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Superlattice potential modulation can produce flat minibands in Bernal-stacked bilayer graphene. In this work
we study how band topology and interaction-induced symmetry-broken phases in this system are controlled
by tuning the displacement field and the shape and strength of the superlattice potential. We use an analytic
perturbative analysis to demonstrate that topological flat bands are favored by a honeycomb-lattice-shaped
potential, and numerics to show that the robustness of topological bands depends on both the displacement
field strength and the periodicity of the superlattice potential. At integer fillings of the topological flat bands,
the strength of the displacement field and the superlattice potential tune phase transitions between quantum
anomalous Hall insulator, trivial insulator, and metallic states. We present mean-field phase diagrams in a gate
voltage parameter space at filling factor ν = 1, and discuss the prospects of realizing quantum anomalous Hall
insulators and fractional Chern insulators when the superlattice potential modulation is produced by dielectric
patterning or adjacent moiré materials.
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I. INTRODUCTION

Moiré materials including twisted graphene [1–10] and
transition metal dichalcogenide (TMD) [11–24] heterostruc-
tures have attracted a tremendous amount of research interest.
Motivated by the rich phenomenology observed in moiré
materials, alternate flat-band platforms [25–30] have been
proposed. Topological flat-band systems are especially in-
teresting as the interplay between correlation and topology
leads to quantum anomalous Hall [5,18] and fractional
Chern insulators [6,10,21–23] at integer and fractional fill-
ings, respectively. Flat bands with nonzero Chern numbers
are reminiscent of Landau levels in quantum Hall systems
[31–36], and could underlie many of the exotic phenom-
ena observed in moiré materials, including superconductivity
[37–39].

Recent experimental advances have enabled creation of ar-
tificial superlattices by the gate-patterning technique [40–46]
or by adjacent moiré materials [47–53], and the physical
consequences have been discussed [26,27,54–62]. In par-
ticular, it was shown in a recent study [26] that Bernal
stacked bilayer graphene modulated by a superlattice poten-
tial (SL-BLG) provides a versatile platform for the study
of flat-band physics. Band structure calculations show that
SL-BLG hosts topologically nontrivial flat bands under weak
superlattice potential modulation, and a stack of trivial flat
bands under strong modulation. The flat bands in different
parameter regimes are reminiscent of those in graphene and
TMD moiré materials, but the high tunability makes SL-BLG
a unique platform for the study of correlated and topological
phases.

Despite the discovery of topological flat bands in SL-BLG
in a large parameter regime, the origin of these topological flat
bands is not clear. Multiple band inversions in parameter space
lead to rich but complicated band structure and topology. In
this paper we show that the topology of the lowest bands
is robust at least in the weak modulation regime; when the
superlattice potential is weak compared to the displacement
field, the lowest miniband above charge neutrality is always
topologically nontrivial when the superlattice potential min-
ima form a honeycomb lattice. We further perform mean-field
calculations at filling factor ν ≡ NA0/A = 1 of the topological
flat bands and find that the system is a valley-polarized quan-
tum anomalous Hall insulator over a large parameter range.
(Here N is the number of electrons, A is the area of the system,
and A0 is the area of one unit cell.)

This paper is organized as follows. In Sec. II, we introduce
our model system and show how its band structure and topol-
ogy is influenced by the strength of displacement field and the
shape of superlattice potential. In Sec. III, we study interaction
effects at filling ν = 1 of the topological flat bands and present
mean-field phase diagrams. Finally, we conclude our work in
Sec. IV with a discussion of the prospects for experimental
realization of quantum anomalous Hall and fractional Chern
insulators within the SL-BLG platform.

II. BAND TOPOLOGY

A. Model

We consider a SL-BLG. For concreteness, we consider
the experimental setup shown in Fig. 1 in which the su-
perlattice potential is produced by a periodic pattern on the
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FIG. 1. Schematic illustration of the SL-BLG device structure.
The top and bottom gate voltages Vt ,Vb control the net charge density
on bilayer graphene and the displacement field strength, while the su-
perlattice gate voltage Vs controls the superlattice potential strength.
The gray regions represent dielectric layers that separate the active
layers from the gates.

superlattice gate. The gate-patterning technique depicted in
Fig. 1 has been demonstrated in recent experiments [40–46]
and in principle allows superlattice potentials of arbitrary
shapes and periodicities. By tuning the top and bottom gate
voltages Vt ,Vb and the superlattice gate voltage Vs, the net
charge density, displacement field, and superlattice potential
strength can be independently controlled. We note that an-
other efficient method to impose a superlattice potential is by
including a twisted hexagonal boron nitride (hBN) bilayer,
which exhibits a spatially periodic pattern of out-of-plane
electric polarizations [47–50], in the van der Waals layer
stack. A doped TMD moiré bilayer with localized charge
carriers [51–53] is yet another possibility, but for a general
theoretical discussion we focus first on the highly tunable
device structure in Fig. 1 and defer the discussion of hBN and
TMD bilayers to Sec. IV.

The system is described by the Hamiltonian

H = HBLG + HSL + Hint. (1)

Here HBLG is the Hamiltonian for bilayer graphene (BLG)
with a displacement field [63]:

HBLG =
∑
τ sk

�
†
τ sk

[
h̄v(τkxσ1 + kyσ2)

+ t

2
(ρ1σ1 − ρ2σ2) + V0ρ3

]
�τ sk, (2)

where τ = ± and s =↑,↓ are the valley and spin labels, �

is a four-component spinor with layer and sublattice com-
ponents, and ρ and σ are, respectively, layer and sublattice
Pauli matrices, v = 106 m/s is the Dirac velocity, t = 0.4 eV
is the dominant interlayer hopping amplitude, and V0 is the
displacement field strength. Trigonal warping terms are ne-
glected as in Ref. [26]. While trigonal warping plays a crucial
role for the nature of correlated metallic states in bilayer and
trilayer graphene in the limit of zero superlattice potential and
low carrier densities [64–70], its effect is unimportant when a
superlattice potential stronger than the energy scale associated
with trigonal warping (which is typically ∼1 meV) is present
and dominates the physics of correlated states, which is the
parameter regime of interest to this work. HSL describes the

superlattice potential modulation:

HSL =
∑
τ s

∫
dr �†

τ s(r)V (r)�τ s(r). (3)

In this paper we focus on triangular superlattice potentials. To
lowest order in the Fourier expansion,

V (r) =
(

1 + α

2
ρ0 + 1 − α

2
ρ3

)(
2∑

n=0

VSL eign·r + c.c.

)
, (4)

where in general VSL = |VSL|eiφ is a complex parameter, and
gn = (4π/

√
3L)(cos(2nπ/3), sin(2nπ/3)) with n = 0, 1, 2

are reciprocal lattice vectors of the triangular superlattice with
lattice constant L. The phase φ determines the ratios of the
superlattice potential values at three high-symmetry points
within a unit cell; they are, respectively, proportional to cos φ,
cos(φ + 2π/3), and cos(φ − 2π/3). The lower two become
degenerate at φ = 2nπ/3 and at this point the potential min-
ima form a honeycomb lattice. Similarly the potential maxima
form a honeycomb lattice when φ = (2n + 1)π/3. α ∈ (0, 1)
is the ratio of effective superlattice potential strengths felt by
the top and bottom graphene layers. In this paper we choose
α = 0.9. Note that the value of α here is its bare value that
only accounts for the geometric origin of layer asymmetry,
i.e., the fact that the bottom layer is closer to the superlattice
gate than the top layer. Electrostatic screening leads to a
much reduced effective α [71], but this effect is taken into
account self-consistently by our Hartree-Fock calculations. To
avoid double-counting, we start with a large bare α in the
single-particle Hamiltonian. The precise value of α does not
qualitatively affect our results.

The last term in Eq. (1) is the Coulomb interaction

Hint = 1

2A

∑
ll ′q

Vll ′ (q) : nl,qnl ′,−q :, (5)

where nl,q = ∑
στ sk a†

lστ s,k+qalστ s,k is the density opera-

tor in layer l , Vll ′ (q) = 2πe2/εq for l = l ′ and Vll ′ (q) =
(2πe2/εq)e−qd for l 	= l ′ where ε is the dielectric constant
and d is the distance between the two graphene layers. The
colons represent normal ordering of creation and annihilation
operators. In our calculations we take ε = 10 and d = 3.5 Å.
Intralayer and interlayer interactions must be distinguished in
order to account for screening effects properly. Our calcula-
tions also account for gate-screening effects that are discussed
in the Appendix.

The Chern number of an isolated energy band (labeled by
n) is defined as [72] the integral of Berry curvature in the mini
Brillouin zone (mBZ) of the long-period superlattice:

Cn = 1

2π

∫
mBZ

d2k�n,k, (6)

with Berry curvature

�n,k = i
(〈∂kx unk|∂ky unk〉 − 〈∂ky unk|∂kx unk〉

)
, (7)

where |unk〉 is the Bloch eigenstate of band n.
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FIG. 2. Band structure and topology of SL-BLG. (a) Superlattice potential with |VSL| = 5 meV and φ = 0. The potential minima form
a honeycomb lattice and the potential maxima form a triangular lattice. (b),(c) Band structure in valley τ = −1 with displacement field (b)
V0 = −8 meV (c) V0 = −18 meV, with the superlattice potential in (a) and lattice constant L = 50 nm. (d),(e) Same plots as in (a),(b) but with
φ = π/6. (f) Topological phase diagram in V0-φ parameter space with fixed |VSL| = 5 meV. Cc and Cv are the valley-projected Chern numbers
of the first conduction and valence minibands respectively. The Chern numbers of the corresponding bands in the other valley are equal and
opposite, leading to zero net Chern number when both valleys are included. The colored regions separated by solid lines represent different
topological phases for L = 50 nm, while the dotted lines are phase boundaries for L = 30 nm. The red, green, and black stars represent the
parameter choices in (b), (c), and (e), respectively.

B. Band structure and topology

The electronic band structure of SL-BLG has been studied
in detail in Ref. [26]. Here, we briefly review some results and
provide new insight into the nature of topological flat bands.

In the absence of a superlattice potential, a displacement
field opens a 2|V0| gap. The result is a valley Hall insulator
with nonzero Berry curvature concentrated near the conduc-
tion band bottom and valence band top in each valley. With
a weak superlattice potential (|VSL| � |V0|), the conduction
band electrons are localized near the potential minima and the
valence band holes near the potential maxima. The potential
minima form a triangular lattice for generic phase angles
φ = argVSL, but two local minima become degenerate at
φ = 2nπ/3 and together form a honeycomb lattice [Fig. 2(a)].
Similarly, the potential maxima form a honeycomb lattice near
φ = (2n + 1)π/3 and a triangular lattice otherwise. We show
below that lattice geometry is crucial for the topological prop-
erties of low-energy minibands; topological bands are favored
by honeycomb lattices while triangular lattices are likely to
host trivial bands.

Below we focus on the first miniband above charge neu-
trality. Physically this band represents the lowest bound state
of conduction band electrons localized near the superlattice
potential minima. Because the band dispersion of BLG is flat
near the band extrema, the bandwidth of the first conduction
miniband is small even with relatively weak potential modu-
lation. To understand the topology of the band, we assume a

weak superlattice potential and perform degenerate state per-
turbation theory near the κ point [κ = (2π/3L)(

√
3, 1)] of the

mBZ. Folding the conduction band into the first mBZ, the low-
est energy level at κ is threefold degenerate. The superlattice
potential couples these three states and lifts the degeneracy.
Projecting the superlattice potential onto the 3 × 3 low-energy
subspace, the Hamiltonian matrix reads

Hκ =

⎛
⎜⎝

Eκ Vκ V ∗
κ

V ∗
κ Eκ Vκ

Vκ V ∗
κ Eκ

⎞
⎟⎠, (8)

where Eκ is the conduction band energy at κ and
Vκ = 〈κ|V |κ − g0〉 is the superlattice potential projected onto
the low-energy subspace. If the basis states were trivial plane
waves, Vκ = VSL would simply be the Fourier coefficient of
the superlattice potential. However, the BLG basis states have
nontrivial spinor structures which produce an extra phase fac-
tor eiφ′

, i.e., argVκ = φ + φ′. A similar analysis applies for the
bands at κ ′ = −κ , but here the projected matrix element has
the phase angle argVκ ′ = φ − φ′.

The matrix Hκ has three distinct eigenvalues in gen-
eral, but the lower two eigenvalues become degenerate when
argVκ = 2nπ/3. At this point the lower two bands form a
Dirac cone near κ . By a similar argument the gap closes at κ ′
when argVκ ′ = 2nπ/3. For a trivial band without any internal
spinor structure, φ′ = 0, the gap closes simultaneously at κ
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and κ ′ and the band topology does not change. In this case
the lowest band is topologically trivial for any φ 	= 2nπ/3.
When φ′ 	= 0, the gap closes at φ = 2nπ/3 − φ′ at κ and
φ = 2nπ/3 + φ′ at κ ′, opening up an interval φ ∈ (2nπ/3 −
φ′, 2nπ/3 + φ′) within which the lowest band is topologi-
cally nontrivial. The point φ = 2nπ/3 at which the potential
minima form a honeycomb lattice is at the middle of the
topological region and is the optimal parameter choice for a
topological flat band. This explains why in Ref. [26] [see also
Figs. 2(a)–2(c)], where φ = 0 is implicitly assumed, the first
miniband above charge neutrality is topologically nontrivial,
while the band below, which originates from valence band
holes localized at the potential maxima that form a triangular
lattice, is topologically trivial.

The phase φ′ originates from the nontrivial geometry of
Bloch wave functions and determines the width of the topo-
logical region. Roughly speaking φ′ is proportional to the
Berry flux of the conduction band within the first mBZ. For
small φ′, gap closings at κ and κ ′ occur almost simultaneously
as φ varies. While the lowest miniband is topologically non-
trivial between these two gap closings, it is separated from the
second lowest band only by a very small gap. For BLG, this is
the case when the displacement field V0 is large such that the
Bloch wave functions near the conduction band bottom have
little winding [see Fig. 2(c)]. In order to obtain an isolated
topological flat band, V0 cannot be too large. An approximate
criterion, obtained by requiring a significant amount of Berry
flux within the first mBZ, is that V0 � (h̄2v2/t )(2π/L)2. A
smaller lattice constant L implies a larger mBZ which contains
a larger amount of Berry flux and therefore a larger φ′ and a
wider topological region.

Figure 2(f) shows the phase diagram in V0-φ parameter
space with fixed |VSL| = 5 meV. In agreement with the above
discussion, the topological region is centered at φ = 0 for the
first conduction miniband and φ = π/3 for the first valence
miniband, and the width of the topological region shrinks
rapidly with increasing |V0|. The topological region becomes
wider at smaller lattice constant L, as is clear from the com-
parison between the L = 50 nm (solid lines) and L = 30 nm
(dotted lines) phase boundaries.

As the superlattice potential strength |VSL| increases, the
conduction minibands move down and the valence minibands
move up. The conduction and valence minibands start to mix
when |VSL| ∼ V0 and above this point the band structure be-
comes complicated and sensitive to parameters. In the strong
modulation limit the system becomes a quantum dot array
with electrons and holes confined in neighboring sites. In this
paper, we focus on the regime of relatively weak superlattice
potential in which the band structure and topology can be
understood by the arguments above, and leave the study of
the strong modulation limit to future work.

III. CORRELATED STATES IN SL-BLG

In this section we study correlated states in SL-BLG at
partial filling of the minibands, with emphasis on the topology
of correlated insulating states. Since topological bands are
favored by honeycomb lattices, we choose φ = 0 and focus
on the first conduction miniband. The effects of varying φ will
also be discussed.

A. Mean-field theory

We study interaction effects by Hartree-Fock mean-field
theory. Because the first conduction miniband is not flat and
isolated for generic parameters V0 and VSL, we do not project
interactions onto the low-energy minibands, but instead per-
form mean-field calculations in the plane-wave basis. The
mean-field Hamiltonian consists of single-particle terms and
Hartree-Fock self-energies:

HMF = HBLG + HSL + �H + �F . (9)

The Hartree term is physically an electrostatic potential:

�H = 1

A

∑
lστ s

∑
gk

[∑
l ′

Vll ′ (g)nl ′g

]
a†

lστ s,k+galστ s,k, (10)

where nlg = ∑
στ sk〈a†

lστ s,k−galστ s,k〉 is the Fourier transform
of electron density in layer l . The Hartree potential must be
regularized because of the negative energy sea; we account
for its effects by defining 〈. . . 〉 in the self-consistent field
equations as the expectation value in the mean-field ground
state subtracted by that in charge-neutral BLG in the absence
of external fields. The Fock term is

�F = − 1

A

∑
l ′σ ′τ ′s′

∑
lστ s

∑
kk′g

Vll ′ (k
′ − k − g)

× 〈a†
lστ s,k′−g

al ′σ ′τ ′s′,k′〉a†
l ′σ ′τ ′s′,k+galστ s,k. (11)

In Eqs. (10) and (11) we have assumed that the translational
symmetry of the superlattice is preserved. The mean-field
ground state is obtained by solving the mean-field equa-
tions self-consistently. The Berry curvature and Chern number
of mean-field energy bands are given by the same expressions
in Eqs. (6) and (7), but with the single-particle Bloch eigen-
states replaced by the self-consistent mean-field eigenstates.

B. Phase diagrams

The single-particle band structure has four-fold spin-valley
degeneracy. Therefore at miniband filling ν = 1, the first
conduction miniband of each flavor is quarter-filled, result-
ing in a metallic state, when interactions are absent. This is
indeed the case when the superlattice potential is weak so
that the minibands remain dispersive. As the first miniband
flattens with increasing |VSL|, it is energetically favorable to
form a correlated insulating state by spontaneously breaking
the spin-valley degeneracy. The threshold |VSL| for correlated
insulating states decreases with |V0| because increasing |V0|
flattens the BLG bands. Interestingly, at large |V0| the corre-
lated insulating state persists to the limit of vanishing |VSL|,
pointing to the possibility of Wigner crystallization in BLG
at large displacement field and low carrier density [73]. The
possibility of Wigner crystallization in BLG has been studied
theoretically in Refs. [74,75]. Experimental signatures of an
insulating state in BLG have been observed [66] at low carrier
density and large displacement field and are interpreted as
evidence of spontaneous crystallization. A careful study of
Wigner crystallization in BLG needs to take into account
trigonal warping effects and to consider a range of carrier
densities, which is outside the scope of the current work.
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FIG. 3. Mean-field phase diagrams at filling factor ν = 1. (a) and (b) are phase diagrams in displacement field V0 and superlattice potential
strength |VSL| plane, with fixed φ = 0 but different lattice constants: (a) L = 50 nm; (b) L = 30 nm. The dotted lines in the yellow regions
separate the time-reversal-symmetric metallic states on the lower left and the valley-imbalanced metallic states (anomalous Hall metal) on the
upper right. The band mixing (hatched green) regions identify large-|VSL| semimetal states in which conduction and valence minibands overlap
and mix, leading to a complicated series of phase transitions between insulating and metallic states that we do not study in detail in this work.
(c) is the phase diagram in V0 and φ at fixed |VSL| = 20 meV and L = 30 nm. Here all metallic states break time-reversal symmetry.

A more careful examination of the metallic states shows
that at large |V0| and |VSL|, the metallic state is sponta-
neously valley-imbalanced, breaking time-reversal symmetry.
Because of the opposite Berry curvatures in the two valleys of
BLG, such a metallic state is expected to show an anomalous
Hall effect. The transition from such anomalous Hall metal
state to insulating states occurs via a continuous closing of an
indirect band gap while the transition from the time-reversal
symmetric metallic state to the quantum anomolous Hall in-
sulator (QAHI) is a first-order transition.

In our mean-field calculations we find that spin-valley-
polarized states are energetically favored over intervalley-
coherent states. The topological properties of these correlated
insulating states, however, depend on the system parameters.
If the only relevant band is the first conduction miniband and
the shape parameter of the superlattice potential is near φ = 0,
spin and valley polarized insulating states are QAHIs with
net Chern number |C| = 1. This is the case when the first
conduction miniband is isolated from all other bands by a
gap larger than the interaction energy scale. According to the
discussion in the last section, at φ = 0 the first conduction
miniband is flat and isolated only at intermediate values of
|V0| and |VSL|. At large |V0| the gap between the first and
second minibands is small, and the Berry curvature is strongly
localized near the κ and κ ′ points. At large |VSL|, on the other
hand, mixing between the conduction and valence minibands
becomes important, and the first conduction miniband is gen-
erally not flat or isolated.

The above picture is confirmed by the mean-field phase
diagrams in Fig. 3. We find that the ground state at filling
ν = 1 is a QAHI over a large region in voltage parameter
space. At small |V0| the system is metallic at small |VSL| and
becomes a QAHI above a threshold |VSL|. The QAHI state
persists until the conduction and valence minibands mix at
large |VSL|, after which the system becomes either a trivial
insulator or a metal. The phase diagram in the semimetal-
like conduction/valence band-mixing regime (hatched green
region in Fig. 3) at large |VSL| is mostly topologically trivial.

Flavor symmetry breaking properties in this regime are highly
sensitive to parameters, and in all likelihood not predicted
correctly by Hartree-Fock theory. As |V0| increases, mixing
between the first and second conduction minibands becomes
increasingly important and leads to the emergence of a trivial
insulating state with net Chern number C = 0 between the
metallic and QAHI states at large |V0|. Both insulating states
are valley-polarized and break time-reversal symmetry, and
the transition between them occurs via a continuous gap clos-
ing. The trivial insulator region expands with increasing |V0|,
accompanied by the shrinking of the QAHI region.

Figures 3(a) and 3(b) are phase diagrams at different lattice
constants L. Comparison of the two shows that the QAHI
region is significantly larger at smaller L. This is consistent
with the single-particle phase diagram in Fig. 2(e) in which
the topological region widens at large L. Figure 3(c) shows
that the QAHI region quickly narrows as φ increases from 0
to π/6, in agreement with the insight from the last section that
topological bands are favored by honeycomb lattices (φ = 0).

IV. CONCLUSION AND DISCUSSION

In this paper we studied the band structure and topology
of SL-BLG as well as correlated insulating states that appear
at partial filling of the first conduction miniband. We found
that the ground state at filling ν = 1 is a spin-valley-polarized
QAHI when the first conduction miniband is isolated, flat,
and topologically nontrivial. According to the analysis in
Sec. II, this is the case when: (i) the superlattice potential
minima form a honeycomb lattice with two equivalent sub-
lattices ( i.e., φ = 0); and (ii) the displacement field V0 and
superlattice potential strength |VSL| are relatively weak. The
large stable QAHI regions in our mean-field phase diagrams
(Fig. 3) suggest that QAHIs should be routinely realized in
honeycomb-superlattice potential modulated BLG with no
need for fine tuning.

Our gap-closing argument in Sec. II is not specific to
BLG; generalization to other systems as well as other
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superlattice geometries is straightforward. We note that simi-
lar perturbative analysis was performed in Refs. [55–58,76]
in different contexts but with qualitatively similar results.
Our argument shows that when weak honeycomb-lattice po-
tential modulation is applied to any gapped system with
nontrivial band geometry, the lowest miniband above the
band gap is likely to be topologically nontrivial. Since the
central point of our argument is built upon Berry phase ef-
fects that break the effective time-reversal symmetry of the
single-valley Hamiltonian and gap out the Dirac cones at κ, κ ′,
our results are also applicable to kagome lattice potential
modulations. Note, however, that gap closing at γ = (0, 0)
and m = (2π/

√
3L, 0) can also change the topology of mini-

bands. Neither case occurs in BLG, but both are possible
for other systems such as the quantum spin Hall insulators
described by the Bernevig-Hughes-Zhang model [77]. For
square-lattice potential modulated BLG, a weak modulation
potential always opens up a trivial gap between the first
and second conduction minibands. Topological phase tran-
sitions do occur when the modulation potential gets strong
as shown in Ref. [26], but this is outside the scope of our
perturbation theory analysis, and the topological bands in this
regime are not as robust and likely require more fine tun-
ing. A more general analysis of topological band inversions
in superlattice potential modulated two-dimensional systems
as well as construction of lattice models is left for future
work.

It was recently shown experimentally that superlattice
modulation potentials can also be produced by adjacent
moiré materials [50–53]. Twisted hBN bilayers produce a
triangular superlattice potential [78] with φ = π/6, which
according to our phase diagrams in Figs. 2(e) and 3(c)
is unfavorable for topological flat bands [79] and QAHIs.
TMD bilayers, on the other hand, provide more tunability
with choice of material combinations and doping densities.
Twisted TMD homobilayers [80] provide a honeycomb-lattice
moiré potential for �-valley holes, and when the honey-
comb lattice is filled by doping, the modulation potential
for adjacent layers is honeycomb-shaped. The gate-patterning
technique provides higher tunability on the shape and
strength of the superlattice potential, but at the current
stage it is limited to relatively long superlattice periodicities
(�30 nm), and the fabrication process introduces significant
disorder.

It was shown in Ref. [26] that the topological flat band
of SL-BLG in the weak modulation regime has nearly ideal
quantum geometry, and that the ground state at filling ν = 1/3
is a fractional Chern insulator (FCI). The robustness of the
topological flat bands and related valley-polarized QAHIs
shown in our work suggests that the validity of these results
is probably not limited to a special parameter choice, but
that similar results are expected over a wide parameter range.
Since the formation of FCIs requires spontaneous valley po-
larization, we expect that observation of FCIs at fractional
fillings is likely within the QAHI regions in Fig. 3. A detailed
study of FCIs in SL-BLG and related superlattice modulated
systems is left for future work.
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APPENDIX: DETAILS OF HARTREE-FOCK
CALCULATIONS

1. Gate-screened Coulomb interactions

In a dual-gated system, the long-range part of the Coulomb
interaction is screened. The gate-screened Coulomb interac-
tion is derived by considering image charges on the metallic
gates [81]. We take the following form of gate-screened
Coulomb interactions:

Vl=l ′ (q) = 2πe2

εq

(eqd − e−qdg )(e−qd − e−qdg )

1 − e−2qdg
, (A1)

Vl 	=l ′ (q) = 2πe2

εq

eqd (e−qd − e−qdg )2

1 − e−2qdg
, (A2)

where dg is the distance between two gates. In our calculations
we take dg = 100 nm.

In systems with anisotropic dielectric environment εxx =
εyy 	= εzz, the Coulomb potential takes the same functional
form but with effective dielectric constant ε = √

εxxεzz and
with all out-of-plane lengths (i.e., d and dg) rescaled by a
factor of

√
εxx/εzz. The value of ε in Hartree-Fock calcula-

tions in similar systems is often taken to be larger than the
realistic value of hBN (∼5) to effectively describe dynamical
screening effects [67,70]. The values of ε used in the literature
[67–70,82–85] range from 5 to around 20. In our calculations
we take ε = 10, but we note that the precise values of ε, d ,
and dg do not affect our qualitative results.

2. Computational details

The self-consistent Hartree-Fock calculations are per-
formed on a 5 × 5 k grid in the mBZ. The momentum-space
cutoff is made by keeping three momentum shells (37 g
points). The relatively small number of k points is chosen due
to the long superlattice periodicity (30−50 nm as compared
to ∼10 nm in moiré systems), and the small g cutoff achieves
good convergence because of the weak superlattice potential
in our calculations.
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