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The rising interest in Dirac materials, condensed-matter systems where low-energy electronic excitations are
described by the relativistic Dirac Hamiltonian, entails a need for microscopic effective models to analytically
describe their transport properties. Specifically, for the study of quantum transport these effective models must
take into account the effect of microscopic scale interfaces and the presence of well-defined edges, while
reproducing the correct band structure. We develop a general method to analytically compute the microscopic
Green’s function of Dirac materials valid for infinite, semi-infinite, and finite two-dimensional layers with zigzag
or armchair edge orientations. We test our method computing the density of states, scattering probabilities and
topological properties of germanene and semiconducting transition metal dichalcogenides, obtaining simple
analytical formulas. Our results provide a useful analytical tool with low computational cost for the interpretation
of transport experiments on Dirac materials which could be extended to describe additional degrees of freedom
like extra layers, superconductivity, etc.
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I. INTRODUCTION

Two-dimensional (2D) materials have become an excel-
lent playground to engineer quantum devices with exotic
properties [1–6]. Examples include one- or few-atom-thick
materials like graphene, silicene, stanene, germanene, and
transition-metal dichalcogenides (TMDs) [7–10]. Despite
their differences, many of these materials share low-energy
characteristics like the presence of nodal points or a linear
band dispersion, tunable carrier density, and high mobility
due to suppressed backscattering [11–13]. All these properties
make them very promising candidates for quantum transport
applications [5,14–18]. This class of condensed-matter sys-
tems is known as Dirac materials since, in the infrared regime,
charge carriers follow a relativistic Dirac equation yielding
the same universal behavior for, e.g., the optical conductivity
or the specific heat [12,13,19,20]. The origin of the Dirac-
like behavior varies with the material but in all cases some
specific symmetries protect the formation of Dirac nodes in
the spectrum [19]. For example, in the recently discovered
quantum spin Hall insulator [21,22] time-reversal symmetry
promotes and protects the formation of Dirac-like metallic
one-dimensional (1D) edge states on an otherwise 2D insu-
lator. Similarly, three-dimensional (3D) topological insulators
feature 2D edge states described by a single (or an odd number
of) Dirac cones [23–27].

Dirac materials are characterized by their band structure
[7–10], and new materials can be predicted from numerical
methods [28], like density functional theory or ab initio cal-
culations [29]. Once identified, their microscopic properties
are more easily accessed by numerical lattice calculations
[30–36], which can include finite-size effects and the presence
of edges [37,38]. For the study of quantum transport, it is also

important to include the effect of atomic scale interfaces, or
the presence of well-defined edges in layers of 2D materials;
for example, the electronic spectrum of a graphene nanorib-
bon strongly depends on the edge orientation [39–41].

In a complementary approach, low-energy, effective micro-
scopic Hamiltonians offer a way to include all these effects
(finite-size, edges and interfaces, etc.), while, at the same
time, providing analytical results for the study of transport
[39]. In the absence of Coulomb interactions, a scattering
theory can be derived from the Dirac Hamiltonian including
interesting effects like edge orientation, spin-orbit coupling,
magnetization, or even superconductivity [42–52]. A particu-
larly interesting generalization of effective Hamiltonians are
the Green’s function (GF) methods combined with Dyson’s
equation [40,43]. The GF facilitates the study of correlations
(interactions, superconductivity, etc.) while naturally allow-
ing the computation of observables like the electric current
and the density of states. The Hamiltonian approach to GF
techniques is perfectly suited to consider edge and interface
effects in 2D systems and, in many cases, provides simple,
analytical results which can also describe long-range order
like magnetism or superconductivity [43,49,53,54].

In this work, we develop a systematic and general method
to analytically compute the microscopic GF of systems with a
general Dirac Hamiltonian and apply this method to 2D hon-
eycomb structure. The resulting GF accounts for the presence
of well-defined edges or interfaces at the atomic scale. We
then obtain the GF of relevant Dirac materials, like germanene
and TMDs, and obtain transport properties (density of states
and scattering probabilities) of infinite, semi-infinite, and fi-
nite layers. Our general method can distinguish specific edge
orientations like zigzag, which only involves one Dirac node
or valley, and armchair that combines two valleys. In all cases,
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our method provides simple analytical formulas, with low
computational cost, which allow us to compute the formation
of edge states and their topological properties.

The rest of the paper is organized as follows: In Sec. II,
we present the general Dirac Hamiltonian and calculate the
related GF. Then, in Secs. III and IV, we develop the recipe for
the GF of a semi-infinite and a finite system, respectively. In
Secs. V and VI, we apply our method to zigzag and armchair
edge orientations and include specific applications for TMDs
and germanene. We then explore the interesting behavior of
germanene under an out-of-plane electric field in Sec. VII.
Finally, we present some concluding remarks in Sec. VIII.
An Appendix has also been added to show details of the
calculations.

II. GENERALIZED DIRAC HAMILTONIAN

We consider the following general Dirac Hamiltonian, act-
ing on a two-dimensional space

Ȟ (x, y) = −ih̄vF (α̌x∂x + α̌y∂y) + V̌ (x, y), (1)

with vF the Fermi velocity and V̌ (x, y) an electrostatic po-
tential. Here, α̌x,y are 2N × 2N matrices acting on the SU(2)
degree of freedom that defines the Dirac Hamiltonian and
the N-dimensional space containing the rest of degrees of
freedom. In the following, we assume translation invariance
along the y axis, with ky ≡ q a conserved quantity, and con-
sider inhomogeneous systems along the x direction. Then,
Eq. (1) reduces to Ȟq = −ih̄∂xα̌x + qα̌y + V̌ (x), which obeys
the generalized Dirac equation

Ȟqψq(x, y) = Eqψq(x, y), (2)

with solutions of the form

ψq(x, y) = eiqy[ψ+
n eik+

n x + ψ−
n eik−

n x], (3)

where ψn = (ψ+
n , ψ−

n )T are 2N-dimensional spinors in the
SU(2) space spawned by α̌x, with n labeling the other quan-
tum numbers. The states ψ±

n eik±
n x, where, usually, k−

n = −k+
n ,

represent right-moving (ψ+
n ) and left-moving (ψ−

n ) solutions
along the x direction with probability flux current given by
J±

n,x = vF ψ±†
n α̌xψ

±
n = ±vF . These states are not, however, or-

thogonal. To obtain an orthogonality relation, we must define
the states

ψ̃±
n = ±α̌†

x ψ
±
n , (ψ̃±

n )† = ±(ψ±
n )†α̌x, (4)

which fulfill (
ψ̃ε

n

)†
ψε′

m = δnmδεε′ , (5)

with ε = +,−. Combining ψ±
n and ψ̃±

n states we then find the
completeness relation∑

ε,n

ψε
n

(
ψ̃ε

n

)† = 1̌, (6)

with 1̌ being the 2N × 2N unit matrix.
We can now define the general GF associated with the

Dirac Hamiltonian in Eq. (2) as

(E 1̌ − Ȟq)Ǧq(x, x′) = Eδ(x − x′)1̌. (7)

The subindex in Ǧq(x, x′) indicates the quasi-one-dimensional
regime where q is a conserved quantity. We henceforth work
in this regime and omit the subindex. Assuming V̌ (x) = 0
and k−

n = −k+
n = −kn, with kn � 0, the GF ǧ(x, x′) of the

unbounded (bulk) system becomes [43]

ǧ<(x < x′, x′) = −i

2h̄vF

∑
n

f −
n (x − x′)ψ−

n (ψ̄−
n )T , (8a)

ǧ>(x > x′, x′) = −i

2h̄vF

∑
n

f +
n (x − x′)ψ+

n (ψ̄+
n )T . (8b)

The superindex ǧ≷ = ǧ(x ≷ x′) indicates the different form
of the GF depending on the spatial coordinates. When it is
important to distinguish the cases with x ≷ x′ we show this su-
perindex and omit it otherwise. The x dependence is encoded
in the functions f ε

n (x) = eiεknx, and the states ψ̄ε
n are solutions

to the transposed Hamiltonian in Eq. (1). Transposing a Dirac
Hamiltonian results in the exchange k → −k, so the trans-
posed states can be related to the left- and right-moving states
in Eq. (3) as

ψ̄+T
n = (γ̌ ψ−

n )T , ψ̄−T
n = (γ̌ ψ+

n )T , (9)

with γ̌ a matrix such that the scalar product ψ†γ̌ ψ is invariant
under Lorentz transformations and spatial inversion [43].

III. SEMI-INFINITE SYSTEMS

We can define a sharp edge localized at x = xa by means
of the perturbation potential

V̌ (x) = Uaτ̌aδ(xa − x), (10)

with Ua the potential strength that takes the limit Ua → ∞
when we consider the edge of a semi-infinite layer. Here, τ̌a is
a matrix that encodes the specific boundary conditions at the
edge and takes into account the change in sublattice associated
with atomic-scale translations [43]. The GF perturbed by this
potential is given by Dyson’s equation as

Ǧa(x, x′) = ǧ(x, x′) +
∫

dx1ǧ(x, x1)V̌ (x1)Ǧa(x1, x′)

= ǧ(x, x′) + ǧ(x, xa)Uaτ̌aǦa(xa, x′), (11)

with ǧ(x, x′) the bulk GF defined in Eq. (8). The perturbation
potential Eq. (10) can also be used to join two semi-infinite
solutions, Eq. (11), and recover the bulk result [43]. The
solution of this equation when both x and x′ are on the right
(left) of xa takes the form

ǦR(L)
a (x, x′) = ǧ(x, x′) + Q̌>(<)(x)ǧ<(>)(xa, x′), (12)

with the superindex R (L) indicating that x, x′ > xa (x, x′ <

xa), and where we have defined

Q̌χ (x) = ǧχ (x, xa)Uaτ̌aDχ , (13)

Ďχ
a = (1̌ − ǧχ (xa, xa)Uaτ̌a)−1, (14)

with χ =>,<. An iterative method allows us to find an ex-
pression for Eq. (13) as (see Sec. A for details)

Q̌χ (x) = Uaǧχ (x, xa)τ̌a

∞∑
p=0

[Uaǧχ (xa, xa)τ̌a]p. (15)
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Using the completeness relation, Eq. (6), we find

ǧ>(xa, xa)τ̌a = −i

2h̄vF

∑
n

ψ+
n (ψ̄+

n )T τ̌a

∑
m,ε

ψε
m

(
ψ̃ε

m

)†

= −i

2h̄vF

∑
n,m,ε

τ+ε
a,nmP̌+ε

nm , (16)

where we have defined the projector operators

P̌εε′
nm = ψε

n

(
ψ̃ε′

m

)†
, (17)

and the matrix representation of τ̌a as

τ εε′
a,nm = (

ψ̄ε
n

)T
τ̌aψ

ε′
m . (18)

In what follows, it is more insightful to write explicitly the
subspace spawned by the left- and right-moving solutions of
Eq. (2), that is, the N × N matrices τ̂ εε′

, so that

τ̌ =
(

τ̂++ τ̂+−
τ̂−+ τ̂−−

)
. (19)

We thus use the symbols ˇ. . . and ˆ. . . to distinguish the full
2N × 2N matrices from others with reduced N × N dimen-
sions. As a result, Eq. (13) becomes

Q̌>(x) =
∑
n,m,ε

f +
n (x − xa)

(
r̂+ε

a

)
nmP̌+ε

nm , (20)

with r̂+ε
a = D̂+

a τ̂+ε
a and

D̂ε
a = −iUa

2h̄vF

(
1 + iUa

2h̄vF
τ̂ εε

a

)−1

. (21)

Analogously,

Q̌<(x) =
∑
n,m,ε

f −
n (x − xa)

(
r̂−ε

a

)
nmP̌−ε

nm , (22)

with r̂−ε
a = D̂−

a τ̂−ε
a .

Consequently, the local GFs at each side of the perturbation
adopt the form

ǦR
a (x, x′)

= ǧ(x, x′) +
∑
nm

f +
n (x − xa)(r̂+−

a )nm f −
m (xa−x′)ψ+

n (ψ̄−
m )T ,

(23)

and

ǦL
a (x, x′)

= ǧ(x, x′) +
∑
nm

f −
n (x − xa)(r̂−+

a )nm f +
m (xa−x′)ψ−

n (ψ̄+
m )T .

(24)

Here, řa corresponds to the scattering matrix of reflection
amplitudes. For a potential acting on xa, we can define the
transmission amplitudes as t̂ εε

a = 1̂ + r̂εε
a , and the scattering

matrix results in

Ša = 1̌ + řa =
(

t̂++
a r̂+−

a

r̂−+
a t̂−−

a

)
, (25)

which fulfills the unitarity condition ŠaŠ†
a = Š†

aŠa = 1̌; for
more details we refer the reader to Sec. B.

The semi-infinite system requires a hard edge at x = xa,
which we obtain taking the limit Ua → ∞. Consequently,
the denominators in Eq. (21) become D̂ε

a → −(τ̂ εε
a )−1. The

scattering matrix for the semi-infinite system thus reduces to

Ša =
(

0 (τ̂++
a )−1

τ̂+−
a

(τ̂−−
a )−1

τ̂−+
a 0

)
, (26)

where the transmission amplitudes are zero at the edge. As a
result, the matrix of reflection amplitudes is unitary, (r̂+−

a )† =
(r̂+−

a )−1, and, therefore, [(τ̂++
a )−1]†(τ̂+−

a )† = (τ̂+−
a )−1τ̂++

a .

IV. NANORIBBON

We now extend the previous results to include a second
edge potential barrier as V̌ (x) = ∑b

j=a Uj τ̌ jδ(x j − x). We ap-
proach this problem sequentially by first considering only one
edge potential. For example, by taking Ub = 0, we find, from
Eq. (11),

Ǧa(x, x′) = ǧ(x, x′) + ǧ(x, xa)Uaτ̌aǦa(xa, x′). (27)

Similarly, by taking Ua = 0 and Ub �= 0, we obtain Ǧb(x, x′).
Restricting ourselves to the region where xa � x, x′ � xb, the
GF Ǧa(x, x′) becomes of right type, Eq. (23), for barrier po-
tential Uaτ̌a, while Ǧb(x, x′) for barrier potential Ubτ̌b is of left
type, Eq. (24). For simplicity, we thus omit the superindexes
R and L. We apply again Dyson’s equation to Eq. (27) to
introduce the edge potential Ub and reach

Ǧab(x, x′) = Ǧa(x, x′) + Ǧ<
a (x, xb)Ubτ̌b

× (1 − Ǧ<
a (xb, xb)Ubτ̌b)−1Ǧ>

a (xb, x′), (28)

with Ǧ≷ = Ǧ(x ≷ x′), cf. Eq. (8). The solution to Eq. (28)
reads

Ǧab(x, x′) = Ǧa(x, x′) + Q̌<(x)Ǧ>
a (xb, x′), (29)

with

Q̌<(x) =
∑

n,m,ε,ε′
f ε
n (x − xb)

(
r̂εε′

b

)
nmP̌εε′

nm , (30)

and

řb = −i
Ubτ̌b

2h̄vF

(
1̌ + i

Ubτ̌b

2h̄vF

)−1

. (31)

Using the explicit expression for the semi-infinite GF,
Eq. (23), we write the GF with x > x′ for the central
region as

Ǧ>
ab(x, x′)

= −i

2h̄vF

∑
n,m,ε,ε′

f ε
n (x − xb)(w̌>)εε

′
nm f ε′

m (xb − x′)ψε
n

(
ψ̄ε′

m

)T
,

(32)

where we have defined the matrices

w̌> =
(

1̂ + ŵ++
b (1̂ + ŵ++

b )r̂+−
a (W )

ŵ−+
b ŵ−+

b r̂+−
a (W )

)
, (33)
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with W = xb − xa > 0 the width of the finite region. Here,
ŵεε′

b are the submatrix elements of

w̌b = −i
Ub

2h̄vF
τ̌

(
1̌ + i

Ub

2h̄vF
τ̌

)−1

, (34)

with

τ̌ =
(

r̂+−
a (W )τ̂−+

b r̂+−
a (W )τ̂−−

b

τ̂−+
b τ̂−−

b

)
, (35)

and r̂+−
a (W ) is defined from the reflection matrix at the left

interface, r̂+−
a , as r̂+−

a (W ) = f̂ ++(−W )r̂+−
a f̂ −−(W ), with the

diagonal matrices ( f̂ εε )nm(x) = δnm f ε
m(x). Analogously, we

can also define

w̌< =
(

ŵ++
b (1̂ + ŵ++

b )r̂+−
a (W )

ŵ−+
b 1̂ + ŵ−+

b r̂+−
a (W )

)
, (36)

where we have used the projector operators, Eq. (17). This
result is equivalent to the reflection matrix for a single barrier
at x = xb, r̂++, changing w̌b by τ̂++.

To obtain the GF of a nanoribbon we must take the limits
Ua,b → ∞, obtaining

Ǧ≶
ab(x, x′) = −i

2h̄vF

∑
n,m
ε,ε′

f ε
n (x)(w̌≶)εε

′
nm f ε′

m (−x′)ψε
n (ψ̄ε′

m )T ,

(37)

where Eqs. (33) and (36) reduce to

w̌> =
(

D̂++ D̂++r̂+−
a (xa)

r̂−+
b (xb)D̂++ r̂−+

b (xb)D̂++r̂+−
a (xa)

)
, (38a)

w̌< =
(

D̂++r̂+−
a (xa)r̂−+

b (xb) D̂++r̂+−
a (xa)

r̂−+
b (xb)D̂++ D̂−−

)
, (38b)

with

r̂+−
a (xa) = f̂ ++(−xa)r̂+−

a f̂ −−(xa), (39a)

r̂−+
b (xb) = f̂ −−(xb)r̂−+

b f̂ ++(−xb), (39b)

D̂++ = [1̂ − r̂+−
a (xa)r̂−+

b (xb)]−1, (39c)

D̂−− = [1̂ − r̂−+
b (xb)r̂+−

a (xa)]−1. (39d)

The latter equations allow us to obtain the bound states of
the finite region by taking the condition D̂±± = 0, or, anal-
ogously, r̂+−

a (xa)r̂−+
b (xb) = 1̂. Consequently, the bound states

of the finite region are tied to the reflection matrices at each
independent edge.

V. DIRAC SYSTEM WITH ZIGZAG EDGES

Having established the general method for the computa-
tion of the GF of a Dirac system, we now present some
examples showcasing specific edge orientations. We start with
layers ending in zigzag edges, see Fig. 1, and modify the
Hamiltonian of an infinite system, Eq. (1), so that it describes
the low-energy physics of graphene-like materials like ger-
manene, silicene, and TMDs. We thus get the Hamiltonian

Ȟsη(k) = μsησ̌0 + h̄vF (kσ̌x + ηqσ̌y) + msησ̌z, (40)

FIG. 1. Real-space atomic (a) armchair and (b) zigzag termi-
nations, with their corresponding reciprocal unit cell showing K
and K ′ = −K valleys. (c) Perturbation potential forming two semi-
infinite layers at x = xa. The arrows correspond to the incident (ψn)
and scattered wave functions (ψm and ψ−

m ).

with

μsη = − EF + ηsλSO, (41)

msη = λz − ηsλSO + sλAF + 

2
. (42)

Here, the Pauli matrices σ̌0,x,y,z act in sublattice space denoted
by A- and B-type atoms, ψ = (ψA, ψB)T , and the param-
eters η = ± and s = ± are the valley index and the spin
Sz component, respectively. The Fermi velocity is written in
terms of the lattice constant a and the hopping parameter t
as vF = √

3at/(2h̄). Our approach assumes the k · p approx-
imation where the relevant energy scales are comparable to
t [35,39,55,56]. The 2 × 2 zigzag Hamiltonian in Eq. (40)
thus corresponds to the case with N = 1, cf. Eqs. (2), (3),
(19), so the symbols ˆ. . . denote here scalars. This Hamiltonian
describes each of the inequivalent valleys K and K ′ separately,
which for zigzag terminations are located at k = (kx, ky ) →
(0,±K ), see Fig. 1(b). The conserved momentum h̄q along
the ky direction is thus defined with respect to each valley [55]
(e.g., ky → K + q for valley K).

The parameter msη describes a generic mass term given by
the intrinsic gap , and extra terms that depend on the specific
material. For example, λSO represents the spin-orbit coupling,
λAF a magnetic gap, and λz the energy due to an external
electrical field perpendicular to the monolayer. Indeed, λSO

is strong in systems such as germanene, silicene, and TMDs,
but negligible in graphene. A magnetic material in close con-
tact to the monolayer can induce a magnetization λAF by
proximity effect. Previous works have analyzed the effect on
the electronic state of the system caused by an electric field
applied perpendicularly to monolayer of TMDs, germanene,
or silicene [35,57,58]. Here, we represent this effect by the
parameter λz which, being proportional to σ̌z, breaks sublat-
tice symmetry and is only possible in the presence of lattice
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buckling. Finally, the doping level μsη is determined by the
Fermi energy EF and, if present, the spin-orbit coupling λSO.
In general, manipulating the Fermi energy EF in isolated
samples trivially shifts the spectrum without relevant conse-
quences as we show in Sec. E. Consequently, we henceforth
set EF = 0.

The eigenstates of Eq. (40) can be found in Sec. D, with
transposed states defined using Eq. (9) and γ̌ = σ̌z. With these
states, the GF of the bulk system is given by Eq. (8). The
resulting wave vectors are k±

sη = ±ksη, where

ksη =
√

(E − μsη )2 − m2
sη − (h̄vF q)2/(h̄vF ). (43)

For a given excitation energy E , the conserved momentum
parallel to the interface h̄q can be parametrized by the angle
αsη defined as

e±iαsη = h̄vF
ksη ± iq√

(μsη − E )2 − m2
sη

. (44)

We can now define the spectral density of states from the
retarded GF as

ρ(E , q, x) = 1

π
Im{Tr[Ǧ(E ; q; x, x)]}, (45)

and the local density of states (LDOS) is then

ρT (E , x) =
∫

ρ(E ; q; x)dq. (46)

The bulk spectral density for a given spin-valley configuration
adopts the simple form ρT,sη = 1/(π h̄vF ksη ). Henceforth, we
normalize the spectral density of states by ρ0 = ta, which is
equivalent to measuring energies and distances in units of the
hopping t and the lattice constant a, respectively. We now
proceed to define and apply the edge potentials to obtain the
GF of a semi-infinite and a finite layer, or nanoribbon, with
zigzag and armchair edges.

A. Zigzag semi-infinite layer

For zigzag edge orientation the boundary conditions im-
pose that the wave function for one of the sublattice atoms
must vanish [39,43,55,59]. The matrices that encode such
microscopic boundary conditions for border of A and B atoms
are, respectively,

τ̌A =
(

1 0
0 0

)
, τ̌B =

(
0 0
0 1

)
. (47)

For the semi-infinite layer, we can use either atom type to
define the perturbation potential V̌ (xa) at position xa. Note
that the boundary conditions defined by the matrices τ̌A and
τ̌B cause the perturbation potential V̌ (xa) to maintain the
translational invariance along the y direction.1 Following the

1The zigzag and armchair boundary conditions encoded in the
matrices τ̌ describe such terminations with atomic precision [39,43].
Reference [43] further demonstrated that including these matrices
in Eq. (10) is necessary to recover the tight-binding bulk Green’s
function from the semi-infinite solutions in both zigzag and armchair
terminations.

FIG. 2. Spectral density of states at the edge of a semi-infinite
monolayer of TMD, where  = 1.28t and λSO = 0.15t . Panels
(a) and (b) represent spin-up valleys (a) K ′ and (b) K , while panels
(c) and (d) correspond to spin down (c) K ′ and (d) K .

method described above, we reach Eqs. (23) and (24) at each
side of xa.

To fully characterize the semi-infinite GF, we must de-
fine the scattering amplitudes, see Eqs. (25) and (26), which
yield r̂+−

a = (τ̂++
a )−1τ̂+−

a . For instance, τ̂++
a (a scalar for

zigzag termination) corresponds to the projection of τ̌ onto
the right-propagating states and their transposed counter-
parts. As a result, for border type A (B) we get r̂+−

a,sη =
r̂+−

sη (xa) = −(+)e±iαsη e−2iksηxa . The phase factor e−2iksηxa is
irrelevant for the semi-infinite case, but very important
for the finite layer. Plugging r̂+−

sη (xa) into Eq. (23), we
find ρsη = Im(iN2

sηeiαsη )/(π h̄vF ) for A-type termination, and
ρsη = Im(ieiαsη /N2

sη )/(π h̄vF ) for border B. In both cases,

N2
sη =

√
E − μsη − msη√
E − μsη + msη

, (48)

see more details in Sec. D.
We now illustrate different applications of the semi-infinite

GF associated with Eq. (40). By setting  = 1.28t and λSO =
0.15t , the Hamiltonian of Eq. (40) describes the low-energy
electronic excitations of a semiconductor TMD like, e.g.,
WSe2 (usually, t ≈ 1.4eV [56,58,58,60]). We plot in Fig. 2
the spectral density of states, Eq. (45), at the zigzag edge,
for each valley and spin configuration. Similarly, choosing
λso = 0.0033t and  = 0, we obtain the edge dispersion of
a germanene layer with one zigzag edge, see Fig. 3. While the
TMD features a large, semiconducting gap of the order of t ,
the germanene gap is much smaller, two orders of magnitude,
as it corresponds to a semimetallic material. Moreover, a finite
intrinsic gap  combined with the spin-orbit gap λSO in the
TMD, yields a strong asymmetry in the resulting band gap for
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FIG. 3. Spectral density of states at the edge of a semi-infinite
zigzag germanene monolayer. Panels (a) and (b) represent spin-up
valleys (a) K ′ and (b) K , while panels (c) and (d) correspond to spin
down (c) K ′ and (d) K .  = 0 and λSO = 0.0033t .

the different spin-valley configurations. By contrast, the band
gap of the germanene zigzag layer, with  = 0, is only due to
the spin-orbit coupling and is thus smaller and symmetric. We
note that the wave number q is defined around a given valley,
e.g., K ′ in Fig. 2(a) and K in Fig. 2(b).

The zigzag termination features an edge state in both mate-
rials, with a dispersion connecting both valleys [61]. However,
while the edge state trivially connects the different valence
bands for the TMD, Fig. 2, it couples conduction and valence
bands for the germanene case, Fig. 3. As a result, the semi-
infinite zigzag germanene layer displays two edge states that
cross the Fermi energy with opposite velocities, meaning that
germanene is a topological insulator [31,62,63]. We explore
in Fig. 4 the decay of the edge state inside the semi-infinite
layer by computing the spectral density of states at different
positions away from the zigzag edge. The edge state has
almost completely disappeared a few unit cells away from the
edge. As we continue inside the layer, more bands appear in
the spectrum, until it is almost continuum-like in the bulk case.

B. Zigzag nanoribbon

The GF for the zigzag nanoribbon, or finite layer with
two zigzag edges, is obtained from Eq. (37), see Sec. C
for a detailed calculation. We now highlight the main
steps in its derivation for the Hamiltonian in Eq. (40).
Importantly, the geometry of the zigzag nanoribbon is such
that the two edges at xa and xb must belong to different
A-B atoms, see Fig. 1. For simplicity, we now assume
that xa < xb is made of A atoms. To fully characterize the
nanoribbon GF, we must first obtain the scattering amplitudes
forming Eqs. (38) and (39). With our choice of atomic
terminations for the zigzag nanoribbon, we have r̂+−

sη (xa(b) ) =
−(+)e+(−)iαsη e−2iksηxa(b) from the semi-infinite case.

FIG. 4. Spectral density of states for spin-up, K ′ valley valence
band of a semi-infinite zigzag TMD monolayer, at different distances
from the edge. The parameters in this case are the same as in Fig. 2.

Analogously, we get r̂−+
sη (xa(b) ) = −(+)e−(+)iαsη+2iksηxa(b) .

As a result, we obtain the local GF at the A-type zigzag edge
at xa to be

Ǧ>
ab(xa, xa) =

⎛
⎝0 −i 1+e2i(αsη+ksηW )

1+e2i(αsη+ksηW )

0 −iN2
sηeiαsη 1−ei2ksηW

1+e2i(αsη+ksηW )

⎞
⎠, (49)

with the nanoribbon width being W = xb − xa.
The local spectral density for that edge is

ρ(xa) = 1

π h̄vF
Re

(
N2

sηeiαsη (1 − ei2ksηW )

1 + e2i(αsη+ksηW )

)
. (50)

When W → ∞, the result in Eq. (50) is equal to the semi-
infinite case.

In Fig. 5, we compare the edge spectral density for a TMD
[Fig. 5(a)] and a germanene [Fig. 5(b)] zigzag nanoribbon.

FIG. 5. Edge spectral density of a zigzag nanoribbon of (a) TMD
and (b) germanene. In both cases, W/a = 4, and the density is com-
puted for spin-up electrons at valley K ′. The parameters, in this case,
are the same as in Figs. 2 and 3.
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FIG. 6. Evolution of the edge spectral density of a TMD zigzag
nanoribbon with the width W . All cases correspond to spin-up elec-
trons at valley K ′. The parameters, in this case, are the same as in
Fig. 2.

The finite-size effect is manifested in the appearance of peri-
odic subbands, with periodicity determined by the nanoribbon
width W . Like in the semi-infinite layer, Figs. 2 and 3, the
wave vector q is defined around one valley (K ′). The effect of
the finite width on the subband periodicity is clearly shown in
Fig. 6, where we plot the edge spectral density for valley K ′ of
a TMD zigzag nanoribbon with different widths. As the width
W increases, there are more subbands per energy unit, until
an almost continuum is recovered for large W . Notice that the
plots show roughly the same number of subbands as unit cells
form the nanoribbon width, i.e., 4a, 8a, etc.

Figure 7 summarizes the obtained spectral properties of
zigzag germanene, Fig. 7(a), and TMDs, Fig. 7(c), showing
the lowest energy spin-valley bands and the dispersion of
the edge states (red and blue lines) in full momentum space
including both valleys. The edge states feature trivial and
nontrivial topology for TMDs and germanene, respectively.
Notice the important inversion of the lowest-energy bands
when the nanoribbon edge type is changed from A to B in
Fig. 7(a), described by Eq. (50) changing N2

sη → 1/N2
sη. The

effect of the termination on the band at edge state shape is
encoded in the parameter Nsη, Eq. (48), which is inverted
when the termination changes. We also sketch the lowest
band dispersion for armchair germanene, Fig. 7(b), and TMD,
Fig. 7(d). We explore this edge termination in more detail
below.

VI. DIRAC SYSTEM WITH ARMCHAIR EDGES

In contrast with the zigzag termination that does not mix
valleys, the armchair edge mixes the valley degree of freedom
and thus requires a description that explicitly takes this into
account. Note that the valleys for the armchair orientation are
located at k → (±K, 0), in the direction orthogonal to the
conserved momentum ky → q, see Fig. 1(a).

As we did before, we start with a general Dirac
Hamiltonian, valid for different graphene-like materials like
germanene and TMDs, now explicitly expressed in the valley
subspace as

Ȟs =
(

ĤsK 0

0 ĤsK ′

)
, (51)

with s = ± the (degenerate) spin index and

Ĥsη(k) = μsησ̂0 + h̄vF (qσ̂y − ηkσ̂x ) + msησ̂z, (52)

with the same parameters as Eq. (40). The full Hamiltonian
Ȟs spawns in valley-sublattice 4 × 4 space [N = 2 in Eqs. 2,
3, and 19] and the reduced-space matrices denoted by ˆ. . . now

FIG. 7. Summary of the different band dispersions for TMD and germanene nanoribbons. (a) Sketch of the honeycomb lattice of a zigzag
nanoribbon (middle) and band dispersion for the A (left in red) and B (right in green) type of terminations, for germanene nanoribbons.
(b) Edge electronic band structure for armchair germanene. Edge electronic bands of a TMD nanoribbon with (c) zigzag or (d) armchair edges.
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have dimension 2 × 2. The solutions of Eq. (51) are spinors
in the valley subspace, �s = (ψsK , ψsK ′ )T , with each ψsη an
eigenstate of Eq. (52), see more details in Sec. D. Owing to
the spin degeneracy, for simplicity we omit the spin index s in
the wave functions and GFs, e.g., ψsK → ψK . The orthogonal
and transposed states are again calculated following Eqs. (4)
and (9) with

α̌x =
(

σ̂x 0
0 −σ̂x

)
, γ̌ =

(
σ̂z 0
0 −σ̂z

)
. (53)

A. Armchair semi-infinite layer

The armchair edge contains atoms of both sublattices, A
and B, see Fig. 1. The armchair termination requires vanishing
the wave function on both sublattices, so it is not necessary to
specify the edge type as for zigzag terminations [39,43,59].
However, the boundary conditions for an armchair edge mix
the valley K and K ′ and, thus, must be defined in the valley
subspace as

τ̌ =
(

σ̂x σ̂x

σ̂x σ̂x

)
. (54)

As before, the edge GF for a semi-infinite layer is given by
Eq. (23), which, when evaluated at the edge (x = x0), adopts
the form

Ǧ<
RR(x0, x0)

=
(

M̂−−
KK + r+−

KK M̂+−
KK r+−

KK ′M̂+−
KK ′

r+−
K ′K M̂+−

K ′K M̂K ′K ′ + r+−
K ′K ′M̂+−

K ′K ′

)
, (55)

with

M̂εε′
nm = ψε

n

(
ψ̄ε′

m

)T
, (56)

n, m = K, K ′ labeling the valleys, and ε, ε′ = +,− for, re-
spectively, left- and right-propagating states, see Eq. (3) and
Fig. 1.

The key ingredients are again the scattering amplitudes
r̂+− = (τ̂++)−1τ̂+− and r̂−+ = (τ̂−−)−1τ̂−+. Importantly,
these 2 × 2 matrices are now defined in the valley subspace,
and, within that subspace, every element corresponds to a pro-
jection into a specific valley index. For instance, the element
r̂+−

KK ′ of r̂+− corresponds to the reflection amplitude for a state
incident from the right (x < x0) on valley K that backscatters
to the left into valley K ′. Defining the scalars hεε′

nm = ψ̃ε†
n ψε′

m ,
we find that r̂+−

KK = h++
KK ′/h−+

KK ′ . The other elements are com-
puted in a similar way, as shown in Sec. D.

With these simplifications, the spectral density of states
reads (see more details in Sec. D)

ρs(E , q) = 4

π h̄vF
Re

(
N2N ′2(1 + ei(αs−α′

s ) )

N2eiαs + N ′2e−iα′
s

)
. (57)

Here, we defined N ≡ NsK and N ′ ≡ NsK ′ , following Eq. (48)
evaluated for valley K and K ′, respectively. Analogously for
αs and α′

s with Eq. (44).
We plot the edge spectral density in Figs. 8(a) and 8(b)

for a germanene and a TMD semi-infinite armchair layer,
respectively. The topology of germanene is now manifested
by a gapless state closing the, otherwise, small spin-orbit gap.
The TMD, by contrast, presents a large semiconducting gap,

FIG. 8. Edge spectral density of states for a semi-infinite arm-
chair layer of (a) germanene and (b) and TMD. The parameters, in
this case, are the same as in Figs. 2 and 3.

like for the zigzag case. The main difference for the armchair
termination is that the bands are spin symmetric, but display
a small asymmetry with the conserved momentum q. Both ef-
fects stem from the symmetrization imposed by the armchair
edge after combining the different spin-valley bands.

The main feature about the armchair termination, that
different valleys are mixed on scattering, can be better under-
stood by checking the specific inter- and intravalley scattering
amplitudes. We show in Fig. 9 the scattering coefficient for an
incident electron from valley K (blue and red solid lines) and
K ′ (green and black dashed lines) into the same or the opposite
valley. For simplicity, we only show the normal incident case
(q = 0), but similar results are obtained for any incident angle.
For germanene (left panel), intervalley scattering is dominant
(red and green lines), except for energies very close to the
gap edge. This behavior has been previously reported for
graphene [11,64]. Both inter- and intravalley coefficients are
symmetric with respect to the energy, as the spin-valley bands
are also symmetric, see Fig. 7. The strong asymmetry in the
spin-valley bands for the TMDs (right panel) results in an
intervalley scattering that is very asymmetric with the energy,
with small energy windows close to the edge of the valence
and conduction bands where intravalley scattering is perfect
since the intervalley one is forbidden.

FIG. 9. Electron reflection probabilities at normal incidence (q =
0) in the armchair edge of a semi-infinite layer of germanene and
TMD, showing intravalley (blue and black) and intervalley (red and
green) scattering probabilities. The parameters, in this case, are the
same as in Figs. 2 and 3.
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FIG. 10. Edge spectral density of states for a finite armchair
nanoribbon of (a) germanene or (b) TMD. For both cases the width is
six unit cells. The parameters, in this case, are the same as in Figs. 2
and 3.

B. Armchair nanoribbon

The nanoribbon GF associated with the Hamiltonian
in Eq. (51) spawns in a combined spin-valley-sublattice
space. Being spin-degenerate, we can focus on its 4 × 4
valley-sublattice structure and, within it, describe the valley-
projected 2 × 2 matrix elements

Ĝ>
nm(x, x′) =

∑
ε,ε′=±

f ε
n (x) f ε′

m (x′)r̂>,εε′
nm M̂εε′

nm . (58)

Here, f ε
n (x) = ei(Kn+εkn )x, with Kn = K, K ′ and kn = ks, k′

s.
The matrices M̂εε′

nm are defined in Eq. (56) and the reflection
matrices according to Eq. (39). See more details in Sec. D.

We plot the spectral density of states for an armchair
nanoribbon of germanene and TMD in Figs. 10(a) and 10(b),
respectively, for a width of six unit cells. As expected, we ob-
serve the band discretization in both cases and the topological
edge state for the germanene nanoribbon. The gapless edge
state in the germanene nanoribbon of width W = 6a featured
in Fig. 10(a) stems from a topological phase. However, the gap
can reopen due to a trivial geometrical effect arising from the
interference of intravalley reflection processes at the nanorib-
bon edges. For clarity, we compute for two different widths,
W/a = 8 and 9, the spectral density of states at the armchair
edge of TMD and germanene nanoribbons in, respectively,
Figs. 11 and 12. This geometric effect has been previously
studied in graphene nanoribbons [39,43,65].

While semi-infinite germanene layers clearly feature topo-
logical edge states, see Fig. 8(a), we find that the edge state
only appears when the nanoribbon width is a multiple of three,
W/a = 3n with integer n, see Figs. 11 and 12, and only for the
germanene case since the semiconducting gap of the TMD
completely suppresses this effect. Consequently, the topology
in germanene armchair nanoribbons is only revealed when
the geometric phase is removed. Indeed, the trivial gaps that
open for W/a �= 3n exponentially decrease with the width. We
show this effect in Fig. 13 by plotting the lowest energy level
E0 at the edge of a germanene nanoribbon as a function of the
ribbon width. The zero energy solutions every three unit cells
represent the topological edge states, while the trivial gaps for

FIG. 11. Spectral density of states at the armchair edge of TMD
nanoribbons for W/a = 8 (right) and W/a = 9 (left). The parame-
ters, in this case, are the same as in Fig. 2.

FIG. 12. Spectral density of states at the armchair edge of ger-
manene nanoribbons for W/a = 8 (right) and W/a = 9 (left). The
parameters, in this case, are the same as in Fig. 3.

FIG. 13. Lowest energy levels for armchair nanoribbons as a
function of the nanoribbon width with (green) and without (blue)
external electric field λz.
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FIG. 14. Spectral density of states at the armchair edge of a
semi-infinite germanene layer, for λz/ = 0, 0.5, 0.8, and 1.3. The
parameters in this case are the same as in Fig. 3.

the other multiplicities quickly decay to close the gap in the
semi-infinite limit (W → ∞).

VII. GERMANENE GAP MANIPULATION

Using the GF formalism introduced in Secs. II–IV, we
have successfully described the electronic band structure of
bulk, semi-infinite, and finite layers of graphene-like materi-
als. These GF methods give us access to the spectral density
of states and can easily take into account extra parameters in
the Hamiltonian. In this section, we showcase this by studying
the effect of an external perpendicular electric field on the
electronic and topological properties of a germanene layer.
Germanene is a topological insulator with a topological invari-
ant characterized by a Z2 index [35], which corresponds to a
nontrivial phase in the absence of an electric field analogous to
a graphene layer with induced spin-orbit coupling [66]. Here,
for simplicity, we only consider a semi-infinite armchair layer
where the gap closes at the center of the Brillouin zone for
q ≈ 0, see Fig. 8(a). Our results below can be extended to
zigzag terminations noting, however, that the closing of the
gap takes place between valleys as depicted in Fig. 7. As
introduced in Eqs. (40) and (52), the parameter λz represents
the effect of such an external field perpendicular to the layer.

The semi-infinite armchair germanene layer features a
topological edge state crossing the Fermi energy [Fig. 8(a)].
For comparison, we reproduce this result in the top-left panel
of Fig. 14 (λz = 0) and proceed to study the evolution of the
edge state for finite λz. As the external electric field increases,
the gap closes, removing the edge state (λz/ 	 0.8), and
the layer becomes semimetallic. By further increasing the
field, the gap reopens into a trivial, semiconducting phase, i.e.,
without edge state. Such a topological gap manipulation has
been recently measured [67].

FIG. 15. Zero-energy density of states of a semi-infinite armchair
germanene layer as a function of an external electric field and the
spin-orbit coupling. The parameters, in this case, are the same as in
Fig. 3.

The gap induced by the external electric field is thus com-
peting with the topological gap from the spin-orbit coupling,
λSO in Eq. (52). We explore such interplay in Fig. 15 by com-
puting the zero-energy LDOS as a function of both λz and λSO.
The semi-infinite armchair germanene layer is topologically
nontrivial (trivial) when λz < λSO (λz > λSO), with critical
lines at λz = λSO.

In a finite-size system there is a width-dependent geomet-
rical effect on armchair nanoribbons, see Sec. VI B, which
persists in the trivial regime. However, the lowest energy level
when the geometric phase has been removed for W/a = 3n is
no longer zero, like in the nontrivial case, but determined by
the semiconducting gap, see green line with λz �= 0 in Fig. 13.
Although the field required to close the gap in armchair
nanoribbons slightly depends on the width, for sufficiently
wide nanoribbons this variation with the width becomes neg-
ligible.

The spectral properties of germanene and other graphene-
like materials are of great interest after the recent development
of gap engineering methods [67–69]. The GF methods devel-
oped here provide a useful approach for the study of their
spectral and topological properties while tuning several phys-
ical parameters of the system.

VIII. CONCLUSIONS

We have developed a general and analytic method for
computing the microscopic Green’s functions of a two-
dimensional Dirac Hamiltonian with atomic-scale boundary
conditions. Our approach is thus valid for honeycomb lat-
tices with atomically well-defined zigzag and armchair edges,
and contains all the relevant information about the scattering
processes that take place at these edges, including spin, sub-
lattice (from the honeycomb structure), and valley degrees of
freedom.

We tested our Green’s function formalism by computing
the spectral and topological properties of several well-known
Dirac materials, like semimetal germanene and semiconduct-
ing transition metal dichalcogenides. Our approach allowed
us to characterize bulk (infinite two-dimensional layer), semi-
infinite, and finite layers. The zigzag termination resulted
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in the emergence of localized edge states, which have a
topological nature in germanene samples [35], and are
affected, in nanoribbons (finite layers), by the spectral quanti-
zation resulting from the finite ribbon length.

We go beyond previous works [32] showing that the topo-
logical properties of germanene are maintained for armchair
terminations. We also showed how the topological gap for
this material can be manipulated by an external electric field,
which could be helpful for field effect transistor using ger-
manene or silicene. This effect in silicene has been recently
measured [70], and its potential use as a topological field
effect transistor has also been theoretically explored [35].

The analytical formalism presented here aligns with cur-
rent efforts to explore and engineer novel two-dimensional
junctions with interesting quantum applications [71], as it
paves the way for the exploration of exotic electronic phases
in nanoscale junctions based on Dirac materials, including
important effects like edge terminations, valley-dependent
scattering, and finite-size effects.

In general, our approach provides an analytical alterna-
tive, with low computational cost, to simulate the low-energy
electronic properties of graphene-like materials at the atomic
level. It is straightforward to generalize it to study quan-
tum transport in junctions with atomic-scale electric contacts
[72–75], or to include magnetic or superconducting orders
[76]. In addition, the analytical expressions computed here of-
fer great flexibility to include several effects, such as band-gap
engineering, external fields, and even light-matter interactions
[68,69,77–79].
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APPENDIX A: ITERATIVE METHOD

In this section, we obtain Q̌>(x) given in Eq. (15) following
an iterative method. First, we start using Eq. (13) with x < x′
in the definition of the GF,

Ǧ<
a (x, x′) = ǧ<(x, x′) + ǧ>(x, xa)Uaτ̌aǦ<

RR(xa, x′). (A1)

Here, Ǧ<
RR(xa, x′) is given by Dyson’s equation,

Eq. (12), as

Ǧ<
RR(xa, x′) = [1 + Q̌>(xa)]ǧ<(xa, x′). (A2)

Substituting into Eq. (A1) we get

Ǧ<
RR(x, x′) =ǧ<(x, x′) + ǧ>(x, xa) (A3)

× Uaτ̌a(1 + Q̌>(xa))ǧ<(xa, x′).

Comparing Eq. (A3) with Eq. (12), namely,

ǦRR,<
a (x, x′) = ǧ<(x, x′) + Q̌>(x)ǧ<(xa, x′),

we obtain the following equation for Q̌>(x):

Q̌>(x) = ǧ>(x, xa)Uaτ̌a + ǧ>(x, xa)Uaτ̌aQ̌>(xa). (A4)

We then solve Eq. (A4) recursively to find

Q̌>(x) = Uaǧ>(x, xa)τ̌a

∑
p=0

U p
a (ǧ>(0)τ̌a)p. (A5)

APPENDIX B: SCATTERING MATRIX

We now derive the expression and general properties of the
scattering matrix in Eq. (25). To define the scattering problem,
we consider a potential barrier at x = xa. Incoming states
from the left (right) of the barrier are ψ+

m (x) with amplitudes
a+

m [ψ−
m (x) with a−

m], which are solutions of Eq. (2). In the
absence of a potential barrier, a general unperturbed scattering
state reads

ψ0(x) =
∑
m,ε

aε
mψε

m(x). (B1)

In the presence of the barrier potential, the perturbed state
to the left or right of the barrier is obtained using Dyson’s
equation as

ψL(R)(x) = ψ0(x) + Q̌<(>)(x)ψ0(xa), (B2)

with ψε
m(x) = ψε

m f ε
m(x) and f ε

m(x) = eiεkmx.
Owing to the translational invariance along the x direc-

tion, we proceed taking xa = 0 without loss of generality. For
simplicity, we also define ψR(0) = ψR and ψ0(0) = ψ0 and
obtain

ψR = [1 + Q̌>(0)]ψ0

=
⎛
⎝1 +

∑
n,m,ε

(
r̂+ε

a

)
nmP̂+ε

nm

⎞
⎠ ∑

m′,ε′
aε′

m′ψ
ε′
m′

=
∑
m,ε

aε
mψε

m +
∑
n,m,ε

(
r̂+ε

a

)
nmaε

mψ+
m , (B3)

where we have used that P̂+ε
nm ψε′

m′ = δε,ε′δm,m′ψε′
m′ . Summing

over ε we get

ψR =
∑

m

a−
mψ−

m +
∑

n

b+
n ψ+

n , (B4)

with b+
n being the outgoing scattering amplitudes,

b+
n =

∑
m

(r̂+−
a )nma−

m +
∑

m

(t̂++
a )nma+

m . (B5)

Here, we have defined the transmission amplitudes as the
elements of the following matrix:

t̂++
a = 1̂ + r̂++

a , (B6)

which allows us to rewrite Eq. (B5) as

b+ = r̂+−
a a− + t̂++

a a+, (B7)

with

b+T = (b1, b2, . . . , bN )T , (B8)

a+T = (a1, a2, . . . , aN )T . (B9)

The perturbed scattering state to the left of the barrier is
obtained analogously as

ψL(0) =
∑

m

a+
mψ+

m +
∑

n

b−
n ψ−

n , (B10)
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with

b− = r̂−+
a a+ + t̂−−

a a−, (B11)

and

t̂−−
a = 1̂ + r̂−−

a . (B12)

Combining the previous results, we define the scattering ma-
trix Ŝ as

b = Ša, (B13)

with

b =
(

b+

b−

)
, a =

(
a+

a−

)
. (B14)

Note that in the usual definition of the scattering matrix the
reflection amplitudes are in the diagonal, which results from
taking bT = (b−T , b+T ). In what follows, however, we use

Ša =
(

t̂++
a r̂+−

a

r̂−+
a t̂−−

a

)
(B15)

=
(

1̂ + r̂++
a r̂+−

a

r̂−+
a 1̂ + r̂−−

a

)

= 1̌ + řa.

We can now set the potential barrier at an arbitrary position
xa �= 0 changing the scattering matrix as

Š(xa) = f̌ (−xa)Š f̌ (xa), (B16)

with

f̌ (xa) =
(

f̌ ++(xa) 0

0 f̌ −−(xa)

)
, (B17)

and (
f̂ εε

)
nm

(x) = δnm f̂ ε
m(x). (B18)

Here, Ŝ(xa) and Ŝ are related by a unitary transformation since
f̂ (−x0) f̂ (x0) = 1̂.

As it is usually interpreted, b represents the outgoing flux
and a the incoming one. Consequently, the probability flux to
the right and left of the barrier reads

JR = vF

∑
n

(a−∗
n ψ−†

n + b+∗
n ψ+†

n )α̂x

∑
n

(a−
n ψ−

n + b+
n ψ+

n )

= vF

∑
n

(|b+
n |2 − |a−

n |2), (B19)

JL = vF

∑
n

(a+∗
n ψ+†

n + a−∗
n ψ−†

n )α̂x

∑
n

(a+
n ψ+

n + a−
n ψ−

n )

= vF

∑
n

(|a+
n |2 − |b−

n |2). (B20)

Conservation of the probability flux requires that JL = JR;
therefore,∑

n

(|a+
n |2 − |b−

n |2) =
∑

n

(|b+
n |2 − |a−

n |2), (B21)

∑
n

(|a+
n |2 + |a−

n |2) =
∑

n

(|b+
n |2 + |b−

n |2), (B22)

which we can recast in vector form as |b|2 = |a|2. As a result,
we find that

a†Š†Ša=|a|2, (B23)

and thus,

a†(Š†Š − 1)a = 0. (B24)

Equation (B24) proves that the scattering matrix is unitary;
that is,

Š†Š = ŠŠ† = 1̌, (B25)

which we can recast using the reflection matrix ř as

(1̌ + řa)(1̌ + ř†
a ) = (1̌ + ř†

a )(1̌ + řa) = 1̌. (B26)

APPENDIX C: NANORIBBON GREEN’S FUNCTION
AND BOUND STATES

In this section we provide more details on the derivation
of the nanoribbon GF, Eq. (37), and the associated bound
states. For the case of two potential barriers placed at x = xa

and x = xb > xa, the perturbed GF for the region between the
barriers is

Ǧab(x, x′) = Ǧa(x, x′) + Q̌<(x)Ǧ>
ab(xb, x′), (C1)

for x > x′, where

Ǧ>
ab(x, x′)

= −i

2h̄vF

∑
n,m,ε,ε′

f ε
n (x − xb)(w̌>)εε

′
nm f ε′

m (xb − x′)ψε
n

(
ψ̄ε′

m

)T
,

(C2)

with w̌> given by Eq. (33), see also Eq. (32).
Equation (C1) can be solved after obtaining Ǧ>

ab. However,
to do so, one cannot take the limit Ub → ∞ and invert w̌, be-
cause the matrix τ̌ has no inverse (det[τ̌ ] = 0). To circumvent
this problem, we define the matrix

Ň = 1̌ − AUbτ̌ , (C3)

with A = −i/(2h̄vF ), and

Ň =
(

N̂1 N̂2

N̂3 N̂4

)
, (C4)

where

N̂1 = 1̂ − AUbr̂+−
a (W )τ̂−+

b , N̂3 = −AUbτ̂
−+
b ,

N̂2 = −AUbr̂+−
a (W )τ̂−−

b , N̂4 = AUbτ̂
−+
b (r̂−+

b )−1.

We can now compute the inverse of N̂ and then take the limit
Ub → ∞. To do so, we use Schur complement, which, for
example, is defined for submatrix N̂4 as

Ĉ = N̂1 − N̂2N̂4
−1N̂3.

Therefore, defining

r̂−+
b = AUb(1̂ − AU −−

b τ̂b)−1τ̂−+
b ,

we get

Ĉ = 1̂ − r̂+−
a (W )r̂−+

b , (C5)

with W = xb − xa.
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The inverse matrix of N̂ is thus

Ň−1 =
(

1̂ 0

−N̂−1
4 N̂3 1̂

)(
Ĉ−1 0

0 N̂−1
4

)(
1̂ −N̂2N̂−1

4

0 1̂

)
, (C6)

which simplifies to

Ň−1 =
(

Ĉ−1 Ĉ−1r̂+−
a (W )τ̂−−

b r̂−+
b (τ̂−+

b )−1

r̂−+
b Ĉ−1 U −1

b r̂−+
b Ĉ−1[1̂ − Ubr̂+−

a (W )τ̂−+
b ]

(
τ̂−+

b

)−1

)
. (C7)

We can now take the limit Ub → ∞, resulting in

w̌< =
(

Ĉ−1r̂+−
a (W )r̂−+

b −Ĉ−1r̂+−
a (W )

r̂−+
b Ĉ−1 −r̂−+

b Ĉ−1(r̂−+
b )−1

)
. (C8)

Analogously, we get

w̌> =
(

D̂++ D̂++r̂+−
a (xa)

r̂−+
b (xb)D̂++ r̂−+

b (xb)D̂++r̂+−
a (xa)

)
, (C9)

with

D̂++ = [1̂ − r̂+−
a (xa)r̂−+

b (xb)]−1, (C10)

D̂−− = [1̂ − r̂−+
b (xb)r̂+−

a (xa)]−1. (C11)

As a result, we obtain the final form of the nanoribbon GF as

Ǧ≶
ab(x, x′) = −i

2h̄vF

∑
n,m
ε,ε′

f ε
n (x)(w̌≶)εε

′
nm f ε′

m (−x′)ψε
n

(
ψ̄ε′

m

)T
.

(C12)

The nanoribbon’s bound states are obtained from the de-
nominator of the GF, that is, setting the inverse of D̂++ or,
equivalently, D̂−−, to zero. From Eq. (C10), this condition
reduces to

r̂+−
a (xa)r̂−+

b (xb) = 1̂. (C13)

We can interpret this condition as follows: inside the nanorib-
bon, the scattering state is a superposition of left and right
movers, namely,

ψ =
∑

n

(c+
n ψ+

n + c−
n ψ−

n ). (C14)

At each potential barrier, x = xa,b, the amplitudes for left and
right movers, c−

n and c+
n , respectively, are related by

c−
n =

∑
m

r̂−+
nm (xb)c+

m , (C15)

c+
n =

∑
m

r̂+−
nm (xa)c−

m . (C16)

In matrix form we have

c− = r̂−+(xb)c+, (C17)

c+ = r̂+−(xa)c−, (C18)

which form the closed cycle

c+ = r̂+−(xa)r̂−+(xb)c+. (C19)

It is thus straightforward to get

c+[1̂ − r̂+−(xa)r̂−+(xb)] = 0, (C20)

which corresponds to the zeros of the GF, as shown in
Eq. (C13). This result shows that the nanoribbon’s bound
states are determined by the reflection matrices at each edge
of the finite region, and can thus be obtained by the zeros of
the inverse of Eq. (C10).

APPENDIX D: GREEN’S FUNCTIONS FOR DIRAC
SYSTEMS WITH WELL-DEFINED EDGES

This Appendix contains the necessary definitions and
supplementary calculations to derive the GF of the zigzag
Hamiltonian in Eq. (40) and the armchair one in Eq. (51).

1. Zigzag Hamiltonian

The normalized eigenstates associated with Eq. (40) are

ψ+
sη = 1√

2 cos αsη

(
N−1

sη e−i
αsη

2

Nsηei
αsη

2

)
, (D1a)

ψ−
sη = 1√

2 cos αsη

(
N−1

sη ei
αsη

2

−Nsηe−i
αsη

2

)
, (D1b)

ψ̃+
sη = 1√

2 cos αsη

(
Nsηei

αsη
2

N−1
sη e−i

αsη
2

)
, (D1c)

ψ̃−
sη = 1√

2 cos αsη

⎛
⎝ Nsηei

−αsη
2

−N−1
sη ei

αsη
2

⎞
⎠. (D1d)

The corresponding transposed states are

ψ̄+
sη = 1√

2 cos αsη

(
N−1

sη ei
αsη

2

Nsηe−i
αsη

2

)
, (D2)

ψ̄−
sη = 1√

2 cos αsη

(
N−1

sη e−i
αsη

2

−Nsηei
αsη

2

)
. (D3)

It is thus possible to write ψ̄εT
sη = ψε†

sη . Next, the bulk GFs
reads

g<
sη(x, x′) = eiksη (x′−x)

2 cos αsη

(
N−2

sη −eiαsη

−e−iαsη N2
sη

)
, (D4)

g>
sη(x, x′) = eiksη (x−x′ )

2 cos αsη

(
N−2

sη e−iαsη

eiαsη N2
sη

)
. (D5)
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FIG. 16. Density of states at the zigzag edge of a semi-infinite
TMD layer with A- (blue) and B-type (red) termination. All parame-
ters are the same as in Fig. 2 for valley K and spin-up electrons.

For a semi-infinite zigzag layer with an A-type border, the
projections of τ̂ into the eigenstates are

τ̂++
sη = τ̂−−

sη = 1

2N2
sη cos αsη

, (D6a)

τ̂+−
sη = eiαsη

2N2
sη cos αsη

, (D6b)

τ̂−+
sη = e−iαsη

2N2
sη cos αsη

, (D6c)

which have been computed using Eq. (18). Similar expres-
sions are obtained for border B.

The semi-infinite zigzag GF can thus be compactly
written as

ǦR
a,sη(x, x′) = ǧsη(x, x′) − eiαsη eiksη (x+x′−2x0 )M̌+−

sη , (D7)

where

M̌εε′
sη = ψε

sη

(
ψ̄ε′

sη

)T
. (D8)

Substituting the eigenstates, Eq. (D1), we get

ǦR,>
a,sη(x, x′) = A

[
eiksη (x−x′ )

2 cos αsη

(
N−2

sη e−iαsη

eiαsη N2
sη

)
−eiαsη eiksη (x+x′−2xa )

2 cos αsη

×
(

N−2
sη e−iαsη −1

1 −N2
sηeiαsη

)]
, (D9)

with A = −i/(2h̄vF ).
The GF evaluated at the zigzag edge with A-atom termina-

tion reads

ǦR,>
a,sη(xa, xa) = − i

h̄vF

(
0 1

0 N2
sηeiαsη

)
. (D10)

Analogously, when the zigzag edge is terminated in B-type
atoms, the GF adopts the same form as in Eq. (D10) with
the change N2

sη → 1/N2
sη, cf. Eq. (48). This simple inversion

plays an important role in the spectral properties of the layer,
as schematically described in Fig. 7. To show this effect more
clearly, we plot in Fig. 16 the density of states for each edge
termination, A and B, for a semiconducting TMD, showcasing
the band inversion. We note here that our continuum approach

still captures the rapid atomic-scale decay of the zigzag edge
states.

Finally, a compact expression for the zigzag nanoribbon
GF is

Ǧ>
ab,sη(x, x′) = AD̂++

sη (eiksηxψ+
sη + r̂−+

sη e−iksη (x−2xb)ψ−
sη )

× (e−iksηx′
ψ+†

sη + r̂+−
sη eiksη (x′−2xa )ψ−†

sη ),

(D11)

where

D̂++
sη = [1 − r̂+−

sη r̂−+
sη e2iksηW ]−1. (D12)

It is thus straightforward to get the edge GF as

Ǧ>
ab,sη(xa, xa) = −i

h̄vF

⎛
⎝0 1+e2iαsη ei2ksηW

1+e+2iαsη e2iksηW

0
N2

sηeiαsη (1−ei2ksηW )
1+e+2iαsη e2iksηW

⎞
⎠, (D13)

valid when the left edge (xa) has A-type termination. As
explained above, for terminations on B atoms, Eq. (D13) is
changed as N2

sη → N−2
sη .

2. Armchair Hamiltonian

Being block-diagonal, the solutions of Eq. (51) are pro-
jected into each valley, �s = (ψsK , ψsK ′ )T with normalized
eigenstates

ψ+
sK = 1√

2 cos αs

(
N−1e−i αs

2

Nei αs
2

)
, (D14a)

ψ−
sK = 1√

2 cos αs

(
N−1ei αs

2

−Ne−i αs
2

)
, (D14b)

ψ+
sK ′ = 1√

2 cos α′
s

⎛
⎝ N ′−1ei α′

s
2

−N ′e−i α′
s

2

⎞
⎠, (D14c)

ψ−
sK ′ = 1√

2 cos α′
s

⎛
⎝N ′−1e−i α′

s
2

N ′ei α′
s

2

⎞
⎠, (D14d)

and the states ψ̃ε
sn = σ̂xψ

ε
sn, n = K, K ′, for example,

ψ̃−
sK ′ = 1√

2 cos α′
s

⎛
⎝ N ′ei α′

s
2

N ′−1e−i α′
s

2

⎞
⎠. (D15)

As before, we can write ψ̄εT
sη = ψε†

sη . We have defined N ≡
NsK and N ′ ≡ NsK ′ , see Eq. (48), for valley K and K ′, re-
spectively. Similarly, primed quantities (α′

s, k′
s, . . . ) refer to

valley K ′. For simplicity, we omit the spin index s in the wave
functions and GFs.

The semi-infinite armchair GF at the edge x0 is

ǦR,<
a (x0, x0) = (�−

K + r̂+−
KK �+

K + r̂+−
K ′K�+

K ′ )�−†
K

+ (�−
K ′ + r̂+−

K ′K ′�
+
K ′ + r̂+−

KK ′�
+
K )�−†

K ′ , (D16)

where we have defined �ε
K = (ψε

K , 0)T and �ε
K ′ = (0, ψε

K ′ )T ,
with 0 = (0, 0)T .

The valley-projected scalar scattering amplitudes, such
as r̂+−

K ′K ′ , can be recast in terms of the auxiliary scalar
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FIG. 17. Density of states at the zigzag (ZZ) and armchair (AC)
edge of a semi-infinite germanene for different Fermi energies (Ef ).

quantities hεε′
nm = ψ̃ε†

n ψε′
m . For instance, r̂+−

K ′K ′ = h++
K ′K/h−+

K ′K .
Using Eq. (D14), we get

h++
KK ′ = ψ̃

+†
K ψ+

K ′

= ei (α′
s−αs )

2

2
√

cos αs cos α′
s

(
N

N ′ − N ′

N
e−i(α′

s−αs )

)
, (D17a)

h−+
K ′K = h−+

KK ′ = ψ̃
−†
K ψ+

K ′

= ei (α′
s+αs )

2

2
√

cos α′
s cos αs

(
N

N ′ + N ′

N
e−i(α′

s+αs )

)
, (D17b)

h++
K ′K = ψ̃

+†
K ′ ψ+

K

= ei (α′
s−αs )

2

2
√

cos αs cos α′
s

(
N ′

N
− N

N ′ e
−i(α′

s−αs )

)
. (D17c)

The resulting scattering amplitudes are

r̂+−
KK = eiαs

N2e−iαs − N ′2e−iα′
s

N2eiαs + N ′2e−iα′
s

, (D18a)

r̂+−
K ′K = −2

NN ′√cos αs cos α′
s

N2eiαs + N ′2e−iα′
s

ei αs−α′
s

2 , (D18b)

r̂+−
KK ′ = −2

NN ′√cos α′
s cos αs

N ′2e−iα′
s + N2eiαs

ei αs−α′
s

2 , (D18c)

r̂+−
K ′K ′ = eiα′

s
N ′2 − N2e−i(α′

s−αs )

N ′2 + N2ei(α′
s+αs )

. (D18d)

Finally, the armchair nanoribbon GF contains elements in all
valley projections. The projection into valleys n, m = K, K ′,
Ĝ>

nm(x, x′), is shown in the main text, Eq. (58), and repeated
here for completeness:

Ĝ>
nm(x, x′) =

∑
ε,ε′=±

f εε′
nm (x, x′)r̂>,εε′

nm M̂εε′
nm . (D19)

Here, f εε′
nm (x, x′) = f ε

n (x) f ε′
m (x′), where f ε

n (x) = ei(Kn+εkn )x,
Kn = K, K ′, and kn = ks, k′

s. Moreover, the matrices of reflec-
tion coefficients projected into each valley subspace, r̂>,εε′

nm ,
with ε, ε′ = ±, are obtained from

r̂+−
a (xa) =

⎛
⎝ hKK ′

hKK ′ e−2iksxa −1
hK ′K

e−i(2K+ks+k′
s )xa

−1
hKK ′ ei(2K−ks−k′

s )xa hK ′K
hK ′K

e−2ik′
sxa

⎞
⎠,

(D20a)

r̂−+
b (xb) =

⎛
⎜⎝

h−−
KK ′

h+−
KK ′

e2iksxb −1
h+−

K ′K
ei(−2K+ks+k′

s )xb

−1
h+−

KK ′
ei(2K+k′

s+ks )xb
h−−

K ′K
h+−

K ′K
e2ik′

sxb

⎞
⎟⎠.

(D20b)

APPENDIX E: FERMI-ENERGY DEPENDENCE

The position of the Fermi level represented by EF in
Eqs. (40) and (52) becomes very important in heterostructures
to represent different doping levels and electrostatic barriers.
Here, we only consider isolated junctions where the effect of
EF is just a trivial shift of the band dispersion. For this reason,
in the main text we set EF = 0 in all plots.

For clarity, we now show the effect of a finite Fermi
energy plotting in Fig. 17 the density of states at the edge
of germanene semi-infinite layers with zigzag and armchair
terminations. In all cases we observe how the Fermi energy
shifts the position of the spectrum. The same effect takes place
for germanene nanoribbons, and semi-infinite and finite TMD
layers.
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[40] J. Wurm, K. Richter, and İ. Adagideli, Edge effects in graphene
nanostructures: From multiple reflection expansion to density
of states, Phys. Rev. B 84, 075468 (2011).

[41] M. Aidelsburger, S. Nascimbene, and N. Goldman, Artificial
gauge fields in materials and engineered systems, C. R. Phys.
19, 394 (2018).

[42] D. A. Manjarrés, W. J. Herrera, and S. Gómez, Andreev levels
in a graphene–superconductor surface, Phys. B (Amsterdam,
Neth.) 404, 2799 (2009).

[43] W. J. Herrera, P. Burset, and A. L. Yeyati, A Green func-
tion approach to graphene–superconductor junctions with
well-defined edges, J. Phys.: Condens. Matter 22, 275304
(2010).

[44] P. Burset, W. Herrera, and A. Levy Yeyati, Proximity-induced
interface bound states in superconductor-graphene junctions,
Phys. Rev. B 80, 041402(R) (2009).

[45] G. Tkachov, Dirac fermion quantization on graphene edges:
Isospin-orbit coupling, zero modes, and spontaneous valley po-
larization, Phys. Rev. B 79, 045429 (2009).

[46] G. Tkachov and M. Hentschel, Coupling between chirality
and pseudospin of Dirac fermions: Non-analytical particle-hole

195405-16

https://doi.org/10.1088/0953-8984/27/44/443002
https://doi.org/10.1103/PhysRevB.91.085423
https://doi.org/10.1088/0034-4885/79/12/126501
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1021/cr300263a
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1021/nn500064s
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1002/wcms.1313
https://doi.org/10.1016/j.bios.2016.06.045
https://doi.org/10.1038/s41699-020-0152-0
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1016/j.crhy.2013.09.012
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevLett.107.136603
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1021/acs.jpclett.7b00222
https://doi.org/10.1038/nphys1274
https://doi.org/10.1038/nature06843
https://doi.org/10.1126/science.1173034
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevLett.107.076802
https://doi.org/10.1088/1367-2630/14/3/033003
https://doi.org/10.1103/PhysRevLett.109.055502
https://doi.org/10.1007/s10825-013-0458-7
https://doi.org/10.1016/j.jcp.2013.12.054
https://doi.org/10.7566/JPSJ.84.121003
https://doi.org/10.1016/j.jmmm.2021.168758
https://doi.org/10.1016/j.mejo.2015.11.006
https://doi.org/10.1038/s42254-021-00370-x
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.84.075468
https://doi.org/10.1016/j.crhy.2018.03.002
https://doi.org/10.1016/j.physb.2009.06.087
https://doi.org/10.1088/0953-8984/22/27/275304
https://doi.org/10.1103/PhysRevB.80.041402
https://doi.org/10.1103/PhysRevB.79.045429


MICROSCOPIC GREEN’S FUNCTION APPROACH FOR … PHYSICAL REVIEW B 109, 195405 (2024)

asymmetry and a proposal for a tunneling device, Phys. Rev. B
79, 195422 (2009).

[47] J.-W. Rhim, J. H. Bardarson, and R.-J. Slager, Unified bulk-
boundary correspondence for band insulators, Phys. Rev. B 97,
115143 (2018).

[48] S. Gómez Páez, C. Martínez, W. J. Herrera, A. Levy Yeyati, and
P. Burset, Dirac point formation revealed by Andreev tunneling
in superlattice-graphene/superconductor junctions, Phys. Rev.
B 100, 205429 (2019).

[49] O. E. Casas, S. G. Páez, and W. J. Herrera, A Green’s function
approach to topological insulator junctions with magnetic and
superconducting regions, J. Phys.: Condens. Matter 32, 485302
(2020).

[50] T. L. van den Berg, A. De Martino, M. R. Calvo, and D.
Bercioux, Volkov-Pankratov states in topological graphene
nanoribbons, Phys. Rev. Res. 2, 023373 (2020).

[51] M. Andelkovic, Kh. Yu. Rakhimov, A. Chaves, G. R.
Berdiyorov, and M. V. Milošević, Wave-packet propagation in
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