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Nonequilibrium quantum noise S>(ω,V ) measured at finite frequencies ω and bias voltages V probes
Majorana bound states in a host nanostructure via fluctuation fingerprints unavailable in average currents
or static shot noise. When Majorana interference is brought into play, it enriches nonequilibrium states and
makes their nature even more unique. Here we demonstrate that an interference of two Majorana modes via a
nonequilibrium quantum dot gives rise to a remarkable finite frequency response of the differential quantum
noise ∂S>(ω,V,�φ)/∂V driven by the Majorana phase difference �φ. Specifically, at low bias voltages there
develops a narrow resonance of width h̄�ω ∼ sin2 �φ at a finite frequency determined by V , whereas for high
bias voltages there arise two antiresonances at two finite frequencies controlled by both V and �φ. We show that
the maximum and minimum of these resonance and antiresonances have universal fractional values, 3e3/4h and
−e3/4h. Moreover, detecting the frequencies of the antiresonances provides a potential tool to measure �φ in
nonequilibrium experiments on Majorana finite frequency quantum noise.
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I. INTRODUCTION

Out of their equilibrium various nanosystems offer a broad
spectrum of measurements in diverse nonequilibrium states
achieved nowadays in a wide range of experiments. Quantum
transport provides a versatile tool to characterize nonequi-
librium states via systematically increasing, when necessary,
the depth of complexity to gain a sufficient insight into mi-
croscopic states of a given nanosystem. This is particularly
relevant for nanostructures hosting Majorana bound states
(MBSs) [1–6] designed to perform anyonic fault tolerant
quantum computation [7] based on non-Abelian manipula-
tions [8]. Although they are supposed to provide an elegant
platform for future quantum computing devices, including
implementations of poor man’s MBSs [9–11] in quantum dot
(QD) setups, the nonequilibrium response of MBSs is itself an
exciting topic rich in remarkable universal fingerprints. How-
ever, not all of these fingerprints may be uniquely attributed to
MBSs. In particular, it is known [12,13] that straightforward
measurements of average electric currents may be unreliable
when treating the corresponding conductances as exclusively
induced by MBSs. In this respect quantum transport exper-
iments measuring the average values of observables may
be less informative than possible thermodynamic approaches
where one may uniquely identify MBSs, for example, by
means of the entropy measurements in nanoscopic systems
[14–25]. Nevertheless, various average charge and spin cur-
rents are extensively investigated in stationary [26–68] and
nonstationary [69–73] nonequilibrium Majorana systems and
essentially contribute to impressive progress in characterizing
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MBSs as much as measurements of average currents [74–76]
can in general allow in contemporary and near future
experiments.

As mentioned above, if average electric currents measured
in a nanostructure turn out to be insufficient to uniquely con-
clude about its properties of interest, flexibility of quantum
transport techniques allows one to systematically increase the
level of complexity and explore, for example, fluctuations
of electric currents to characterize nonequilibrium Majorana
systems beyond fundamental limits imposed by conductance
measurements. Fluctuations of electric currents in nanoscopic
systems with MBSs may be characterized by zero frequency
(static) as well as finite frequency shot noise which has been
addressed theoretically [77–88] and recently also in experi-
ments [89]. In particular, in QDs interacting with MBSs, an
effective charge is predicted to be fractional, when MBSs are
well separated, or integer, when MBSs strongly overlap and
form a single Dirac fermion [82]. Another advanced tool to
explore fluctuation fingerprints of MBSs is offered by mea-
surements of quantum noise S>(ω,V ) at finite frequencies ω

in a nanosystem whose nonequilibrium state is maintained by
voltages V of, e.g., electric or thermal origin. Here the two
finite frequency branches, specifically the photon emission
and absorption noise, may be accessed separately in nonequi-
librium states prepared by a preferred technique, e.g., by pure
electric [90,91] or thermoelectric [92] means. An important
quantity able to reveal universality of Majorana fluctuations
in more detail is the differential quantum noise ∂S>(ω,V )/∂V
having universal units of e3/h.

Within a nanoscopic device one may create various links
between MBSs and other constituent systems by means of
tunneling interactions designed to crucially involve Majorana
tunneling phases to control operation of the whole device,
e.g., by means of driven dissipative protocols developed for
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Majorana qubits used in quantum computing devices [93,94].
As soon as Majorana tunneling phases are at play, they may
lead to various interference phenomena which give rise to
equilibrium and nonequilibrium characteristics fundamentally
absent in systems where MBSs do not interfere. Therefore, in
equilibrium and nonequilibrium nanostructures hosting MBSs
one may expect an extremely unique response in the presence
of Majorana interference, especially if this response is probed
via advanced physical observables such as the entropy and
current noise. Indeed, in a nonequilibrium QD interacting with
MBSs via tunneling mechanisms the differential static shot
noise shows a strong dependence on the Majorana interference
and, together with the differential conductance, reveals univer-
sal Majorana fractionalization even when interference effects
significantly suppress both of these observables below their
universal unitary values [95]. Nevertheless, dynamic fluctua-
tion fingerprints of Majorana interference cannot be captured
by the static shot noise and one has to resort to other observ-
ables such as finite frequency differential quantum noise. This
observable and its measurements are particularly attractive
because of the following reasons. First, as mentioned above,
similar to the differential conductance, which is measured in
universal units (specifically, in units of e2/h), the differential
quantum noise is also measured in universal units (specif-
ically, in units of e3/h). It is well known which universal
unitary values of the differential conductance characterize
MBSs and these values play the role of a reference for fur-
ther research on Majorana mean currents. It is natural to
adopt the same strategy in research on Majorana fluctuation
fingerprints and investigate which universal unitary values as-
sociated with resonances or antiresonances of the differential
quantum noise characterize interfering MBSs, especially at
finite frequencies. Second, the differential quantum noise is an
experimentally relevant observable. For example, feasibility
of its measurement has been demonstrated in experiments on
Kondo correlated QDs [96]. In particular, quantum detectors
allow us to separately explore absorption and emission noise
spectra. Third, measurements of only one physical observ-
able, the differential quantum noise, involve potentially less
experimental errors than, e.g., measurements of Fano-like
quantities (the differential quantum noise divided over the
differential conductance). Here we would like to note that the
Fano factor is an important physical quantity as proven in
experiments identifying the Laughlin quasiparticle, which is
also an exotic anyon excitation in topological systems emerg-
ing due to the fractional quantum Hall effect [97,98]. From
a theoretical point of view, choosing the differential quan-
tum noise or Fano factor should not make a big difference,
because the Fano factor is essentially the differential quan-
tum noise normalized with the use of the average current. In
practice, however, in strongly nonequilibrium systems, when
the fluctuation-dissipation theorem is broken, fluctuations of a
current and its average value become essentially independent
of each other. This requires measurements of two indepen-
dent quantities, the differential quantum noise and differential
conductance. Thus errors from experimental measurements
of the two physical observables may accumulate and result
in less precise outcomes. Fourth, the differential quantum
noise at finite frequencies might be helpful in understanding
whether a bound state in the continuum (BIC) has a Majorana

origin. That could be relevant because mean currents might
be controversial in this respect. Below, as an alternative view,
we additionally propose an interpretation of our results on
the finite frequency differential quantum noise in terms of the
Majorana BIC discussed previously only within the differen-
tial conductance [99].

In this paper we numerically investigate the differential
quantum noise ∂S>(ω,V,�φ)/∂V at finite frequencies ω

when it is driven by interference of MBSs linked to a QD
via tunneling interactions. Nonequilibrium states of the QD
are induced by a bias voltage V and controlled by the dif-
ference �φ of the Majorana tunneling phases. We consider
regimes of both low and high bias voltages V . First, for small
values of V it is shown that the differential quantum noise
∂S>(ω,V,�φ)/∂V as a function of the frequency ω has a
steplike shape when the Majorana interference is absent. The
height of this Majorana step is equal to the universal unitary
value e3/4h. As soon as the Majorana interference emerges,
there develops a finite frequency resonance on top of the
Majorana step at a frequency whose value is specified by V .
The width of this resonance is proportional to sin2 �φ and
its maximum is given by the universal unitary value 3e3/4h.
Second, for large values of V we demonstrate that in the
absence of the Majorana interference ∂S>(ω,V,�φ)/∂V is
strongly suppressed at all frequencies except for the vicinity of
a finite frequency specified by V where it exhibits an antires-
onance with the universal unitary minimum −e3/4h. When
the Majorana interference is switched on, this antiresonance
is split into two antiresonances having the same universal
unitary minimum −e3/4h located at two finite frequencies
specified by both V and �φ.

The paper is organized as follows. In Sec. II we present
a model of a nonequilibrium QD coupled to MBSs which
may interfere on the QD for finite values of the Majorana
phase difference. Nonequilibrium behavior of this system may
properly be described using the Keldysh technique which is
applied within the formalism of the Keldysh field integral in
Sec. III. We demonstrate and discuss the numerical results
obtained for the finite frequency differential quantum noise
in Sec. IV. Finally, Sec. V provides conclusions and outlooks.

II. MODEL OF A NONEQUILIBRIUM QUANTUM DOT
WITH MAJORANA INTERFERENCE

A minimal platform where one may access fluctuation
fingerprints of Majorana interference in finite frequency quan-
tum noise is provided by a QD with one nondegenerate state
interacting via tunneling with a grounded topological super-
conductor (TS) whose low energy behavior is governed by
two MBSs located at its ends.

The QD Hamiltonian has the form

ĤQD = εd d†d, (1)

where εd is the single-particle energy of the QD state. The
position of the energy level εd with respect to the chemical
potential μ of the system may be controlled by a gate voltage.
As stated in Ref. [100], the physical reason to consider a non-
degenerate QD is that the topological superconducting phase
requires high magnetic fields removing the spin degeneracy
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in the QD and thus only one spin component is of relevance.
Numerical renormalization group calculations [101], showing
the linear conductance plateau e2/2h in high magnetic fields,
provide an exact support for that statement. As a consequence,
Kondo correlations have no impact on the Majorana induced
behavior and a noninteracting QD is a proper model. Below
we will focus on the situation when εd > 0 meaning that the
QD is empty. When low energy dynamics is dominated by
MBSs, it plays no role whether εd < 0 or εd > 0 because
dependence on the gate voltage, i.e., on εd , becomes very
weak due to the Majorana universality. However, we prefer
using positive values of εd for consistency with possible future
experiments where for εd < 0 there could remain some resid-
ual Kondo correlations inducing the universal Kondo behavior
(see Refs. [102–104]) of physical observables despite high
magnetic fields. The Kondo universality present for εd < 0
would definitely be eliminated for εd > 0 restricting such
experiments to a regime where one may safely observe the
Majorana universality.

The Hamiltonian of the TS is

ĤTS = i

2
ξγ2γ1, (2)

where the Majorana operators satisfy γ
†
k = γk , {γk, γ j} =

2δk j , k, j = 1, 2 and a finite overlap of the MBSs is taken into
account by finite values of the energy ξ . The interaction be-
tween the QD and TS is described by the following tunneling
Hamiltonian,

ĤQD-TS = η∗
1d†γ1 + η∗

2d†γ2 + H.c. (3)

Here the tunneling matrix elements have the form

ηk = |ηk|eiφk , k = 1, 2. (4)

The amplitude |ηk| describes the strength of the tunneling
coupling between the QD and Majorana mode γk , k = 1, 2.
Below we will assume a specific preparation of the system
with |η1| � |η2|. This corresponds to a relatively simpler
technological preparation of the QD located at unequal dis-
tances to the ends of the TS as, for example, in Ref. [105].
Specifically, the QD is located closer to the Majorana mode
γ1. Implementations with |η1| � |η2|, that is, with a more
symmetric location of the QD with respect to the ends of
the TS, would require an advanced technology, for exam-
ple, preparing a TS with a more complex shape [26]. The
Majorana tunneling phases φk , k = 1, 2, are of particular im-
portance. The tunneling phase difference �φ = φ1 − φ2 gives
rise to Majorana interference in the system. Various physical
observables acquire a dependence on �φ. In particular, fluc-
tuation fingerprints of the Majorana interference in the finite
frequency quantum noise are encoded in its dependence on
the Majorana phase difference �φ.

The electric currents, in particular their fluctuations, are
measured in two normal metallic contacts coupled via tun-
neling to the QD. The two contacts are denoted as left (L) and
right (R). Their Hamiltonian is

ĤC =
∑

l=L,R

∑
k

εkc†
lkclk . (5)

In Eq. (5) it is assumed that both contacts have the same
continuum energy spectrum εk . It gives rise to a certain density

FIG. 1. A schematic outline of the mathematical model formu-
lated in Eqs. (1)–(8), assuming eV < 0. The model may be realized,
for example, with a straight TS, as shown in (a), or with an arched
TS, as shown in (b).

of states ν(ε) which is a function of energy. The continuum
energy spectrum of the contacts is involved in various physical
observables only through the density of states whose energy
dependence is often neglected, ν(ε) ≈ νC/2. This assumes a
weak energy dependence of ν(ε) in the energy domain where
quantum transport is most effective [106]. The contacts are
in their equilibrium states which are characterized by the
corresponding Fermi-Dirac distributions,

nL,R(ε) = 1

exp
( ε−μL,R

kBT

) + 1
. (6)

In Eq. (6) we assume that the contacts have the same temper-
ature T but their chemical potentials,

μL,R = μ ± eV/2, (7)

are different for finite bias voltages V . Below, in Sec. IV, we
perform numerical calculations assuming that the bias voltage
is chosen such that eV < 0.

The tunneling Hamiltonian taking into account the cou-
pling between the contacts and QD has the form

ĤQD-C =
∑

l=L,R

Tl

∑
k

c†
lkd + H.c., (8)

assuming independence of the tunneling matrix elements of
the quantum numbers k characterizing the states of the con-
tacts. The matrix elements TL,R together with the density
of states νC of the contacts determine the strengths �L,R =
πνC |TL,R|2 of the tunneling interactions between the QD and,
respectively, the left and right contacts. Below we focus on
the situation when �L = �R. The total tunneling strength is
� ≡ �L + �R.

The system described by Eqs. (1)–(8) is schematically
illustrated in Fig. 1. It may be implemented using various tech-
nological structures. For example, the straight TS in Fig. 1(a)
corresponds to the structure proposed in Ref. [105] while the
arched TS in Fig. 1(b) corresponds to the structure proposed
in Ref. [100] and used, e.g., in Refs. [26,107].

III. QUANTUM NOISE FROM THE KELDYSH
FIELD INTEGRAL

When V �= 0, the system is brought into a nonequilib-
rium state which has to be dealt with by a proper theoretical
tool. Here we use the Keldysh technique implemented within
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the formalism of the Keldysh field integral [106] defined on
the Keldysh closed time contour CK with forward and back-
ward branches labeled, respectively, with q = ±. The general
strategy of this formalism assumes a proper formulation of
a fermionic problem in terms of coherent states and their
eigenvalues which are the Grassmann fields χ (t ), t ∈ CK,
corresponding to the annihilation and creation operators used
to express the Hamiltonian of this problem.

Our problem is described by the Hamiltonian

Ĥ = ĤQD + ĤTS + ĤQD-TS + ĤC + ĤQD-C. (9)

In accordance with the general strategy of the Keldysh field
integral, we introduce the Grassmann fields (ψ (t ), ψ̄ (t )),
(φlk (t ), φ̄lk (t )), and (ζ (t ), ζ̄ (t )) instead of the operators
(d, d†), (clk, c†

lk ), and (γ1, γ2). Here the bars over the
Grassmann fields denote the Grassmann conjugation (G.c.).
Various physical observables of interest may be expressed
via these Grassmann fields. In particular, the matrix ele-
ment of the electric current operator between proper coherent
states is

Ilq(t ) = ie

h̄

∑
k

[Tl φ̄lkq(t )ψq(t ) − G.c.], (10)

where l = L, R specifies the contact, q = ± the branch of CK,
and t real time.

The electric current and other physical quantities may be
obtained from the Keldysh generating functional which is a
field integral over the fields defined on CK,

[�̄(t ),�(t )] ≡ [ψ̄ (t ), ψ (t ); φ̄lk (t ), φlk (t ); ζ̄ (t ), ζ (t )], (11)

with the integrand specified by the Keldysh action SK,

Z[Jlq(t )] =
∫

D[�̄(t ),�(t )]e
i
h̄ SK[Jlq (t )], (12)

where the Keldysh action is the sum of the actions of the
QD, TS, contacts, tunneling actions, and a source action to
generate physical quantities of interest,

SK[Jlq(t )] = SQD[ψ̄q(t ), ψq(t )]

+ STS[ζ̄q(t ), ζq(t )] + SC[φ̄lkq(t ), φlkq(t )]

+ SQD-TS[ψ̄q(t ), ζ̄q(t ); ψq(t ), ζq(t )]

+ SQD-C[ψ̄q(t ), φ̄lkq(t ); ψq(t ), φlkq(t )]

+ SSRC[Jlq(t )]. (13)

In Eq. (13) the actions SQD, STS, and SC are represented by
standard 2 × 2 matrices in the retarded-advanced space (see
Ref. [106]). The form of the tunneling actions is obtained from
the Hamiltonians in Eqs. (3) and (8):

SQD-TS[ψ̄q(t ), ζ̄q(t ); ψq(t ), ζq(t )]

= −
∫ ∞

−∞
dt{η∗

1[ψ̄+(t )ζ+(t ) + ψ̄+(t )ζ̄+(t )

− ψ̄−(t )ζ−(t ) − ψ̄−(t )ζ̄−(t )] + iη∗
2[ψ̄+(t )ζ+(t )

+ ψ̄−(t )ζ̄−(t ) − ψ̄−(t )ζ−(t ) − ψ̄+(t )ζ̄+(t )] + G.c.},
(14)

SQD-C[ψ̄q(t ), φ̄lkq(t ); ψq(t ), φlkq(t )]

= −
∫ ∞

−∞
dt

∑
l=L,R

∑
k

{Tl [φ̄lk+(t )ψ+(t )

− φ̄lk−(t )ψ−(t )] + G.c.}. (15)

To explore the electric current the source action is chosen as
follows:

SSRC[Jlq(t )] = −
∫ ∞

−∞
dt

∑
l=L,R

∑
q=±

Jlq(t )Ilq(t ). (16)

From the Keldysh generating functional one obtains the
average electric current and current-current correlations by
differentiations of Z[Jlq(t )] over the source field Jlq(t ):

〈Ilq(t )〉0 = ih̄
δZ[Jlq(t )]

δJlq(t )

∣∣∣∣
Jlq (t )=0

, (17)

〈Ilq(t )Il ′q′ (t ′)〉0 = (ih̄)2 δ2Z[Jlq(t )]

δJlq(t )δJl ′q′ (t ′)

∣∣∣∣
Jlq (t )=0

. (18)

In Eqs. (17) and (18) averaging,

〈F[�̄(t j ),�(t j′ )]〉0

≡
∫

D[�̄(t ),�(t )]e
i
h̄ S(0)

K F[�̄(t j ),�(t j′ )], (19)

is performed using the Keldysh action without the sources,
S(0)

K ≡ SK[Jlq(t ) = 0].
For measurements of the electric current and its fluctua-

tions in the left contact we put below l = L. The mean electric
current I (V,�φ) as a function of the bias voltage V and the
Majorana tunneling phase difference �φ is obtained from
Eq. (17) with l = L, that is, I (V,�φ) = 〈ILq(t )〉0, where q is
arbitrary since the average 〈· · · 〉0 defined in Eq. (19) removes
any dependence on q. We are interested in the quantum noise
which is defined as the greater current-current correlator,

S>(t, t ′;V,�φ) ≡ 〈δIL−(t )δIL+(t ′)〉0,

δILq(t ) ≡ ILq(t ) − I (V,�φ). (20)

Since we deal with stationary nonequilibrium states, the quan-
tum noise depends on t and t ′ only through their difference,
S>(t, t ′;V,�φ) = S>(t − t ′;V,�φ). The Fourier transform

S>(ω,V,�φ) =
∫ ∞

−∞
dteiωt S>(t ;V,�φ) (21)

provides the finite frequency quantum noise which, depend-
ing on the sign of the frequency ω, probes the photon
absorption/emission spectra:

Sab/em(ω,V,�φ) =
{

S>(ω,V,�φ), ω > 0,

S>(ω,V,�φ), ω < 0.
(22)

In our numerical calculations we have only focused on posi-
tive frequencies which admit interpretations of the numerical
results in terms of photon absorption processes (see Sec. IV
for details).

To examine universal fingerprints of the fluctuation behav-
ior induced by the interference of the MBSs we numerically
calculate the differential quantum noise, ∂S>(ω,V,�φ)/∂V ,
which is an experimentally accessible physical quantity [96].
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In the numerical calculations we first obtain the finite fre-
quency quantum noise S>(ω,V,�φ) from numerical integra-
tions with high precision. Afterward, using finite differences,
we numerically calculate the derivatives ∂S>(ω,V,�φ)/∂V
at finite frequencies ω in a wide rage. Of particular interest
is the universal Majorana regime arising when the energy
scale characterizing the strength of the tunneling between the
QD and TS essentially exceeds the other energy scales of the
problem. It may be achieved, for example, if the parameters
satisfy the following inequality,

|η1| > max{|εd |, kBT, |η2|, ξ , �, |eV |}, (23)

which has been assumed in performing our numerical analysis
of the finite frequency differential quantum noise discussed in
the next section. To interpret the behavior of the differential
quantum noise at finite frequencies in terms of emission and
absorption processes it may be helpful to recall (see Ref. [91])
that in the parameter regime specified by Eq. (23) the MBSs
induce in the QD a quasiparticle zero-energy state as well as
quasiparticle states with the energies ∓2|η1|. Due to the cou-
pling of the QD to the contacts the width of the zero-energy
state is equal to � whereas the widths of the states with the
energies ∓2|η1| are both equal to �/2. The behavior of the dif-
ferential quantum noise discussed below is mainly governed
by the zero-energy quasiparticle state. Transport processes
with initial and final states in the contacts or TS may excite
the QD. In the next section under weak excitations of the QD
we understand those excitations which are localized within
the energy range of order � around the zero-energy state.
Although, as discussed in the next section, large excitations
to the states with the energies ∓2|η1| also occur, they are not
in the focus of the present work.

IV. NUMERICAL RESULTS FOR THE DIFFERENTIAL
QUANTUM NOISE AT FINITE FREQUENCIES

We start our numerical analysis with the situation when
Majorana interference is absent, that is, when there is no any
dependence on the Majorana tunneling phase difference �φ.
This happens for |η2| = 0. In this case, as can be seen in Fig. 2,
at low bias voltages, |eV | � �, the differential quantum noise
as a function of the frequency ω has a steplike shape (the black
curve) with the jump located at h̄ω = |eV |. At frequencies
h̄ω < |eV | the differential quantum noise does not depend on
ω forming a plateau with the universal unitary value e3/4h
known for the static limit, ω → 0 (see, e.g., Refs. [77,82]).
At frequencies h̄ω > |eV | the differential quantum noise is
strongly suppressed except for the vicinity of the frequency
h̄ω = 2|η1|. Since at positive frequencies the quantum noise
may be interpreted in terms of photon absorption processes
(see Sec. III, Eq. (22), and also Refs. [90,91]), such a behavior
at low bias voltages indicates that for a given value V of
the bias voltage, |eV | � �, photon absorption becomes im-
possible for h̄ω > |eV | except for the vicinity of h̄ω = 2|η1|
where a photon absorption becomes possible due to transport
processes occurring along with the excitation of the QD by
energy �ε = 2|η1| (see Ref. [91]). The upper inset shows a
shallow antiresonance corresponding to such photon absorp-
tion. It is located around h̄ω = 2|η1| and the full width of this
antiresonance at half of its minimum is equal to �/2. It is

FIG. 2. Differential quantum noise ∂S>(ω,V )/∂V as a function
of the frequency ω in the absence of direct tunneling between the
QD and the second Majorana mode γ2, that is, |η2| = 0. The black
curve corresponds to a low bias voltage, V = V1, whereas the red
curve corresponds to a high bias voltage, V = V2, with the spe-
cific values |eV1|/� = 10−4 and |eV2|/� = 102. Here εd/� = 10,
kBT/� = 10−12, |η1|/� = 103, ξ/� = 10−14.

interesting to note that at low bias voltages, |eV | � �, photon
absorption admitted by tunneling of quasiparticles from the
left contact to the TS does not contribute to the differential
quantum noise ∂S>(ω,V )/∂V . Indeed, when accompanied by
weak excitations of the QD, such tunneling processes would
increase the quasiparticle energy by �εqp = |eV |/2 and thus
in the vicinity of the frequency h̄ω = |eV |/2 one could expect
that ∂S>(ω,V )/∂V has a specific resonance or antiresonance.
This is, however, not the case as demonstrated by the black
curve. On the other side, the situation at high bias voltages
is qualitatively different. As demonstrated by the red curve,
the differential quantum noise ∂S>(ω,V )/∂V is suppressed
by high bias voltages, |eV | � �, at all frequencies except
for the vicinity of h̄ω = |eV |/2. Around this frequency there
develops an antiresonance in ∂S>(ω,V )/∂V . As shown in the
lower inset, the minimum of this antiresonance is located at
h̄ω = |eV |/2 where the differential quantum noise reaches the
universal unitary value −e3/4h. The full width �h̄ω of the
antiresonance at half of its minimum is equal to �,

∂S>(ω,V )

∂V

∣∣∣∣
h̄ω=|eV |/2

= − e3

4h
, �h̄ω = �. (24)

Such a frequency dependence of ∂S>(ω,V )/∂V reveals that at
large bias voltages, |eV | � �, the most efficient opening of a
photon-absorption channel occurs in a neighborhood of h̄ω =
|eV |/2 where it is admitted by quasiparticle tunneling from
the left contact to the TS. These tunneling processes occur
together with weak excitations of the QD in such a way that in
the final state the quasiparticle energy is increased by �εqp =
|eV |/2 and the QD energy is increased or decreased by �ε �
� in accordance with the location of the minimum and the
characteristic width of the observed antiresonance.

When |η2| is finite, it provides a direct tunneling mech-
anism between the QD and the second Majorana mode γ2.
Now the first and second Majorana modes, γ1 and γ2, meet
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FIG. 3. Differential quantum noise ∂S>(ω,V, �φ)/∂V as a func-
tion of the frequency ω at low bias voltages, |eV | � �, and in
the presence of direct tunneling between the QD and the second
Majorana mode γ2. For all the curves |eV |/� = 10−4. The black
curve: |η2|/� = 10−2, �φ = π/128. The red curve: |η2|/� = 10−2,
�φ = π/32. The blue curve: |η2|/� = 2 × 10−2, �φ = π/128. The
other parameters are the same as in Fig. 2.

at the QD where they may interfere. This interference is
controlled by the difference of the Majorana tunneling phases
�φ = φ1 − φ2 which essentially determines the differential
quantum noise and brings fundamental changes in its fre-
quency dependence. As one can see in Fig. 3, in contrast
to the case with |η2| = 0 and |eV | � �, here for all three
curves, in addition to the already known steplike shape, one
observes a resonance in ∂S>(ω,V,�φ)/∂V in the vicinity of
the frequency h̄ω = |eV |/2. As in Fig. 2, on the plateau of
the step ∂S>(ω,V,�φ)/∂V = e3/4h whereas the maximum
of the resonance arising on top of this plateau reaches another
universal unitary value,

∂S>(ω,V,�φ)

∂V

∣∣∣∣
h̄ω=|eV |/2

= 3e3

4h
. (25)

The inset shows in more detail the shape of the resonance
in each of the three curves, particularly, the variation of its
full width �h̄ω at half of its maximum. It is clearly seen that
�h̄ω strongly depends on both |η2| and �φ. Our numerical
calculations reveal that

�h̄ω ∼ (|η2| sin �φ)2

�
. (26)

In accordance with Fig. 2, the resonance disappears for |η2| =
0. Moreover, it also disappears when �φ = 0, π . The strong
dependence of this resonance on the Majorana phase dif-
ference �φ is suggestive of its pure Majorana interference
nature. It also may be interpreted as a bound state in the con-
tinuum related to the zero-energy peak in the spectral function
of the TS (see, e.g., Ref. [99]). The Majorana interference
projects this zero-energy peak in the spectral function onto
the above resonance of finite width �h̄ω in the differential
quantum noise and in this way turns it into a quasi-BIC. This
BIC may also be revealed by means of interference effects
captured by the conductance but that would require a more

complicated system with at least two TSs where the BIC
manifests as a zero-bias antiresonance in the conductance
as has been shown in Ref. [99]. In contrast, the differential
quantum noise at finite frequencies enables one to detect this
BIC in a simpler system using only one TS. Here at low bias
voltages, |eV | � �, photon absorption processes admitted by
weak excitations of the QD and the quasiparticle tunneling
from the left contact to the TS are activated by the Majorana
interference and reveal the BIC in the vicinity of the fre-
quency h̄ω = |eV |/2 as the above discussed resonance with
the universal unitary maximum 3e3/4h. More importantly,
since Majorana fluctuation fingerprints are more unique than
those of Majorana mean currents, the differential quantum
noise at finite frequencies provides a reliable tool to identify
BICs as originating from Majorana states and not from other
states having non-Majorana nature. In particular, as will be
shown below (see Fig. 8 and the corresponding discussion),
the differential quantum noise does not exhibit any resonance
at the frequency h̄ω = |eV |/2 when the MBSs are replaced
with Andreev bound states (ABSs) coupled to the QD. Thus,
the resonance in ∂S>(ω,V,�φ)/∂V characterized by the uni-
versal unitary maximum 3e3/4h at the frequency h̄ω = |eV |/2
is a unique signature that the BIC has the Majorana origin
and does not result from other quantum states. On the other
side, since mean currents might be controversial with respect
to Majorana states, the non-Majorana nature of the BIC could
still have been assumed if one had restricted the analysis of
the BIC only by the differential conductance measurements
[99] which are still important and should be performed as
the first step before probing the BIC via more involved mea-
surements such as measurements of the differential quantum
noise at finite frequencies. We emphasize that the Majo-
rana interference plays here a fundamental role activating the
photon-absorption channel around h̄ω = |eV |/2 for low bias
voltages |eV | � �. Indeed, as we have already seen in Fig. 2,
although opening of this photon-absorption channel is also
admitted for |η2| = 0, without the Majorana interference this
channel is not active in the sense that it does not produce any
additional finite contribution to the differential quantum noise
∂S>(ω,V,�φ)/∂V .

To see how the universal resonance develops and disap-
pears at low bias voltages, |eV | � �, we analyze the value of
the differential quantum noise at h̄ω = |eV |/2 as a function of
�φ for various values of |η2|. From the previous discussion
we know that, on one side, this resonance must disappear
for �φ → 0, π or |η2| → 0 and that, on the other side, its
universal unitary maximum 3e3/4h is already reached for very
small values of the Majorana phase difference, such as �φ =
π/128, when |η2| is finite. Thus one could naturally conclude
that for a finite value of |η2| the resonance arises as a jump
for arbitrarily small deviations of �φ from 0 and π . However,
our numerical results shown in Fig. 4 demonstrate that this is
not so and the behavior of the resonance is highly nontrivial.
As one can see in Fig. 4(a), showing results for larger values
of |η2|, the differential quantum noise at h̄ω = |eV |/2 indeed
quickly grows from the universal unitary plateau e3/4h at
�φ = 0, π to the universal unitary maximum 3e3/4h. How-
ever, if |η2| is very large, ∂S>(ω,V,�φ)/∂V is strongly
suppressed far from �φ = 0, π as demonstrated in Fig. 4(a)
by the black curve corresponding to the value of |η2| which
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FIG. 4. Differential quantum noise ∂S>(ω,V, �φ)/∂V as a func-
tion of the Majorana phase difference �φ at h̄ω = |eV |/2, |eV |/� =
10−4. Panel (a): |η2|/� = 10−2 (black curve), |η2|/� = 5 × 10−3

(red curve), |η2|/� = 2 × 10−3 (blue curve), |η2|/� = 10−3 (green
curve). Panel (b): |η2|/� = 5 × 10−4 (black curve), |η2|/� = 5 ×
10−5 (red curve), |η2|/� = 2 × 10−5 (blue curve), |η2|/� = 10−5

(green curve). The other parameters are the same as in Fig. 2.

has also been used to obtain the black and red curves in Fig. 3.
Thus for large values of |η2| the resonance is fully developed
in small regions centered around the points �φ = 0, π in
whose extremely narrow vicinities (located fully within these
small regions) the resonance disappears recovering the uni-
versal unitary plateau e3/4h. The inset in Fig. 4(a) shows one
of these extremely narrow vicinities, namely, the one with
�φ = π . Clearly, these extremely narrow vicinities should
expand when |η2| decreases and this is what one observes
in the inset. Upon decreasing |η2| such expanding should
eventually decrease the differential quantum noise in the small
regions, where ∂S>(ω,V,�φ)/∂V = 3e3/4h, and increase
∂S>(ω,V,�φ)/∂V in the wide regions, where it is strongly
suppressed, making it equal to the universal unitary plateau
e3/4h in the whole range of �φ for sufficiently small values of
|η2|. However, before this situation is achieved, one observes
that when |η2| decreases, the resonance is fully developed in
wider and wider regions of the Majorana phase difference as
demonstrated in Fig. 4(b). Indeed, as one can see, the black
and red curves in Fig. 4(b) have wide plateaus on which
∂S>(ω,V,�φ)/∂V = 3e3/4h. This corresponds to the situa-
tion when the resonance fully develops already for very small
deviations from �φ = 0, π and reaches its universal unitary
maximum 3e3/4h almost in the whole range of �φ. Note
that this behavior happens when |η2| is about seven orders
of magnitude smaller than |η1|. This emphasizes that even
very weak coupling of the second Majorana mode γ2 to the
QD may fundamentally change the behavior of the differential
quantum noise. Only for very small values of |η2| the universal
unitary plateaus 3e3/4h are destroyed and, as can be seen from
the blue and green curves in Fig. 4(b), ∂S>(ω,V,�φ)/∂V
starts to decrease down to the universal unitary plateau e3/4h
for all values of �φ.

Majorana quantum noise in strongly nonequilibrium states
induced by high bias voltages, |eV | � �, is particularly
appealing for future experiments. Indeed, in this case

FIG. 5. Differential quantum noise ∂S>(ω,V, �φ)/∂V as a func-
tion of the frequency ω at high bias voltages, |eV | � �, and in the
presence of direct tunneling between the QD and the second Majo-
rana mode γ2. For all the curves |eV |/� = 102. Panel (a): |η2|/� = 1
and �φ = π/2 (black curve), �φ = π/4 (red curve). Panel (b):
|η2|/� = 10 and �φ = π/2 (black curve), �φ = π/4 (red curve).
The other parameters are the same as in Fig. 2.

∂S>(ω,V,�φ)/∂V turns out to be extremely sensitive to
the Majorana interference especially for |η2| � �. As has
been shown in Fig. 2, for |η2| = 0 and high bias voltages,
|eV | � �, the differential quantum noise is suppressed for all
frequencies except for the vicinity of h̄ω = |eV |/2. Around
this frequency there arises an antiresonance with the universal
unitary minimum −e3/4h located at h̄ω = |eV |/2. The full
width of this antiresonance at half of its minimum is equal
to �. As demonstrated by Fig. 5, in the presence of direct
tunneling between the QD and the second Majorana mode
γ2, that is, when |η2| �= 0, this antiresonance is split into two
antiresonances. From our numerical calculations we find that
the minima of these two antiresonances are located symmet-
rically with respect to the frequency h̄ω = |eV |/2, that is,
equidistantly from the location of the minimum of the original
antiresonance, specifically, at the two frequencies

h̄ω± = |eV |
2

± 2|η2| sin �φ. (27)

At these two frequencies the differential quantum noise
reaches the same universal unitary minimum −e3/4h as the
one of the original antiresonance. Moreover, the two antires-
onances centered around h̄ω± are twice narrower than the
original antiresonance from which they have emerged via the
above mentioned splitting. That is, they have the same full
widths �h̄ω, equal to �/2, at half of their universal unitary
minimum −e3/4h,

∂S>(ω,V,�φ)

∂V

∣∣∣∣
ω=ω±

= − e3

4h
,

�h̄ω = �

2
. (28)

Alternatively, instead of the above described picture illustrat-
ing the emergence of the above two antiresonances as a split of
the original antiresonance one might conceive of a resonance
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FIG. 6. Differential quantum noise ∂S>(ω,V,�φ)/∂V at the
resonance and antiresonance frequencies. Panel (a): As a function
of the QD energy level εd at the resonance frequency h̄ω = |eV |/2
(black curve) and antiresonance frequencies ω = ω± (red curve). For
both curves the overlap energy ξ/� = 10−14. Panel (b): As a function
of the overlap energy ξ at the resonance frequency h̄ω = |eV |/2
(black curve) and antiresonance frequencies ω = ω± (red curve). For
both curves the QD energy level εd/� = 10. In both panels for the
black curves |eV |/� = 10−4, |η2|/� = 10−2, �φ = π/128 whereas
for the red curves |eV |/� = 102, |η2|/� = 10, �φ = π/2. The other
parameters are the same as in Fig. 2.

induced by the Majorana interference and interpret it in terms
of the BIC discussed in connection with Fig. 3. This resonance
develops in the middle of the original antiresonance as soon
as |η2| �= 0. The height of this resonance approaches the uni-
versal unitary value e3/4h when its maximal value approaches
zero at h̄ω = |eV |/2. The bottom of the resonance is reached
at the two points h̄ω± with the distance between them

|h̄ω+ − h̄ω−| = 4|η2|| sin �φ|. (29)

In experiments one may vary the Majorana phase differ-
ence �φ and observe how the two antiresonances move
with respect to each other. Measuring then the maximal
distance between the minima of the antiresonances one ob-
tains the maximal value of |h̄ω+ − h̄ω−|, that is, 4|η2|.
After that, for any given distance between the minima of
the antiresonances, |h̄ω+ − h̄ω−|, one may obtain the corre-
sponding Majorana phase difference as | sin �φ| = |h̄ω+ −
h̄ω−|/4|η2|. Therefore detecting the two antiresonances,
specifically, the locations of their minima at high bias volt-
ages, |eV | � �, would enable us to determine the frequencies
h̄ω± and, in this way, measure the values of |η2| and �φ

in experiments on nonequilibrium finite frequency quantum
noise driven by Majorana interference.

Let us now verify the universality of the Majorana reso-
nance and antiresonances at, respectively, low and high bias
voltages. The universality assumes independence of the res-
onance and antiresonances on the gate voltage controlling
the position of the QD energy level εd . As one can see
in Fig. 6(a), both the resonance and antiresonances remain
unchanged when εd is varied over a wide range. Note that
here we have also included negative values of εd to confirm

FIG. 7. Differential quantum noise ∂S>(ω,V, �φ)/∂V as a func-
tion of the frequency ω for strongly overlapping MBSs characterized
by ξ/� = 2 × 102. Panel (a): Low bias voltages, |eV | � �, with the
specific values of the parameters |η2|/� = 10−2, |eV |/� = 10−4, and
�φ = π/128 (black curve), �φ = π/2 (red curve). Panel (b): High
bias voltages, |eV | � �, with the specific values of the parameters
|η2|/� = 10, |eV |/� = 102, and �φ = π/2 (black curve), �φ =
π/4 (red curve). The other parameters are the same as in Fig. 2.

our above statement that in the universal Majorana regime,
Eq. (23), the differential quantum noise does not depend on
εd for both εd > 0 and εd < 0.

It is also important to explore how the differential quan-
tum noise at the resonance and antiresonance frequencies
behaves at large values of ξ , that is, when the overlap of the
MBSs is strong as may happen for short distances between
the MBSs. In this case the MBSs communicate through the
TS and this communication may provide an additional in-
terference channel. Figure 6(b) demonstrates that when the
MBSs start to strongly overlap, the differential quantum noise
is significantly suppressed both at the resonance frequency
h̄ω = |eV |/2 for low bias voltages, |eV | � �, and at the an-
tiresonance frequencies ω± for high bias voltages, |eV | � �.
To explore in more detail the fate of the resonance and an-
tiresonances for strongly overlapping MBSs we have analyzed
the frequency dependence of the differential quantum noise
at large values of ξ . In the regime of low bias voltages,
|eV | � �, shown in Fig. 7(a), we find that the communication
between the MBSs through the TS results in a disappearance
of the resonance at h̄ω = |eV |/2 for all values of the Majo-
rana phase difference �φ. Moreover, the dependence on �φ

becomes very weak as demonstrated by the black and red
curves which are very close to each other even for the values
of �φ chosen to reach the maximal distance between the
curves. Although the steplike behavior (with the jump located
at h̄ω = |eV |) is still present, the differential quantum noise is
significantly suppressed below the universal unitary plateau
arising at small values of ξ , that is, ∂S>(ω,V,�φ)/∂V �
e3/4h. A more interesting behavior is observed in the regime
of high bias voltages, |eV | � �, shown in Fig. 7(b). Here
we find two major changes in comparison with the picture
discussed above for small values of ξ . First, the minima
of the two antiresonances become unequal and significantly

195410-8



NONEQUILIBRIUM FINITE FREQUENCY RESONANCES IN … PHYSICAL REVIEW B 109, 195410 (2024)

FIG. 8. Differential quantum noise ∂S>(ω,V, �φ)/∂V as a func-
tion of the frequency ω for ABSs emerging in our model when
the Majorana tunneling amplitudes have the same order, |η2| ∼
|η1|, and the overlap energy ξ is large. Specifically, here we use
ξ/� = 8 × 102. Panel (a): Low bias voltages, |eV | � �, with the
specific values of the parameters |η2|/� = 2 × 102, |eV |/� = 10−4,
and �φ = π/128 (black curve), �φ = π/64 (red curve). Panel (b):
High bias voltages, |eV | � �. The black curve: |η2|/� = 2 × 102,
�φ = π/2, |eV | = |eV1|. The red curve: |η2|/� = 2 × 102, �φ =
π/4, |eV | = |eV1|. The green curve: |η2|/� = 4 × 102, �φ = π/2,
|eV | = |eV1|. The blue curve: |η2|/� = 4 × 102, �φ = π/2, |eV | =
|eV2|. Here |eV1|/� = 102, |eV2|/� = 2 × 102. The other parameters
are the same as in Fig. 2.

deviate from the universal unitary minimum −e3/4h. Second,
the locations of these minima shift from the frequencies ω±
[see Eq. (27)] to some other frequencies. For larger values of
ξ both the deviations from the universal unitary minimum and
the shifts from the frequencies ω± increase even further.

Finally, we would like to compare the above discussed be-
havior of the differential quantum noise induced by the MBSs,
in particular its resonance and antiresonances brought by the
Majorana interference, with the differential quantum noise
induced by ABSs. Transport phenomena relevant to ABSs are
captured by our theoretical model in a certain range of its
parameters. Specifically, when the overlap energy ξ is large
and the Majorana tunneling amplitudes are of the same order,
|η2| ∼ |η1|, our theoretical model describes (see Ref. [105])
ABSs coupled to the QD. Note that a different regime which
is also specified by the Majorana tunneling amplitudes of
the same order, |η2| ∼ |η1|, but in which the overlap energy
ξ remains small would not be appropriate to model ABSs
because it would describe the MBSs in a system with a curved
TS corresponding to Fig. 1(b) whose analysis we would like
to postpone for future research. To understand how the dif-
ferential quantum noise changes when the MBSs are replaced
with the ABSs we have performed a numerical analysis for
the case of ABSs coupled to the QD. It turns out that, in
contrast to the MBSs, the differential quantum noise driven
by the ABSs does not have any resonance at the frequency
h̄ω = |eV |/2 in the regime of low bias voltages, |eV | � �.
Indeed, as demonstrated in Fig. 8(a), the differential quan-
tum noise has the expected steplike behavior (with the jump
located at h̄ω = |eV |) but no resonance at h̄ω = |eV |/2

appears for any value of �φ. Moreover, the differential
quantum noise is strongly suppressed below the universal
unitary plateau e3/4h. We find that this suppression cannot
be compensated by varying �φ whose increase suppresses
∂S>(ω,V,�φ)/∂V even further as demonstrated by the red
curve. In the regime of high bias voltages, |eV | � �, the
ABSs have much more interesting fluctuation fingerprints
which are essentially different from the ones characterizing
the MBSs. Recall that the MBSs give rise to two an-
tiresonances with equal universal unitary minima at which
∂S>(ω,V,�φ)/∂V = −e3/4h. The minima are located at the
two frequencies ω± [see Fig. 5 and Eq. (27)]. The distance
between these antiresonances depends on both |η2| and �φ.
In contrast, as one can see in Fig. 8(b), the ABSs give
rise to resonance and antiresonance and not to a pair of
antiresonances as happens for the MBSs. Further, in these
resonance-antiresonance pairs induced by the ABSs the am-
plitudes of the resonance and antiresonance are not equal.
Moreover, the frequencies of the ABS resonance and antires-
onance are different from the frequencies ω± of the MBS
antiresonances. As demonstrated by the black and red curves
in Fig. 8(b), the frequencies of the ABS resonance and an-
tiresonance depend on �φ. They also depend on |η2| as
demonstrated by the black and green curves. However, in
contrast to the distance between the MBS antiresonances,
the distance between the ABS resonance and antiresonance
depends neither on �φ nor on |η2| as one clearly observes
from the black, red, and green curves. Our numerical analysis
reveals that in the ABS range of our model and in the regime
specified by Eq. (23) the distance between the ABS resonance
and antiresonance depends only on the bias voltage and, in
fact, it is equal to |eV | as, in particular, exemplified by the
green and blue curves.

V. CONCLUSION

In this work we have numerically investigated universal
fluctuation fingerprints of Majorana interference in the differ-
ential quantum noise ∂S>(ω,V,�φ)/∂V at finite frequencies
ω in a system where a QD is linked via tunneling to MBSs
of a TS with the tunneling phase difference �φ. Nonequilib-
rium states of this system are induced by a bias voltage V .
Both low and high bias voltages have been considered. In the
regime of low bias voltages it has been found that when the
MBSs do not interfere, the differential quantum noise as a
function of the frequency has a steplike shape with the univer-
sal unitary Majorana plateau e3/4h for h̄ω < |eV | and with
strong suppression of ∂S>(ω,V )/∂V for h̄ω > |eV |. In the
presence of the Majorana interference we have discovered that
in the vicinity of the frequency h̄ω = |eV |/2 there develops
a narrow resonance whose characteristic width is propor-
tional to sin2 �φ. The maximum of this resonance reaches
another universal unitary Majorana value, namely 3e3/4h, at
h̄ω = |eV |/2. The appearance of this resonance has been ex-
plained in terms of an additional photon-absorption channel.
This channel is energetically admitted by weak excitations of
the QD and tunneling processes from the left contact to the
TS. However, opening of this additional photon-absorption
channel is activated only by the Majorana interference which
gives an additional finite contribution in the form of the above
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Majorana resonance in ∂S>(ω,V,�φ)/∂V . Exploring the
regime of high bias voltages we have found that in the absence
of the Majorana interference the differential quantum noise
as a function of the frequency is strongly suppressed every-
where except for the vicinity of the frequency h̄ω = |eV |/2.
Here ∂S>(ω,V )/∂V has an antiresonance with the minimum
equal to the universal unitary Majorana value −e3/4h. This
minimum is located at h̄ω = |eV |/2. The characteristic width
of this antiresonance is determined by the strength of the
tunneling between the QD and contacts. When the Majorana
interference appears, this antiresonance splits into two antires-
onances. The minima of these antiresonances are the same as
the minimum of the original antiresonance; that is, they both
reach the universal unitary Majorana value −e3/4h. They are
located at two finite frequencies h̄ω± specified by V and �φ.
The characteristic widths of the two antiresonances are equal
and twice less than the width of the original antiresonance.
An alternative interpretation of the two antiresonances has
been given in terms of a resonance emerging at the mini-
mum of the original antiresonance. Specifically, for high bias
voltages the Majorana interference also activates the addi-
tional photon-absorption channel discussed for the case of
low bias voltages and gives an additional finite contribution to
the differential quantum noise. This finite contribution forms
in ∂S>(ω,V,�φ)/∂V a resonance at the minimum of the
original antiresonance and, as a result, there appear two an-
tiresonances at the frequencies h̄ω±. It has been suggested that
a detection of the frequencies h̄ω± might be a practical tool to
measure the Majorana phase difference �φ in experiments on
nonequilibrium finite frequency quantum noise. In addition,
the universality of the Majorana resonance and antiresonances
at, respectively, low and high bias voltages has been demon-
strated and the case of strongly overlapping MBSs has been
analyzed. Finally, the fluctuation fingerprints explored for the
MBSs have been compared with those emerging when the
MBSs are replaced with ABSs coupled to the QD. It has been
shown that the ABSs give rise to fundamental changes in the
behavior of the differential quantum noise as compared to the
one induced by the MBSs. In particular, for the ABSs one
does not observe any resonance at h̄ω = |eV |/2 in the low
bias regime whereas in the high bias regime instead of two
antiresonances with equal amplitudes there appear a

resonance and antiresonance with different amplitudes. The
frequencies of these ABS resonance and antiresonance are
different from the frequencies of the two MBS antiresonances.
Moreover, in contrast to the distance between the MBS an-
tiresonances, the distance between the ABS resonance and
antiresonance does not depend on |η2| and �φ but depends
only on the bias voltage. Specifically, our numerical analysis
has revealed that this distance is equal to |eV |.

In the present work we have focused on numerical calcula-
tions of the differential quantum noise at finite frequencies and
predicted an appearance of a resonance and antiresonances
induced by Majorana interference. The numerical approach
has allowed us to achieve the goals formulated in the intro-
duction, Sec. I, in particular, to reveal universal unitary values
characterizing fluctuation fingerprints of interfering MBSs at
finite frequencies. Namely, the maximum and minima of,
respectively, the Majorana resonance and antiresonances are
quantized to some specific fractions of e3/h. There appears
a natural question: How can one understand these fractions?
Within a purely numerical approach it is hard or, perhaps,
impossible to answer this question. Thus, as a possible out-
look, it would be useful to obtain an analytical solution or
develop an appropriate effective model which would be able to
explicitly show how the interfering MBSs result in the numer-
ically predicted fractional values of the differential quantum
noise at finite frequencies. Another interesting problem is
to investigate universal fingerprints of Majorana interference
in the finite frequency quantum noise when nonequilibrium
states of a system with MBSs have thermoelectric nature.
This might be achieved, e.g., by applying to the system both
electric and thermal voltages. If the MBSs interfere, one
may expect that the differential quantum noise will have a
specific universal behavior at finite frequencies. How these
frequencies depend on various parameters controlling both
the Majorana interference and nonequilibrium in the system is
an important problem for fundamental and practical research
on MBSs.
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