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Two-dimensional symmetry-protected topological phases and transitions in open quantum systems
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We investigate the influence of local decoherence on a symmetry-protected topological (SPT) phase of
the two-dimensional (2D) cluster state. Mapping the 2D cluster state under decoherence to a classical spin
model, we show a topological phase transition of a Z(0)

2 × Z(1)
2 SPT phase into a trivial phase occurring at a

finite decoherence strength. To characterize the phase transition, we employ three distinct diagnostic methods,
namely, the relative entropy between two decohered SPT states with different topological edge states, the strange
correlation function of Z(1)

2 charge, and the multipartite negativity of the mixed state on a disk. All the diagnostics
can be obtained as certain thermodynamic quantities in the corresponding classical model, and the results of
the three diagnostic tests are consistent with each other. Given that the 2D cluster state possesses universal
computational capabilities in the context of measurement-based quantum computation, the topological phase
transition found here can also be interpreted as a transition in the computational power.

DOI: 10.1103/PhysRevB.109.195420

I. INTRODUCTION

Understanding symmetry-protected topological (SPT)
phases [1–9] has been one of the major topics in condensed
matter physics over the past decade because SPT order can
be characterized by nontrivial many-body entanglement. Re-
cently, interest in extending the notion of SPT order to open
quantum systems described by mixed states has been growing
[10–16]. While previous studies suggested that SPT phases of
density matrices could still be classified by group cohomology
[12,13], a universally accepted definition and indicator of
mixed-state SPT order have so far remained elusive. Given
that decoherence is inevitable in any experimental system,
it is of particular interest to figure out whether or not SPT
order can be identified in the presence of decoherence and,
if so, in what sense. There are, in general, two types of
decoherence: (1) decoherence that can be linked to a pure
state with certain ancillas, such as local bit-flip and phase
errors [17,18], and (2) decoherence that cannot be linked to
a pure state with ancillas, such as thermalization [19–22]. The
primary goal of this paper is to focus on the former and reveal
the existence of mixed-state SPT phases and their topological
transitions.

From a broader perspective, an investigation of SPT
phases under decoherence has also attracted interest in
quantum computation. While topologically ordered states
with anyons allow for topological quantum computation
[23–27], SPT states with short-range entanglement can serve
as resources for measurement-based quantum computation
(MBQC) [27–35]. In this context, a notable SPT state is the
two-dimensional (2D) cluster state since it possesses universal
computational power and is relevant to a variety of noisy
intermediate-scale quantum platforms [36–40], where the ef-
fect of decoherence is crucial. This motivates the following
question: are there phase transitions in the 2D cluster state

under decoherence, and if so, do they signify transitions in the
computational capability of MBQC?

To address the above questions, we examine the influence
of local decoherence on a 2D cluster state, which is an SPT
state protected by the zero- and one-form symmetries. The
decoherence is modeled by local bit-flip and phase errors,
which occur randomly with probabilities px and pz, respec-
tively. On the one hand, our investigation shows that even
the presence of arbitrarily weak phase error can break the
SPT order. On the other hand, we find that a topological
phase transition can occur at a nonzero bit-flip error rate, in
which case the transition can be understood as the param-
agnetic (PM) to ferromagnetic (FM) phase transition in the
corresponding classical spin model. These results are obtained
by showing the mapping between the Rényi entropies of the
error-corrupted mixed state and the partition functions of the
Ising-type models.

To substantiate our results and characterize the topolog-
ical phase transition within the original quantum problem,
we encounter two primary challenges. First, the transforma-
tion of the pure state into an error-corrupted mixed state can
be achieved through continuous unitary evolution involving
ancilla qubits. As a result, no local order parameters are
expected to exhibit singular behavior. Second, SPT phases
lack long-range entanglement, and no readily available global
measures exist to capture their entanglement structure, such
as the topological entanglement entropy used to detect topo-
logical order. To address these challenges, we employ the
following three distinct diagnostic tools: (1) relative entropy
between two decohered SPT states with different topological
edge states, (2) the strange correlation function [41–47] of the
error-corrupted mixed state, and (3) multipartite negativity of
the decohered SPT state on a disk, which is an open-system
analog of multipartite entanglement entropy [48–50]. Notably,
these three measures possess the unique property of being
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FIG. 1. Left: Schematic illustration of the 2D cluster state. The
stabilizer Hamiltonian (1) gives rise to the cluster state (also known
as a graph state). The blue line indicates a generator of Z(1)

2 symme-
try. Right: Emerging boundary spin degrees of freedom. The black
lines delineate the boundary of the Lieb lattice, and a localized spin- 1

2
can be defined at each vertex along the boundary.

mapped onto certain observables within the corresponding
classical spin model and consistently exhibit a phase transition
at the same error rates. Our mapping thus provides a bridge
between decohered mixed SPT states and classical statistical
mechanical models, allowing us to elucidate the nature of
topological phases in open quantum systems.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the stabilizer Hamiltonian of the cluster
state on the Lieb lattice and analyze its symmetries, ground
states, and emergent boundary degrees of freedom. In Sec. III,
we investigate how local quantum channels alter the pure
cluster state and provide a perspective on the condensation of
domain walls within the decohered mixed state. In Sec. IV,
we introduce three distinct diagnostic measures and eluci-
date their corresponding interpretations and phase transitions
within the framework of classical spin models. In Sec. V, we
give a summary of our results and suggest several directions
for future investigations.

II. LATTICE MODEL FOR A 2D CLUSTER STATE

The Lieb lattice is an edge-decorated 2D square lattice
which has two inequivalent sublattices. Sublattice A is defined
on the vertex of an N × N square lattice, and sublattice B is
defined at the edges of the square lattice. We put a spin 1

2 on
both A and B, labeled by τv and σe, respectively (see Fig. 1,
left panel). A 2D cluster state is given by the ground state of
the following frustration-free stabilizer Hamiltonian:

HCluster = −
∑
v∈A

Av −
∑
e∈B

Be, (1)

where Av = τ x
v σ z

e1
σ z

e2
σ z

e3
σ z

e4
and Be = σ x

e τ z
v1

τ z
v2

. We note that
all Av and Be mutually commute with each other and satisfy
A2

v = 1 and B2
e = 1. The ground state of HCluster under periodic

boundary conditions (PBCs) is uniquely characterized by the
conditions Av = Be = 1 for all v and e:

ρ
(PBC)
SPT =

∏
v∈A

1 + Av

2

∏
e∈B

1 + Be

2
. (2)

The 2D cluster state is protected by Z(0)
2 × Z(1)

2 symmetry.
Here, Z(0)

2 represents the global, zero-form symmetry defined
on the vertex sublattice, A, which is generated by

∏
v∈A τ x

v ; it

can be viewed as an extension of the Z2 symmetry in one-
dimensional cluster states. Meanwhile, Z(1)

2 is a subsystem
one-form symmetry defined for a loop on the edge sublattice,
B [51–53], which is generated by

∏
e∈loop on B σ x

e , leading to
an exponentially large number of conserved charges in the
thermodynamic limit (see Fig. 1, left panel).

A smoking gun for a pure SPT state is the emergence of
boundary degrees of freedom associated with the ground-state
degeneracy under open boundary conditions. We argue that
this defining feature should continue to be crucial in diagnos-
ing mixed-state SPT phases, even though the concept of the
ground state becomes ambiguous. In the case of a pure 2D
cluster state with a boundary ∂M, there are 2|∂M| (nearly)
degenerate ground states, where | · | represents the perimeter.
To define the corresponding boundary spin- 1

2 operators that
commute with HCluster, we can introduce the following opera-
tors on the boundary vertices u (see Fig. 1, right panel):

π x
u = τ x

u σ z
e1
σ z

e2
σ z

e3
, π y

u = τ y
u σ z

e1
σ z

e2
σ z

e3
,

π z
u = τ z

u , (3)

where πu = (π x
u , π

y
u , π z

u )T obeys the algebraic relations of the
spin 1

2 .
To proceed with our discussion, we need to specify a par-

ticular ground state. To be concrete, we choose a ground state
where π x

u = 1 for all u,

ρSPT =
∏

u∈∂M

1 + π x
u

2

∏
v∈A

1 + Av

2

∏
e∈B

1 + Be

2
, (4)

while we emphasize that this choice does not affect our
main results; another ground state can be obtained simply
by performing a boundary flip with π z

u = τ z
u . Since we have

the relation Be = 1 within the ground-state subspace, we can
define the following string operator Su,u′ that simultaneously
flips two boundary spins on u and u′:

Su,u′ =
∏

e∈γuu′

σ x
e , (5)

where γuu′ represents a string on sublattice B that connects σ

operators between the boundary spins πu and πu′ . Importantly,
this operator satisfies

tr[ρSPTSu,u′ρSPTSu,u′ ] = 0, (6)

which means that energetically degenerate SPT states with
different edge states are orthogonal to each other.

III. EFFECTS OF LOCAL DECOHERENCE

In this section, we model decoherence as the combination
of two local quantum channels which describe the single-qubit
flip or phase error:

N α
i [ρ] =

{
(1 − pα )ρ + pατα

i ρτα
i i ∈ A,

(1 − pα )ρ + pασ α
i ρσα

i i ∈ B,
(7)

with α ∈ {x, z}. Here, px and pz characterize the spin-flip
and phase decoherence rates, respectively. For the sake of
simplicity, we assume that these rates take the same values
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FIG. 2. Left: Schematic of the domain-wall configuration ρDw,
where Pauli operators are explicitly shown but identities are repre-
sented by unlabeled markers. The green zone indicates a domain
wall. Right: Schematic of the gauge configuration ρGa. The green
zone represents the Z2 flux with φ� = −1.

on both sublattices A and B. The resulting mixed state reads

ρD =
∏

i

N Z
i ◦ N X

i [ρSPT]. (8)

In the rest of this section, we will present ρD within the
framework of the domain-wall condensing picture by utilizing
a summation over domain configurations. To this end, we
represent each of the products resulting from the expansion
of

∏
v∈A(1 + Av ) by a certain domain wall (Dw). Specifically,

suppose that either τ x or the identity operator is assigned
to every vertex on A. If an edge connects two vertices, one
carrying τ x and the other carrying an identity operator, we
place σ z on this edge. Each corresponding configuration is
then associated with ρDw (see Fig. 2, left panel). As such, we
can interpret this problem in terms of a classical spin variable
s by identifying τ x as s = +1 and the identity operator as
s = −1.

Similarly, each of the products obtained by expanding∏
e∈B(1 + Be) can be considered as a certain gauge configura-

tion (Ga) on the dual lattice. Namely, either σ x or an identity
operator is assigned to every edge on B, and if there are an odd
number of edge qubits surrounding a vertex qubit, we place
a τ z on the vertex. Identifying each σ x (identity operator)
on B as s = 1 (s = −1), we can interpret the corresponding
contribution ρGa in terms of the gauge configuration where the
product of four classical spins {si} on the square � surround-
ing a vertex qubit τ z is constrained to be φ� = ∏

� si = −1
(see Fig. 2, right panel).

The density matrix for the pure state then reads

ρSPT = 1

23N2

∑
Dw

ρDw

∑
Ga

ρGa, (9)

where the summations run over all possible domain-wall and
gauge configurations and every term has the same coefficient.
The local quantum channels change coefficients only before
ρDw and ρGa. Specifically, the bit-flip error is given by

N X
i [ρDw] =

{
(1 − 2px )ρDw σ z

i ∈ domain wall,

ρDw otherwise,
(10)

N X
i [ρGa] =

{
(1 − 2px )ρGa τ z

i ∈ vertex with flux −1,

ρGa otherwise,
(11)

while the phase error is

N Z
i [ρDw] =

{
(1 − 2pz )ρDw si = 1on a vertex,

ρDw otherwise,
(12)

N Z
i [ρGa] =

{
(1 − 2pz )ρGa si = on an edge,

ρGa otherwise.
(13)

As a result, the decohered mixed state can be represented
as a superposition of operators where the coefficient before
each operator is determined from the corresponding classical
spin configurations. To see this, we can factorize ρD into the
contributions associated with each of the sublattices denoted
by ρA

D and ρB
D as follows:

ρA
D = 1

2N2

∑
Dw

(1 − 2px )|∂D|(1 − 2pz )|s=+1|ρDw,

ρB
D = 1

22N2

∑
Ga

(1 − 2px )|φ=−1|(1 − 2pz )|s=+1|ρGa.

Here, |∂D| represents the length of the domain wall, |s = +1|
is the number of classical spins with s = +1, and |φ = −1|
is the number of fluxes with φ = −1. The coefficients for
each configuration can be related to the statistical weights of
a classical spin model. Specifically, we have

ρD = ρA
DρB

D ∝
∑
Dw

e−HIsing/2ρDw

∑
Ga

e−HGauge/2ρGa, (14)

where both summations run over all the possible classical spin
configurations on a square lattice and HIsing and HGauge are
given by

HIsing = −J
∑
〈i j〉

sis j − h
∑

i

si, (15)

HGauge = −U
∑
�

sis jsksl − t
∑

i

si. (16)

Here, we define the coupling strengths by J = − ln (1 − 2px ),
h = − ln (1 − 2pz ), U = − ln (1 − 2px ), and t =
− ln (1 − 2pz ). Consequently, the second-order Rényi entropy
of the decohered mixed state can be obtained with

trρ2
D = tr(ρA

D)2 tr(ρB
D)2 ∝ ZIsingZGauge, (17)

where ZIsing and ZGauge are the partition functions of HIsing

and HGauge, respectively. It is well known that the 2D Ising
gauge theory (16) does not exhibit a phase transition because
its Wilson loop operator always displays an area law behav-
ior, e−W [C] ∼ e−Area of C . As such, nonanalytic behavior of the
second-order Rényi entropy, if any, should be attributed to
the partition function of the Ising model, which undergoes a
phase transition between PM and FM phases at px = p(2)

c =
1−

√√
2−1

2 ∼ 0.1782 and pz = 0. Said another way, this obser-
vation indicates that even arbitrarily weak phase error pz > 0
can break the SPT order. In fact, our analysis is consistent with
the fact that no SPT order is expected when a state is protected
solely by the average symmetries, which are satisfied only af-
ter taking the ensemble average over quantum trajectories [13]
(see the discussion below and the Appendix for further de-
tails). Since our primary focus is on the decoherence-induced

195420-3



YUXUAN GUO AND YUTO ASHIDA PHYSICAL REVIEW B 109, 195420 (2024)

topological phase transition, we shall assume pz = 0 and fo-
cus on the effects of the bit-flip error from now on.

It is noteworthy that higher-order Rényi entropies could
also be factorized and mapped to classical partition functions
as follows:

trρn
D = tr

(
ρA

D

)n
tr
(
ρB

D

)n ∝ Zn
AZn

B, (18)

where Zn
A is the partition function of the (n − 1)-flavor Ising

model,

Hn = −Jn

2

∑
〈i j〉

(
n−1∑
α=1

s(α)
i s(α)

j +
n−1∏
α=1

s(α)
i s(α)

j

)
, (19)

and Zn
B is the partition function of the (n − 1)-flavor Ising

gauge model,

H ′
n = −Un

2

∑
�

(
n−1∑
α=1

φ
(α)
� +

n−1∏
α=1

φ
(α)
�

)
, (20)

which exhibits no phase transition [54]. The critical decoher-
ence error rate p(n)

c associated with the (n − 1)-flavor Ising
model (19) monotonically increases with the replica index
n [17,18,55]. In particular, in the limit n → ∞, the model
becomes a solvable decoupled Ising model, for which p(∞)

c =
2−√

2
2 ∼ 0.2929. A quantum-information interpretation of this

increasing sequence of critical error rates is that, while qubit
errors in general degrade the computational power of the
cluster state, more copies of the system can still provide avail-
able resources. Nevertheless, there is ultimately a fundamental
limit on the error rate p(∞)

c , above which no matter how many
copies of the mixed state are available, one cannot extract any
quantum computational resources from them.

We here comment on the symmetries of the decohered
mixed state. Namely, in order to define a SPT phase in open
quantum systems, one must preserve all the relevant symme-
tries in a certain sense even in the context of a mixed state.
There are two ways to define a unitary symmetry for a density
matrix. The first way is the so-called exact or strong symmetry
condition, denoted by ρD = U (gL )ρDU †(gR), where U (gL,R)
are the unitary operators associated with gL,R ∈ G. This is the
direct generalization of the symmetry condition for a quantum
state and guarantees that the symmetry is satisfied for every
individual quantum trajectory. The second one is referred to as
the average or weak symmetry condition, which is represented
as ρD = U (g)ρDU †(g), with g ∈ G [13,56], and this is the con-
dition satisfied after one takes the ensemble average over all
trajectories. One can check that the mixed state of our primary
focus, namely, ρD with pz = 0 and px > 0, satisfies the exact
Z(0)

2 × Z(1)
2 symmetry, while nonzero pz immediately renders

both symmetries average ones. We note that a decohered
SPT state with an exact-average mixed symmetry, such as
Z(0)

2,avg × Z(1)
2 or Z(0)

2 × Z(1)
2,avg, has been studied in terms of

strange correlation functions [16] and separability [57]. We
refer the reader to the Appendix for further details on how
different quantum channels correspond to distinct symmetry
conditions.

IV. DIAGNOSTICS FOR TOPOLOGICAL
PHASE TRANSITIONS

In the previous section, we discussed a phase transition in
the Rényi entropy of the decohered mixed state. However, it
remains unclear whether or not this nonanalytic behavior is
accompanied by a topological phase transition. In this section,
we present three diagnostic methods for identifying the nature
of the SPT phase transition. In particular, we show that the
PM to FM phase transition found in the second-order Rényi
entropy indeed corresponds to a topological phase transition,
where the PM (FM) phase in the classical spin model is the
SPT (trivial) phase in the quantum problem. Furthermore,
diagnostic tests based on higher-order Rényi entropies and the
replica limit will also be discussed.

A. Rényi relative entropy

The existence of nontrivial boundary states is one of the
defining features of SPT phases. As a diagnostic test for
SPT states in open quantum systems, we here examine the
fate of the boundary degrees of freedom in the presence of
decoherence. This can be achieved by measuring the differ-
ence between the decohered mixed states ρD = N [ρSPT] and
ρS = N [Su,u′ρSPTS−1

u,u′ ], where we recall that Su,u′ is the string
operator that flips two boundary spins π at u and u′ [see
Eq. (5)]. For this purpose, we introduce the Rényi relative
entropy between ρD and ρS:

Dn(ρD||ρS ) = 1

1 − n
ln

trρDρn−1
S

trρn
D

. (21)

When n is taken to be 1, Eq. (21) reproduces the von
Neumann relative entropy, D1(ρD||ρS ) = S(ρD||ρS ) =
trρD(ln ρD − ln ρS ). In the absence of decoherence,
Dn(ρD||ρS ) diverges since ρD and ρS are orthogonal pure
states. Under weak decoherence, we expect the boundary
spins to be less localized compared to those of the pure
SPT state, and flipping two boundary spins nearby would
have a negligible impact on the system. In contrast, when
|i − j| � 1, the boundary degrees of freedom should still
be distinguishable, and Dn(ρD||ρS ) is expected to diverge as
|i − j| goes to infinity. Meanwhile, in the topologically trivial
phase without nontrivial boundary spins, no matter how large
|i − j| is, the relative entropy should give a finite value. These
distinct long-distance behaviors of the relative entropy can be
used as a diagnostic of the topological phase transition. We
note that such a disappearance of distinguishable boundary
states can be interpreted as a computational power phase
transition in the context of MBQC since the target qubits are
decoded on the boundary of the 2D cluster state.

Intriguingly, the Rényi relative entropy (21) can be mapped
to the logarithm of the boundary spin-spin correlation function
in the 2D Ising model. To prove the mapping, we first write
down the domain-wall expansion of ρS:

ρS = 1

2N2

∑
Dw

(−1)#S∩Dwe−HIsing/2ρDwρB
D, (22)

where #S ∩ Dw counts how many times the string operator
Su,u′ crosses the domain wall, which accounts for the sign
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difference between the boundary spins su and su′ . We then get

trρDρn−1
S ∝ Zn

B

n∏
α=2

∑
Dw(α)

(−1)#S∩Dw(α)
e−Hn , (23)

where α is the replica index, and we use the fact that only
the terms satisfying

∏n
α=1 ρ

(α)
Dw = 1 contribute to the trace. Us-

ing the relation
∏n

α=2(−1)#S∩Dw(α) = (−1)#S∩Dw(1) = s(1)
u s(1)

u′ ,
along with an irrelevant constant term we obtain

Dn(ρD||ρS ) = 1

1 − n
ln

1

Zn
A

∑
s(1)

i s(1)
j e−Hn

= 1

1 − n
ln

〈
s(1)

i s(1)
j

〉
Boundary. (24)

Here, we note that the string operator commutes with any
term in the gauge configuration, and the Ising gauge theory
does not contribute to the final result. Since the spin-spin
correlation function decays exponentially in the PM phase,
the relative entropy Dn(ρD||ρS ) is proportional to the distance
|i − j| between i and j, indicating that the mixed state retains
distinguishable boundary states. In the FM phase, in contrast,
the correlation function acquires a distance-independent con-
stant due to the long-range order, and the relative entropy has
a finite constant even if |i − j| � 1, indicating that the mixed
state loses its boundary degrees of freedom.

B. Strange correlation function

Detecting SPT phases without open boundaries is rather
nontrivial since SPT phases are symmetry-preserved gapped
systems with only short-range entanglement. One possible
way to do this is to use the strange correlation function.
Specifically, for a G-SPT phase, the strange correlation func-
tion is defined by

C = trρ0Oρ

trρ0ρ
, (25)

where ρ is a state to be detected and ρ0 = |
〉, with 〈
| being
a product state. The operator O itself carries a nontrivial G
charge or is the correlation of operators carrying a nontrivial
G charge. State ρ is trivial if the correlation function decays
quickly, while ρ is topological if the correlation function
saturates to a constant.

In our model, the symmetry G is Z(0)
2 × Z(1)

2 ; for the sake
of concreteness, we shall focus on the decoherence effect
on the one-form symmetry Z(1)

2 . The one-form charge or
one-form defect is carried by a string operator defined as
O = ∏

e∈γ σ z
e , where γ is a loop on sublattice B. The Z(1)

2
charge associated with O is trivial (nontrivial) if the string
γ intersects with looplike symmetry operators an even (odd)
number of times. As the reference product state, we choose
|
〉 = |1〉⊗2N2 |+〉⊗N2

, where all the qubits on sublattice A
(B) satisfy τ x|+〉 = |+〉 (τ z|1〉 = |1〉). The strange correlation
function of our model is then given by

C(γ ) = trρ0
∏

e∈γ σ z
e ρD

trρ0ρD
, (26)

which has an alternative expression in the corresponding clas-
sical model:

C(γ ) = eFIsing−FIsing/γ . (27)

Here, FIsing/γ is the free energy of the modified Ising model
in which all the bonds crossing loop γ are cut. This result can
again be proved by the domain-wall expansion. To do so, we
first move the quantum channel from ρ

(PBC)
SPT to ρ0 as follows:

trρ0ρD = trN [ρ0]ρ(PBC)
SPT

= 〈�SPT|
∏
e∈B

1 + (1 − 2px )σ z
e

2

∏
v∈A

1 + τ x
v

2
|�SPT〉,

(28)

where |�SPT〉 is the unique ground state of the stabilizer
Hamiltonian under periodic boundary conditions. Since only
the configurations where σ z form a closed loop whose interior
is filled with τ x contribute to the final result, we obtain

trρ0ρD = 1

23N2

∑
Dw

(1 − 2px )|∂D| ∝ ZIsing. (29)

Similarly, we can rewrite the numerator of Eq. (26) as

trρoON [ρSPT] =〈�SPT|
∏
e∈γ

1 + σ z
e

2

∏
e∈B/γ

1 + (1 − 2p)σ z
e

2

×
∏
v∈A

1 + τ x
v

2
|�SPT〉, (30)

where B/γ denotes sublattice B without loop γ . If the domain
wall does not intersect γ , the probability of the domain wall
appearing is related to the perimeter of the domain wall, which
corresponds to a coupling strength − ln(1 − 2px ) in the Ising
model. However, if the domain wall intersects the closed loop
γ , the part overlapping with γ acquires a factor of (1 − 2px ).
This effectively sets the Ising coupling strength to zero; in
other words, it divides the Ising model along γ into two parts.
Hence, we have

trρ0ON [ρSPT] ∝ ZIsing/γ , (31)

which proves Eq. (27).
The consequence of Eq. (27) is readily apparent; in the

deep PM phase, the leading order of the free energy change
is �F = o(p2

x ), and C(γ ) is almost insensitive to the length
of the loop, which is denoted by |γ |. In the FM phase, in
contrast, the Ising interaction contributes to the free energy
of this model, and the leading order becomes �F = O(|γ |).
Consequently, C(γ ) decays exponentially as |γ | is increased.
We also demonstrate this by performing a classical Monte
Carlo simulation of the free-energy excess in the Ising model,
as shown in Fig. 3.

C. Multipartite negativity

As an alternative diagnosis of SPT phases in open quan-
tum systems, we finally discuss the multipartite entanglement
entropy, which is defined as I (L; R|M ) = SLM + SMR − SM −
SLMR, where regions L and M are sufficiently separated (see
Fig. 4). References [48–50] proposed that nonzero values of
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FIG. 3. Monte Carlo computation of free energy is illustrated
both with and without bond crossing γ . The red curve represents the
free energy of the original Ising model. The green and blue curves
represent the Ising model with loop defects of sizes γ = 10 × 10 and
γ = 6 × 6, respectively. Simulations were conducted on a 20 × 20
lattice with 105 sampling iterations. Noticeable free-energy differ-
ences exist in the FM phase with high px , while the free-energy
excesses vanish in the PM phase with a small error rate.

I (L; R|M ) can serve as a means to detect nontrivial many-
body entanglement and distinguish between SPT and trivial
phases. It would be interesting to calculate an entanglement
measure similar to the multipartite entanglement entropy in
the present setup if that is at all possible. For this purpose,
we introduce a multipartite negativity denoted by N (L; R|M ),
which should serve as an open-system analog of I (L; R|M ).
Below we demonstrate that the tripartite negativity N (L; R|M )
exhibits singular behavior similar to that of I (L; R|M ) across
the topological phase transition. We note that Refs. [58–63]
also utilized the negativity to study the topological phases of
matter.

The negativity of subsystem L is defined as follows
[64–66]:

EL(ρ) = ln ‖ρTL ‖1, (32)

where TL represents the partial transpose of all degrees of free-
dom in subsystem L and ‖ · ‖1 is the trace norm. Additionally,

FIG. 4. A 2D disk cut into three parts, L, M, and R, where L and
R are well separated. l1 and l2 label the lengths of cutting lines.

we consider a series of Rényi negativities

E (2n)
L (ρ) = ln

Tr(ρTL )2n

Trρ2n
, (33)

which reduce to the trace-norm negativity EL as n approaches
1 [67]. The Rényi tripartite negativity is then defined by

N (2n)(L; R|M ) = E (2n)
LM + E (2n)

MR − E (2n)
M − E (2n)

LMR, (34)

which serves as our detector for nontrivial topological phases.
We note here that, in general, phases with nonzero I (L; R|M )
or N (L; R|M ) can belong to either topological or symmetry-
breaking phases [68]. Nevertheless, in our mixed state the
symmetry is always preserved, and nonzero information quan-
tities must always indicate the topological phases.

In a decohered mixed state, E (2n)
L can be given by the free-

energy excess in the corresponding classical model where a
constraint is added on the Ising model such that no domain
walls are allowed to cross the boundary of subregion L:

E (2n)
L = �FL. (35)

To prove the relation, we again expand the density matrix in
the domain-wall picture:

ρ
TL
D =

∑
Dw

∑
Ga

(−1)y(ρDwρGa )ρDwρGae−HGauge/2−HIsing/2, (36)

where y(ρDwρGa) is the number of Pauli Y operators in region
L and we use the fact that only the Pauli Y operators contribute
to the partial transpose. For the sake of simplicity, in the rest
of this section, we set the error rates of sublattice L to zero
or, equivalently, the interaction strength U in Hgauge to zero,
which allows us to calculate the summation exactly; we note
that this assumption does not affect our conclusions, which
are independent of the details of the Ising gauge partition
function. Accordingly, we get

tr(ρTL
D )n =

∑
Dw

∑
Ga

(−1)
∏n−1

α=1 y(ρ (α)
Dwρ

(α)
Ga )y(

∏n−1
α=1 ρ

(α)
Dwρ

(α)
Ga )e−Hn . (37)

To rewrite this expression, we introduce sgn(ρ1, ρ2) = ±1,
which depends on the commutation relation of ρ1 and ρ2

in subregion L, where sgn(ρ1, ρ2) = 1 if ρ1 commutes with
ρ2 and otherwise sgn(ρ1, ρ2) = −1. Utilizing the fact that
(−1)y(ρ1ρ2 ) = (−1)y(ρ1 )(−1)y(ρ2 )sgn(ρ1, ρ2) and all ρDw or ρGa

commute with each other, we have

tr
(
ρ

TL
D

)n =
∑
Dw

∑
Ga

n−1∏
α=1

n−1∏
α′=1,α′ �=α

sgn
(
ρ

(α)
Dw, ρ

(α′ )
Ga

)
e−Hn

. (38)

The summation
∑

Ga

∏n−1
α=1

∏n−1
α′=1,α′ �=αsgn(ρ (α)

Dw, ρ
(α′ )
Ga ) can be

done by noticing that ρDw and ρGa always commute. So sgn
will always be +1 if ρGa does not cross the boundary of L;
otherwise, the sign fluctuation will force the summation to be
zero. As a result, we get

∑
Ga

n−1∏
α=1

n−1∏
α′=1,α′ �=α

sgn
(
ρ

(α)
Dw, ρ

(α′ )
Ga

) ∝
n−1∏
α=1

δ
(
ρ

(α)
Dw, L

)
. (39)

We note that δ(ρ (s)
Dw, L) is equal to 1 if no domain walls

cross the boundary of region L. This can be interpreted as a
constraint on the Ising model. Denoting the partition function
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of the Ising model with this constraint by Z ′
n, we finally obtain

E (2n)
L (ρ) = ln Z ′

2n
Z2n

≡ �FL, which proves Eq. (35).
In our model, the negativity of the entire system

consistently remains zero, i.e., E (2n)
LMR = 0. Additionally,

Refs. [18,69] argued that the leading order in the excess free
energy �FL is directly proportional to the length of ∂L in both
PM and FM phases for a large enough subregion L satisfying
|∂L| � ξ , where ξ is the correlation length [70]. The leading
contribution thus satisfies the area law; for instance, E (2n)

L =
cl1, and E (2n)

M = c(l1 + l2), where l1 (l2) is the perimeter of
the boundary between L and M (M and R) and c is some
constant [71]. Meanwhile, the topological nature manifests
as the nontrivial subleading contribution to the excess free
energy. Namely, in the PM phase, there is an additional crucial
contribution from the boundary entropy, which is − ln 2, as
the spins on the boundary can be either up or down. In the
FM phase, however, all spins must align in the same direction
since it is not allowed to have a fluctuating domain wall when
the size of the domain wall is larger than the correlation length
ξ . All in all, we finally arrive at the following conclusion:

N (2n)(L; R|M ) =
{

0 FM phase,

ln 2 PM phase,
(40)

which implies that the multipartite negativity can, indeed, play
the role of a probe of the SPT order in mixed states in a manner
similar to the multipartite entanglement entropy in the case of
pure states.

V. CONCLUSION

In this paper, we explored a topological phase transition
of a 2D cluster influenced by local decoherence. We found
that the 2D cluster state under the bit-flip error can represent
a SPT phase protected by the exact or strong Z(0)

2 × Z(1)
2 sym-

metry. This work, combined with previous studies [16,57],
contributes to a systematic understanding of how 2D cluster
states endure under decoherence and aid the transition be-
tween pure-state SPT and average SPT orders. Furthermore,
we mapped the decohered cluster state to Ising-like models,
which significantly simplified the calculations of various SPT
diagnostics motivated by different perspectives, translating
the original quantum problems into analytically tractable sta-
tistical mechanical models.

Our model demonstrates the transition of 2D bosonic SPT
order under the influence of local quantum errors. The theory
underlying such states is of particular importance, as it attracts
significant interest in the context of noisy intermediate-scale
quantum platforms, which aim to realize various topologi-
cal phases even in the absence of quantum error correction.
Therefore, it will be crucial to identify operational quantities
that are nonlinear functions of the density matrix. It is also
natural to explore whether or not critical behaviors beyond
the currently known universal classes exist. Moreover, the
development of a quantized entanglement index [72–74] for
detecting SPT order in open systems remains an open area of
research.

Another exciting avenue for further exploration is the
realm of decohered fermionic systems. It merits further study,
for instance, to explore the behavior of free fermions in

the tenfold way [75] under decoherence. It is plausible to
hypothesize the emergence of diverse symmetry-preserved
decoherence channels for topological insulators and super-
conductors. Meanwhile, the original gapless topological phase
transition points may also change with decoherence in a non-
trivial manner, potentially leading to a richer understanding of
critical behaviors in open quantum systems [76,77].
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APPENDIX: SYMMETRY CONDITIONS
OF QUANTUM CHANNELS

In this Appendix, we review different symmetry conditions
for the density matrix and examine them in the decoherence
models, particularly those involving only phase and qubit
errors. This analysis is conducted from the perspectives of
mixed states and Kraus operators, similar to analyzing the
symmetry of pure states from state and Hamiltonian perspec-
tives, respectively.

Average (weak) symmetry condition. Consider a state |�〉
in Hilbert space with a symmetry group G. When a group
element g acts unitarily on |�〉, the transformation is |�〉 →
U (g)|�〉. For a density matrix ρ, a natural assumption is the
action of U (g) and its adjoint U †(g) on ρ, leading to

ρ = U (g)ρU †(g). (A1)

This is known as the average or weak symmetry condition
because it holds true only after taking the ensemble average in
general. We note that a weak symmetry alone is not expected
to support any SPT state because the sum of cohomology
classes corresponding to U (g) and U †(g) is always zero.

Exact (strong) symmetry condition. To define SPT phases
in open quantum systems, a stronger symmetry condition is
required. Specifically, one can consider the left and right op-
erations separately, represented as

ρ = U (gL )ρU †(gR), (A2)

where gL,R ∈ G. We note that, for a pure state density matrix
ρ = |�〉〈�|, Eq. (A2) is nothing but the usual symmetry
condition for a state vector.

To discuss how different symmetry conditions apply to
quantum channels given by completely positive trace preserv-
ing (CPTP) maps with symmetry G, we consider the action
of Kraus operators Kα on the pure state ρ = |�〉〈�|, where
the transformation of the state by a CPTP map is given by
ρ → ∑

α KαρK†
α .

Average (weak) symmetry condition. Here, the combined
action of all Kraus operators should respect the symmetry of
the original state. This implies that the resulting state after the
CPTP map should remain invariant under the group G. The
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condition can be expressed as

U (g)

(∑
α

KαρK†
α

)
U †(g) =

∑
α

KαρK†
α ∀ g ∈ G. (A3)

In the basis of Kraus operators, it can be shown that

U (g)Kα = eiθα KαU (g), (A4)

where the phase factor cannot be canceled by redefinition of
U (g).

Exact (strong) symmetry condition. In this case, each Kraus
operator must individually respect the symmetry. Specifically,
each {Kα} must commute with the symmetry operation for all
g ∈ G as follows:

U (g)Kα = KαU (g) ∀α,∀ g ∈ G. (A5)

This ensures that every quantum trajectory in the quantum
channel preserves the symmetry.

Reference [12] showed that the strong symmetry condi-
tion can protect SPT phases in open quantum systems, with
classification given by Hd+1(G,U (1)), where G is the full
symmetry group. Moreover, Ref. [13] proposed that a com-
bination of the average (weak) and exact (strong) symmetries
can still protect SPT phases, with cohomology classification
given by

∑d+1
p=1 Hd+1−p(G,Hp(K,U (1))), where G is aver-

age and K is exact. We remark that the models studied in
Refs. [16,57] exhibit SPT phases protected by such mixed
average-exact symmetry, where phase error acts on either the
vertex or edge qubits in the 2D cluster state. Meanwhile, in
the setup discussed in Sec. IV, bit-flip error acts on all qubits,
and consequently, the SPT phase is protected by the exact
symmetry. For the sake of completeness, we shall discuss this
point in more detail below.

Bit-flip error. The density matrix for a state under bit-flip
errors is given by

ρD = ρA
DρB

D =
∑
Dw

e−HIsing/2ρDw

∑
Ga

e−HIsing Gauge/2ρGa,

where h and t in Eq. (16) are set to zero. First, we consider
the Z(0)

2 generator, which transforms ρD as ρD → ∏
v∈A τ x

v ρD.
The operation

∏
v∈A τ x

v ρDw results in a domain-wall config-
uration in which all τ x

v are transformed to identities and
identities on vertices are transformed into τ x

v . In the classical
Ising model, this operation flips all Ising spins. When the

magnetic field h is zero, the energy before and after the flip
remains the same, leaving

∑
Dw e−HIsing/2ρDw unchanged. As a

result, the left group action alone does not change state ρD

since ρA
DρB

D commute with each other’s right group action.
Similarly, a Z(1)

2 generator acting on the gauge configuration∏
e∈loop on B σ x

e ρGa shifts only the Z2 flux in the corresponding
Ising gauge theory from one place to another, resulting in
a new state with the same energy. This fact can easily be
verified from the Kraus operators’ perspective, as every local
quantum channel can be decomposed into K1

i = √
1 − pxIi

and K2
i = √

pxσ
x
i /τ x

i , all of which should commute with the
generators containing only Pauli X operators.

Phase error on sublattice A (vertex qubits). With phase
errors acting only on sublattice A, the density matrix is given
by

ρD = ρA
DρB

D =
∑
Dw

e−h
∑

i siρDw

∑
Ga

ρGa.

When the Z(0)
2 generator acts on ρDw from either the left

or right, it will change
∑

i si and result in a different
state, i.e.,

∏
v∈A τ x

v

∑
Dw e−h

∑
i siρDw �= ∑

Dw e−h
∑

i siρDw.
To keep this term invariant, we need to act the
symmetry generator from both the left and right, i.e.,∏

v∈A τ x
v

∑
Dw e−h

∑
i siρDw

∏
v∈A τ x

v = ∑
Dw e−h

∑
i siρDw.

Thus, the zero-form symmetry is average, while, from the
similar discussion of the case of bit-flip error above, one can
check that the one-form symmetry is exact. The resulting SPT
phase is protected by Z(0)

2,avg ⊗ Z(1)
2 .

Phase error on sublattice B (edge qubits). With phase errors
acting only on sublattice B, the density matrix is given by

ρD = ρA
DρB

D =
∑
Dw

ρDw

∑
Ga

e−t
∑

i siρGa.

It is evident that Z(0)
2 remains invariant under both left and

right actions. Meanwhile, the Z(1)
2 symmetry generator flips

si in the corresponding classical Ising model and changes the
coefficient e−t

∑
i si before ρGa. To restore the symmetry, we

need to act the one-form symmetry generator on both the
right and left sides simultaneously, rendering the one-form
symmetry average. The resulting SPT phase is protected by
Z(0)

2 ⊗ Z(1)
2,avg.
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