↑
2τ ′

s

, (E5)

∂n↓
∂t ′ = D′∂2

z′n↓ + ∂z′n↓ − n↓ − n↑
2τ ′

s

(E6)

where t ′ = t (μEz − νb)/	0; D′ = D/	0(μEz − νb), τ ′
s =

τs(μEz − νb)/	0, and z′ = z/	0 are dimensionless units;

−1 = μEz+νb

μEz−νb gives the degree of opposition present between
up and down spin currents; and μEz and νb are assumed to
have opposite signs.

Figure 7 shows plots of up and down spin for different
values of 
 at different snapshots in time. 
 > 0 implies a
partially cocurrent exchange process occurring while 
 < 0
implies a partially countercurrent exchange process.

APPENDIX F: EFFECT OF OPTICAL
PULSE WIDTH ON VSG

If g is the rate per cross-sectional area of continu-
ously injected nonequilibrium spins at the origin [2gδ(z)/A],
the solutions can be written in the following compact

FIG. 7. Examples of δn↑/↓ = n↑/↓ − n0/2 carrier motion for dif-
ferent countercurrent exchange parameters, 
, when spin relaxation
is weak; up and down spin travel at different speeds depending on Ez

and νb. Snapshots are at times 10, 20, 30, and 40 ns after a Gaussian
impulse, with width σ = 0.2 µm, at the origin. Ordinate quantities
are per δN↑/A where δN↑ = N↑ − N0/2.

form:

sz = gτs
e
− |z|

	2
0

√
(	2

b+	2
0 )√

	2
b + 	2

0

, (F1)

δn = gτssgn(νb)	b
e
− |z|

	2
0

√
	2

b+	2
0 − 1

	2
b + 	2

0

sgn(z) (F2)

where 	0 = √
Dτs is the spin diffusion length and 	b = |νb|τs

is the magnetic gradient drift length. If a more realistic Gaus-
sian impulse is used, the solution is a convolution:

sz →
∫ ∞

−∞
sz(z′)

1√
2πσ 2

e− (z−z′ )2

2σ2 dz′

= gτs

2
√

	2
b + 	2

0

[
e− z

	
+ σ2

2	2 erfc

(−z + σ 2/	√
2σ

)

+ e
z
	
+ σ2

2	2 erfc

(
z + σ 2/	√

2σ

)]
(F3)

where 	 = 	2
0/

√
	2

b + 	2
0.

We then write �VSG = ∫ ∞
−∞

jSG,c

σc
dz = − ∫ ∞

−∞
szqνb

σc
dz and

substitute in

sz = gτs

2
√

	2
b + 	2

0

[
e− z

	
+ σ2

2	2 erfc

(−z + σ 2/	√
2σ

)

+ e
z
	
+ σ2

2	2 erfc

(
z + σ 2/	√

2σ

)]
(F4)
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or

sz = gτs

2
√

	2
b + 	2

0

e
σ2

2	2

[
e− z

	 erfc

(−z + σ 2/	√
2σ

)

+ e
z
	 erfc

(
z + σ 2/	√

2σ

)]
. (F5)

The integral
∫ ∞
−∞ szdz becomes

gτs

2
√

	2
b + 	2

0

e
σ2

2	2

∫ ∞

−∞

[
e− z

	 erfc

(−z + σ 2/	√
2σ

)

+ e
z
	 erfc

(
z + σ 2/	√

2σ

)]
dz. (F6)

Making a change of variable z′ = z/
√

2σ yields

gτs

2
√

	2
b + 	2

0

e
σ2

2	2

∫ ∞

−∞

[
e−

√
2σ z′
	 erfc

(
−z′ + σ/	√

2

)

+ e
√

2σ z′
	 erfc

(
z′ + σ/	√

2

)]√
2σdz′, (F7)

which MATHEMATICA 13.2 simplifies as
gτs√

	2
b + 	2

0

2	. (F8)

The Stern-Gerlach voltage is then

|�VSG| =
∫ ∞

−∞

szνb

µn
dz = νb

µn

gτs√
	2

b + 	2
0

2	

= 2	b

µn

g√
	2

b + 	2
0

	 = 2	b

µn
g

	2
0

	2
b + 	2

0

, (F9)

which is the same result we had when σ was zero. Thus we
find that the width of the Gaussian spin excitation pulse will
not occlude the Stern-Gerlach signal.
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