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Quarter-quantized thermal Hall effect with parity anomaly
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We show that in the proximity of s-wave superconductors, the magnetic topological surface states can
transform into the Majorana surface state, featuring a single gapless Majorana cone with a parity anomaly when
the superconducting pairing gap matches the surface magnetization gap. The emergence of an N = 1/2 Majorana
chiral edge current is observed at the boundaries between the gap region and the gapless region. Additionally,
in systems with a single gapless Majorana cone, a quarter-quantized thermal Hall conductance appears under
the dephasing. By mapping the system to a conductor-network model, we identify the appearance of 1/4 chiral
heat channels as the cause of the quarter-quantized Hall thermal conductance. We observe the stability of this
quarter-quantized thermal conductance under temperature variations, serving as a distinctive feature indicating
the presence of a single gapless Majorana cone in the system. Our models can be experimentally realized using
magnetic topological insulators or iron-based superconductors.
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I. INTRODUCTION

Finding a single gapless Dirac cone of fermions has been a
persistent problem in condensed matter physics [1–3]. Mass-
less Dirac fermions possess parity symmetry, and the coupling
with gauge fields introduces an infinitesimally small mass
term to break parity symmetry through a regularization pro-
cess, which results in the emergence of a Chern-Simons
theory, known as the parity anomaly [4–6]. In recent years,
various systems with a single gapless Dirac cone have been
proposed to investigate the parity anomaly [7–17]—for ex-
ample, the Haldane model achieving a single massless Dirac
fermion by finely tuning the band gap of one valley to close
in a honeycomb lattice, while keeping another valley open
[18]. Another remarkable approach involves semimagnetic
topological insulators. In this system, a gapped Dirac cone
emerges on one surface due to the breaking of the local time
reversal symmetry, while the Dirac cone on the opposite sur-
face remains gapless [16]. In systems with a single gapless
Dirac cone, the parity anomaly leads to a half-integer quan-
tized Hall conductance, as predicted by the anomaly-induced
Chern-Simons theory [6,18–20]. Recently, experimental ob-
servations have confirmed the existence of half-integer Hall
conductance in semimagnetic topological insulators [21]. To
describe systems where both massive and massless Dirac
fermions coexist, a concept known as the “parity anomaly
semimetal” has been proposed [22]. However, all previous
models have been based on electronic systems, and the ex-
ploration of how to realize the parity anomaly in Majorana
systems has yet to be investigated.

The Majorana fermion can be interpreted as the splitting
of a complex fermionic field of an electron into real and
imaginary parts [23]; thus the massless Majorana fermion
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also satisfies the Dirac equation. While Majorana systems
cannot couple with electromagnetic gauge fields, they can
couple with gravity fields [24]. When a massless Majorana
fermion couples with a gravity field, parity anomaly results
in a gravitational Chern-Simons term [23–26]. This leads
to a quarter-quantized thermal Hall conductance, expressed

as κH = sgn(M ) 1
4

π2k2
B

3h T0 = sgn(M ) 1
4κ0, where κ0 = π2k2

B
3h T0 is

the quantum thermal conductance, T0 is the temperature, and
M is the mass for the regulator [24,25]. To achieve parity
anomaly in a Majorana system, a system with a single gapless
Majorana cone is required. In time-reversal-invariant (TRI)
topological superconductors (TSCs), each surface hosts a sin-
gle Majorana cone [23,27,28]. A naive analogy is drawn to the
case of semimagnetic 3D topological insulators (TIs) where
breaking time reversal on one surface achieves parity anomaly
in a Majorana system. However, the absence of bulk materials
confirmed as TRI TSCs poses experimental challenges for all
TRI-TSC-based approaches [23].

In this paper, we propose an approach to realize parity
anomaly in a Majorana system without the need for TRI
TSC bulk materials. By introducing superconducting pairing
through proximity effects on a magnetic topological surface
state, a massless Majorana fermion will emerge when the su-
perconducting pairing gap matches the surface magnetization
gap. Additionally, by constructing a system featuring only
a single Majorana cone, we show that an N = 1/2 Majo-
rana chiral edge current emerges on the boundary between a
massless Majorana fermion and a massive Majorana fermion.
Utilizing nonequilibrium Green’s function (NEGF) calcula-
tions for a six-terminal Hall-bar system, we identity that the
parity anomaly leads to a quarter-Hall thermal conductance
plateau under the influence of dephasing. Finally, by mapping
the system to a conductor-network model, we demonstrate the
connection between the appearance of the 1/4 Hall thermal
conductance plateau and the presence of quarter-quantized
chiral Majorana channels.
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The paper is structured as follows. In Sec. II, by using
a low-energy effective model, we provide a physical depic-
tion of achieving a single gapless Majorana cone. Section III
employs numerical methods to illustrate the existence of an
N = 1/2 Majorana edge chiral current in the Majorana parity
anomaly system. In Sec. IV, we calculate the 1/4 Hall ther-
mal conductance in the system under dephasing using NEGF.
Besides, by solving a conductor-network model, we establish
the relationship between 1/4 Hall thermal conductance and
the appearance of 1/4 quantized chiral channels. The stability
of the Hall thermal conductance under temperature variations
is investigated in Sec. V. We address experimental implemen-
tation and conclude with a summary in Sec. VI. Additional
computational details and supplementary figures are provided
in Appendixes A to C.

II. SINGLE MASSLESS MAJORANA FERMION
AND PARITY ANOMALY

First, starting from the low-energy model of the surface
of the 3D TI, we present a physical picture for realizing
a single gapless Majorana cone. The surface of the 3D TI
hosts a single gapless Dirac cone, with low-energy effective
Hamiltonian expressed as Hsurf (k) = A(kxsx + kysy) on the
basis (ck↑, ck↓), where si=x,y,z denotes Pauli matrices on the
spin space and A is a parameter related to the Fermi veloc-
ity. A gapless Dirac cone can be interpreted as two gapless
Majorana cones in the Bogoliubov–de Gennes representation
[29,30]. Achieving parity anomaly of the Majorana system
based on 2D topological surface states would be possible if
there existed a method to selectively open the gap of one Ma-
jorana cone while keeping the other gap closed. Introducing
both magnetization and superconductivity, the surface Hamil-
tonian in the Majorana basis �k is block-diagonalized into
two components: H±= A(kxsx ± kysy)+(� ± MA)sz. Here, �

represents the superconducting pairing potential, and MA

signifies the surface magnetization. The Majorana basis
�k is defined as �k = 1√

2
(ck↑ + c†

−k↓, ck↓ + c†
−k↑,−ck↓ +

c†
−k↑,−ck↑ + c†

−k↓)T , where c†
k↑/↓ and ck↑/↓ are the creation

and annihilation operators for electrons [30–32].
In this scenario, H± can be interpreted as 2D massive

Majorana fermions with different chirality on the surface,
characterized by masses � ± MA. This model can be consid-
ered analogous to the Haldane model, which features massive
Dirac fermions of opposite chirality in the K and K ′ valleys
of graphene [18]. The mass term induces the opening of
gaps in the Majorana cone H± [as illustrated in Fig. 1(a)],
with the corresponding gap’s Chern number given by N± =
1
2 sgn(MA ± �) [31]. For convenience in the following discus-
sion, we consider MA > 0 and � > 0. When � < MA, both
gaps in H± have Chern numbers of 1/2, resulting in a total
Chern number N = N+ + N− = 1. As � increases beyond
MA, accompanied by the gap closing and reopening of the
Majorana cone corresponding to H−, the Chern number in
the corresponding gap changes from 1/2 to −1/2, yielding
a total Chern number N = 0. When � = MA, the Majorana
cone corresponding to H− becomes precisely gapless, giving
rise to the coexistence of massless 2D Majorana fermions
with massive 2D Majorana fermions on one surface, resulting

FIG. 1. (a) Schematic diagram of the changes in the two
Majorana cones on the magnetic topological surface as the super-
conducting pairing potential � increases, with the Majorana cones
corresponding to H+ and H− represented in blue and red, respec-
tively. (b) Schematic diagram of the system with single gapless
Majorana cone on the top surface, with red and blue cones repre-
senting Majorana cones corresponding to H+ and H−, respectively.

in a total Chern number of 1/2. Introducing an out-of-plane
magnetization MA on all surfaces of a 3D TI and a supercon-
ducting pairing potential � specifically on the top surface,
where � = MA, results in a system featuring a single gap-
less Majorana cone [see Fig. 1(b)]. Drawing parallels with a
system possessing a single gapless Dirac cone [22,33,34], a
Majorana edge chiral current with N = 1/2 emerges on the
boundary of the top surface due to the parity anomaly.

III. N = 1/2 MAJORANA EDGE CHIRAL CURRENT

Next, we use numerical methods to demonstrate the ex-
istence of the N = 1/2 Majorana edge chiral current. The
Hamiltonian of a 3D TI in a cubic lattice is given by [35]

HTI = (m − 6B)s0σz +
∑

i

(2Bs0σz cos ki + Asiσx sin ki ),

(1)

where m, B, and A are the model’s parameters, and ki is the
momentum with i = x, y, z. si and σi are the Pauli matrices
on the spin and orbital spaces. By choosing parameters m = 1
and B = 0.6, the 3D TI is placed in a nontrivial topological
phase. Using Eq. (1), we establish a lattice model with open
boundary conditions in the x and z directions while maintain-
ing translational symmetry in the y direction. The widths in
the x and z directions are denoted as Lx and Lz, respectively
[see Fig. 2(a)]. Then, we introduce an out-of-plane magneti-
zation MA on all surfaces. Additionally, on the top surface,
a superconducting pairing potential � arises through prox-
imity to an s-wave superconductor. With � = MA, a gapless
Majorana cone (shown in red) emerges on the top surface,
along with a gapped Majorana cone featuring a gap of 4MA

[blue cone on the top surface of Fig. 2(a)]. The remaining
surfaces exhibit two Majorana cones with gaps of 2MA each.
At the boundary of the top surface, a Majorana chiral edge
current with N = 1/2 [depicted by red and blue arrows in
Fig. 2(a)] appears, and we will delve into this phenomenon
in the subsequent discussion.
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FIG. 2. (a) Schematic diagrams for the 3D TI (lower) and the
unfolding of its surface into a quantum well (upper), with red and
blue cones representing Majorana cones corresponding to H+ and
H−, respectively. (b) The analytical results (black lines) and numer-
ical results (scatter plot) of the model’s band structure, with colors
indicating the average displacement relative to the center for each
Bloch state 〈x/Lx − 1/2〉. We set Lx = 50, Lz = 5 in the calculation.
(c) The upper panel is the distribution of Majorana current density
in the x-z plane. The lower panel describes the changes in surface
current corresponding to the dashed black box in the upper panel.
(d) The variation in Majorana current flux as the summation range
x increases. In both (c) and (d), we have set Lx = 500, Lz = 8, and
η = 0.008.

The surface of this model can be effectively unfolded into
a quantum well model [upper subplot in Fig. 2(a)]. Due to the
absence of coupling between the Majorana cones correspond-
ing to H+ (blue cone) and H− (red cone), they can be treated
independently. Since the Majorana cone associated with H+
is gapped on all surfaces and exhibits no states in the energy
window of interest (near E = 0), our focus can be directed
toward the quantum well model formed by the red cone, with
gapped Majorana cones at both ends and a gapless Majorana
cone in the middle. To analyze the energy spectrum of this
model, we can obtain analytical expressions by considering
energy scales much smaller than the gap of the massive cones:

εn(ky) = A
√

k2
y + [π (n+1/2)

Lx
]
2

(n ∈ N ) [33]. The finite-size ef-
fect leads to an energy gap inversely proportional to the width
Lx. Figure 2(b) demonstrates good agreement between the
numerical and analytical energy spectra, particularly in the
low-energy region. We compute the average displacement rel-
ative to the center for each Bloch state: 〈x/Lx − 1/2〉, marked
with colors in Fig. 2(b). States on the left (red) and right
(blue) exhibit opposite velocities, indicating the chiral nature
of the system. Furthermore, we calculate the distribution of
Majorana current density at energy E in the x-z plane with
r = (x, z):

Jy(E , r) = − e

πh

∫ π

−π

Im Tr

[
∂H (ky)

∂ky
GR

ky
(E , r, r)

]
dky,

where GR
ky

(E , r, r′) is the retarded Green’s function for

H (ky), which can be written as GR
ky

(E , r, r′) = 〈r|[E − H (ky)

+ iη]−1|r′〉. The upper panel in Fig. 2(c) shows the dis-
tribution of Jy(E = 0) on the x-z interface. The opposite-
directional current density exists at the left and right
boundaries of the top surface, further confirming the chiral
nature of the system. The current density exhibits distinct
decay patterns in the gapless top surface region and the gap
left and right regions, to better observe the decay trend of
current density at the boundaries of the two regions (gap and
gapless); see the lower panel in Fig. 2(c). The current density
rapidly decays in the gap region, while it decreases slowly
in the gapless region. As shown in Fig. 2(d), the Majorana
current flux Iy(x̄) = ∫ Lz

0 dz
∫ x̄

0 dxJy(x, z)(x̄ < Lx/2) gradually
converges to 1/2 with increasing x, demonstrating the pres-
ence of the N = 1/2 Majorana current. Furthermore, since
a chiral Majorana fermion corresponds to half of a complex
fermion and contributes half-quantized thermal Hall conduc-
tance, we can establish the relationship between Hall thermal
conductance and Chern number N as κxy = N

2 κ0 [29,31,36].
Considering the Majorana edge current with N = 1/2 here,
we can expect the exhibiting of a quarter-quantized Hall ther-
mal conductance along with a quarter-quantized chiral heat
channel. This will be demonstrated in Sec. IV.

IV. QUARTER-QUANTIZED THERMAL HALL
CONDUCTANCE

Thermal transport is very useful for studying Majorana
systems because it effectively avoids the situation where
superconducting systems cannot couple with electric field
[24,26,36,37]. In a 2D chiral topological system, the presence
of 1D Majorana fermions at the edge contributes a half-integer
thermal Hall effect to the system. Recently, the half-integer
thermal Hall effect has been observed in the fractional quan-
tum Hall system at v = 5/2 [38] and Kitaev material α-RuCl3
[39]. Subsequently, we will illustrate the emergence of a
quarter-quantized thermal Hall conductance in our system as
a consequence of the parity anomaly.

Utilize the cubic lattice model introduced in Sec. III, em-
ploying open boundary conditions in the xyz direction, where
Lx = Ly = 110 and Lz = 5. With the superconducting pairing
potential � on the top surface equal to the surface magne-
tization MA, a single gapless Majorana cone emerges on the
top surface, resulting in a 1/4 Hall thermal conductance in
the system due to the parity anomaly. To investigate surface
transport, we introduce a six-terminal Hall-bar device [see
Fig. 3(a)], with ports I and IV designated as thermal flow
ports, and ports II, III, V, and VI as temperature ports. The
dephasing effect is simulated by introducing Büttiker virtual
leads at each lattice point on the top surface [represented by
red spheres in Fig. 3(b)] [40–42]. Utilizing the Landauer-
Büttiker formula, the heat current flowing in the lead n at low
temperatures can be expressed as [31,43,44]

Qn =
∑
m 	=n

(TmnTn − TnmTm)κ0, (2)

where Tm is the temperature in lead m, and Tnm(E = 0) =
T ee

nm(E = 0) + T CAR
nm (E = 0). Here T ee/CAR

nm (E = 0) denotes
the transmission coefficient of electrons and the cross Andreev
process with energy E from lead m to lead n, respectively. All
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FIG. 3. (a) Illustration of a 3D TI with open boundary conditions
in the x, y, and z directions, featuring ports attached to the top surface
(highlighted in metallic shade). The red and blue cones correspond
to the Majorana cones on the surface. Red balls here represent the
virtual leads. (b) The red balls on the top surface in (a) are divided
into black boxes, with each black box containing rc × rc red balls.
(c) Variation of thermal Hall conductance with the strength of the
dephasing strength �v . (d) The spatial distribution of the difference
in transmission coefficients Td with �v = 0.2. Here, we set MA = 0.5
and � = 0.5.

these transport coefficients are calculated as [45] Tnm(E ) =
Tr[�e

nGR�e
mGA], T CAR

nm (E ) = Tr[�e
nGR�h

mGA], where �n is
the linewidth function of the nth port, which, in the wideband
approximation, is a constant, and GR(E ) = [GA]† = [(E +
iη)I − H − ∑

n �R
n ]−1. The self-energy term is �R

n = − i
2�n.

For virtual leads, the self-energy �R
n = − i

2�v , where �v is the
decoherence strength [41].

When there is a heat current Qx from lead I to lead IV, by
solving Eq. (2), the Hall thermal resistance and longitudinal
thermal resistance are obtained as Rxy = TII −TV I

Qx
and Rxx =

TII −TIII
Qx

, respectively. As only the top surface is gapless, the
heat current can only occur on the top surface. The thermal
resistivities satisfy ρxy = Rxy and ρxx = Rxx

Lx/Ly
. The thermal

Hall conductance of the system can be obtained through κxy =
ρxy

ρ2
xy+ρ2

xx
.

Figure 3(c) illustrates the variation of Hall thermal con-
ductance κxy with increasing dephasing strength �v . At
sufficiently large dephasing strength, the Hall thermal con-
ductance converges to 1/4, with units the quantum thermal
conductance κ0. There are two main reasons to consider the
dephasing effect here. First, in real experiments, the sizes of
samples often reach the order of several hundred microme-
ters, far surpassing the decoherence length; it is necessary
to take the dephasing effect into consideration [21]. Second,
the chiral transport channels can manifest when the dephasing
strength is large enough [14].

Next, we provide an explanation for the origin of the
quarter-quantized thermal Hall effect under dephasing. The
thermal Hall conductance is closely connected to the chiral

transport channels. Chiral channels break spatial inversion
symmetry. For instance, considering the transmission proba-
bility between site a and site b, if there is a chiral channel
between them, it implies Tab 	= Tba, where Tab (Tba) represents
the transmission probability from a to b (b to a). In contrast
to the chiral p-wave superconductor [28] where only the 1D
chiral Majorana edge mode exists within the energy gap,
here the gapless Majorana surface state on the top surface
serves as a 2D thermal conductor. This involves contributions
from both isotropic 2D bulk (top surface) transport and 1D
boundary chiral transport. The calculation of the difference in
transmission probabilities cancels the isotropic contributions,
allowing the extraction of boundary chiral transport. To ob-
serve the spatial distribution of chiral channels, the system
should be partitioned into sufficiently large blocks, ensuring
that decoherence exists between these blocks due to their size
being much larger than the coherence length. The calculation
of the difference in transmission probabilities between blocks
provides insight into the spatial distribution of chiral transport
channels. As the transmission probability Tnm between lead
n and lead m decreases sharply with the increasing distance
rnm (see Fig. 5 in Appendix A), the critical length can be
defined as Tnm = 0.001Tneigb [41], where Tneigb is defined as
the sum of the transmission coefficient of electrons and the
cross Andreev process between the nearest neighboring leads.
We can use black boxes to demarcate these regions of size
rc × rc [Fig. 3(b)]. Due to rc being much larger than the phase
coherent length [41], the transmission between two adjacent
black boxes becomes incoherent. We can define the difference
of transmission coefficients between two black boxes, denoted
as Td (x, y) = Tba − Tab, where (x, y) represents the spatial
coordinates of the lower right corner site in box a. Here, Tab =∑

n∈a,m∈b Tnm represents the transmission probability from
box a to box b. Figure 3(d) illustrates the spatial distribution
of Td , revealing a transmission probability difference along
the upper and lower boundaries: Td = ±1/4 = ±tchiral. This
implies the existence of quarter-quantized heat chiral channels
along the upper and lower boundaries, serving as the origin of
the quarter-quantized thermal Hall effect in Fig. 3(c).

To further illustrate the connection between the quarter-
quantized chiral channels and the quarter-quantized thermal
Hall effect here, we partition the top surface of the system
(where single massless Majorana fermion exists) into blocks
of size rc × rc [black box in Fig. 3(b)]. Due to the deco-
herence between these blocks, the system can be effectively
represented as a conductor-network model that describes the
transport in classical metals. Through analytical solutions of
the network model (see Appendix A), we establish the rela-
tionship between the thermal Hall conductance κxy and the
difference in transmission probability at the edge tchiral:

κxy = κ0

[
1 + rcαtchiral + t2

n

t2
chiral + t2

n

1

Ly

]
tchiral.

Here, tn = t13+t12+t14
rc

, α = t56 + t57 + t89 + t810 − 2tn, where
ti j = ∑

n∈i,m∈ j Tnmxnm [see Fig. 3(b)], xnm = xn − xm, and
xn(m) represent the x coordinate of lead n(m). The width of the
system Ly correlates with the quarter-quantized thermal Hall
conductance. As Ly approaches infinity, κxy = tchiralκ0.
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FIG. 4. (a) For μ = 0, the longitudinal thermal conductance κxx varies with the surface superconducting pairing potential �. (b) The Hall
thermal conductance changes with the background temperature kBT0 for different �. (c) The transmission probability difference tchiral varies
with energy E for different � and different dephasing strength �v . (d) Longitudinal thermal conductance κxx varying with � and μ, with the
dashed line representing the theoretically predicted phase transition curve. (e) Thermal Hall conductance κxy on the red and blue curves in graph
(d), with a temperature of kBT0 = 0.01. (f) Experiment setup to realizing parity anomaly in gapless Majorana surface state through a magnetic
3D TI-superconductor heterostructure. The superconductor (deep gray) is overlaid on the surface of the magnetic 3D TI. By adjusting the super-
conducting pairing potential by a magnetic field, when gapless Majorana surface state appears, the boundary exhibits N = 1/2 Majorana edge
chiral states (represented by red lines). A quarter of the thermal Hall effect can be measured through a six-port Hall-bar system (silver). In the
calculations, Lx = 50, Ly = 50, and Lz = 5, with �v = 0.15 adopted in (a), (d), and (e), while Lx = 70, Ly = 70, and Lz = 5 in (b) and (c).

V. TEMPERATURE DEPENDENCE OF THERMAL
HALL CONDUCTANCE

Our model relies on fine-tuning to align the superconduct-
ing pairing potential � with the surface magnetization MA,
representing critical points in the phase transition. However,
the phase transition point here exhibits distinctive features that
can be captured in experiments. Since the realization of the
gapless Majorana surface state is essentially a phase transition
point between N = 0 and N = 1 [31], the states before and
after are either insulating or 1D thermal conductors. At the
phase transition point, where the system transforms into a 2D
thermal conductor, a distinctive peak emerges in the longitudi-
nal thermal conductance κxx. Figure 4(a) depicts the variation
of κxx calculated using the Landauer-Büttiker formula with
changing superconducting pairing potential �. A pronounced
peak appears when � = MA. In Fig. 4(b), the temperature-
dependent behavior of the Hall thermal conductance κxy for
different � is presented (for more details see Appendix B).
Here, we consider kBT 
 �, allowing us to neglect the in-
fluence of temperature on �, which can be solely controlled
by the magnetic field. Notably, for the case of � = MA, κxy

exhibits a quantized plateau under temperature variations.
However, as � deviates from MA [e.g., � = 1.04MA and
0.96MA; dashed and dotted lines in Fig. 4(b)], not only does
κxy lose its quarter quantization, but the plateau disappears
as well.

The Hall thermal conductance at finite temperature de-
pends on the all transport channels for an energy scale of a few
kBT0 near the Fermi level. This relationship is expressed as
κxy(T0) = 1

h

∫
tchiral(E )E ∂ f0

∂T dE , where f0(E )=1/[eE/kBT0+1]
is the Fermi distribution (see Appendix B for details). When
� = MA, a single gapless Majorana cone exists on the sur-
face. In this case, the chiral transmission coefficient, tchiral(E ),
which directly determines the thermal Hall conductance κxy,
remains energy independent and is equal to 1/4 [Fig. 4(c)].
Consequently, the 1/4 thermal Hall plateau persists under
temperature variations [Fig. 4(b)], providing evidence for the
existence of a single gapless Majorana cone. It is important to
note that the role of dephasing here is to reduce the coherence
length of the system. Even if the dephasing strength varies, as
long as the coherence length of the system is much smaller
than the system width Ly, tchiral remains energy independent
and stays close to 1/4 [see Fig. 4(c)]. When � deviates from
MA (e.g., � = 1.04MA and 0.96MA), tchiral(E ) gradually be-
comes energy dependent [Fig. 4(c)], leading to κxy depending
on the temperature T0 also [Fig. 4(b)].

The preceding analysis is based on the result with chemical
potential μ = 0, representing a specific case where electrons
precisely fill the Dirac point. While experimental means exist
to adjust μ, achieving the exact filling of electrons at the Dirac
point remains challenging. To better align with experimen-
tal conditions, we consider the influence of μ. In the case
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of a nonzero chemical potential, the phase transition point
satisfies MA

2 = �2 + μ2. Figure 4(d) illustrates the longitu-
dinal thermal conductance κxx varying with � and μ at the
fixed MA. The presence of the 2D thermal conductor at the
phase transition point results in a peak in κxx. We extract
two intervals along the phase transition curve to compute the
corresponding Hall thermal conductance κxy [indicated by red
and blue dashed lines in Fig. 4(d)]. κxy maintains a quarter
quantization with variation of μ, as shown in Fig. 4(e). The-
oretically, the chemical potential μ induces coupling between
the two Majorana cones (see Appendix C for details). How-
ever, when μ 
 MA, the gapless Majorana surface states on
the top surface can be well preserved, so the quarter-quantized
Hall thermal conductance well survives still.

VI. DISCUSSION AND CONCLUSION

Realizing parity anomaly in the Majorana system relies
crucially on the interplay between the topological surface state
and superconductivity as well as magnetism. There are two
approaches to achieving the coexistence of 2D topological
surface states, superconductivity and magnetism. One relies
on the magnetic TI with surface-proximity-induced super-
conductivity, naturally hosting topological surface states with
magnetism. Similar experimental configurations have been
experimentally realized very recently [46–48]. The experi-
mental setup involves inducing s-wave superconductivity on
the surface of a magnetic 3D TI, and arranging six-terminal
Hall-bar measurements along the superconducting boundary
to study the thermal transport properties of the surface [see
Fig. 4(f)]. By adjusting the magnetic field to tune the super-
conducting gap (�), a peak in κxx will be observed at the phase
transition point. When chemical potential μ nears the Dirac
point, the gapless Majorana surface state emerges at the phase
transition point, accompanied by a temperature-dependent
quarter-quantized Hall thermal platform at low temperatures.
Another approach is topological iron-based superconduc-
tors. Coexistence of superconductivity and topological surface
states is observed in materials like FeTe0.55Se0.45 [49,50], with
experiments confirming 0D Majorana states on the vortex of
the surface [51–54]. Here, we propose that by coupling a
magnetic atomic layer to the surface, providing surface mag-
netism, 2D Majorana surface states can be realized in such
materials. The Fermi level of FeTe0.55Se0.45 is very close to the
Dirac point [51]. Simultaneously, the superconducting gap on
the surface is 1.8 meV [51], a magnitude comparable to the
magnetic gap provided by magnetic proximity effects [55],
which enhances the feasibility of the experiment.

In summary, we present an approach based on 2D topo-
logical surface state to achieve 2D Majorana surface states.
We analytically and numerically demonstrate that a system
with a single massless Majorana possesses an N = 1/2 Ma-
jorana edge current and a quarter-quantized Hall thermal
conductance. This signifies the presence of a parity anomaly
in the system, resembling the superconducting version of a
quantum anomalous semimetal. By mapping the system to a
network model, we elucidate that the appearance of the 1/4
thermal Hall plateau under the dephasing effect originates
from the 1/4 chiral channels at the boundary. Furthermore,
we verify κxy robustly quarter quantized within a range of

background temperature T0. We also identify the magnetic
topological insulator and the topological iron-based super-
conductor FeTe0.55Se0.45 as potential platforms for realizing
Majorana surface states. Our study provides a framework for
the experimental realization of parity anomaly in the Majo-
rana system.
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APPENDIX A: LANDAUER-BÜTTIKER FORMULA
AND THERMAL HALL CONDUCTANCE

We consider a surface with dimensions Lx × Ly hosting
a gapless Majorana surface state. This surface is partitioned
into a system of blocks, each with dimensions rc × rc [see
Fig. 3(b)]. As the distance rnm > rc, the transmittance prob-
ability Tnm between lead n and m becomes nearly zero (see
Fig. 5), resulting in nonzero transmittance only between
neighboring blocks [indicated by arrows in Fig. 3(b)]. We
focus on the total heat flow Qx in the horizontal direction
within the central region of the system,

Qx =
∑

n∈left,m∈right

Qnm =
∑

n∈left,m∈right

(TnmTm − TmnTn)κ0

=
∑

n∈left,m∈right

Tnm(Tm − Tn)κ0

+
∑

n∈left,m∈right

(Tnm − Tmn)Tnκ0

=
∑

n∈left,m∈right

Tnm(xnm∇Tx + ynm∇Ty)κ0

+
∑

n∈6,m∈5

(Tnm − Tmn)Tnκ0 +
∑

n∈9,m∈8

(Tnm − Tmn)Tnκ0.

(A1)

Here, xnm = xn − xm and ynm = yn − ym, where xn(m) and yn(m)

represent the x coordinate and y coordinate of lead n(m).
We assume that in the central region of the system, where
steady state is reached, the temperature gradient is constant.
Tnm denotes the transmittance probability from lead m to lead
n, with the assumption that Tnm has translational symmetry
except at the boundaries.

The first term of Eq. (A1),
∑

n∈left,m∈right Tnm(xnm∇Tx +
ynm∇Ty)κ0, can be categorized into two types: Ly/rc − 2 con-
tributions from the bulk [indicated by white dashed arrows in
Fig. 3(b)] and two contributions from the boundaries [indi-
cated by red and blue arrows in Fig. 3(b)]. The contribution
from the bulk can be expressed as [(Ly/rc) − 2](t13 + t12 +
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FIG. 5. Tnm/Tneighb vs the distance rnm with �v = 0.2.

t14)∇Tx, where ti j = ∑
n∈i,m∈ j Tnmxnm [see Fig. 3(b)]. Note

that terms related to ynm disappear due to T13y13 + T14y14 =
0. The contribution from the edges can be written as
(t56 + t57 + t89 + t810)∇Tx. Therefore, Eq. (A1) can be
expressed as

Qx =
[(

Ly

rc
− 2

)
(t13 + t12 + t14)∇Tx + (t56 + t57

+ t89 + t810)∇Tx + tchiralTup − tchiralTlow

]
κ0

= [(Ly − 2rc)tn∇Tx + rcα∇Tx + tchiralTup − tchiralTlow]κ0

= [
(
tnLy + rcα

)∇Tx + tchiral(Tup − Tlow)]κ0

= [(tnLy + rcα)∇Tx + tchiral∇TyLy]κ0.

The expression for tn is defined as tn = t13+t12+t14
rc

, and α =
t56 + t57 + t89 + t810 − 2tn. Here, Tup/down represents the tem-
peratures at the upper and lower boundaries, satisfying Tup −
Tlow = ∇Ty · Ly. Similarly, the heat flow in the y (vertical)
direction is given by

Qy = [(tnLx + rcα)∇Ty − tchiral∇TxLx]κ0.

Considering Qy = 0 and Lx � 0, we obtain tn∇Ty =
tchiral∇Tx. Due to ρxx = Lx∇Tx/Qx and ρxy = Ly∇Ty/Qx, the
expression for κxy can be derived as

κxy = ρxy

ρ2
xy + ρ2

xx

=
[

1 + rcαtchiral + t2
n

t2
chiral + t2

n

1

Ly

]
tchiralκ0.

APPENDIX B: HALL THERMAL CONDUCTANCE
WITH FINITE TEMPERATURE

In this Appendix, we will derive the Hall thermal
conductance at finite temperature. We start from the nonzero-
temperature Landauer-Büttiker formula:

Qn =
∑

m

T̃nm(Tn − Tm)κ0,

where T̃nm = 3
π2k2

BT0

∫
[Tnm(E ) + T CAR

nm (E )]E ∂ f0

∂T dE . The
finite temperature modifies the transmission probability

Tnm(E ) to T̃nm, introducing contributions from different
energy transmissions. With the same mathematical structure,
following the method in Appendix A, we obtain the total heat
flows in the horizontal (x) and vertical directions as Qx =
[(̃tnLy + α̃)∇Tx + t̃chiral∇TyLy]κ0, Qy = [(̃tnLx + α̃)∇Ty −
t̃chiral∇TxLx]κ0. Here, t̃n(T0) = 3

π2k2
BT0

∫
tn(E )E ∂ f0

∂T dE ,

t̃chiral(T0) = 3
π2k2

BT0

∫
tchiral(E )E ∂ f0

∂T dE , and α̃ = 3
π2k2

BT0∫
α(E )rcE ∂ f0

∂T dE . The Hall thermal conductance can be
written as

κxy(T0) = κ0

[
1 + α̃̃tchiral + t̃2

n

t̃2
chiral + t̃2

n

1

Ly

]̃
tchiral.

Considering Ly � 0, the expression simplifies to

κxy(T0) = t̃chiralκ0 = 1

h

∫
tchiral(E )E

∂ f0

∂T dE .

APPENDIX C: MAJORANA SURFACE STATE
WITH THE FINITE CHEMISTRY POTENTIAL

When considering the chemical potential μ, the critical
point satisfies M2

A = �2 + μ2 [31]. The Hamiltonian with
Majorana basis �k = 1√

2
(ck↑ + c†

−k↓, ck↓ + c†
−k↑,−ck↓ +

c†
−k↑,−ck↑ + c†

−k↓)T can be written as

H =

⎛⎜⎜⎜⎜⎝
� + MA kx − iky 0 −μ

kx + iky −� − MA −μ 0

0 −μ � − MA kx + iky

−μ 0 kx − iky MA − �

⎞⎟⎟⎟⎟⎠

=
(

H+(k) −μσx

−μσx H−(k)

)
.

The chemical potential μ induces coupling between the
two Majorana cones and simultaneously opens gaps in both
cones, with gap sizes of 2|

√
M2

A − μ2 + MA| for H+(k) and
2|

√
M2

A − μ2 − MA| for H−(k). Next, we demonstrate that the
Majorana surface state exists when μ 
 MA. At μ 
 MA,
H−(k) can be written as

H−(k) = kxσx − kyσy + (√
M2

A − μ2 − MA
)
σz

≈ kxσx − kyσy − MA

2

(
μ

MA

)2

σz.

When μ 
 MA, the gap can be approximated as a second-
order small quantity with respect to μ

MA
. Simultaneously, μ

introduces coupling between H+ and H−, and the mass term of
H+ affects H− through this coupling. Let M+ =

√
M2

A − μ2 +
MA. Considering the mass term of H+ and its self-energy
correction to H−, the expression is as follows:

�(E ) = −μσx
1

E − M+σz
(−μσx )

= μ2M+
−E2 + M2+

σz − μ2E

−E2 + M2+
σ0.
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Since M+ > MA, μ

M+
is also a small quantity. Therefore,

the mass term correction introduced by H+ to H− is also a
second-order small quantity. In summary, when μ 
 MA, the

gapless Majorana Dirac cone can exist. In experiments, where
MA is typically 10 meV [56,57], it is possible to manipulate μ

within the range of 0.1MA by tuning the chemical potential.
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