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Recently, the quantum spin-Hall edge channels of two-dimensional colloidal nanocrystals of the topological
insulator Bi2Se3 were observed directly. Motivated by this development, we reconsider the four-band effective
model which has been traditionally employed in the past to describe thin nanosheets of this material. Derived
from a three-dimensional k · p model, it physically describes the top and bottom electronic surface states at the
� point that become gapped due to the material’s small thickness. However, we find that the four-band model for
the surface states alone, as derived directly from the three-dimensional theory, is inadequate for the description
of thin films of a few quintuple layers and even yields an incorrect topological invariant within a significant
range of thicknesses. To address this limitation we propose an eight-band model which, in addition to the surface
states, also incorporates the set of bulk states closest to the Fermi level. We find that the eight-band model not
only captures most of the experimental observations, but also agrees with previous first-principles calculations
of the Z2 invariant in thin films of varying thickness. The band inversion around the � point, which endows the
surfacelike bands with topology, is shown to be enabled by the presence of the additional bulklike states without
requiring any reparametrization of the resulting effective Hamiltonian.
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I. INTRODUCTION

Topological insulators (TIs), and more generally topologi-
cal materials, have experienced a massive surge in interest in
the past decade due to their excellent prospects for energy-
efficient electronics, spintronics, and transport applications
[1–15]. A common feature shared by most conventional TIs is
the appearance of protected states at the boundaries of a finite
sample, which are typically perfectly conducting and whose
dispersions are linear and cross the semiconducting band gap.
In three dimensions (3D) these take the form of surface states,
while in two dimensions (2D) they are realized as edge states.
The properties of these boundary modes strongly depend on
which symmetries are present in a given system. Arguably,
the best known examples are the integer quantum Hall state
[16–21], where chiral electrons flow without dissipation along
the edge due to breaking of the time-reversal symmetry (TRS),
and the quantum spin-Hall (QSH) state [22–29], which pre-
serves the TRS and can be seen as two spin-reversed copies of
the quantum Hall state with opposite spins flowing in opposite
directions.

Within the vast landscape of topological materials, bismuth
selenide (Bi2Se3) is often quoted as a prototypical three-
dimensional TI [30–35]. Its atomic structure comes in the
form of quintuple layers (QLs) stacked on top of one an-
other and bound together by van der Waals forces [30,36–
38]. The topological nature of Bi2Se3 has been extensively
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investigated both theoretically and experimentally and can
be traced back to the existence of a large inverted topologi-
cal gap arising from the spin-orbit interaction. This leads to
topologically protected surface states at the top and bottom
surfaces of planar slabs. These have been fully characterized
theoretically [39–42] by means of a continuum model for
three-dimensional Bi2Se3 around the � point derived from
k · p theory [30,36]. A particularly interesting topic in this
regard is the transition from 3D to 2D samples of Bi2Se3,
as the dispersion of the surface states becomes gapped due
to the hybridization between the modes at both surfaces, and
the corresponding gap may or may not be of topological
nature. The gapping of the top and bottom surface states
has been observed experimentally via angle-resolved photoe-
mission spectroscopy [43–45] and addressed theoretically in
some of the aforementioned studies [39–41]. In the latter, an
effective nanosheet Hamiltonian is obtained for each number
of QLs by projecting the full 3D bulk Hamiltonian onto the
subspace of four �-point surface states that appear due to
the nontrival topology and which are closest to the Fermi
level. For samples of Bi2Se3 with a thickness of a few QLs,
these theoretical studies predict a series of topological phase
transitions between the 3D and 2D models, in which the
material repeatedly oscillates between a trivial phase and a
QSH phase. Focusing on the ultrathin regime between 1 and
6 QLs, as for larger thicknesses the surface-state gap becomes
negligible, nanosheets of 6 QLs are predicted to show QSH
behavior, while those with 5 and 4 QLs are found to be
trivial, followed by another QSH phase at 3 QLs, and finally
remaining in a trivial phase for 2 and 1 QLs. However, this

2469-9950/2024/109(19)/195407(10) 195407-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1518-1356
https://orcid.org/0000-0002-3535-8366
https://orcid.org/0000-0003-1993-2556
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.195407&domain=pdf&date_stamp=2024-05-02
https://doi.org/10.1103/PhysRevB.109.195407


L. MAISEL LICERÁN et al. PHYSICAL REVIEW B 109, 195407 (2024)

is at odds with state-of-the-art first-principles calculations,
which predict a nonzero Z2 invariant for 3 to 5 QLs and a
trivial phase for 1 and 2 QLs [39]. It also disagrees with a
recent experiment on colloidal Bi2Se3 nanosheets of finite
lateral dimensions, where QSH edge states were observed
directly in the regime between 4 and 6 QLs [46]. Thus it may
seem as though the applicability of the continuum model in
the regime between 4 and 6 QLs can be put into question
even from the point of view of qualitative predictions in
Bi2Se3.

It thus appears that the effective four-band model obtained
in this way does not provide a complete understanding of
the physics in the entire regime between 1 and 6 QLs. Here,
we demonstrate that some of the oscillations predicted by the
aforementioned theoretical studies are spurious and disappear
when one takes into account not only the gapped surface
states closest to the Fermi level, but also the first set of
bulk conduction and valence states. The resulting eight-band
Hamiltonian is not only capable of describing the physics in
a broader range of momenta, but also reproduces most of the
experimental findings and features of ab initio calculations.
Our results show that the three-dimensional continuum model
for topological Bi2Se3 can be successfully used even in the
ultrathin limit of 1 QL and also elucidates the crucial role of
the bands further away from the Fermi level, which are usually
neglected.

This article is organized as follows. In Sec. II we present
a general description of Bi2Se3 nanosheets by starting from
the 3D bulk model and compare the features of the four-band
model for the surface states with our eight-band model includ-
ing also the bulk states closest to the Fermi level. In Sec. III
we analyze the topology of the eight-band model by study-
ing the interplay between the different bands. In Sec. IV we
validate our model by comparing its topological properties
with those calculated from first principles as well as with
the most recent experimental results. Finally, in Sec. V we
summarize our work and give an outlook on potential future
research.

II. EFFECTIVE MODEL FOR Bi2Se3 NANOSHEETS

Our starting point is the k · p Hamiltonian for
three-dimensional Bi2Se3 derived in Refs. [30,36]. This
model is expressed in the combined orbital-spin basis
(|Bi+,↑〉 , |Se−,↑〉 , |Bi+,↓〉 , |Se−,↓〉) that is closest to the
Fermi surface, where Bi+ and Se− are hybridized Bi and Se
pz orbitals of even and odd parity, respectively. The effective
Hamiltonian reads

H (k, kz ) = ε0(k, kz )Is ⊗ Iτ + M(k, kz )Is ⊗ τz

+ A1kzsz ⊗ τx + A2(k · s) ⊗ τx . (1)

Here, ε0(k, kz ) = C + D1k2
z + D2k2, M(k, kz ) = M −

B1k2
z − B2k2, s and τ are the Pauli matrices in the

spin and orbital spaces, respectively, and Is and Iτ

are the identity matrices in these respective subspaces.
Here and below, k ≡ (kx, ky) denotes the in-plane
momentum, with k ≡ |k|. We employ the parameters of
the paper by Zhang et al. [30], which have been fitted

to their ab initio calculation. Their numerical values
are C = −0.0068 eV, M = 0.28 eV, A1 = 0.22 eVnm,
A2 = 0.41 eVnm, B1 = 0.10 eVnm2 , B2 = 0.566 eVnm2 ,
D1 = 0.013 eVnm2 , and D2 = 0.196 eVnm2 .

We are interested in thin nanosheets of only a few QLs.
This geometry breaks the translational invariance in the z
direction and thus we must solve the model of Eq. (1) after
substituting kz → −i∂z. It is customary to employ hard-wall
boundary conditions for the wave functions at both sur-
faces, �(z = ±Lz/2) = 0, with Lz the nanosheet thickness.
To obtain a low-energy effective model, one first solves the
Hamiltonian at the 2D � point k = 0. The solutions to this
problem are described in detail in Refs. [40–42]. One then
projects the full Hamiltonian at nonzero k onto a subset
spanned by these solutions. The size of this subspace essen-
tially determines the validity of the effective model around
k = 0. Only when projecting on all states is full equivalence
with the higher-dimensional Hamiltonian recovered.

Note that, of course, one can in principle also solve the full
3D model above at arbitrary k, without needing to resort to an
effective model (cf. Fig. 5 below). However, this requires solv-
ing a boundary eigenproblem for each k, which is undesirable
for many purposes, e.g., computing many-body properties
involving interaction matrix elements at different momenta
or computing Chern numbers or other topological invariants
where the wave functions must be known over the entire Bril-
louin zone. By contrast, the use of an effective model allows
one to solve the boundary problem at a single momentum and
thereafter simply diagonalize a (typically small) k-dependent
matrix. For this reason, it is often useful to work with a
reliable effective Hamiltonian whose z dependence has been
integrated out.

As 3D Bi2Se3 is a TI, the spectrum obtained from the
Hamiltonian in Eq. (1) for large thicknesses contains states
that are localized at the surfaces of the nanosheet under
consideration. Their dispersions around the � point form a
gapless Dirac cone that crosses the semiconductor band gap.
As one decreases Lz to a few QLs, the Dirac cone becomes
gapped at � as a result of the hybridization between the states
localized at opposite surfaces. We are interested in thicknesses
small enough for this gap to be of observable magnitude. It
is not until a thickness of around Lz � 6 nm that this gap
becomes of the order of 1 meV, so we will focus on the
regime Lz � 6 nm. Note that the thickness of a single QL
is approximately 1 nm [47,48], so that the thickness of the
nanosheet in nanometers is in good approximation the number
of QLs. We also mention that, in this ultrathin limit, what is
meant by “surface states” are those states whose dispersions
evolve from the gapless Dirac point at large Lz, even though
their wave functions are no longer strongly localized due to
the aforementioned hybridization. The remaining spectrum of
the Hamiltonian (1) at k = 0 consists of states whose ener-
gies are gapped for all Lz and whose wave functions never
show strong localization; we call these the bulk states. Fi-
nally, we clarify that, because our starting model is derived
from a low-energy expansion, it does not contain the surface
state replicas described by Kung et al. located deep inside
the bulk energy region [49]. However, it is safe to assume
that their effects can be neglected for the purposes of this
article.
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A. Four-band model

Previous works on the model considered here have always
assumed that projecting on the topological surface states alone
is enough to obtain an accurate low-energy model for any
thickness. However, as we show here, this introduces some is-
sues and in particular the topology of the resulting model does
not align with experimental findings and density-functional
theory (DFT) calculations.

At the 2D � point, the Hamiltonian decouples into two
subspaces of opposite spin and its spectrum contains four
electronic surface states close to the Fermi level. These states
have well-defined spin and parity, so we denote them by
|S±,↑ (↓)〉, where the label S indicates that they are surface
states [50].

We define the basis (|S+,↑〉 , |S−,↓〉 , |S−,↑〉 , |S+,↓〉),
in which the effective four-band Hamiltonian for the surface
states takes the form

H eff
4-band,ξ (k) = (E0 − Dk2)Iσ + vF(σ × k) · ẑ

− ξ

(
	

2
− Bk2

)
σz . (2)

There are two subblocks with ξ = ±1, sometimes called the
hyperbola index, as the Hamiltonians H eff

4-band,±(k) resemble
those at the K and K ′ points of graphene but shifted to the
� point. Here, however, we choose to call ξ the spin-orbit
parity (SOP), as the product of spin times orbital parity in each
subspace is precisely ξ if we identify ↑ (↓) with +1 (−1).
Furthermore, σ are Pauli matrices that couple the basis states
(|S+,↑〉 , |S−,↓〉) for ξ = +1 and (|S−,↑〉 , |S+,↓〉) for ξ =
−1, and Iσ stands for the identity in each of these subspaces
of fixed SOP. We note that, even though the states in the dou-
blets (|S+,↑〉 , |S−,↓〉) and (|S−,↑〉 , |S+,↓〉) have opposite
spin, σ is not directly the physical spin operator, as the wave
functions of the up and down spin states in each subspace are
not equal. Instead, they correspond to two distinct hybridized
orbitals, so that σ is more appropriately understood as a pseu-
dospin that mixes the orbital and spin degrees of freedom.

Each 2 × 2 subblock has two bands with dispersions
εc,v (k) = E0 − Dk2 ±

√
(	/2 − Bk2)2 + (vFk)2. The corre-

sponding eigenstates are

ψc,v
ξk = N c,v

ξk

⎡
⎣−ξ

(
	
2 − Bk2

) ±
√(

	
2 − Bk2

)2 + (vFk)2

−ivFk+

⎤
⎦,

(3)

where k± = kx ± iky and N c,v
ξk is readily found by normalizing

the eigenstates to unity. The Chern number of these states
is given by Cξ

c,v = ∓ ξ

2 (sgn 	 + sgn B). This is nonzero only
when 	 and B have the same sign. Physically, this may be
understood from the fact that the topology arises from a band
inversion, which in the four-band model is driven by the
combined action of 	 and B. The fact that the band inversion
leads to a topologically nontrivial phase is rooted in the parity
flip that takes place as one goes from the � point to large
momenta. Due to the inversion, the valence band around �

has opposite parity to that when k → ∞. This argument was
first formalized by Fu and Kane [51] and in systems with
inversion symmetry allows one to determine the Z2 invariant

by evaluating the parity of the eigenstates at the time-reversal-
invariant momenta. This procedure will be paramount in our
description of the topology in the eight-band model below.

The Hall conductivity of each subspace is then
σ

xy
ξ = (e2/h) Cξ

v provided that the Fermi level stays within
the gap with decreasing thickness. The superposition of
two opposite Hall conductivities causes the total σ xy to
vanish, but if the individual conductivities are nonzero the
system is in a QSH phase. However, strictly speaking this
QSH effect is in terms of the pseudospin of the underlying
basis and not in terms of the z-direction component of
the real electronic spin. This can be easily seen from
the fact that each 2 × 2 subblock mixes up and down
spins, contrary to the prototypical Bernevig-Hughes-Zhang
model for the QSH effect, in which the two subspaces
separately describe spin-up and spin-down electrons [23,24].
As a result, there is a nontrivial spin texture along the
z direction given by 〈Si〉c,v

ξk (z) = ψc,v
ξk (z)†Siψ

c,v
ξk (z), with

ψc,v
ξk (z) = 〈z|Sξ ,↑〉〈Sξ ,↑|ψc,v

ξk 〉 + 〈z|S−ξ ,↓〉〈S−ξ ,↓|ψc,v
ξk 〉

and Si = 1
2 si ⊗ Iτ the spin operator. Note that 〈z|S±,↑ (↓)〉

are simply the wave functions corresponding to the surface
states at the � point introduced in the previous section, which
are z-dependent four-component vectors in the orbital-spin
basis.

Similarly, the edge states of this Hamiltonian at the bound-
aries of a finite sample also present a nontrivial spin texture
along the vertical direction. An analysis of these edge modes
reveals that the physical spin is always perpendicular to the
momentum along the edge. More precisely, there is a nonva-
nishing projection in the z direction, whose average over the
nanosheet thickness is in general nonzero. Furthermore, the
spin in the direction perpendicular to the edge and parallel
to the nanosheet has a nontrivial texture along the vertical
direction, but its average over z vanishes. Finally, the spin in
the direction parallel to the edge is identically zero for all z.
Consequently, we recover the well-known QSH picture, real-
ized now in terms of the z-averaged vertical component of the
real electronic spin. We emphasize that this is not necessarily
clear a priori, given that the underlying basis mixes the up
and down components as explained above. A sketch of the
situation is shown in Fig. 1, where the edge is taken along the
x direction and thus the spin lies entirely in the yz plane. For
nonzero kx, the edge states always follow a linear dispersion,
given by

ε±
edge(kx ) = E� ± ṽFkx , (4)

where ṽF = vF

√
1 − D2/B2 is a renormalized Fermi velocity

which is lower than that of the surface states and E� is the
energy at the one-dimensional � point kx = 0. We note that
all of this is valid only if |D| < |B|, as otherwise the global
energy gap disappears and no edge states are found.

The form of Eq. (1) is indeed capable of describing the
surface states of electrons in Bi2Se3 nanosheets, as previous
experiments have successfully matched the observed band
structure with that arising from the effective model [43]. How-
ever, there is a caveat: it is crucial to realize that a faithful
description of the system in terms of the four-band model
requires adjusting the numerical values of the parameters
in the low-energy Hamiltonian to a set of experimentally
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FIG. 1. Sketch of the spin behavior in the QSH regime of a
thin Bi2Se3 nanoribbon along the x direction. (a) Top view of the
nanoribbon. The long arrows along the edges show the velocity of
the edge states and the out-of-plane arrows indicate the direction of
the z-averaged electron spin. Note that the average spin polarization
is in general not 100%, even though its direction of polarization is
perpendicular to the nanosheet. (b) Side view of the nanoribbon. The
small arrows show the nontrivial microscopic spin texture along the
nanosheet thickness. This texture is such that there is a z-dependent
tilt in the yz plane. Its average over the nanosheet thickness vanishes
in the y direction, but is nonzero in the z direction. Thus the usual
QSH picture emerges in terms of this nonvanishing vertical compo-
nent, as shown in (a).

determined values. This is not only completely ad hoc, but
also only possible if experiments in the 2D limit are available.
Since this may not be the case in other similar materials, it is
desirable to have a reliable scheme which allows 2D topolog-
ical properties to be inferred solely from the 3D bulk model.
In practice, the actual theoretical prediction of the projected
four-band model for Bi2Se3 is far from satisfactory, as the
parameters obtained directly through the projection procedure
give a band structure that disagrees with the experimental
findings. The most important aspect in this regard is that the
topological properties appear incorrect for a relevant range
of thicknesses. The reason is that the parameters 	 and B,
which together determine the topology, have opposite signs
for 4 and 5 QLs, a regime where both experiments [46] and
DFT calculations [39] show the presence of QSH edge states.
More precisely, in this picture the model oscillates four times
between a trivial and a QSH phase between 1 and 6 QLs. Two
of these oscillations are due to the gap closing and two more
seemingly take place because, while the gap remains open, the
parameter B changes sign and the band inversion disappears.
This phenomenon is in fact an artifact of such a continuum
model: placing the model on a lattice reveals that a change in
Chern number is always accompanied by a gap closing, but
depending on 	 and B this may happen at the edges of the
Brillouin zone instead of at the � point. This is problematic,
because it would indicate that the low-energy subspace we
wish to study is not located at the � point for a certain range
of thicknesses. As we will see, however, enhancing the model
to an eight-band Hamiltonian eliminates this spurious change
in Chern number. Hence, for all thicknesses, the system is still
described by the physics around �, thus providing the physi-
cally expected picture. Moreover, for Lz � 3.23 nm it is found
in the four-band model that |D| > |B|, which means that the
valence band is not inverted and thus actually grows in energy
when k → ∞. This leads to the absence of a global gap in the
spectrum, which in this system leads to no edge states even if
the Chern number of the valence band is nonzero. Once again,

this is undesirable and in contradiction with experiments on
Bi2Se3 nanosheets and DFT calculations.

B. Eight-band model

We have demonstrated that projection on the surface states
alone is not enough to obtain accurate results for the low-
energy physics of Bi2Se3 nanosheets. We now proceed to
include in this projection also the first set of bulk states that
arises from solving the model at the two-dimensional � point,
which we denote by |B±,↑ (↓)〉. As we explain below, this is
enough to solve all issues present in the previous model.

One can show that the effective Hamiltonian always decou-
ples into two separate subspaces, which are related by TRS.
This is a consequence of the TRS in combination with the
mirror symmetry with respect to the xy plane, as the latter
enforces a definite parity for the individual components of
the �-point wave functions under the operation z → −z. In
other words, the spin-orbit parity ξ is always a well-defined
quantum number in the presence of both TRS and planar
mirror symmetry. For our combined eight-band Hamiltonian
we choose the basis

(|S+,↑〉 , |S−,↓〉 , |B+,↑〉 , |B−,↓〉︸ ︷︷ ︸
ξ=+1

,

|S−,↑〉 , |S+,↓〉 , |B−,↑〉 , |B+,↓〉︸ ︷︷ ︸
ξ=−1

). (5)

Due to the TRS, we focus on the analysis of the first 4 × 4
subblock, with SOP ξ = +1. Its Hamiltonian reads

H eff
8-band,ξ=+1(k) =

[
HSS HSB

H†
SB HBB

]
, (6)

where

HII = εI
0(k)I2×2 +

[
MI(k) (AI )∗k−
AIk+ −MI(k)

]
, (7a)

HSB =
[

ak2 bk−
ck+ dk2

]
, (7b)

with I∈{S, B}, εI
0(k)=CI+DIk2, and MI(k)=MI−BIk2.

All parameters (MI, AI, BI,CI, DI, a, b, c, d ) depend on the
thickness Lz and together determine the topology of the cor-
responding nanosheet. It is important to realize that their
numerical values are unambiguously determined from the ini-
tial set of parameters of the 3D bulk Hamiltonian, thus not
requiring any further adjustments. In Fig. 2 we show the band
structure of the eight-band model for 4 QLs in the subspace
ξ = +1. There are four bands which we call the upper and
lower valence or conduction band (from top to bottom: UCB,
LCB, UVB, and LVB). The topological properties can be
understood by tracking the spin projection of the different
bands as a function of momentum while taking care of some
subtleties detailed in the next section.

We have computed the spectrum of each subspace sepa-
rately on a ribbon along the x direction. The width in the y
direction is taken as Ly = 100 nm and we solve the continuum
model by substituting ky → −i∂y and employing hard-wall
boundary conditions for the wave function at the edges. The
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FIG. 2. Band structure of a spatially extended nanosheet of 4
QLs in thickness for the subspace with SOP ξ = +1, as given by the
eight-band model. The band-name abbreviations are defined in the
main text. Here we have set ky = 0, as the dispersion is rotationally
symmetric in our k · p model. The energy bands of the ξ = −1
subspace are degenerate with these ones, but their spin is opposite
due to the TRS. Avoided crossings are found at |kx| � 1.2 nm−1, at
which the two valence or conduction bands exchange their spin. As
explained in detail in the main text, this gives a nontrivial twist to
the LVB and the UCB, which become topological in the effective
model, while effectively undoing the twist of the UVB and the LCB
visible around |kx| � 0.5 nm−1 and making them trivial. Contrary to
the four-band model for 4 QLs, the eight-band model shows a global
gap, meaning that when k → ∞ all conduction and valence bands go
to large positive and negative energies, respectively. The insets show
magnifications of the avoided crossings and the surface gap.

results for 1–5 QLs are plotted in Fig. 3. In all cases the
valence bands are fully inverted, i.e., they go down in energy
when k → ∞, meaning that for Lz � 3.23 nm the bulk states
are required to obtain a fully gapped spectrum. For 1 and 2
QLs the spectrum is devoid of edge states, as already happens
in the four-band model. However, we now find edge states not
only for 3, but also for 4 and 5 QLs, in contrast to the situation
in the four-band model. In the first row of the figure we have
colored the states according to their surface or bulk character
and the edge states are shown according to their localization
along the width of the ribbon. In the second row we show
the states colored according to their average spin in the z
direction. It is worth noting that the picture of Fig. 1 remains
valid, except for the fact that the precise spin texture is now
also influenced by the wave functions of the newly added
bulk states. We comment on the case of 5 QLs, where there
seems to be no Dirac point. This is due to the fact that the
gap closing takes place at a thickness of 5.02 nm, so that the
last panel of Fig. 3 is extremely close to the transition. As
such, the gap is so small that the upper half of the Dirac cone,
which is slightly gapped due to finite-size effects, has already
merged with the lowest conduction band. Although not shown
here, this can be verified by tracking the evolution of the
edge conduction band at intermediate thicknesses between 4
and 5 QLs, which poses no complications in a continuous
model.

III. ANALYSIS OF THE TOPOLOGY

To determine the topological protection of the aforemen-
tioned edge states it is necessary to compute the Z2 invariant
of the system, as the total 8 × 8 Hamiltonian lies in class AII
[13]. However, the system decouples into two subspaces that
get interchanged under time reversal, so in this case the Z2

classification is equivalent to a double Chern-number classifi-
cation [52]. The topology can thus be equally determined from
the Chern numbers of each subblock, as they individually
break the TRS. A distinction will have to be made between
physical Chern numbers (PCNs) and effective-model Chern
numbers (EMCNs). The latter refer to those obtained by di-
rectly integrating the Berry curvatures of the eight-band model
in the entire range of k, which is unbounded in our continuum
model. We will argue that they generally differ from the PCNs,
i.e., the Chern numbers which should be considered physical,
albeit the Hall conductivity stays the same. These PCNs will
be defined later and can be easily inferred once we have gained
an intuitive understanding of the features of Fig. 2.

We have numerically computed the EMCNs of the four
bands of each subspace. The total Hall conductivity is then
(e2/h)

∑
i C

ξ
i , where the sum runs over the occupied bands.

In the range between the gap closings at Lz = 2.51 nm and
Lz = 5.02 nm, we find that the EMCN of the UVB is zero,
whereas that of the LVB band is nontrivial and equal to ±1
in each subblock. The Hall conductivity is thus nonzero and
we have accordingly found that edge states are present. For
Lz < 2.51 nm and 5.02 nm < Lz � 6 nm, we actually find that
both occupied bands of each subblock have opposite unit
EMCNs. Thus the total Hall conductivity vanishes and there
is no spin-Hall current.

For completeness, we have also explicitly calculated the Z2

invariant directly by analyzing the Pfaffian of the matrix

Ai j (k) = 〈ψik|�|ψ jk〉 , (8)

which we denote by P(k) ≡ Pf[A(k)]. Here, � is the time-
reversal operator and one takes only the eigenstates |ψik〉
whose energy lies below the Fermi level. In our eight-band
model, the time-reversal operator is represented by the matrix
� = −i(σ SOP

x ⊗ σ SB
z ⊗ σy)K, where σ SOP

x acts on the two
uncoupled subspaces with opposite SOP, σ SB

z acts on the
surface-bulk degree of freedom, σz acts on the pseudospin
defined in Sec. II A (generalized to surface and bulk orbitals),
and K is the complex conjugation operator. The topological
invariant is determined by analyzing the phase of P(k) along
a contour C that encloses precisely half of the Brillouin zone
or, in the case of our continuum model, half of the infinite
momentum plane. The Z2 invariant is then given by [10,53]

ν = 1
2 × [sign changes of P(k) along C] mod 2 . (9)

Choosing C to be formed by a line integral over kx and an
irrelevant semicircular path around the upper half plane with
k → ∞, we can simply analyze P(kx, ky = 0). This is plotted
in Fig. 4 for 1–6 QLs and it is found that it remains negative
for 1, 2, and 6 QLs, but changes sign twice for 3 to 5 QLs.

The results for the EMCNs determined above can now be
explained in an intuitive manner. We refer to the picture of
Fig. 2, which shows the case of 4 QLs, and focus on the
valence bands. At the � point, the gap defined by the surface
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FIG. 3. Band structure of a ribbon of width Ly = 100 nm and 1 to 5 QLs in thickness for the subspace with SOP ξ = +1, as given by the
eight-band model. All parameters used arise directly from the projection of the 3D states at the � point. The top row depicts the surface or
bulk character of the bands for 1 to 5 QLs, that is, whether the corresponding states predominantly live in the outer or inner QLs, respectively.
The edge states, only present between 3 and 5 QLs, are colored according to their localization on the ribbon. The bottom row depicts the spin
polarization along the z direction for 1 to 5 QLs. Despite not being fully polarized, the edge states still have a nonzero average spin in the z
direction, as explained in detail in Sec. II A. One must keep in mind that there is another subblock whose band structure is related by TRS to
the one shown here. Hence the spins and velocities of electrons in the time-reversed subspace are opposite, giving the usual QSH picture but
with a partial spin polarization.

states is inverted, as the spin reverses when moving away
from it. Thus the UVB exchanges its character with the LCB.
However, at larger momenta there is now an avoided crossing
(AC) between the UVB and the LVB. This causes the spin of

FIG. 4. Pfaffian of the matrix A(k) for 1 to 6 QLs in the eight-
band model. In the cases of 3, 4, and 5 QLs, the Pfaffian changes
sign twice along the contour, giving ν = 1, while the other cases
are trivial. Note that our model has rotational symmetry and thus
the Pfaffian’s zeros, if any, form a circle enclosing the origin of the
(kx, ky ) plane.

the UVB to flip again, while also reversing that of the LVB.
Thus the LVB ultimately acquires a nontrivial twist when
going from k = 0 to k → ∞, while the UVB remains trivial
because its twist is undone at the AC. The same happens for
3 and 5 QLs. As a result, there is no net twist of the UVB and
its EMCN is accordingly zero, while the net spin flip of the
LVB results in a nontrivial EMCN. In contrast, for 1, 2, and 6
QLs, the closing of the gap undoes the band inversion at the
origin. However, the AC remains, resulting in the spin twisting
once for every band, but oppositely between the UVB and the
LVB. The result is that the occupied bands have nonzero but
opposite EMCNs, leading to a vanishing Hall conductivity, in
agreement with our calculations.

In fact, this intuitive understanding becomes rigorous by
virtue of the parity argument by Fu and Kane [51], because
in addition to the TRS our k · p Hamiltonian possesses the
inversion symmetry of the underlying crystal lattice. In our
continuum model there are only two time-reversal-invariant
momenta, namely k = 0 and k = ∞, as the momentum space
now has the topology of a sphere with all points at infinity
identified. We find that the eigenstates of the effective Hamil-
tonian with a nonzero EMCN indeed change parity as one
goes from the origin of k to infinity. This is ultimately the
same as comparing the spin direction at these points, because
the product of spin and parity is well defined in each sub-
space due to our definition of the SOP in Sec. II A.

We have now understood how the direction of the spin
can be used to read off the topology of the bands in the
effective model. However, one has to be careful regarding the
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nature of the ACs involved in the process. While these are
sources of Berry curvature and thus affect the EMCNs, they
are actually an artifact of the effective model, which employs
a finite number of bands. This can be seen by including even
more bands: as we increase the size of the effective model, the
ACs remain very localized but shift to larger values of k. In
the limit of an infinite number of bands these will have dis-
appeared and one recovers the smooth band structure arising
from the solution to the 3D model at arbitrary k. However,
the band inversion of the LCB and the UVB close to � (at
around kx ∼ 0.4 nm−1 in Fig. 2) remains localized in the same
region no matter how many bands we include. One must there-
fore conclude that this inversion is really physical. Indeed,
our k · p model is based on the premise that the topological
properties of Bi2Se3 arise from the band inversion around the
� point due to the spin-orbit coupling [30]. Thus the non-
trivial Berry curvature should be localized around this point
only, which is precisely expressed by the spin twists in this
region.

In view of the above, the effective model is physical only
in the region before the ACs take place. This means that the
EMCNs do not actually correspond to the Chern numbers of
the model with infinitely many bands, as they include the
effect of the unphysical ACs. To remedy this, we introduce
the PCNs. These must be calculated via the above spin-flip
counting procedure, but only in the region before the first AC.
Then only the physical band inversion contributes, if present.
Note that, in any model with a finite band number, the PCNs
cannot be calculated by integration of the Berry curvature
as the result will not be quantized due to the truncation of
the momentum space. The PCNs, as calculated via spin flips,
are guaranteed to be the same as the Chern numbers of the
infinite-band model. It then follows that for 3, 4, and 5 QLs
the UVB has a unit PCN while that of the LVB is trivial,
that is, the effective-model picture is essentially reversed.
Furthermore, for 1, 2, and 6 QLs all bands have trivial PCNs.
However, note that the physical Hall conductivity remains
unchanged with respect to that of the effective model because
it is given by a sum of Chern numbers. Thus it does not matter
if it is calculated with the EMCNs or the PCNs, because each
AC oppositely affects both involved bands. The Z2 invariant
calculated via the Pfaffian is similarly correct in both cases,
since it simultaneously includes the effect of all occupied
bands.

We stress that the inclusion of the bulk states at the �

point is essential to reach our conclusions regarding the PCNs.
As said before, there is no band inversion around � in the
effective four-band model for 4 and 5 QLs, i.e., all Chern
numbers are trivial in this case. The eight-band model is thus
the minimal model that contains all the topology, which can
now be understood as follows. First, there is a band inversion
between the LCB and the UVB that endows these bands
with nontrivial PCNs. In the region where this inversion takes
place, both of these bands are essentially fully surfacelike, as
seen from Fig. 3. However, this inversion is only observed in
the presence of the UCB and the LVB, which in this region
are almost fully bulklike. We thus conclude that the nontrivial
topology resides in states on the surfaces and is due to a band
inversion enabled by the presence of deeper-lying states with
bulk character.

TABLE I. Overview of the features of the four- and eight-band
models discussed in the main text. Here, ν is the topological Z2

invariant and edge states are found only when it is nontrivial and
there is a global energy gap, that is, all valence bands go to negative
energies when k grows large.

Thickness (QLs) ν Global gap Edge states

4-band model 1 0
√ ×

2 0
√ ×

3 1
√ √

4 0 × ×
5 0 × ×
6 1 × ×

8-band model 1 0
√ ×

2 0
√ ×

3 1
√ √

4 1
√ √

5 1
√ √

6 0 × ×

Finally, in Table I we present a comparison summary be-
tween the four-band and the eight-band models. It is apparent
that the four extra bands drastically modify the properties
of the model for more than 3 QLs and must therefore be
included. We note that for 6 QLs the UVB is not inverted,
leading still to the absence of a global gap, as seen in Fig. 5.
We have checked that this can be fixed by including yet
another set of states, but this does not change the PCNs.

FIG. 5. Comparison of the four-band and eight-band models with
the exact solution of the 3D model. The panels show a distinctive
artifact of the four-band model, namely that the valence band is not
inverted for 4 QLs and higher and thus goes up in energy for large
k. In the case of 4 and 5 QLs, this is fixed by the eight-band model,
whose valence bands go down in energy as desired. For 6 QLs and
thicker, the eight-band model also presents this artifact. However, the
topological invariant of this larger model remains the same as that of
the eight-band model, which cannot be said when going from the
four-band to the eight-band model.
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FIG. 6. Local density of states of the edge modes on a ribbon
of width Ly = 100 nm. The states span an energy range of roughly
200 meV and penetrate about 8 nm into the interior at both edges.
The red dashed line marks the position of the Dirac point, where we
find two states with a tiny gap. The inset shows slices of the density of
states at various energies, with the ones corresponding to the Dirac
point labeled as DP. The vertical dashed lines mark a distance of
8 nm from the edges, showing the spatial extent of the edge states
that agrees with the experiment on colloidal nanosheets.

IV. COMPARISON WITH A RECENT EXPERIMENT

In a recent experiment [46], the presence or absence of
QSH edge states was studied in colloidal nanocrystals of
Bi2Se3 with thicknesses between 1 and 6 QLs. The findings
clearly show that platelets of 1 to 3 QLs do not sustain edge
modes, while platelets from 4 to 6 QLs do. A potential ex-
planation for the 3 and 6 QL cases, which do not conform to
our eight-band model, is given in the next section. Except for
this issue, our eight-band model agrees with the experimental
findings, while the four-band model does not if one simply
takes the parameters arising from the projection of the 3D bulk
Hamiltonian. In the experiment, the edge states are found to
span a large energy window of around 500 meV and penetrate
around 8 nm into the interior of the crystals. In Fig. 6 we have
plotted the local density of edge states in the case of 4 QLs as
calculated via the eight-band model. Their penetration is about
8 nm, in excellent agreement with the experimental value.
Furthermore, they span an energy range of approximately
250 meV. While this is roughly only half of that observed
experimentally, we note that the gap measured in the labora-
tory is also larger than that of our effective eight-band model
[43]. Hence it is natural that the energy range spanned by
the edge states is also larger than that predicted by the latter.
Nevertheless, our eight-band model still provides an insight
on the underlying mechanism behind this behavior. In Fig. 3
we see that the edge states merge with the conduction band
very close to the Dirac point, but that they leak remarkably
deep below the top of the valence band, especially for 4 and
5 QLs. This is attributed to a shift in the position of the Dirac
point in combination with a renormalized Fermi velocity of
the edge states, which around the � point is slightly lower

than that of the surface states. This enables the edge modes
to live well separated from the gapped surfacelike bands for
an energy range much larger than the zero-momentum gap. In
fact, the same conclusion can be reached via the four-band
model with experimentally adjusted parameters. For D > 0
(which is the case according to Ref. [43]) the Dirac point
shifts upwards and the Fermi velocity in both cases becomes
smaller than that of the surface states, as mentioned already
after Eq. (4). As a result, the edge modes of the four-band
model never actually touch the valence band; the eight-band
model is needed to observe the merging that takes place in
Fig. 3 and predict a finite energy range.

V. SUMMARY AND OUTLOOK

In this article we have investigated the effect of the
nanosheet thickness on thin films of the 3D TI Bi2Se3.
Whereas previous studies had already shown a dimensional
transition from a 3D to a 2D TI, the theoretical description in
terms of an underlying k · p Hamiltonian was unsatisfactory.
Indeed, the emergent effective 2D model for the surface states
can only describe the experimentally observed QSH phase
at 4 and 5 QLs if its parameters are adjusted appropriately
a posteriori. This amounts to disregarding the values that
naturally arise from the projection in favor of a different set
of parameters taken from experiment. In this work we have
shown that this becomes unnecessary upon the inclusion of
bulk states further away from the Fermi level. Our extended
eight-band model precisely captures the topological properties
computed via ab initio calculations in the whole range of 1 to
6 QLs and is close to the experimental findings except for 3
and 6 QLs. We find that the band inversion of the surfacelike
bands, which determines the presence or absence of topology,
can only be observed upon the inclusion of additional bulklike
bands. This provides a more complete picture that is missing if
one simply reparametrizes the surface bands of the four-band
model. This observation constitutes one of the main points of
this article.

Despite the very good agreement of our eight-band model
with a recent experiment and previous DFT calculations, two
brief comments are in place. First, we have found that the
UVB is not inverted in the regime of intermediate thicknesses
of 6 QLs and beyond. Hence a quantitative analysis of this
regime would require projection onto a higher number of
states. Note, however, that their inclusion does not further
change the topology, i.e., the topological properties can be
fully explained by the eight-band model. Secondly, our results
for 3 and 6 QLs seem to clash with the recent experimental
efforts involving Bi2Se3 nanocrystals in a way which indicates
that both gap closings take place at a slightly larger thickness.
It is important to note that in this article we have employed the
3D bulk parameters as fitted from ab initio calculations. To
further test our eight-band model it would thus be desirable
to directly input the parameters from experimental studies
of bulk Bi2Se3. We expect that more precise knowledge of
the bulk parameters will account for this discrepancy, as the
values of Lz at which the gap closes are quite sensitive to the
former.

Our model is in principle not restricted to Bi2Se3, but also
applicable to Bi2Te3 and Sb2Te3 if we use the appropriate
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parameter values. Experimental research in all of these ma-
terials would thus be a useful benchmark for our eight-band
model as well. In the future we want to test our eight-band
model in more general settings geared towards potential prac-
tical applications. One interesting possibility in this regard is
heterostructures, in particular those involving a superconduct-
ing substrate which induces a proximity effect on the Bi2Se3

slab. Another intriguing avenue for which our combined
surface-bulk Hamiltonian is especially well suited involves
hybrid excitons, where an electron on the surface is coupled
to a hole in the bulk, or vice versa. This system has been
the subject of a recent experiment [54] and can be studied
theoretically by combining our eight-band model with our

approach to excitons in Ref. [55]. We hope that the consid-
erations presented in this article will be useful for research
in these and other fascinating areas of topological phases of
matter.
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