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Tunable in-plane bihyperbolicity in bismuth monolayer
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The distinctive hyperbolic properties of natural two-dimensional (2D) materials have garnered considerable
attention in recent years due to their potential to surpass the limitations of metahyperbolic surfaces. It is essential
to control hyperbolic regions and the sign of optical conductivities. This study introduces the concept of “bihy-
perbolicity” and establishes a critical connection between the semiconducting characteristics of 2D materials and
their hyperbolic attributes. Through first-principles calculations, we illustrate the applicability of this strategy to
materials such as the recently synthesized bismuth monolayer. The computations revealed that altering the type
(n type or p type) of semiconducting bismuth monolayers can lead to a reversal of conductivity signs along two
orthogonal directions, consequently enabling the precise regulation of hyperbolicity. The intriguing interplay
between hyperbolicity and semiconductivity lays the foundation for crafting in-plane hyperbolic heterostructures
using well-established semiconductor technologies. These heterostructures unlock a plethora of exotic optical
phenomena, including negative refraction and negative reflection, thereby opening new horizons in optical
engineering and device design.
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I. INTRODUCTION

Surface-plasmon polaritons (SPPs), emerging from the col-
lective oscillations of electrons coupled to photons at the
material surface, exhibit fascinating characteristics, particu-
larly their ability to generate highly confined electromagnetic
fields. In particular, hyperbolic metasurfaces, strategically en-
gineered to demonstrate opposing optical conductivity (or per-
mittivity) along two distinct crystallographic directions, can
facilitate the support of SPPs with exceptional confinement.
This enables subwavelength waveguiding and substantially
amplifies light-matter interactions at the nanoscale [1–6]. This
unique property bears profound implications for a diverse
array of applications, including sensing, nonlinear optics, and
integrated photonic circuits [7–9].

Lately, there has been a growing fascination with natural
van der Waals materials, which have proven to be a formidable
tool for controlling electromagnetic waves [10–16]. Demon-
strations of planar reflection, refraction, and focusing have
been achieved by employing composite systems that include
graphene, hexagonal boron nitride, and phase-changing ma-
terials [17–22], paying a way for polaritonics and on-chip
integrated circuits. The emergence of two-dimensional (2D)
materials has paved an exciting path for accommodating SPPs
due to their unique plasmonic properties, encompassing a low
damping rate, strong confinement, and exceptional tenabil-
ity [13–16]. Natural hyperbolic 2D materials offer distinct
advantages over metasurfaces. Their atomic-scale periodic-
ity facilitates the generation of substantial wave vectors and
eliminates the need for intricate surface patterning. Natural
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2D hyperbolic materials demonstrate opposite signs in the
imaginary components of conductivities along two orthogo-
nal directions (x and y directions), i.e., Imσxx × Imσyy < 0,
within a specific frequency region known as the hyperbolic
region. Within the hyperbolic region, the presence of two con-
ductivities of opposite signs leads to hyperbolic isofrequency
contours of SPPs, which facilitate significant propagation
wave vectors, high photonic density of states, and directed
SPP propagation [23–25].

The growing interest in harnessing 2D materials with in-
herent anisotropic electronic properties as natural platforms
for hosting hyperbolic SPPs is driven by their advantages, in-
cluding low loss and tunability. Several 2D materials, such as
black phosphorus [26], α-MoO3 [27–30], and WTe2 [31,32]
have been identified as capable of hosting anisotropic 2D
plasmons. The dependence of plasmonic characteristics on
the carrier density of these 2D materials enables remarkable
tunability of the hyperbolic regions within these natural 2D
hyperbolic materials [33–40]. Moreover, the emergence of
moiré systems offers an efficient approach to tuning hyper-
bolicity by rotating two hyperbolic slabs with respect to one
another [41–45]. Nevertheless, the precise manipulation of
hyperbolicity, especially the signs of conductivities within
a 2D hyperbolic material, remains an unattained goal. Fur-
thermore, achieving the integration of distinct hyperbolicity
within a single 2D material, which is anticipated to lead to
a plethora of exotic optical phenomena, remains an unprece-
dented accomplishment in this field.

In this study, we have established a crucial connection
between the semiconducting properties of 2D materials and
their hyperbolic characteristics. We introduced a concept
of bihyperbolicity to characterize the switchability between
two distinct hyperbolic behaviors. By elucidating the cor-
relations between semiconducting features and hyperbolic
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properties, we have demonstrated the attainability of this
concept in the recently synthesized bismuth monolayer.
Our findings reveal that altering the type (n type or p
type) of semiconducting bismuth monolayers can lead to a
reversal of conductivity signs along two orthogonal direc-
tions, consequently enabling the regulation of hyperbolicity.
This intriguing relationship between hyperbolicity and semi-
conductivity presents exciting possibilities for constructing
in-plane hyperbolic heterostructures using well-established
semiconductor technologies. Within these heterostructures,
a wealth of exotic optical phenomena, including nega-
tive refraction and negative reflection, become attainable.
This offers new perspectives in optical engineering and de-
vice design, opening avenues for innovative applications in
the field.

II. THEORETICAL METHOD

A. First-principles calculations

We performed first-principles calculations utilizing density
functional theory (DFT), employing the Vienna ab initio sim-
ulation package (VASP) [46]. This code adopted the projected
augmented-wave method to model interactions between elec-
trons and ions [47]. The exchange-correlation functional was
self-consistently treated within the generalized gradient ap-
proximation, employing the Perdew-Burke-Ernzerhof (PBE)
functional [48]. We set the cutoff energy to 500 eV. We con-
ducted the structure relaxation and electronic properties of the
bismuth monolayer using the k-point mesh of 25 × 25 × 1.
To prevent interactions between adjacent images, we included
a vacuum space of 25 Å in the z direction. We performed
full relaxation of lattice constants until atomic forces reached
a threshold below 0.01 eV/Å and the total energy change
was less than 10−5 eV. The spin-orbit coupling effect was
included in these calculations. In our DFT calculations, we
simulated the n-type or p-type characteristics of a semicon-
ducting bismuth monolayer by either introducing additional
electrons or removing electrons from the pristine bismuth
monolayer. To preserve the electric neutrality of the entire
system, compensatory background charges were added during
our simulations.

For the construction of the bismuth monolayer’s band
structures, we utilized maximally localized Wannier func-
tions, which were generated using the WANNIER90 package
[49]. This strategy enabled us to obtain energy eigenval-
ues and eigenstates for subsequent polarization function
calculations.

B. Linear response theory for plasmons

The dynamic dielectric function ε(q, ω) was determined
from the polarization function using the equation [50,51]

ε(q, ω) = 1 − V2D�(q, ω), (1)

where V2D = 2πe2/εrq is the Fourier transform of the
Coulomb potential of 2D systems. The polarization function,
�(q, ω), of a 2D system was calculated within the framework

of the random phase approximation [52,53],

�(q, ω) = gs

(2π )2

∑
l,l ′

∫
dk

f (Ek,l ) − f (Ek+q,l ′ )

ω + Ek,l − Ek+q,l ′ + iη
Fl,l ′ (k, q),

(2)

with Fl,l ′ (k, q) ≡ 〈k, l|e−iq·r|k + q, l ′〉〈k + q, l ′|eiq·r|k, l〉,
where gs= 2 is the spin degeneracy (we set h̄ = 1 and
e = 1 hereafter), Ekl and |k, l〉 represent the eigenvalues and
eigenstates, respectively, with l denoting the band indices,
which were obtained from first-principles calculations.
We adopted a broadening parameter η of 0.05 eV. The
Fermi-Dirac distribution function f (E ) acts as a step function
at T = 0. Notably, the maximum wave vector of plasmons
in bismuth monolayer considered in this work, 0.02 Å−1, is
far from the boundaries of the Brillouin zone, ∼0.7 Å−1. The
local field effect arising from the inhomogeneous response
can therefore be omitted in our calculations.

The electron energy loss spectrum (EELS) was calculated
from the inverse of ε(q, ω) using the expression

L(q, ω) = −Im[1/ε(q, ω)]. (3)

The plasmons are indicated by the peaks or local maxima
of the EELS.

The optical conductivity σ j j (ω) ( j = x, y) of bismuth
monolayer was calculated using the expression

σ j j (ω) = i

(ω + iη)

∑
k,l

(∂Ek,l/∂k j )
2
(−∂ f /∂Ek,l )

+ i
∑

k,l �=l ′

f (Ek,l ′ ) − f (Ek,l )

(Ek,l ′ − Ek,l ) − (ω + iη)

1

Ek,l ′ − Ek,l

× |〈k, l|υ̂ j |k, l ′〉|2, (4)

where the two terms denote the contributions stemming from
intraband and interband transitions, as described by the Drude
model [54] and the Kubo formalism [55], respectively. υ̂ j =
∂/∂k j is the velocity operator.

III. RESULTS AND DISCUSSION

A. Bihyperbolicity model

We start from the intrinsic plasmons in anisotropic 2D
materials without the presence of external electromagnetic
waves. In the long-wavelength limit, with the damping rate ex-
cluded (η = 0), the polarization function expressed in Eq. (2)
simplifies to an expression

�(q, ω) =
(

D

ω2
+ S

ω2 − ω2
b

)
q2

π
, (5)

with the intraband (Drude) weight of D(θ ) =
πρ(EF )(〈υ2

x 〉cos2θ + 〈υ2
y 〉sin2θ ) and the interband weight

of S(θ ) ≈ gs

4π

∫
ξ (k, θ )d2k, both of which depend on the

angle (θ ) between the wave vector q and the x axis [56].
We define the averaged square Fermi velocities (ASFVs)
as 〈υ2

j 〉 = ∑
l

∫
υ2

j δ(Ek,l − EF )dk/
∑

l

∫
δ(Ek,l − EF )d2k

to characterize the anisotropy of the Fermi curves [57].
υ j = ∂Ek,l/∂k j represents the electron velocity along the j
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FIG. 1. Schematic representation of bihyperbolicity in 2D materials. (a) Plasmon dispersions in 2D materials given by Eq. (5). The two
dashed lines represent the asymptotes of the two dispersions. (b) Schematic electronic band profiles of bihyperbolic 2D materials. En

F and
E p

F indicate the positions of Fermi levels for the n-type and p-type cases, respectively. (c) and (d) The correlation between the anisotropic
Fermi surface (left panel) and the plasmon dispersions (right panel) for the n-type and p-type doping cases. The basis vectors of the reciprocal
lattice are indicated by b1 and b2. The Brillouin zone is represented by the square. The yellow areas in the diagram indicate regions of electron
occupation in the Brillouin zone.

direction. ρ(EF ) = gs

(2π )2

∑
l

∫
δ(Ek,l − EF )d2k denotes the

electron density of states at the Fermi level EF .
The zeros of the dynamical dielectric function,ε(q, ω) = 0,

yield the following dispersion relation of plasmons:

ω±(q) =
√(

κ ±
√

κ2 − 2εrDω2
bq

)
/εr, (6)

with κ = ω2
bεr/2 + q(D + S) and +/− denoting the high-

frequency/low-frequency branches, respectively. In the long-
wavelength limit (q → 0), Eq. (6) simplifies to ω−(q →
0) ≈ (2Dq/εr )1/2 and ω+(q → 0) ≈ ωb, demonstrating the
intraband and interband transition features, respectively.
The ω ∝ q1/2 dispersion relation for intraband plasmons
has been reported in previous literatures [58,59]. For q �
ω2

bεr/2(D + S), the low-frequency branch attains its maxi-
mal value, ω−

max = ωb/
√

1 + S/D, while the high-frequency
branch simplifies to ω+(q) ≈ [2(D + S)q/εr]1/2, as illustrated
in Fig. 1(a).

Notably, the anisotropy of plasmons is demonstrated by
the dependence of both the intraband weight (D) and the
interband weight (S) on the direction of wave vector q .
The relationship between the intraband weight (D) and the
ASFV (〈υ2

j 〉) enables us to analyze the anisotropy of plasmons
based on the distribution of electron velocity along the Fermi
contours. For instance, in the case of an elliptic Fermi contour,
the electron velocity that aligns with the normal direction of
the contour, causes the ASFV to be greater along the minor
axis compared to the transverse direction. The degree of asym-
metry between the x and y directions within the Fermi contour

directly influences the anisotropy of the intrinsic plasmon dis-
persion relation, offering a valuable approach for predicting
anisotropic plasmons within a 2D material.

The relation between conductivity σ (q, ω) and the po-
larization function in the homogeneous and local response
limit, σ (q, ω) = ie2�(q, ω)/q2 [50], leads to the expression
of the conductivities along the x and y directions σ j j as
(setting e = 1)

σ j j (ω) = i

π

(
Dj j

ω
+ S j j

ω2 − ω2
b

)
, j = x, y, (7)

where Dxx = D(θ = 0), Dyy = D(θ = π/2), Sxx = S(θ = 0),
Syy = S(θ = π/2). This expression corresponds to that of
Ref. [12] without considering the damping rates (� = η = 0).
The hyperbolic region can be precisely located by identifying
the zero point (� j) of Eq. (7) with

� j = ωb√
1 + S j j/Dj j

. (8)

Interestingly, the zero points of conductivities coincide
with the upper limits of the low-frequency anisotropic
plasmons ω−

max, ω−
j,max = � j , thereby illustrating the con-

nection between plasmon anisotropy and the hyperbolic
region. Specifically, a pronounced anisotropy in the plas-
mon dispersion characterized by S j j/Dj j could result in an
extensive hyperbolic regime. Furthermore, given Sxx = Syy,
when 〈υ2

x 〉 > 〈υ2
y 〉, we observe �x > �y and consequently,

σxx > 0 and σyy < 0 within the region of �y � ω � �x, while
conversely, σxx < 0 and σyy > 0 in the region of �x � ω �
�y emerges. Previous research on controlling hyperbolic
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FIG. 2. Atomic configuration and electronic structure of bismuth monolayer. (a) Atomic configuration of bismuth monolayer consisting of
two buckled rectangular sublayers. (b) Orbital-resolved electronic band structures of bismuth monolayer. The energy of the VBM indicated by
the dashed line was set to zero. (c), (d) The isovalue profiles of the Kohn-Sham electron wave functions at the VBM and CBM, respectively.
(e), (f) The anisotropic energy contours of electronic states near the VBM and CBM within the 1/4 Brillouin zone, respectively.

behavior has primarily concentrated on adjusting the extent
of the hyperbolic region rather than transitioning between
hyperbolic categories [33–40]. The intimate connection be-
tween Dj j and the electronic band structure in the vicinity
of the Fermi level offers a powerful means to engineer the
hyperbolicity of 2D materials. Specifically, if the valence and
conduction bands of a semiconductor near the Fermi level
exhibit opposite anisotropy along two orthogonal directions
characterized by the different order of 〈υ2

x 〉 and 〈υ2
y 〉, one

can potentially manipulate the signs of conductivities using
well-established semiconductor doping processes. We refer to
this unique characteristic as “bihyperbolicity.”

We can illustrate this concept in a typical electronic band
structure with the conduction band and the valence band
exhibiting distinct anisotropy, represented by the elliptical
isoenergy contours orientated along two orthogonal direc-
tions, as depicted in Fig. 1(b). The feasibility of this band
structure is demonstrated using a tight-binding model [56].
For the collective oscillation of electrons in the conduction
band (corresponding to the n-type scenario), the elliptical
Fermi contour gives rise to a hyperbolic region with σxx >

0 and σyy < 0, because of 〈v2
x 〉 > 〈v2

y 〉 and Dxx > Dyy, as
shown in Fig. 1(c). Conversely, for the p-type case, the el-
liptical Fermi contour leads to 〈v2

x 〉 < 〈v2
y 〉 and Dxx < Dyy,

constructing a hyperbolic regime with σxx < 0 and σyy > 0,
as depicted in Fig. 1(d). Therefore, by manipulating the posi-
tion of the Fermi level, it becomes possible to switch between
these two distinct hyperbolicities.

Bihyperbolicity in semiconductors represents the distinct
anisotropic response of electrons and holes to an electric
field, wherein they exhibit preferential movement respec-
tively along two orthogonal directions. This distinctive feature
presents a robust strategy for electrically modulating the

propagation behaviors of SPPs via changing the carrier type,
for instance, through gating techniques. Furthermore, it fa-
cilitates the creation of an in-plane heterostructure of two
distinct hyperbolic regions, using well-established semicon-
ductor doping processes. The development of such an in-plane
hyperbolic heterostructure would result in exotic phenomena
such as negative reflection and negative refraction [36], intro-
ducing innovative principles for advancement in the realms
of subwavelength imaging, superlensing, quantum optics,
and more.

B. Bihyperbolicity in bismuth monolayer

We examined the concept of bihyperbolicity in bismuth
monolayer, which has been synthesized in recent experiments
[60]. The bismuth monolayer consists of two buckled atomic
sublayers featured by a rectangular unit cell, as depicted in
Fig. 2(a). Each unit cell contains four Bi atoms with the
lattice constants of a = 4.79 Å and b = 4.51 Å. The orbital-
resolved electronic band structure calculated at the DFT +
PBE level is presented in Fig. 2(b), which displays features
of an indirect-bandgap semiconductor. Despite that the va-
lence band maximum (VBM) and conduction band minimum
(CBM) reside at different sites in the reciprocal space, they
originate from distinct atomic orbitals. The electronic states
near the VBM arise mainly from the px and py orbitals,
whereas the states near the CBM come from the px and
pz orbitals. The anisotropic characteristics of the electronic
states can be visualized from the corresponding Kohn-Sham
electron wave-function profiles with remarkable spatial distri-
bution difference along the x and y directions, as shown in
Figs. 2(c) and 2(d). For instance, the wave function of the
VBM displays a channel along the y direction, whereas the
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FIG. 3. The plasmonic properties and bihyperbolicity of bismuth monolayer. (a), (b) The electron energy loss spectra (EELS) of n-type
and p-type bismuth monolayers at the doping concentration of ne = 1.15 × 1013 cm−2 and nh = 0.72 × 1013 cm−2, respectively. The yellow
dots denote the specific plasmon modes obtained from first-principles calculations. The red lines represent the results of fitting these data using
Eq. (6). The black dashed lines depict the boundaries of the intraband single-particle excitation regions. (c), (d) The optical conductivity of
electron-doped and hole-doped bismuth monolayers. The Fermi-surface contours of the two cases are presented as the insets of these figures.
(e) The variation of the hyperbolic regions of the hole-doped (left panel) and electron-doped (right panel) bismuth monolayer at different
doping levels.

wave function of the CBM favors electron transport along
the x direction. The anisotropic electronic states near the
VBM and CBM are more evident from the isoenergy contours
shown in Figs. 2(e) and 2(f). The isoenergy profile near the
VBM exhibits contour patterns resembling an “athletic track”
that extends along the x direction, resulting in 〈υ2

x 〉 < 〈υ2
y 〉.

Meanwhile, the isoenergy profile near the CBM takes on
an amygdaloidal shape, distinctly pointing towards the y di-
rection, showcasing 〈υ2

x 〉 > 〈υ2
y 〉. The anisotropic electronic

states of the bismuth monolayer essentially meet the criteria
for bihyperbolic materials proposed in this study.

We further calculated the EELS of the bismuth monolayer
to validate the bihyperbolicity from first-principles calcula-
tions. Figure 3(a) depicts the EELS of the n-type bismuth
monolayer with the doping concentration of ne = 1.15 ×
1013 cm−2. It is evident that the plasmon dispersion along the
x direction has a higher upper-limit frequency than that along
the y direction, which are respectively ω−

x,max= 228 meV
and ω−

y,max= 136 meV. This yields a hyperbolic regime of
136 meV < ω < 228 meV satisfying σxx > 0 and σyy < 0,
as shown in Fig. 3(c). For the hole-doped bismuth monolayer
with the doping concentration of nh = 0.72 × 1013 cm−2, we

got ω−
x,max= 113 meV and ω−

y,max= 189 meV, as shown in
Fig. 3(b). This generates a hyperbolic regime of 113 meV <

ω < 189 meV with σxx > 0 and σyy < 0, as depicted in
Fig. 3(d). The yellow dots indicate the specific data of the
plasmon modes obtained by first-principles calculations. Fit-
ting these data using Eq. (6), we got the dispersion relations
of the plasmons along the x and y directions as depicted by the
red lines in these figures, which are consistent with the EELS
given by first-principles calculations. The fitting parameters
are listed in Table I. The Fermi contours of these two types
of bismuth monolayers are also presented in the insets of
these figures. The results of our first-principles calculations
are consistent with those from our simple tight-binding model,
demonstrating the plausibility of 2D bihyperbolic materials.

Furthermore, we assessed the bihyperbolic behavior of
the bismuth monolayer across various doping concentrations.
Figure 3(e) illustrates the hyperbolic regions with the bismuth
monolayer at varying doping levels. What becomes strikingly
evident from our research is the remarkable tunability of
the hyperbolic regime within the bismuth monolayer through
electron and hole doping. It is intriguing to note that not only
can the type of hyperbolic regime be altered, but also the
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TABLE I. Fitting parameters of the plasmon dispersions in doped bismuth monolayers using Eq. (6). The n-type and p-type bismuth
monolayers have the doping concentration of ne = 1.15 × 1013 cm−2 and the hole-doped bismuth monolayer with a doping level of nh =
0.72 × 1013 cm−2, respectively. εr = 1 was adopted.

Dxx Dyy Sxx Syy

ωb (eV) �x (eV) �y (eV) (eV2 Å) (eV2 Å) (eV2 Å) (eV2 Å)

n type 0.430 0.228 0.136 4.82 2.42 12.32 21.78
p type 0.260 0.133 0.189 1.33 4.06 3.75 5.42

specific band within the regime can be precisely engineered
through controlled charge doping. As the doping level in-
creases, both the frequency and the width of the hyperbolic
region expand for both the p- and n-type doping cases, offer-
ing a promising strategy to engineer the hyperbolicity of the
bismuth monolayer. Significantly, the doping level examined
in this study falls within the range attainable under experi-
mental conditions for 2D materials such as black phosphorus
[61,62]. Furthermore, the negligible magnitudes of the real
part of conductivity (Reσxx and Reσyy) within the hyperbolic
regimes, as depicted in Figs. 3(c) and 3(d), suggest minimal
energy loss, greatly enhancing the propagation of SPPs.

C. SPPs in bismuth monolayer

Finally, we investigate the directional properties of SPPs
on the bismuth monolayer, which emerges from the cou-
pling between the intrinsic plasmons and the electromagnetic
field of the incident light. We consider the eigenmodes con-
fined within the bismuth monolayer (x − y plane) featured by
ei(qxx+qyy)e−pz (for z > 0) and ei(qxx+qyy)epz for (z < 0). The
dispersion relations of the SPPs can be written as [6,63](

q2
x − k2

0

)
σxx + (

q2
y − k2

0

)
σyy = 2ipω(ε0 + μ0σxxσyy/4). (9)

In this expression, ε0, μ0, and k0 = ω
√

ε0μ0 represent
the permittivity, permeability, and wave number in vacuum,
p =

√
q2

x + q2
y−k2

0 . For scenarios with low damping (Imσ �
Reσ ), Eq. (9) reduces to

(
q̃2

x − 1
) + ζ

(
q̃2

y − 1
) = κ

(
q̃2

x + q̃2
y − 1

)1/2
, (10)

with q̃x = qx/k0, q̃y = qy/k0. The values of ζ

and κ are derived from the optical conductivities
of bismuth monolayer:ζ = Imσyy/Imσxx and κ =
[2ε0/(μ0Imσxx × Imσyy) − 1/2]Imσyy(ε0/μ0)−1/2. For
ζ < 0, Eq. (10) exhibits two asymptotic lines given by
q2

x + ζq2
y = 0 for qx � k0 and qy � k0. This observation

implies that the direction of propagation for SPP beams,
which is determined by the group velocity normal to
the contour line, can be characterized by an angle of
ϕ = ±tan−1|ζ |1/2 relative to the x direction.

We adopted the electron-doped bismuth monolayer with
a doping concentration of ne = 1.15 × 1013 cm−2 and the
hole-doped bismuth monolayer with a doping level of
nh = 0.72 × 1013 cm−2 as illustrative cases to explore the
hyperbolicity of the SPPs. Specifically, we selected the
frequencies of ω = 151, 174, and 194 meV for the electron-
doped bismuth monolayer and ω = 129, 149, and 169 meV
for the hole-doped bismuth monolayer within their re-
spective hyperbolic regions. Subsequently, we constructed

isofrequency contours using Eq. (10), incorporating the per-
tinent optical conductivities obtained from first-principles
calculations. The unmistakable hyperbolicity and asymptotic
characteristics of these isofrequency contours emerged vividly
in the two distinct hyperbolic regions, as depicted in Figs. 4(a)
and 4(b). This unequivocally showcased the bismuth mono-
layer’s bihyperbolic nature. Furthermore, the tunable bihy-
perbolicity of the bismuth monolayer opens the door to en-
gineering in-plane hyperbolic heterostructures by combining
n-type and p-type semiconducting materials. This capability
empowers the manipulation of surface-plasmon propagation
patterns.

To demonstrate the exotic optical scenarios within the in-
plane hyperbolic heterostructure of bismuth monolayer, we
simulated the propagation of electromagnetic wave beams
with a frequency of ω = 140 meV on this heterostructure by
solving Maxwell’s equations using the finite-element method.
We examined a 2D bismuth sheet comprising both n-type
and p-type domains, separated by a straight boundary. Po-
sitioned in the middle of the σxx > 0 and σyy < 0 domain
is a y-directionally polarized dipole, strategically placed to
stimulate surface electromagnetic waves. The optical conduc-
tivities at this specific frequency, derived from first-principles
calculations, were set as follows: in the n-type domain, σxx =
0.0005 + 0.123i mS and σyy = 0.0005 − 0.007i mS, while
in the p-type domain, σxx = 0.0005 − 0.03i mS and σyy =
0.0005 + 0.088i mS. The effective thickness of the sheet was
set to 0.5 nm.

Two distinct boundary configurations are considered. One
aligns along the y direction, while the other has an angle of
37 ° with respect to the x direction, as depicted in Figs. 4(c)
and 4(d). Within each domain, the energy of the SPPs is
directed into four narrow beams, with angles of ϕ = ±13.4◦
in the domain (σxx > 0 and σyy < 0) and ϕ = ±59.7◦ in the
domain (σxx < 0 and σyy > 0) relative to the x direction. These
values are consistent with Eq. (9), effectively showcasing
the directional propagation of hyperbolic SPPs on the sheet
[6,34]. Intriguingly, we observe an in-plane negative refrac-
tion (NRR) scenario as the electromagnetic waves across
the interface. Additionally, for the second type of interface,
we discover a noteworthy in-plane negative reflection. The
instances of both negative refraction and negative reflection
(NRL) can be explained by examining the hyperbolic isofre-
quency contours of the n-type and p-type bismuth monolayer.
The boundary conditions for electromagnetic waves at the
interface between the n-type and p-type bismuth monolay-
ers enforce the conservation of transverse wave vectors on
either side of the boundary, which in turn dictates the wave
vectors for the refraction and reflection waves. Notably, the
propagation direction of these refraction and reflection waves
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FIG. 4. The SPPs in bismuth monolayer. (a), (b) The isofrequency contours of bismuth monolayers at the doping concentration of ne =
1.15 × 1013 cm−2 and nh = 0.72 × 1013 cm−2, respectively. The dashed lines indicate the asymptotic lines. (c), (d) The spatial distribution
of electric field E of the surface plasmons at ω = 140 meV for the heterostructures with different interface configurations, respectively.
The interface is marked by the red line. (e), (f) The corresponding isofrequency contours of the heterostructures. The Poynting vectors for
the incident beam (Si), negative refraction (SNRR), negative reflection (SNRL), and positive reflection (SPRL) beams that are normal to the
isofrequency contours are denoted.

is determined by the orientation of the Poynting vector, which
is normal to the isofrequency contours.

It is important to note that a variety of 2D semiconducting
materials exhibit intrinsic in-plane band anisotropy [64,65],
beyond the bismuth monolayer. These materials include black
phosphorus, ReX2 (X = S, Se), MX (M = Sn, Ge; X = S,
Se), MX3 (M = Ti, Zr, Hf; X = S, Se), and YX (Y = Ge, Si;
X = P, As), all of which possess reduced crystal symmetry.
Some of these 2D materials have been demonstrated to display
anisotropic optical properties [66]. However, to date, none has
been identified as a bihyperbolic 2D material. Recent experi-
mental breakthroughs have shown that optical conductivity in
black phosphorus can be modulated by adjusting the charge
density. This progress offers a promising approach to detect
bihyperbolicity in bismuth monolayer.

IV. CONCLUSIONS

The investigation into bihyperbolicity in this study
promises significant advancements, delving into the intri-
cate interplay of material properties and revealing uncharted

dimensions of semiconductivity within 2D materials. Particu-
larly intriguing is the study’s emphasis on bismuth monolayer,
a material that has recently garnered significant attention.
The computations presented in this research vividly show-
case the distinct hyperbolic characteristics exhibited by n-type
and p-type semiconducting bismuth monolayers. Notably,
n-type semiconducting bismuth monolayers exhibit σxx >

0 and σyy < 0 hyperbolicity, while their p-type counterparts
display the hyperbolicity of σxx < 0 and σyy > 0. This reve-
lation ushers in a realm of exciting possibilities in the realm of
2D material engineering. Additionally, the recent experimen-
tal breakthrough in achieving anomalous optical phenomena,
such as negative refraction and negative reflection, in natural
hyperbolic materials [67–69], provides an exciting oppor-
tunity to explore the extraordinary properties of bismuth
monolayers.
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