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Nontrivial bulk topological invariants of quantum materials can leave their signatures on charge, thermal,
and spin transports. In two dimensions, their imprints can be experimentally measured from well-developed
multiterminal Hall bar arrangements. Here, we numerically compute the low temperature (T ) thermal (κxy) and
zero temperature spin (σ sp

xy ) Hall conductivities, and longitudinal thermal conductance (Gth
xx) of various prominent

two-dimensional fully gapped topological superconductors, belonging to distinct Altland-Zirnbauer symmetry
classes, namely p + ip (class D), d + id (class C), and p ± ip (class DIII) paired states, in mesoscopic six-
terminal Hall bar setups from the scattering matrix formalism using KWANT. In both clean and weak disorder
limits, the time-reversal symmetry breaking p + ip and d + id pairings show half-quantized and quantized κxy

[in units of κ0 = π 2k2
BT/(3h)], respectively, while the latter one in addition accommodates a quantized σ sp

xy [in
units of σ

sp
0 = h̄/(8π )]. By contrast, the time-reversal invariant p ± ip pairing only displays a quantized Gth

xx

at low T up to a moderate strength of disorder. In the strong disorder regime, all these topological responses
(κxy, σ sp

xy , and Gth
xx) vanish. Possible material platforms hosting such paired states and manifesting these robust

topological thermal and spin responses are discussed.

DOI: 10.1103/PhysRevB.109.195403

I. INTRODUCTION

Classification of quantum materials according to the geom-
etry and topology of the underlying fermionic wave functions,
when combined with three nonspatial symmetries, gives rise
to the tenfold periodic table of topological phases of mat-
ter [1–14]. The participating nonspatial symmetry operations
are (a) the time-reversal symmetry (TRS), (b) the antiu-
nitary particle-hole symmetry (PHS), and (c) the unitary
particle-hole or chiral or sublattice symmetry (SLS). Among
several fascinating features of this topological periodic table
of quantum matters, such as the Bott periodicity [10] and
the dimensional reduction [15] to name a few, a remarkable
one is the following. Out of ten possible Altland-Zirnbauer
(AZ) symmetry classes, only five are accompanied by non-
trivial bulk topological invariants in every dimension. These
mathematical quantities (the bulk topological invariants) can
nonetheless leave their fingerprints on experimentally mea-
surable transport quantities, and eminently they are expected
to be robust against symmetry preserving weak perturbations,
such as random impurities. Furthermore, it turns out that such
a classification scheme, although tailored for noninteracting
fermionic systems, is equally applicable for strongly cou-
pled phases of matter, such as Kondo insulators [16–18] and
superconductors [19–25], but in terms of emergent weakly
correlated Hartree-Fock quasiparticles. Specifically for su-
perconductors, the band topology is computed for weakly
interacting emergent neutral Bogoliubov–de Gennes (BdG)
quasiparticles inside the paired state.

A one-to-one correspondence between the bulk topologi-
cal invariant and quantized transport quantity is fascinating
especially in two spatial dimensions, where they can be di-
rectly measured experimentally in multi-terminal Hall bar
arrangements. In d = 2, five topological AZ symmetry classes

are A and AII, corresponding to quantum Hall and quantum
spin Hall insulators, respectively, and classes D, C, and DIII,
each of which represents a superconductor. Their symmetry
properties are summarized in Table I. Here we exclusively
focus on two-dimensional topological superconductors. The
prominent examples are the (a) TRS breaking p + ip pairing
among spinless or equal-spin fermions (class D), (b) TRS
breaking spin-singlet d + id pairing (class C), and (c) TRS
preserving triplet p ± ip pairing (class DIII).

Violation of the charge conservation in a superconducting
ground state forbids any meaningful measurement of charge
transport quantities therein. Therefore, we have to solely rely
on the thermal transport (always well defined due to the en-
ergy conservation) and in some cases on the spin transport
(when the spin rotational symmetry is maintained). Although
the (half-)quantized thermal and spin transport quantities in
some of the aforementioned topological paired states are well
appreciated in the literature from the field-theoretic approach
and the Kubo formalism [20,22,23,26], here we compute
these quantities in finite size mesoscopic six-terminal Hall
bar arrangements from the scattering matrix formalism using
the software package KWANT [27], starting from their square
lattice-based tight-binding descriptions. Our key findings are
summarized below.

A. Key results

Two-dimensional p + ip and d + id paired states respec-
tively support half-quantized (Fig. 1) and quantized (Fig. 2)
thermal Hall conductivity κxy [in units of κ0 = π2k2

BT/(3h)]
at low temperature (T ), intimately tied with the first Chern
number of the associated effective single-particle BdG Hamil-
tonian. Here, h (kB) is the Planck (Boltzmann) constant and T
is the temperature of the system. The d + id paired state in
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TABLE I. Five topologically nontrivial Altland-Zirnbauer sym-
metry classes in two spatial dimensions, encompassing topological
insulators (TIs) and topological superconductors (TSCs) [3,9,12].
Symmetry transformations of the corresponding effective single-
particle Hamiltonian under the time-reversal symmetry (TRS),
particle-hole symmetry (PHS) and sublattice symmetry (SLS). Here,
0 (1) implies the absence (presence) of a specific symmetry, while
± indicate whether the corresponding symmetry operator squares
to ±1, respectively. In the last column, we show one representative
physical system from each Altland-Zirnbauer class.

Symmetries

System Class TRS PHS SLS Example

TIs A 0 0 0 Quantum Hall insulator
AII −1 0 0 Quantum spin Hall insulator

TSCs D 0 +1 0 p + ip superconductor
C 0 −1 0 d + id superconductor

DIII −1 +1 1 p ± ip superconductor

addition features quantized spin Hall conductivity σ
sp
xy (Fig. 3)

in units of σ
sp
0 = h̄/(8π ), where h̄ = h/(2π ). Finally, we

show that the topological invariant of a p ± ip superconductor
can only be revealed from the quantized (in units of κ0) longi-
tudinal thermal conductance Gth

xx (Fig. 4), as this paired state
has net zero first Chern number.

All these (half-)quantized thermal and spin topological re-
sponses of planar topological superconductors are shown to
be robust (due to a finite bulk gap) in the presence of weak
random charge impurities, the dominant source of elastic
scattering in any real material. Only in the strong disorder
regime do κxy, σ

sp
xy , and Gth

xx → 0, when the disorder strength
becomes comparable to or larger than the bulk topological
gap. See panels (d) and (e) of Figs. 1, and 2, 4, and panels
(c) and (d) of Fig. 3. Although these topological responses are
insensitive to the pairing amplitude as long as there exists an
underlying Fermi surface, in order to minimize the finite size
effect and achieve numerical stability, we set it to be unity.

B. Organization

We now outline the organization principle of the rest of
the paper. Section II is devoted to the discussion on the TRS
breaking p + ip superconductor (class D), and its hallmark
half-quantized thermal Hall conductivity in clean and dirty
systems. Finite temperature thermal and zero temperature spin
Hall conductivities of a class C spin-singlet d + id paired
state (both clean and disordered) are discussed in Sec. III.
Topological responses of class DIII p ± ip paired state in
terms of quantized longitudinal thermal conductance in both
clean and dirty systems are presented in Sec. IV. Concluding
remarks and material pertinence of our study are given in
Sec. V. Additional technical details of the scattering matrix
formalism are presented in the Appendix.

II. TOPOLOGICAL p + ip SUPERCONDUCTOR

We embark on the journey with a two-dimensional
class D topological system, namely, the TRS breaking p +
ip superconductor [20]. The effective single-particle BdG

Hamiltonian for such a system is described by Hp+ip
BdG (k) =

τ · d(k), where [28]

d(k) =
⎛
⎝t sin(kxa), t sin(kya), m0 − t0

∑
j=x,y

cos(k ja)

⎞
⎠.

(1)

The two-dimensional Pauli matrices τ operate on the Nambu
indices. Throughout, we set t = t0 = 1, and the lattice con-
stant a = 1. The term proportional to τ3 results in Fermi
surfaces near the � and M points of the Brillouin zone (BZ) re-
spectively for 0 < m0/t0 < 2 and −2 < m0/t0 < 0. The terms
proportional to τ1 and τ2 capture topological superconductiv-
ity in the system, with the pairing amplitude t (set to be unity).

The superconducting pairing is determined from the elec-
tron’s spin angular momentum (�), which forms the Cooper
pairs. It can be of spin-singlet (even �) or spin-triplet (odd �) in
nature. For a system of spinless or spin polarized fermions, the
requisite Pauli exclusion principle permits only odd � paired
states (odd-parity pairing). Here, in Eq. (1) we consider its
simplest example, the TRS breaking p + ip pairing. From the
phase diagram of the model, we notice that the topological
superconductivity develops in the regime −2 < m0/t0 < 2 in
the presence of an underlying Fermi surface. See Fig. 1(a).
Outside this domain, the system describes a trivial thermal
insulator. Within the topological regime, the system supports
chiral Majorana edge modes propagating at the boundaries
of the system. They manifest in the transport calculation,
which we will discuss shortly. Since the formation of the
Cooper pairs violates the charge conservation, we rely on the
energy conservation principle and compute the thermal Hall
conductivity (THC). The THC for this model shows robust
half quantization κxy = ±0.5 when the system falls inside the
topological phase, whereas κxy = 0 otherwise.

We note that the model Hamiltonian for the TRS break-
ing p + ip superconducting Hp+ip

BdG (k) possesses an antiunitary
PHS, generated by � = τ1K, such that {Hp+ip

BdG (k), �} = 0,
where K is the complex conjugation and �2 = +1. Note that
� exchanges the particle and hole blocks of the Nambu spinor
[see Eq. (3)] due to the τ1 matrix, as well as converts the
creation operators to annihilation ones and vice versa, while
taking k → −k due to K, as expected from the particle-hole or
charge conjugation operator. Additionally, we observe that all
three Pauli matrices appear in Hp+ip

BdG (k). Hence, there exists
no unitary operator that anticommutes with Hp+ip

BdG (k) (thus
no SLS), thereby justifying the class D nature of the system
within the AZ classification scheme [3,9,10,12,14]. Therefore,
the THC response for this system tracks the value of the first
Chern number (C), which is defined within the first BZ as

C =
∫

BZ

d2k
4π

[∂kx d̂(k) × ∂ky d̂(k)] · d̂(k), (2)

where d̂(k) = d(k)/|d(k)|. Typically, for a TRS breaking
topological insulator, the first Chern number is related to the
electrical Hall conductivity by the Kubo formula σxy = C e2

h
(C ∈ Z group in two dimensions) [29]. Nonetheless, by taking
into account the Nambu doubling, which results in a factor of
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(a)
(c)

(d)

(e)

(b)

FIG. 1. (a) The phase diagram for the p + ip superconductor [Eq. (1)] as a function of m0/t0 in terms of the first Chern number C [Eq. (2)].
(b) The six-terminal thermal Hall transport setup for the p + ip superconductor, also showing its chiral Majorana edge mode (red arrow). A
longitudinal thermal current (Ith) flows between lead 1 and lead 4. The perpendicular leads serve as the thermal Hall probes, which allow us
to calculate the transverse thermal Hall conductivity (THC). (c) The THC (κxy), computed for a rectangular system of length L = 200 and
width D = 100 at the temperature T = 0.01 as a function of m0/t0, is half quantized to κxy = C/2 [in the units of κ0 = π 2k2

BT/(3h)] in the
topological regime, whereas κxy = 0 in the trivial regime, where C = 0. The dotted black lines are guides to the eye. (d) The disorder averaged
THC (〈κxy〉) as a function of the disorder strength (W ) for m0 = t0 = 1 and the pairing amplitude t = 1, yielding a pairing gap equal to 1 (in
units of t0). Each data point (in red), corresponding to a particular value of W , is averaged over 150 independent disorder realizations. (e)
The disorder averaged THC as a function of the number of independent disorder realizations (n) for various strengths of disorder (mentioned
inside the plot) for the same set of parameters as in (d), showing that they saturate after averaging over typically 150 independent disorder
realizations. The error bars in (d) and (e) correspond to the standard deviations, which also saturate for n = 150 (for any W ).

1/2 in the BdG Hamiltonian

H p+ip
BdG = 1

2

∑
k

(c†
k c−k)Hp+ip

BdG (k)

(
ck

c†
−k

)
, (3)

the first Chern number can also be related to the half-
quantized THC for a p + ip topological superconductor,
which we discuss next. Here, c†

k (ck) is the fermionic creation
(annihilation) operator with momentum k.

A. Thermal Hall response: Clean p + ip pairing

Superconducting system having Cooper pairs does not
adhere to the principle of charge conservation, which in
turn implies that the electrical Hall conductivity (σxy) is a
moot quantity. However, we can resort to the energy con-
servation principle and therefore compute the THC, which
is a meaningful topological response. We consider a six-
terminal Hall bar geometry for the calculation of the THC,
as shown in Fig. 1(b). Six leads are attached to the rectan-
gular scattering region, maintained at a fixed temperature T .
A longitudinal thermal current (Ith) then traverses through
the system, when a temperature gradient is applied be-
tween lead 1 (at a temperature T1 = −
T/2) and lead 4
(at a temperature T4 = 
T/2), generating transverse temper-
atures in the perpendicular leads (namely, lead 2, lead 3,
lead 5, and lead 6), which serve as the temperature leads.
With this setup, we note that the current-temperature relation
reads as Ith = AT, where I�

th = (Ith, 0, 0,−Ith, 0, 0) and T� =
(−
T/2, T2, T3,
T/2, T5, T6). The matrix elements of A are

calculated from [30–32]

Ai j =
∫ ∞

0

E2

T

(
−∂ f (E , T )

∂E

)
[δi jμ j − Tr(t†

i jti j )]dE . (4)

Here, μ j represents the number of propagating channels in
the jth lead, f (E , T ) = 1/(1 + exp [E/(kBT )]) denotes the
Fermi-Dirac distribution function, E is the energy, ti j is the
transmission block of the scattering matrix between lead i and
lead j, and the trace (Tr) is performed over all the transmission
channels. See the Appendix for additional details.

Once we numerically obtain the matrix A using KWANT

[27], the transverse thermal Hall resistance can be obtained
as Rth

xy = (T2 + T3 − T5 − T6)/(2Ith), and the inverse of this
quantity is termed the THC, defined as

κxy = π2k2
BT/(3h)

(
Rth

xy

)−1
. (5)

For all our numerical THC calculations, we set kB = h = 1.
From Fig. 1(c), we notice that the THC remains half quantized
to the values κxy = κ0C/2 in the topological regime with C =
±1, but vanishes otherwise.

B. Thermal Hall response: Dirty p + ip pairing

Topology of insulating systems (electrical and thermal) is
robust against weak perturbations that preserve the necessary
symmetries of the system, or at least when the symmetry
is protected on average [33–42]. On the other hand, dis-
order is unavoidably present in real materials, which can
in principle be detrimental for the topological features of
quantum materials (such as κxy). Therefore, we investigate
the robustness of the half-quantized κxy of the p + ip paired
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state against symmetry preserving disorder. We add random
charge impurities to each site of the two-dimensional lattice,
the dominant source of elastic scattering in any real material,
which in the Nambu-doubled basis enter as the on-site mass
disorder V (r)τ3 for Dirac fermions, featured by the p + ip
pairing terms. The quantity V (r) is uniformly and randomly
distributed within the range [−W/2,W/2] for every site be-
longing to the rectangular scattering region, and W is the
disorder strength. We compute the disorder averaged THC
〈κxy〉 for the class D p + ip superconductor following the
prescription mentioned in the previous sections (Sec. II A).
The results are shown in Fig. 1(d).

The convergence of 〈κxy〉 is ensured after averaging
over a large number of independent disorder configurations
n ∼ 150 (typically), around which 〈κxy〉 becomes insensitive
to n within the numerical accuracy. See Fig. 1(e). The topo-
logical half quantization of 〈κxy〉 persists in the weak disorder
regime (W � 4), and decays to 〈κxy〉 = 0 for large disorder
strength (W � 10), while acquiring nonuniversal and non-
quantized values for intermediate strength of disorder. See
Fig. 1(d). The robustness of the THC in the weak disorder
regime and its disappearance in the strong disorder regime can
be qualitatively understood in the following way. We note that
the topological response quantity 〈κxy〉 is protected by the bulk
gap of the BdG fermions. Despite disorder tending to diminish
the bulk gap, it continues to protect a half-quantized 〈κxy〉 for
weak disorder. However, in the presence of strong disorder
(when W � bulk gap), the system becomes a trivial thermal
insulator, resulting in 〈κxy〉 = 0.

While computing 〈κxy〉, we also numerically extract the
corresponding standard deviation, shown in Figs. 1(d) and
1(e). Notice that for (a) weak disorder when 〈κxy〉 = 0.5κ0 and
(b) sufficiently strong disorder when 〈κxy〉 = 0, the standard
deviations from the mean values are negligible (if at all).
By contrast, in the intermediate disorder regime, when 〈κxy〉
takes nonquantized but finite values, the standard deviation
is large. This feature can be appreciated by considering the
following specific example. First, notice that for any given dis-
order realization κxy = 0.5κ0 or κxy = 0. When 〈κxy〉 = 0.5κ0,
(almost) all the disorder configurations yield κxy = 0.5κ0 and
when 〈κxy〉 = 0 for (almost) all disorder configurations we
find κxy = 0. As a consequence, the standard deviations in
these two regimes are negligible (if they exist at all). However,
when, for example, 〈κxy〉 ≈ 0.25κ0, which can be found in
the intermediate disorder regime, for half of the disorder con-
figurations we find κxy = 0.5κ0, while the rest give κxy = 0,
thereby producing a large standard deviation. However, we
ensure that the standard deviations for all reported values of
〈κxy〉 saturate with respect to the number of disorder configu-
rations (n), just like their mean values. This feature is present
for the THC [Figs. 2(d) and 2(e)] and spin Hall conductivity
[Figs. 3(c) and 3(d)] for the d + id pairing, and longitudinal
thermal conductance for the p ± ip pairing [Figs. 4(d) and
4(e)]. So, we do not repeat this argument any further.

III. TOPOLOGICAL d + id SUPERCONDUCTOR

Next we investigate the thermal and spin Hall responses of
a spin-singlet d + id topological superconductor [20,33,43].
Notice that, similarly to the p + ip superconductors, the

d + id pairing also breaks the TRS and lacks the SLS, but
retains the antiunitary PHS (�). However, for the d + id
paired state, �2 = −1. The normal state Hamiltonian for spin-
ful fermions, required for their condensation in a spin-singlet
channel, is described by

Hnor (k) = {m0 − t0[cos(kxa) + cos(kya)]}σ0 ≡ d3(k)σ0,

(6)

where the Pauli matrices σ encode the spin degrees of free-
dom. The corresponding two-component spinor reads ��

k =
(ck↑, ck↓), where ckσ is the fermion annihilation operator with
momentum k and spin projection σ =↑,↓. Incorporation of
the superconductivity into this model amounts to the Nambu
doubling of the theory, for which we now define a regular
Nambu spinor as ��

Nam = (�k, �
∗
−k). In this basis, the normal

state Hamiltonian takes the following form:

HNam
nor (k) = d3(k)τ3σ0, (7)

where the newly introduced Pauli matrices τ operate on the
Nambu or particle-hole index.

In such a system, in this section, we focus on the even
parity pairings with the pairing amplitude 
(k), such that

(−k) = 
(k). Two prominent choices which satisfy the
even parity criterion are the s-wave pairing with 
(k) = 
0

(constant) and � = 0, and the d-wave pairing with 
(k) =

0[cos(kxa) − cos(kya)] ≡ d1(k) and 
0 sin(kxa) sin(kya) ≡
d2(k), corresponding to � = 2, where 
0 is the pairing am-
plitude. These two terms respectively stand for the lattice
regularized version of the dx2−y2 and dxy pairings. Here, we
only consider the d-wave pairings, as the fully gapped uni-
form s-wave counterpart is topologically trivial. Note that the
requirement of the Pauli exclusion principle demands that the
spin-singlet pairing terms must appear with the σ2 matrix in
the spin space, which by virtue of σ�

2 = −σ2 ensures the an-
tisymmetric nature of the pairing wave function. The effective
single-particle BdG Hamiltonian for the d + id pairing then
takes a compact form,

Hd+id
BdG (k) = d1(k)τ1σ2 + d2(k)τ2σ2 + d3(k)τ3σ0, (8)

with the components of the d vector already given in this
section. The effective BdG Hamiltonian can be cast in a more
elegant form by defining a slightly decorated Nambu-doubled
basis (�dec

Nam )� = (�k, σ2�
∗
−k) by absorbing the unitary part

of the time-reversal operator (σ2) in the hole sector of the
spinor. In this basis

Hd+id
BdG (k) = d1(k)τ1σ0 + d2(k)τ2σ0 + d3(k)τ3σ0. (9)

Appearance of the Pauli matrix σ0 in the spin sector unfolds
the singlet nature of the d + id paired state. Thus, the spin
degrees of freedom leads to a mere doubling of the BdG
Hamiltonian, endowing an SU(2) spin rotational symmetry
to Hd+id

BdG (k), generated by τ0σ. Notice that Hd+id
BdG (k) en-

joys an antiunitary PHS, generated by � = τ2σ0K, such that
{Hd+id

BdG (k), �} = 0 and �2 = −1. Here as well, � exchanges
the particle and hole blocks of the Nambu spinor (�dec

Nam)
due to the τ2 matrix, and converts the creation operators to
annihilation ones and vice versa, while taking k → −k due to
K without altering the spin projection (due to σ0), as expected
from the particle-hole or charge conjugation operator. But,
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(a)

(b)

(c) (d)

(e)

FIG. 2. (a) The phase diagram for the d + id superconductor [Eq. (9)] as a function of m0/t0 in terms of the first Chern number 2C [Eq. (2)]
being equal to 4 in the topological regime (|m0/t0| < 2) and 0 otherwise. The factor of 2 comes from the spin degeneracy of the effective BdG
Hamiltonian [Eq. (9)]. (b) The six-terminal thermal Hall transport setup for the d + id superconductor, also showing the unidirectional chiral
Majorana edge modes for opposite spin projections. A longitudinal thermal current (Ith) flows between lead 1 and lead 4. The perpendicular
leads serve as the thermal Hall probes, which allow us to calculate the transverse thermal Hall conductivity (THC). (c) The THC (κxy) as a
function of m0/t0 is quantized to 2 (in units of κ0) in the topological regime as two unidirectional edge spin channels contribute equally to the
THC [see panel (b)], whereas κxy = 0 in the trivial regime. Here, we compute the THC with a rectangular scattering region of length L = 200
and width D = 100 at temperature T = 0.01 for t0 = 
0 = 1. The dotted black lines are guides to the eye. (d) The disorder averaged THC
〈κxy〉 as a function of the disorder strength (W ) for m0 = t0 = 1 and the pairing amplitude 
0 = 1, yielding a pairing gap equal to 1 (in units
of t0). For each W (red points), κxy is averaged over 150–350 independent disorder configurations (depending on W ). (e) The variation of 〈κxy〉
with the number of independent disorder realizations (n) for various strengths of W , ensuring its numerical convergence for large n for the
same set of parameters as in (d). Error bars in (d) and (e) represent the standard deviations, which also saturate for large n (depends on W ).

there is no unitary operator that anticommutes with Hd+id
BdG (k),

which is thus devoid of the sublattice or chiral symmetry.
Hence, the d + id paired state belongs to the AZ class C.

A. Thermal Hall responses of d + id pairing

Since, after a suitable unitary rotation, each term in the
effective BdG Hamiltonian Hd+id

BdG is accompanied by the
identity matrix σ0 in the spin sector, the first Chern number
(C) associated with the d + id paired state can be directly
computed from Eq. (2) in terms of the components of the
appropriate d vector appearing in the 2 × 2 BdG Hamiltonian
involving only the τ matrices (Nambu degrees of freedom),
and it is given by 2C. The extra factor of 2 arises from
the mere doubling of the Hamiltonian in the spin part [see
Eq. (9)]. Within the entire topological regime, namely −2 <

m0/t0 < 2, the first Chern number associated with Hd+id
BdG is

thus 2C = 4, while it is trivial (C = 0) for |m0/t0| > 2. The
resulting phase diagram is shown in Fig. 2(a).

The nontrivial Chern number leaves its signature on the
transverse THC, which in this case reads as (following the
discussion from Sec. II)

κxy = C × 1

2
× 2 ×

(
π2k2

BT

3h

)
≡ Cκ0. (10)

The factor of 1/2 compensates the Nambu doubling, and the
factor of 2 arises due to the spin degeneracy. The THC of

a clean d + id paired state can readily be computed in a
six-terminal setup, as shown in Fig. 2(b), employing the same
method we previously discussed for the p + ip superconduc-
tor in Sec. II A. See the Appendix. The results are shown
in Fig. 2(c). Indeed, we find κxy = 2 (in units of κ0) in the
topological regime, otherwise κxy = 0.

We also test the robustness of the quantized nature of κxy

in the d + id state against a symmetry preserving disorder.
It is important to emphasize that the computation of κxy is
performed separately on the individual 2 × 2 blocks involving
the τ matrices only. We add an on-site disorder (random
charge scatterer) term V (r)τ3, which is drawn from a uni-
form box distribution in the range [−W/2,W/2] for every
site belonging to the real space lattice, and W is the disorder
strength. Then we follow the identical steps highlighted in
Sec. II B to compute the disorder averaged THC 〈κxy〉. Once
again we find that 〈κxy〉 retains a quantized value of 2 for
small to moderate disorder strength (W � 5) and drops to
〈κxy〉 = 0 eventually for large disorder values (W � 8). See
Fig. 2(d). Since 〈κxy〉 falls rather rapidly in the intermediate
disorder range, we consider a finer mesh in disorder values
in this regime. Typically, 〈κxy〉 becomes insensitive to the
number of independent disorder realizations for n ∼ 150–350
(depending on W ), as shown in Fig. 2(e). For each reported
value of 〈κxy〉, we also compute the corresponding standard
deviation, shown in Figs. 2(d) and 2(e), which also saturates
for the same range of n, while displaying qualitatively sim-
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ilar features, previously found and discussed for the p + ip
pairing.

B. d + id pairing: Spin Hall conductivity

So far the spin degrees of freedom only doubled the am-
plitude of κxy for the d + id pairing. The broken TRS and
the spin-singlet nature of this paired state also manifest quan-
tized spin Hall conductivity, realized at the cost of the spin
SU(2) symmetry by applying a weak (much smaller than Hc

or Hc1, depending on whether the pairing is type I or type
II) external magnetic field. Then the external magnetic field
(H) only couples to the spin degrees of freedom (no orbital
coupling due to the Meissner effect) via the Zeeman term,
which reads as (h̄/2)H · σ, where h̄/2 = h/(4π ) plays the
role of the magnetic charge (analogous to e being the electrical
charge). In the decorated Nambu basis (�dec

Nam), the Zeeman
term reads as (h̄/2)τ0H · σ. Without any loss of generality, we
chose the spin quantization z axis along the external magnetic
field, yielding H = (0, 0, H ), and then the Zeeman term takes
a simpler form (h̄/2)Hτ0σ3. As the zero-energy edge modes
of fermionic BdG quasiparticles of the d + id paired state
propagate in the same direction for opposite spin projections
[see Fig. 3(a)], a magnetic field bias between the horizontal
leads causes a spin current between them and a magnetization
develops between the vertical leads, as we explain below in
detail, giving rise to a quantized spin Hall conductance solely
due to these edge modes. Therefore, at zero temperature the
spin Hall conductivity of the d + id paired state is given by

σ sp
xy = (h̄/2)2

h
× 1

2
× C = h̄

8π
C ≡ σ

sp
0 C, (11)

where the factor of 1/2 compensates the Nambu doubling,
σ

sp
0 = h̄/(8π ) is the quantum of the spin Hall conductance,

and C is the first Chern number of the d + id paired state,
computed from the 2 × 2 BdG Hamiltonian involving only the
τ matrices [20,26,43]. Throughout, we compute the spin Hall
conductivity in units of h̄/(8π ). Therefore, within the topo-
logical regime |m0/t0| < 2, we expect σ

sp
xy = 2, while σ

sp
xy = 0

for |m0/t0| > 2, which we next confirm from a six-terminal
setup.

The six-terminal transport geometry for the computation
of the spin Hall conductivity (σ sp

xy ) is depicted in Fig. 3(a).
A magnetic bias field (−
H/2,
H/2) is applied between
lead 1 and lead 4, due to which a longitudinal spin cur-
rent (Isp) flows across the system (the scattering region).
Such a spin current results in generating different z direc-
tional magnetization values (mjs) in the transverse leads.
They can be obtained from the spin current-magnetization
relation Isp = GspM, where I�

sp = (Isp, 0, 0,−Isp, 0, 0) and
M� = (−
H/2, m2, m3,
H/2, m5, m6). The spin conduc-
tance matrix Gsp contains only the transmission block of the
scattering matrix, which we extract using KWANT [27]. See
the Appendix for additional details. Subsequently, we com-
pute the transverse spin Hall resistance Rsp

xy = (m2 + m3 −
m5 − m6)/(2Isp), which leads to the spin Hall conductance
σ

sp
xy = (Rsp

xy )−1. The results are shown in Fig. 3(b), confirming
σ

sp
xy = 2 and 0, respectively, in the topological and trivial

regimes. Next we scrutinize the robustness of quantized σ
sp
xy

in the presence of random charge impurities.

With the same motivation as in the earlier models, we
now investigate the robustness of the quantized σ

sp
xy against

a symmetry preserving disorder term, namely the random
charge impurities. The computation of the disorder averaged
spin Hall conductance 〈σ sp

xy 〉 now involves on-site disorder
term V (r)τ3 for each spin projection. The quantity V (r)
is uniformly and independently distributed in the range
[−W/2,W/2] for every site belonging to the lattice, and W
is the disorder strength. The disorder averaged spin Hall con-
ductance 〈σ sp

xy 〉 showcases the robustness of this topological
response against weak and moderate disorder, which eventu-
ally decays to zero in the strong disorder regime. See Fig. 3(c).
While computing 〈σ sp

xy 〉, we typically average over 150 in-
dependent disorder realizations for each value of W . As the
number of disorder realizations (n) is increased, the values
of 〈σ sp

xy 〉 get saturated around n ∼ 150. See Fig. 3(d). The
standard deviation for each reported value of 〈σ sp

xy 〉 saturates
after averaging over 150 disorder realizations, as shown in
Figs. 3(c) and 3(d). Otherwise, its behavior in the weak,
moderate and strong disorder regimes are qualitatively similar
to the ones, we previously observed for 〈κxy〉 of p + ip and
d + id paired states.

IV. TOPOLOGICAL p ± ip PAIRING

Finally, we turn to the situation when a spin degenerate
Fermi surface [Eq. (6)], discussed in the previous section, be-
comes susceptible toward the nucleation of a TRS preserving
spin-triplet p ± ip paired state. As we will show shortly that
this system besides the TRS, also preserves the antiunitary
particle-hole symmetry and the unitary sublattice or chiral
symmetry, and belongs to class DIII in the AZ classification
scheme. The effective single-particle BdG Hamiltonian for the
p ± ip paired state takes the form Hp±ip

BdG (k) = � · d(k) with
the d vector already given in Eq. (1). The mutually anticom-
muting 4 × 4 Hermitian Dirac � matrices, involving the spin
and Nambu indices, take the explicit form �1 = σ0 ⊗ τ1, �2 =
σ3 ⊗ τ2, and �3 = σ0 ⊗ τ3. The Pauli matrices σ (τ) operate
on the spin (Nambu) sector.

The TRS of Hp±ip
BdG (k) is generated by T = (σ2 ⊗ τ3)K,

such that [T ,Hp±ip
BdG (k)] = 0 and T 2 = −1, as it should be

for spinful fermions. Its antiunitary PHS is generated by
� = (σ0 ⊗ τ1)K, such that {�,Hp±ip

BdG (k)} = 0 and �2 = +1.
Notice that � exchanges the particle and hole blocks of the
Nambu spinor due to the τ1 matrix, and converts the creation
operators to annihilation ones and vice versa, while taking
k → −k due to K without affecting the spin projection (due
to σ0), as expected from the particle-hole or charge conjuga-
tion operator. Finally, there are two unitary operators, namely
�4 = σ1 ⊗ τ2 and �5 = σ1 ⊗ τ2, such that {� j,Hp±ip

BdG (k)} = 0
and �2

j = +1 for j = 4 and 5. They generate the SLS of

Hp±ip
BdG (k). Hence, the p ± ip paired state belongs to class DIII.
Physically, the model Hamiltonian Hp±ip

BdG (k) can be under-
stood as the superposition of the p + ip pairing for the spin
up component and the p − ip pairing for the spin down com-
ponent. As the opposite spin projections are Kramers partners
of each other, the TRS of the resulting p ± ip pairing pins its
first Chern number to zero and due to the helical nature of the
edge modes, the resultant THC is also zero. Nonetheless, we
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(a) (b) (c)

(d)

FIG. 3. (a) The six-terminal spin Hall transport setup for the d + id superconductor at zero temperature, also showing the unidirectional
spin degenerate chiral Majorana edge modes. A longitudinal spin current (Isp) flows between lead 1 and lead 4, due to a magnetic field bias
between them. The perpendicular leads work as the spin Hall or the magnetization probes which allow us to calculate the transverse spin Hall
conductivity (SHC). (b) The SHC (σ sp

xy ) as a function of m0/t0 is quantized to 2 [in units of σ
sp
0 = h̄/(8π )] in the topological regime, whereas it

yields 0 in the trivial regime. Here, we compute σ sp
xy in a rectangular system of length L = 200 and width D = 100, for t0 = 
0 = 1. The dotted

black lines are guides to the eye. (c) The disorder averaged SHC 〈σ sp
xy 〉 as a function of the disorder strength W shows the survival of its robust

quantization up to a moderate disorder, while eventually decaying to 〈σ sp
xy 〉 = 0 for large W . Here the results are obtained for m0 = t0 = 1 and

the pairing amplitude 
0 = 1, yielding a pairing gap equal to 1 (in units of t0). (d) The same quantity 〈σ sp
xy 〉 for the same set of parameters as

in (c) is plotted with the number of independent disorder realizations (n) for a few W , showing that it saturates for large n ∼ 150, ensuring the
numerical convergence. The error bars in (c) and (d) stand for the standard deviations, which for any W saturate for n = 150.

can define an invariant, named the spin Chern number for this
state,

Csp = |C↑ − C↓|, (12)

where C↑ (C↓) is the first Chern number associated with the ↑
(↓) spin component. Notice that Csp is nontrivial, and Csp = 2
in the entire topological regime (|m0/t0| < 2) and Csp = 0
for |m0/t0| > 2. See Fig. 4(a). However, we cannot apply an
external magnetic field to probe nontrivial Csp, as it breaks
the TRS, which is a conserved symmetry for the class DIII.
Hence, the only meaningful experimentally measurable trans-
port response of the p ± ip pairing is the longitudinal thermal
conductance (Gth

xx). A six-terminal setup is employed to com-
pute Gth

xx, as shown in Fig. 4(b). The computational procedure
is identical to the one described in details in Sec. II A (see
also the Appendix). From the longitudinal thermal resistance
Rth

xx = (T3 − T2)/Ith, we compute Gth
xx = (Rth

xx )−1 and find that

Gth
xx = Csp

2
κ0, (13)

where the factor of 1/2 compensates the Nambu doubling.
The results are shown in Fig. 4(c). The quantized Gth

xx in the
clean p ± ip paired state results from two counterpropagating
Majorana edge modes for opposite spin projections living on
the same edge of the system, which are shown in Fig. 4(b).
We numerically confirmed that κxy = 0 for the p ± ip paired
state, as it supports two counterpropagating edge modes on
each edge.

To examine the robustness of the quantized longitudinal
thermal conductance against random charge impurities, we
compute its disorder averaged values 〈Gth

xx〉 by adding a term

V (r)�3 to each site of the scattering region. Here as well
V (r) is uniformly and randomly distributed in the range
[−W/2,W/2] on every site of the scattering region, and W
denotes the disorder strength. We observe that 〈Gth

xx〉 retains
its quantized value (in units of κ0) up to a moderate disorder
strength, as shown in Fig. 4(d), beyond which it acquires
nonuniversal and nonquantized values before vanishing at suf-
ficiently strong disorder. The quantization of 〈Gth

xx〉 in the weak
disorder regime results from the absence of any backscattering
between two counterpropagating Majorana edge modes of
opposite spin projections in the p ± ip paired state, living
on the same edge. As these edge modes have opposite spin
projections, any backscattering between them is forbidden by
any time-reversal symmetric disorder (such as the random
charge impurities), which is the symmetry of class DIII (see
Table I). The values of 〈Gth

xx〉 typically saturate after averaging
over 150 independent disorder realizations, irrespective of its
strength. See Fig. 4(e). In Figs. 4(d) and 4(e), we also display
the standard deviation of Gth

xx for each value of W , which
also saturates after averaging over 150 independent disorder
realizations. The qualitative behavior of the standard deviation
of Gth

xx is similar to the ones we discussed for all the previous
cases.

V. SUMMARY AND DISCUSSIONS

To summarize, here we numerically compute the (half-
)quantized thermal (κxy) and spin (σ sp

xy ) Hall responses, as well
as the quantized longitudinal thermal conductance (Gth

xx) of
prominent gapped two-dimensional topological paired states
from different AZ symmetry classes (Table I) by employ-
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(a)

(b)

(c) (d)

(e)

FIG. 4. (a) The phase diagram of the p ± ip superconductor (Sec. IV) as a function of m0/t0, showing the topologically trivial and nontrivial
regimes in terms of the spin Chern number Csp [Eq. (12)]. (b) The six-terminal thermal transport setup for the p ± ip superconductor, showing
the counterpropagating helical Majorana edge modes for opposite spin projections. A longitudinal thermal current (Ith) flows between lead 1
and lead 4. Here, the temperatures in the pair of horizontal probes (namely between lead 2 and lead 3 or lead 5 and lead 6) allow us to calculate
the longitudinal thermal conductance (Gth

xx). (c) Gth
xx as a function of m0/t0 is quantized to 1 (in units of κ0) in the topological regime, whereas it

yields 0 in the trivial regime. The computation of Gth
xx is performed with a rectangular scattering regime of length L = 120 and width D = 60, at

a temperature T = 0.01 and for t = t0 = 1. The dotted lines are guides to the eye. (d) The disorder averaged longitudinal thermal conductance
〈Gth

xx〉 with varying disorder strength W for m0 = t0 = 1 and the pairing amplitude t = 1, yielding a pairing gap equal to 1 (in units of t0). For
each disorder strength, we average over n = 150 independent disorder realizations, for which 〈Gth

xx〉 becomes independent of n. See panel (e).
The error bars in (d) and (e) indicating the standard deviation saturate for n = 150 for any disorder strength W .

ing a scattering matrix formalism using the KWANT software
package on finite lattice regularized mesoscopic systems. The
transverse thermal Hall conductivity and longitudinal thermal
conductance are computed at sufficiently low temperatures
(T = 0.01), and their (half-)quantization values are quoted
in units of κ0 = π2k2

BT/(3h). On the other hand, the zero
temperature spin Hall conductance is reported in units of
σ

sp
0 = h̄/(8π ). These quantities in clean systems are shown to

be tied with the bulk topological invariants of the correspond-
ing effective single-particle BdG Hamiltonian, which continue
to feature robustness in the presence of weak random charge
impurities, manifesting the stability of the bulk topology in the
weak disorder regime. In particular, weakly disordered class
D p + ip and class DIII p ± ip paired states respectively dis-
play 〈κxy〉 = ±κ0/2 (Fig. 1) and 〈Gth

xx〉 = κ0 (Fig. 4). Finally,
class C spin-singlet d + id state supports both quantized 〈κxy〉
(Fig. 2) and 〈σ sp

xy 〉 (Fig. 3), and their ratio defines the modified
Lorentz number,

Lm = limT →0(〈κxy〉/κ0)〈
σ

sp
xy

〉/
σ

sp
0

= 1, (14)

which remains pinned at this universal value of unity in the
weak disorder regime. By contrast, in the strong disorder
regime all these topological responses disappear, indicat-
ing onset of trivial thermal insulators. Vanishing topological
transport responses, such as κxy, σ

sp
xy , and Gth

xx, for TSCs from
different symmetry classes (class D, class C, and class DIII)
in the strong disorder regime is rooted in a universal mecha-
nism. Note that the localization length of all the edge modes

ξ ∼ (
bulk
gap )−1, where 
bulk

gap is the bulk gap of the TSC. As the
disorder strength (W ) is increased, 
bulk

gap decreases, and thus
ξ increases, causing hybridization between the edge modes
of same spin projection but living on the opposite edges of the
system. In the strong disorder regime, such a hybridization be-
comes sufficiently strong and the edge modes become gapped.
Then all the topological responses disappear from the system,
which we find for TSCs, belonging to any symmetry class.
Altogether, here we develop concrete numerical methodolo-
gies for the computation of various quantized thermal and
spin responses in the clean and the dirty topological super-
conductors, encompassing all three allowed AZ symmetry
classes in two dimensions. Recent success in the experimen-
tal measurements of the thermal Hall conductivity in spin
liquids and in integer and fractional quantum Hall states in
six-terminal Hall bar geometry [44–48] should make this anal-
ysis pertinent in real materials for which the effective model
Hamiltonian can be constructed from lattice-based symmetry
constraints. With this model Hamiltonian our methodology
can be directly applied, and is available online [49]. In future,
it will be worthwhile to extend the notion of thermal and
spin responses to noncrystalline topological superconductors
on fractals, amorphous materials, and quasicrystals [50], for
example.

We note that the disorder averaged low temperature ther-
mal Hall conductivity 〈κxy〉 for the p + ip and d + id paired
states, and the longitudinal thermal conductance 〈Gth

xx〉 of the
p ± ip superconductor, initially increase from their (half-)
quantized values at moderate disorder strength before they all
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decay to zero at sufficiently strong disorder. Their quoted dis-
order averaged values are saturated with respect to the number
of independent disorder realizations (n). See panels (d) and (e)
of Figs. 1, and 2, 4. This feature is, however, extremely small
for the zero temperature spin Hall conductivity for the d + id
paired state. See Figs. 3(c) and 3(d). The microscopic origin of
such a peculiar observation is presently not clear. We suspect
that at moderate disorder the system fragments into multiple
thermally excited islands or droplets of topological and trivial
paired states, each interface between them within the scat-
tering region gives rise to Majorana edge modes with weak
hybridization among them, yielding enhanced, but nonquan-
tized values of 〈κxy〉 and 〈Gth

xx〉. In the strong disorder limit, the
number of such islands possibly increases, causing a strong
hybridization among a large number of such Majorana edge
modes living within the system, leading to vanishing 〈κxy〉 and
〈Gth

xx〉. Such a scenario can be tested by computing the local
topological markers of disorder topological superconductors,
which can in principle be extracted for any AZ symmetry
class [51,52]. We expect that the local topological marker
can reveal such droplet structure in disordered topological
superconductors at finite temperature (if it exists at all). We
leave this open question as a topic for a future investigation.

One of the practical challenges in the field of planar topo-
logical superconductivity involves the identification of real
quantum materials that can harbor such an exotic quantum
phase of matter at low temperatures [24,25,53], with, however,
Sr2RuO4 standing as one prominent candidate [54–56], for
example. Nonetheless, over the past several years quantum
crystals potentially fostering topological insulators emerged
as promising materials where on-site or local or momentum-
independent paired states can nucleate at low temperature and
represent topological superconductors, especially when these
materials are doped or chemically substituted or intercalated
to sustain an underlying Fermi surface, conducive for the
Cooper pairing. As such, local pairings in this family of ma-
terials inherit topology from the normal state band structure
of charged fermions [32,57–61]. This proposal has received
promising supports in three-dimensional (3D) intercalated and
doped TIs, namely CuxBi2Se3 and Sn1−xInxTe, that become
superconductors at low temperatures with a few Kelvin tran-
sition temperature, featuring a surface zero-bias-conductance
peak, resulting from gapless surface Majorana fermions, sug-
gesting topological nature of the underlying paired state
[62–64]. In addition, the proximity effect can be an efficient,
realistic, and experimentally viable route to induce topo-
logical superconductivity in various two-dimensional doped
topological insulator materials. In this case, the parent super-
conductor is typically a fully gapped and trivial s-wave one
(such as Nb) with no gapless zero-energy excitation. Thus,
its presence does not affect the topological thermal and spin
responses of the proximity-induced TSCs, solely resulting
from their zero-energy fermionic BdG quasiparticles living at
the edges (topological edge modes).

Experimental observations of possible 3D TSCs in doped
and intercalated 3D TIs offer a promising avenue to harness
2D TSCs on similar material platforms. In particular, doped or
proximitized quantum anomalous Hall insulators with already
broken TRS in the normal state (class A) can be an ideal
place to harness a p + ip paired state [32]. Recently realized

quantum anomalous Hall insulators in magnetically doped (by
Cr or V or Fe, for example) thin layer of three-dimensional
topological insulators, such as Bi2Se3, Bi2Te3, and Sb2Te3

[65–67], are, therefore, promising in this respect. In the same
spirit, doped or proximitized TRS preserving quantum spin
Hall insulators (class AII), such as CdTe-HgTe [5,68] and
InAs-SbTe [69] quantum wells, constitute to a suitable ground
to realize a p ± ip paired state [59]. Finally, high-Tc cuprate
superconductors (in particular, Bi2Sr2CaCu2O8) are promis-
ing to realize a d + id paired state [70–72]. Although, a
clear signature of the d + id paired state in Bi2Sr2CaCu2O8

thus far remains illusive, a twisted interface between bilayer
Bi2Sr2CaCu2O8+x can host such exotic paired state near 45◦
twist angle [73].

Our direct computation of the quantized longitudinal ther-
mal conductance Gth

xx for the class DIII p ± ip paired state
with a net zero first Chern number (C) can have far reach-
ing consequences. For example, if it happens that inside a
two-dimensional topological paired state the total first Chern
number is zero, which may occur due to the presence of
spin or other (such as orbital and/or sublattice) degrees of
freedom or multiple Fermi pockets around which the net
first Chern number cancels out, still Gth

xx can probe the total
number of topologically robust Majorana edge modes in the
superconducting ground state, each of which contributes κ0/2
to Gth

xx. In the same spirit, Gth
xx can also probe weak planar

topological superconductors, devoid of any strong topological
invariant [32]. Such a scenario may appear commonly in the
superconducting ground state of doped crystalline topological
materials [74–76], typically featuring band inversion at an
even number of high symmetry points in the BZ connected
via crystal symmetries, that are nowadays routinely found in
nature by employing topological quantum chemistry [77–82].
These avenues will be explored systematically in the future.
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APPENDIX: DETAILS OF SCATTERING MATRIX

In this Appendix, we present the details of the scatter-
ing matrix formalism, employed to compute the thermal and
spin transport properties of 2D TSCs. The rectangular scat-
tering region (system) is attached to six leads. All the leads
are semi-infinite and they supply fermions to the scatter-
ing region. A thermal/spin current flows between the leads
in the horizonal/longitudinal direction (lead 1 and lead 4),
which generates a temperature/magnetization drop in the
transverse leads (lead 2, lead 3, lead 5, lead 6). From such a
temperature/magnetization drop, generated between different
leads, we compute the thermal and spin transport quantities,
described below.
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The requisite scattering matrix (S) is obtained by solving
the linear equation �out = S�in, where

S =
(

r t ′
t r′

)
, (A1)

and r and t are the reflection and transmission blocks of the
scattering matrix, respectively, with |r|2 + |t |2 = 1 preserving
the unitarity of the scattering matrix. Here, �in (�out) is the
incoming (outgoing) wave function, entering (leaving) the
scattering region.

For the computation of the THC (κxy), a thermal current
(Ith) is flows between lead 1 and lead 4. Then κxy is obtained

from temperature drop of the transverse leads, computed from
the linear relation between the thermal current (Ith) and tem-
perature (T), discussed in Sec. II A.

In the same setup, for the computation of the spin Hall
conductivity (σ sp

xy ), a spin current flows between lead 1 and
lead 4, which results in a magnetization drop in the vertical
leads. In this case, a linear relation between spin current (Isp)
and magnetization (M) is used to extract σ

sp
xy . See Sec. III B.

Finally, with the same setup, longitudinal thermal conduc-
tance (Gth

xx) is obtained once the temperature drop between
lead 2 and lead 3 is taken into account. In this case, the
computation scheme remains same as that of THC, except
now we take the temperature drop between the longitudinal
leads (lead 2 and lead 3).
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