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In the absence of vortices or phase slips, the phase dynamics of exciton-polariton condensates was shown
to map onto the Kardar-Parisi-Zhang (KPZ) equation, which describes the stochastic growth of a classical
interface. This implies that the coherence of such nonequilibrium quasicondensates decays in space and time
following stretched exponentials, characterized by KPZ universal critical exponents. In this work, we focus on
the time evolution of the average phase of a one-dimensional exciton-polariton condensate in the KPZ regime
and determine the frequency of its evolution, which is given by the blueshift, i.e., the nonequilibrium analog
of the chemical potential. We determine the stochastic corrections to the blueshift within Bogoliubov linearized
theory and find that while this correction physically originates from short scale effects, and depends both on
density and phase fluctuations, it can still be related to the effective large-scale KPZ parameters. Using numerical
simulations of the full dynamics, we investigate the dependence of these blueshift corrections on both noise and
interaction strength, and compare the results to the Bogoliubov prediction. Our finding contributes both to the
close comparison between equilibrium and nonequilibrium condensates, and to the theoretical understanding of
the KPZ mapping.
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I. INTRODUCTION

Exciton-polaritons (EPs) are bosonic quasiparticles that
arise from the strong coupling between light and matter [1].
They are typically formed in a quantum well embedded in
an optical microcavity, from the interaction between quantum
well excitons and cavity photons [2,3]. The system under-
goes unavoidable losses due to the leakage of cavity photons,
which have to be compensated by a continuous laser drive
in order to sustain a nonequilibrium steady state of EPs.
Remarkably, a Bose-Einstein condensate (BEC) can form
in these driven-dissipative conditions, as was first experi-
mentally demonstrated in [4], and yields a wide range of
novel physical phenomena [5,6]. Among them, recent stud-
ies established a connection with the Kardar-Parisi-Zhang
(KPZ) universality class [7–13], known in classical statistical
physics to describe the scale-invariant properties of kinetically
roughening interfaces and characterized by a superdiffusive
universal exponent [14]. This connection was first observed
in experiments for a one-dimensional (1D) EP condensate in
Ref. [15], which reported the expected stretched exponential
decay of the first-order correlation function, settling a major
difference with coherence properties of 1D equilibrium qua-
sicondensates [16,17], which display power-law (or simple
exponential) decay at zero (or finite temperature). Another
notable feature of 1D EP condensates arises from the compact
nature of the phase, which, in contrast with the unbounded
interface, allows for the generation of phase defects in space
and time in the form of quantized 2π jumps often referred to
as space-time vortices [9,15,18].

In this work, we focus on a weakly interacting 1D EP
Bose-Einstein condensate in the KPZ regime, where the phase

is defect free, and we investigate the blueshift of the en-
ergy spectrum. The dominant contributions to this energy
shift, signature of the U(1) symmetry breaking of the con-
densation transition, are the polariton-polariton and exciton
reservoir-polariton mean-field interactions [19,20]. Our aim
is to determine the beyond mean-field corrections to the
blueshift induced by fluctuations. The interest is twofold: on
the one hand, it provides a further characterization of the
difference between equilibrium and nonequilibrium conden-
sates, and on the other hand, it deepens the understanding
of the KPZ mapping. Let us elaborate on these two points.
For an equilibrium quasi-BEC, the quantity analogous to the
blueshift is the chemical potential, and its corrections asso-
ciated to quantum and thermal fluctuations are well known
[21] (see also [22]). In nonequilibrium conditions, because
the drive and loss are intrinsically stochastic processes, the
dominant fluctuations at weak interactions are of stochas-
tic nature. We determine their effect on the blueshift, both
through an analytical expression obtained within Bogoliubov
approximation, and through numerical simulations of the full
nonlinear stochastic dynamics.

The KPZ mapping shows that within certain general as-
sumptions, the dynamics of the condensate phase follows
the KPZ equation which describes the stochastic growth of
a classical interface [14]. The KPZ height field h(x, t ) is
known to behave at late times at a given space point as
h(t ) ∼ v∞t + (�t )1/3χ , where � is a nonuniversal parameter,
v∞ = lim

t→+∞〈∂t h〉 is the asymptotic deterministic velocity of

the interface [23], and χ is a stochastic variable, whose distri-
bution is non-Gaussian and is sensitive to the global geometry
of the growth, or equivalently to its initial conditions. For a flat
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interface, the distribution of χ is a Tracy-Widom GOE
(Gaussian orthogonal ensemble) distribution, while for a
curved interface (droplet growth) it is a Tracy-Widom GUE
(Gaussian unitary ensemble) distribution, and finally for the
stationary growth it is the Baik-Rains distribution [24]. This
unveils a striking connection with random matrix theory
where these distributions first emerged. The KPZ mapping
for the condensate implies that, once the mean-field evolu-
tion is subtracted, the unwrapped phase should also evolve
as θ̃ (t ) ∼ −�∞t + (�t )1/3χ where the minus sign is added
to define �∞ > 0 (see below). While much effort has been
devoted to determining the statistics of the random variable χ

in exciton-polariton systems [10,11,15], the linear term has
received no attention yet. In particular, it was shown that
the distinct distributions expected for a KPZ growth in the
different geometries also arise for the phase fluctuations of
exciton-polaritons, which is a definite evidence for the validity
of the mapping. In contrast, nothing is known on �∞, al-
though this linear term should induce corrections, originating
in the nonlinear KPZ behavior, to the dominant mean-field
contribution to the blueshift. This is the issue addressed in
this work. We show that the stochastic corrections to the
blueshift are both due to density and phase fluctuations and
hence go beyond the effective KPZ dynamics, where only
phase fluctuations are relevant.

The paper is organized as follows. The model for the
stochastic dynamics of the EP condensate is presented in
Sec. II A, and the link between the phase dynamics and the
KPZ physics is detailed in Sec. II B. We discuss in Sec. II C
the connections between blueshift stochastic fluctuations and
chemical potential quantum corrections. We determine in
Sec. III the expression for the blueshift stochastic correction
obtained within the Bogoliubov approximation. Our results
from numerical simulations of the full dynamics are then
presented in Sec. IV, where we determine the dependence of
this correction on the noise amplitude and on the interaction
strength. Finally, Sec.V offers some concluding remarks.

II. MODEL AND OBSERVABLES

A. Model for the dynamics of a 1D exciton-polariton condensate

The dynamics of a weakly interacting 1D exciton-polariton
condensate subjected to incoherent pumping can be modeled
by a generalized Gross-Pitaevskii equation (gGPE) for the
condensate wave function �, coupled to a rate equation for
the dynamics of the density of the excitonic reservoir nR, as
[25]

ih̄∂t� =
[
F−1

[
εk̂ − ih̄

2
γ�(k̂)

]
+ ih̄R

2
nR

+ h̄g|�|2 + 2h̄gRnR

]
� + h̄ξ, (1)

∂t nR = P − (γR + R|�|2)nR, (2)

where F−1 denotes the inverse Fourier transform, with εk̂ =
h̄2k2/(2m) the dispersion relation on the lower-polariton
branch, and γ�(k̂) = γ0 + γ2k2 the k-dependent polariton loss
rate around the condensation momentum k = 0, both within
the quadratic approximation. The momentum dependence of

the loss rate is typically observed in experimental realizations
of polariton condensates [15]. m denotes the polariton mass,
g represents the polariton-polariton interaction strength, and
gR the exciton-polariton one. The excitonic reservoir is in-
coherently driven at pumping rate P, scatters with polaritons
with amplitude R, and dissipates through other decay channels
at rate γR. The complex noise ξ is chosen of amplitude σ

with zero mean 〈ξ 〉 = 0 and a covariance 〈ξ (x, t )ξ ∗(x′, t ′)〉 =
2σδ(x − x′)δ(t − t ′).

B. Mapping to the KPZ equation and asymptotic behavior
of the phase

It was realized that the dynamics of the phase of the driven-
dissipative condensate maps within some conditions onto the
KPZ equation [7,8]. In order to show this, one writes the
condensate wave function � in density-phase representation
� = √

neiθ and deduces from the gGPE (1) the coupled dy-
namical equations for the phase θ (x, t ) and the density n(x, t )
fields as

∂t n = − h̄

m

(
∂xn∂xθ + n∂2

x θ
)

+ γ2

(1

2
∂2

x n − (∂xn)2

4n
− n(∂xθ )2

)
− γ0n + RnRn − 2

√
σnIm(ξe−iθ ), (3)

∂tθ = h̄

2m

(
1

2

∂2
x n

n
− 1

4

(
∂xn

n

)2

− (∂xθ )2

)

+ γ2

2

(
∂xn∂xθ

n
+ ∂2

x θ

)

− gn − 2gRnR +
√

σ

n
Re(ξe−iθ ). (4)

Then one expands the condensate and reservoir densities, as
well as the condensate phase, in terms of small stochastic
corrections around their mean-field noise-independent values
as

n(x, t ) = n0 − ñ(x, t ), (5)

nR(x, t ) = nR0 + ñR(x, t ), (6)

θ (x, t ) = θ0(t ) + θ̃ (x, t ), (7)

where the minus sign in (5) is added to define 〈ñ〉 > 0 in
the following, and where n0 = γR(P/Pth − 1)/R, nR0 = γ0/R,
with the pump threshold for condensation Pth = γRγ0/R. The
mean-field component of the phase evolves with time as
θ0(t ) = −�0t , where �0 = gn0 + 2gRnR0 > 0. This is a good
approximation for the blueshift of the weakly interacting EP
condensate from which the interaction strength can be esti-
mated [19,20].

Moreover, one assumes that both density and reservoir
fluctuations evolve adiabatically compared to the phase fluc-
tuations θ̃ , such that one can neglect their temporal variations
∂t ñ ≈ 0, ∂t ñR ≈ 0. This yields for the reservoir density fluc-
tuations ñR = −2 gi

R ñ with gi = (RnR0)2/2P, and allows one
to extract from (3) the expression for the condensate density
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fluctuations ñ in terms of derivatives of ñ and of θ̃ , which are
then inserted into Eq. (4) for the phase dynamics.

By assuming that the density profile remains smooth, such
that its spatial variations can be neglected, one finds that
the phase is governed by the following effective dynamical
equation:

∂t θ̃ = ν∂2
x θ̃ + λ

2
(∂x θ̃ )2 +

√
Dη, (8)

which is the KPZ equation [14], where η is a real Gaussian
noise of zero mean 〈η〉 = 0 and delta correlations in space
and time 〈η(x, t )η(x′, t ′)〉 = 2δ(x − x′)δ(t − t ′). Its parame-
ters are given in terms of the gGPE microscopic parameters
by

ν = γ2

2
+ h̄ge

2mgi
, (9)

λ = − h̄

m
+ γ2

ge

gi
, (10)

D = σ

2n0

[
1 +

(
ge

gi

)2
]
, (11)

where the effective polariton-polariton interaction strength
within the adiabatic approximation is denoted ge = g − 4 gRgi

R .
The KPZ dynamics of the phase determines the coherence

properties of the EP condensate. These properties are encoded
in the first-order correlation function of the condensate, de-
fined as

g(1)(x, t ) = 〈�∗(x, t )�(0, 0)〉√〈n(x, t )〉〈n(0, 0)〉 , (12)

where the average 〈·〉 is performed over realizations of the
stochastic dynamics (1). If one neglects the density-phase cor-
relations, and assumes constant density-density correlations,
then one obtains within a cumulant expansion [15] that

−2 log[|g(1)(x, t )|] � 〈(θ̃ (x, t ) − θ̃ (0, 0))2〉 ≡ Cθθ (x, t ),
(13)

where Cθθ is the connected two-point correlation function
of the phase. We adopt in the following the shorthand nota-
tion G (1)(x, t ) ≡ −2 log[|g(1)(x, t )|]. For the KPZ dynamics
of the height field h(x, t ), the connected correlation function
CKPZ

hh (x, t ) is known to take a scaling form given by

CKPZ
hh (x, t ) = C0t2/3gKPZ

(
y0

x

t2/3

)
, (14)

from which we read the 1D KPZ universal growth and rough-
ness critical exponents βKPZ = 1

3 and αKPZ = 1
2 , respectively.

C0, y0 are nonuniversal constants, and gKPZ is the KPZ uni-
versal scaling function, which was calculated exactly in [26].
It has the following asymptotic behaviors: gKPZ(y) → g0,
with g0 finite, when y → 0 and gKPZ(y) ∼ |y| when y → ∞.
Hence, the correlation function behaves as power laws both at
coinciding space points CKPZ

hh (0, t ) ∼ t2βKPZ ≡ t2/3 and equal
times CKPZ

hh (x, 0) ∼ |x|2αKPZ ≡ |x|.
The linearized version of the KPZ equation (8) (setting λ =

0) is the Edwards-Wilkinson (EW) equation. Its correspond-

FIG. 1. KPZ scaling regime: (upper left panel) spatial scaling
of G (1)(x, 0) as a function of x, indicated by the gray shade in-
between [60 µm, 220 µm]; (upper right panel) temporal scaling of
G (1)(0, t ) as a function of t2/3, indicated by the grey shade in between
[103 ps, 2 × 104 ps]; (lower panel) collpase of G (1)(x, t ) onto the
KPZ universal scaling function gKPZ. The parameters used on this
figure are γR = 4.5γ0, and σ = 10−2γ0/2. The system size is set to
2000 µm. Other parameters are specified in Sec. IV.

ing height field connected correlation function CEW
hh (x, t ) takes

a similar scaling form

CEW
hh (x, t ) = C1t1/2gEW

(
y1

x

t1/2

)
, (15)

where C1, y1 are nonuniversal constants. The universal expo-
nents βEW = 1

4 , αEW = 1
2 , and the universal scaling function

gEW define the EW universality class [27,28].
It follows from (13) that if the phase of the condensate

obeys a KPZ dynamics at least on certain time and length
scales, with an effective nonlinearity λ = 0, then the coher-
ence of the condensate endows the scaling form

G (1)(x, t ) � CKPZ
hh (x, t ) ∼

{
t2/3 x = 0,

|x| t = 0
(16)

in the space-time window where the KPZ dynamics is rele-
vant. This behavior has been recently reported in experiments
[15], which confirms the emergence of KPZ universality in
exciton-polariton condensates. We also find a KPZ regime in
our numerical simulations, reported in Sec. IV (and Fig. 1).

As mentioned in the Introduction, another hallmark of
KPZ universality is the probability distribution of the reduced
height fluctuations χ defined from the long time behavior at
a given space point as h(t ) ∼ v∞t + (�t )1/3χ . In the absence
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of phase defects, θ̃ can be safely unwrapped into a continuous
variable, which is expected in the KPZ regime to follow the
asymptotic form

θ̃ (x0, t ) ∼
t→+∞ −�∞t + (�t )1/3χ. (17)

The first term describes the nonuniversal linear growth of the
phase fluctuations through the asymptotic frequency defined
as �∞ = − lim

t→+∞〈∂t θ̃〉. In the second term, the power law

t1/3 gives rise to the KPZ universal scaling law for Cθθ in
time, and the distribution of the fluctuations χ was shown
to exhibit the Tracy-Widom and Baik-Rains forms expected
for the KPZ universality class, where the curved interface
geometry in particular can be emulated for the phase through
a confinement potential [11].

In this work, we focus on the correction �∞, due to
stochastic fluctuations, to the mean-field blueshift �0. We
investigate its dependence on the system parameters using
Bogoliubov theory and numerical simulations of Eqs. (1) and
(2). Let us first elaborate on the link between the blueshift
in nonequilibrium condensates and the analogous quantity
defined at equilibrium.

C. Connection with equilibrium quasicondensates

For equilibrium weakly interacting Bose-Einstein conden-
sates, in homogeneous conditions and with contact interac-
tions v(x − x′) = h̄gδ(x − x′), the mean-field time evolution
of the wave function �(t ) = √

neiθ (t ) is only contained in the
phase and is linear in time θ (t ) = −μ0

h̄ t , where the blueshift
μ0/h̄ = gn0 is the condensate chemical potential. The beyond
mean-field quantum corrections to the blueshift at weak in-
teractions have been calculated for a three-dimensional (3D)
Bose gas by Lee, Huang, and Yang [21] within the Bogoli-
ubov approximation in terms of the scattering length of the
fluid. Reference [22] provides an alternative derivation of
such corrections based on an equation-of-motion approach,
yielding the following expression for the chemical potential
μ/h̄ = gn0 + 2g〈ñ〉Q + g〈m̃〉Q, where 〈·〉Q denotes the quan-
tum average over the ground-state wave function, 〈ñ〉Q is the
noncondensed particle density corresponding to the quantum
depletion at zero temperature, and 〈m̃〉Q is the anomalous
density. The above calculation has also been extended to low-
dimensional quasicondensates [29–32].

For the nonequilibrium 1D EP condensate, one also finds
that, at the mean-field level, the phase linearly decreases with
time with the blueshift �0 = gn0 + 2gRnR0, which is analo-
gous to the mean-field expression for the chemical potential
μ0. The total blueshift � = �0 + �∞ can thus be interpreted
as the equivalent of the chemical potential for the equilibrium
condensate. However, since the EP condensate is out of equi-
librium, � cannot be defined by the usual thermodynamics
relation ∂E/∂N |T,V , but instead has to be calculated from the
dynamics � = −〈∂tθ〉 similarly to Ref. [22]. The term �∞ is
hence analogous to the quantum Lee-Huang-Yang corrections
at equilibrium, except that here it originates from stochastic
fluctuations.

III. BOGOLIUBOV APPROXIMATION IN THE ADIABATIC
LIMIT OF THE EXCITONIC RESERVOIR

In this section, we derive an expression for the
blueshift correction �∞ using the linearized Bogoliubov
approximation.

A. Linearized dynamics and equal-time correlation functions

Since the time evolution of the reservoir dynamics is typ-
ically much slower than the timescales of the condensate
dynamics, we neglect it in the following. Within this adiabatic
approximation, we express the reservoir density in terms of
the condensate density and hence close the set of coupled
equations (3) and (4). Linearizing these equations gives the
coupled dynamics for the fluctuations of density δn and phase
δθ to first order in the noise. This reads as in Fourier space(

δn/2n0

δθ

)
(k, ω) = G(k, ω)

(
ξ̃1

ξ̃2

)
, (18)

where G(k, ω) = (iω − Lrot )−1 is the Green function, Lrot is
the adiabatic Bogoliubov matrix

Lrot =
(

�k̂ − gin0 εk̂

−(εk̂ + 2gen0) �k̂ + gin0

)
(19)

with �k̂ = �γ (k̂)
2 − gin0, �γ (k̂) = RnR0 − γ�(k̂) and where

the noise satisfies 〈ξ̃i〉 = 0, 〈ξ̃1ξ̃2〉 = 0, 〈ξ̃i(k, ω)ξ̃i(k′, ω′)〉 =
4π2 σ

n0
δ(k + k′)δ(ω + ω′).

Within our model for γ�(k̂) and εk̂ (see Sec. II A), the
Bogoliubov matrix of Eq. (19) simplifies to

Lrot =

⎛
⎜⎜⎝−2gin0 − γ2

2
k2 h̄k2

2m

− h̄k2

2m
− gen0 −γ2

2
k2

⎞
⎟⎟⎠. (20)

From Eq. (18), we find the equal-time correlation functions,
expressed in terms of both the gGPE microscopic parameters
and the effective viscosity ν and nonlinearity λ of the KPZ
mapping [Eqs. (9) and (10), respectively]

〈δn(k)δn(−k)〉 = 2σn0

γ2

2k2 + κ2
h(

k2 + κ2
h

)(
k2 + κ2

d

) , (21)

〈δn(k)δθ (−k)〉 = − σκ2
h n0giλ

νγ 2
2 κ2

d

(
k2 + κ2

h

)(
k2 + κ2

d

) , (22)

〈δθ (k)δθ (−k)〉 = 〈δn(k)δn(−k)〉
4n2

0

+ σκ2
h

νn0γ
2
2 κ2

d

×2νgin0k2 + 2n2
0

(
g2

i + g2
e

)
k2

(
k2 + κ2

h

)(
k2 + κ2

d

) , (23)

where we introduced two momentum scales κh and κd rep-
resenting the nonequilibrium healing length and dissipation
scale, respectively, defined by

κh =
√

8νgin0

h̄2/m2 + γ 2
2

, κd =
√

2gin0

γ2
, (24)
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with typically κh > κd . Note that the choice of γ�(k̂) we
made regulates the large-momentum behavior of Eqs. (21)
and (23) through the effective loss rate �k̂ , similarly to the
frequency-dependent amplification introduced in Ref. [33].
Generic expressions of the equal-time correlation functions
for unspecified γ�(k̂) and εk̂ are given in Appendix A. The
effect of alternative choices for the polariton loss rate γ�(k̂) is
discussed in Appendix B.

In addition to Cθθ (x) ≡ Cθθ (x, 0) defined in Eq. (13), we
introduce the density-density and density-phase equal-time
correlation functions Cnn(x) = 〈δn(x)δn(0)〉 − 〈δn(0)2〉 and
Cnθ (x) = 〈δn(x)δθ (0)〉, respectively. Within Bogoliubov ap-
proximation, we find from Eqs. (21)–(23) that

Cnn(x) = σn0

γ2

[
κh

κ2
h − κ2

d

(e−κh|x| − 1)

+
(

2 − κ2
h

κ2
h − κ2

d

)
e−κd |x| − 1

κd

]
, (25)

Cnθ (x) = σλκ2
h

e−κh|x|/κh − e−κd |x|/κd

4γ2ν
(
κ2

h − κ2
d

) , (26)

Cθθ (x) = −Cnn

2n2
0

+ e−κd |x| − 1

κd/K(d,d )
− e−κh|x| − 1

κh/K(h,h)
+ D

νκ2
d

|x|,

(27)

where ν, λ, D are the KPZ parameters introduced in Eqs. (9)–
(11), and with the momentum matrix elements

K(i, j) = κ2
h

κ2
h − κ2

d

[
Dκ2

d

νκiκ j
− σ

γ2n0

]
. (28)

Let us comment on the phase-phase correlation function
(27). We observe that at long distances, it exhibits the scaling
Cθθ ∝ |x|, which reveals the deep connection between the con-
densate phase dynamics and stochastically growing interfaces
(see Appendix C), leading to |g(1)(x, 0)| ∼ e−|x|. This scaling
indeed corresponds to the expected one for the equal-time
EW correlation (15) with α = 1

2 . The same equilibrium spatial
scaling is obtained for the KPZ dynamics, merely reflecting
that the stationary KPZ interface is a Brownian in space.
This spatial scaling coincides with the one of 1D equilibrium
quasicondensates at finite temperature [17], as mentioned in
the Introduction. It should also be noted that Cθθ explicitly
depends on Cnn. While being irrelevant at large distances as
mentioned above, this plays an important role when x → 0
and will be crucial in the following.

B. Blueshift corrections

We obtain the blueshift �∞ = −〈∂t θ̃〉 by taking the aver-
age of Eq. (4) over the stochastic fluctuations. This average
involves on the right-hand side spatial derivatives of two-
point correlation functions of the phase and density, which
we approximate by their expressions within Bogoliubov the-
ory (25)–(27). For instance, we have 〈(∂x θ̃ )2〉 ≈ 〈(∂xδθ )2〉 =
1
2 lim

x→0
∂2

x Cθθ (x). Hence, the blueshift correction reads as

�∞ =
x→0

h̄

4m

[
∂2

x Cnn

2n2
0

+ ∂2
x Cθθ

]
+ γ2

∂2
x Cnθ

2n0
− ge〈ñ〉S, (29)

where 〈ñ〉S ≡ 〈ñ〉 is the noncondensate density arising from
stochastic fluctuations. Similarly to �∞, it is obtained from
the dynamics of the density fluctuations ñ by inserting the
expansions (5)–(7) into Eq. (3), performing the adiabatic
approximation of the reservoir dynamics. Assuming station-
arity ∂t ñ = 0 and taking the average, we can extract 〈ñ〉S in
terms of spatial derivatives of two-point correlation functions.
Following the same steps as above and approximating these
correlation functions by Eqs. (25)–(27) gives

〈ñ〉S =
x→0

γ2

4gi

[
∂2

x Cnn

2n2
0

+ ∂2
x Cθθ

]
− h̄∂2

x Cnθ

2gimn0
. (30)

Replacing 〈ñ〉S in Eq. (29), one finds an expression of �∞
which can be conveniently expressed in terms of the KPZ
parameters λ and ν as

�∞ =
x→0

−λ

4

[
∂2

x Cnn

2n2
0

+ ∂2
x Cθθ

]
+ ν

∂2
x Cnθ

n0
. (31)

It is instructive to compare this expression, obtained from
the coupled density-phase dynamics (18), with the one ensu-
ing from the KPZ equation of phase fluctuations (8) alone. For
the latter, one can follow the same procedure, i.e., one first
linearizes the dynamics (18), which yields the EW equation,
then computes the associated correlation function CEW

θθ (x),
and finally defines �∞ as �∞ = − lim

t→+∞〈∂t θ̃〉 from the full

KPZ dynamics (8). One then finds �∞ =
x→0

− λ
4 ∂2

x CEW
θθ (x).

While this term corresponds to the second one in (31), ad-
ditional terms enter the latter expression, which thus does not
depend on the phase only. This means that, even though the
spatiotemporal large-scale properties of the quasicondensate
are satisfactorily described by the effective KPZ dynamics
(8) (see Fig. 1 and Refs. [10,11,15]), the correlations of the
density, and the coupling between density and phase bring
additional contributions to �∞.

Moreover, let us emphasize that the expression for �∞
is sensitive to the microscopic details of the condensate dy-
namics stemming from the short-distance properties of both
density and phase correlation functions (25)–(27). In fact,
both Cnn and Cθθ contributions to (31) are needed in order to
make �∞ well defined in the UV regime. Indeed, taking the
second spatial derivative of Cθθ (x), one finds that it diverges
for x → 0. While this is also the case for CEW,KPZ

hh (x), the
particularity here is that the diverging part comes from the
first term in the right-hand side of (27), i.e.,

∂2
x Cθθ =

x→0
−∂2

x Cnn

2n2
0

∣∣∣∣
x=0

+ K(h,d )(κh − κd ), (32)

where the density contribution reads as

−∂2
x Cnn

2n2
0

=
x→0

σ

2n0γ2

[
4
�

π
− 2κd

κ2
h

κh + κd

]
(33)

with � an arbitrary UV cutoff. A similar divergence is also
predicted for 1D quasi-BECs at equilibrium, where the stan-
dard regularization is to consider that Bogoliubov theory
is applied on a lattice of spacing � = π/�. As formulated
in Ref. [34], the theory is valid as long as the parameter
〈(∂xδθ )2〉 ∝ 1/n0�

3 is small in 1D. Adapted to the nonequilib-
rium dynamics, the same argument implies that 〈(∂xδθ )2〉 =

x→0
1
2∂2

x Cθθ (x) ∝ σ
n0γ2�

must remain a small parameter. As a
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complement, we show in Appendix C that the criterion for the
applicability of Bogoliubov theory on the driven-dissipative
BEC can, as for its equilibrium counterpart, also be general-
ized to higher dimensions. In fact, we show in Sec. IV B that
the dependence of the gradients of correlation functions on the
short length scale � is not an artifact of the linearization of (3)
and (4), but also emerges at the level of the gGPE from the
full nonlinear dynamics of Eqs. (1) and (2).

In the one-dimensional case for closed systems, because
of the Mermin-Wagner-Hohenberg theorem, 〈ñ〉Q and 〈m̃〉Q

both diverge in the IR. The two diverging terms are of op-
posite signs and cancel out, leading to a finite chemical
potential correction [34]. The same mechanism operates here,
the diverging contributions in the density and phase corre-
lations precisely compensate in (31), such that the blueshift
correction is finite, and reads as, within the Bogoliubov ap-
proximation,

�∞ = − λD

4ν
(
κ−1

h + κ−1
d

) . (34)

Let us comment on this result. The correction �∞ is found to
be proportional to the ratio of KPZ effective parameters λD

ν

and in particular to the noise strength σ through D. Addition-
ally, as already emphasized, �∞ depends on the microscopic
details of the condensate through both the nonequilibrium
healing length and dissipation length. It is interesting to
remark that also the linewidth of extended lasers depends
on two-point correlation functions [35–38], where D is the
Schawlow-Townes linewidth enhanced by the Henry factor
ge/gi [39,40].

Let us discuss the sign of this blueshift correction. For the
quasicondensate to be stable, the mass m and the effective
coupling ge must have the same sign [3]. This implies that
ν > 0, while λ can be either positive or negative, implying that
the sign of �∞ is fully controlled by the KPZ nonlinearity λ.
This is consistent with the interpretation of �∞ as the average
growth velocity of the growing interface θ̃ . In typical exper-
imental realizations of stable exciton-polariton condensates,
m < 0 and λ < 0 [3,15] so that �∞ is positive.

Let us now comment on the correction 〈ñ〉S to the conden-
sate density. Replacing (25)–(27) in (30), we obtain

〈ñ〉S = Dn0

2νκ2
d

(
κ−1

h + κ−1
d

) + σ

γ2(κh + κd )
, (35)

from which we read 〈ñ〉S > 0 for any parameters. The
situation is analogous to the Bogoliubov occupation of three-
dimensional BECs 〈ñ〉Q, which can only take positive values,
thus depleting the condensate, and reflecting the fact that the
condensate chemical potential is slightly higher than its mean-
field value. There are, however, two main differences with
the equilibrium case. First, 〈ñ〉S is well defined in 1D while
〈ñ〉Q diverges because of large phase fluctuations. Second,
〈ñ〉S is not proportional to λ and cannot change sign contrary
to �∞. Recalling that �∞ represents an analogous chemical
potential correction for the driven-dissipative condensate, this
implies that, at variance with equilibrium BECs, one could
in principle reach a parameter regime for which the stochas-
tic depletion 〈ñ〉S is accompanied by a decrease of the total
chemical potential. This situation cannot be realized for

systems at equilibrium, where these two quantities are related
by a state equation.

In order to test the predictions (34) and (35) ensuing from
the Bogoliubov linearized dynamics, we now perform numer-
ical simulations of the full nonlinear dynamics (1) and (2) and
extract the numerical estimate for �∞. We study in particular
its dependence on the KPZ noise strength D through the gGPE
noise σ , and we also vary the coupling strength g to make the
nonlinearity λ of the effective phase dynamics (8) gradually
decrease to zero.

IV. NUMERICAL SIMULATIONS

Numerical resolutions of Eqs. (1) and (2) are per-
formed using a combination of split-step method and first-
order Euler scheme [41]. The parameters are chosen to
reproduce the typical experimental conditions in GaAs mi-
crocavities [15]: h̄γ0 = 48.5 µeV, h̄γ2 = 1.6 × 104 µeV µm2,
γR = 0.45γ0, R = 8.8 × 10−4 µm ps−1, P = 1.1Pth, h̄gR =
6 × 10−4 µm meV. The system size is 500 µm with lattice
parameter dx = 3.9 µm. The polariton mass m = −3.3 ×
10−6me is negative to obtain a stable condensate despite the
attractive effective interaction between polaritons [3]. The
nominal value of the noise strength σ is σN = 1

2γ0 and is
controlled by the reservoir [5,25]. In order to test the validity
of the expression (34), we consider the noise amplitude as a
free parameter and we allow us to vary it independently of γ0.
The polariton-polariton interaction strength g is set to zero in
Sec. IV D and increased in Sec. IV E.

A. Large-scale behavior: KPZ scaling regime

For the chosen parameters, a KPZ regime was reported
both in experiments and numerical simulations [15]. In order
to check this, we first compute the first-order correlation func-
tion g(1)(x, t ) of the condensate. The results for G (1)(x, t ) are
shown in Fig. 1 for a system of length 2000 µm and a smaller
exciton lifetime γR = 4.5γ0, to enlarge the scaling windows
for the sake of illustration. We observe the expected scaling
behavior (16) of both the equal-time and equal-space corre-
lations with the KPZ exponents. Moreover, the whole set of
space-time data points of G (1)(x, t ) lying in the KPZ window
perfectly collapses onto the exact KPZ universal scaling func-
tion. This confirms that the phase follows a KPZ dynamics in
this space-time window.

B. Short-scale behavior: Dependence on lattice spacing

We established in Sec. III B that, within the Bogoliubov
approximation, the second derivative of the two-point correla-
tion functions of the phase and density of the condensate both
diverge at short distance, which requires the introduction of
a UV cutoff � ∼ 1/�. We here study this aspect, computing
numerically Cnn and Cθθ from the full dynamics (1) and (2)
and for different values of the lattice spacing dx. The results
obtained for dx ≈ 0.24 µm are shown on Fig. 2 (upper panel)
and are found to be accurately described by Eqs. (25) and (26)
from Bogoliubov approximation.

Second derivatives evaluated at coincident points
x = 0 of both Cnn and Cθθ are shown for different lattice
spacings on Fig. 2 (lower panel) together with the predictions
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FIG. 2. (Upper panel) Spatial profile of Cnn(x) (brown) and
−2n2

0Cθθ (x) (orange) for dx = � = 0.24 µm from Bogoliubov theory
(solid line) and numerical resolution of the full dynamics (dashed
line). (Lower panel) Second derivatives evaluated at x = 0 as a func-
tion of the inverse lattice spacing 1/dx, same lines and color code as
in the upper panel.

of Eqs. (33) and (32), where we set � = dx. We show that
at x = 0, 2n2

0∂
2
x Cθθ closely follows −∂2

x Cnn and evolves as
1/dx, confirming the relations derived within Bogoliubov
approximation. In fact, results obtained from the nonlinear
dynamics merely differ from Eqs. (33) and (32) by a prefactor.
Hence, this divergence is not a mere artifact of the Bogoliubov
approximation, but is intrinsic to the nonequilibrium gGPE.
The divergences also compensate in the full dynamics such
that the overall blueshift correction �∞ is observed to be
independent of the lattice spacing, as found in Bogoliubov
theory [Eq. (34)].

C. Method to extract �∞

In order to extract �∞, we use the following procedure.
The condensate dynamics is solved numerically until the BEC
reaches its nonequilibrium steady state at time t0, from which
the first-order correlation function g(1) and phase fluctuations
trajectories defined as θ̃ (t + t0) = [θ (0, t + t0) − θ (0, t0)] −
[θ0(t + t0) − θ0(t0)], with θ0(t ) the mean-field expression, are
recorded. The coherence g(1) is used to check for the presence
of the KPZ regime and determine the relevant length scales
and timescales in which it develops. The blueshift correc-
tion �∞ is extracted in the time window in which the KPZ
scaling is observed (see inset Fig. 3). This can be done in
two ways. The first method is to perform a nonlinear fit of
the average of the phase trajectories, using the asymptotic
behavior (17) as fitting ansatz. A second method is to re-
construct �∞ = −〈∂t θ̃〉 from the dynamical equation of the
phase (4), by computing each of its contributions separately.
An example of numerical measurement of �∞ following both
of these procedures is shown on Fig. 3. We verified that

FIG. 3. Determination of �∞, corresponding to the slope of the
average phase trajectory 〈θ̃〉 in the time window where the KPZ
scaling is observed in time, for σ = 0.1σN . This window is de-
termined from the G (1)(0, t ) function, shown in inset (shaded area
[103 ps, 1.5 × 103 ps]). The result from the nonlinear fit and from
the reconstruction of Eq. (4) are shown in dashed and dotted lines,
respectively.

the value of �∞ extracted from the nonlinear fit or from
the reconstruction of the gGPE coincides within numerical
precision in all cases. This consistency check being fulfilled,
we only show data coming from the reconstruction of the
gGPE in the following. The result can then be compared with
the effective KPZ phase dynamics (8), in order to assess the
importance of the different terms neglected in the mapping.
Note that 〈·〉 represents here an ensemble average over numer-
ical realizations of the noise, discarding any phase trajectories
containing defects. We checked that these defects rarely occur
for the chosen parameters. In addition, we verified that the
adiabatic approximation for the reservoir density holds in
the parameter regime considered. In particular, the relative
error committed by estimating the average fluctuation of the

reservoir density as 〈ñR〉 = −2
gi

R
〈ñ〉 is small, such that the

condensate depletion contribution to �∞ can be estimated as
〈gñ + 2gRñR〉 ≈ −ge〈ñ〉S , as written in Eq. (29).

D. Blueshift corrections as a function of the noise strength

The activation of phase defects is exponentially sensitive to
the noise strength σ [9,18]. In order to study the dependence
on the noise of the blueshift correction while maintaining a
defect-free condensate, σ is varied from 10−2σN to σN with
the integration time step dt = 0.076 ps. The results are shown
in Fig. 4, and compared with Bogoliubov theory [Eq. (34)].
We find that the numerical estimate for the blueshift correction
exhibits a proportionality in the noise strength σ consistent
with the prediction (34), with �∞ ≈ 5 × 10−3�0 in typi-
cal experimental conditions. It is, however, larger than the
Bogoliubov prediction (34) by an approximate 3.5 factor.
This difference cannot be explained by finite-size effects on
the asymptotic growth velocity of the interface [23], as we
checked that �∞ is already converged for condensates of
length 100 µm. Examining the values of the terms entering
in the numerical reconstruction from Eq. (4), we find that
the deviation from the theory is instead traced back to den-
sity fluctuations, whose contribution dominates the blueshift

195304-7



HELLUIN, CANET, AND MINGUZZI PHYSICAL REVIEW B 109, 195304 (2024)

FIG. 4. �∞ as a function of the noise strength σ extracted from
the reconstruction of the full dynamics (4) (orange triangle), of the
effective KPZ dynamics (8) (blue diamonds), and of the Bogoliubov
prediction (34) (purple squares).

correction ge〈ñ〉S ≈ 0.7 × �∞. We show on Fig. 5 the con-
densate depletion from both numerical simulation and the
Bogoliubov calculation (35). Even though both follow the
same trend, the former is larger than the latter by a factor ≈2,
hence explaining the result of Fig. 4.

Moreover, we also compare in Fig. 4 the value of �∞
extracted from the full phase dynamics (4) and from the effec-
tive KPZ phase dynamics (8). Although this second estimate
is proportional to σ as well, its actual values largely differ
from both gGPE reconstruction and Eq. (34). This difference
originates from the diverging contribution to 〈(∂x θ̃ )2〉, reg-
ularized by dx in the numerics [see Eq. (32) and Fig. 2],
which is removed when considering all the other contribu-
tions. This numerically confirms the need of including both
density and density-phase terms to correctly describe blueshift
corrections.

E. Influence of the interaction strength on blueshift corrections

In this section, the polariton-polariton interaction strength
g is varied from 0 to gmax � 2.6 × gR in order to vary the KPZ

FIG. 5. Stochastic depletion 〈ñ〉S as a function of the noise
strength σ from numerical resolution of the full dynamics (1) (orange
triangle) and the Bogoliubov prediction (35) (purple squares). Inset:
average density as a function of time for increasing noise (from light
to dark σ/σN = {10−2, 0.5, 1}), where the vertical scale is logarith-
mic from 0 to n0/8 and linear above. The stationary density 〈n(t )〉
coincides with the mean-field density n0 for vanishing noise.

FIG. 6. EW scaling regime reached when g = gmax: (upper left
panel) spatial scaling of G (1)(x, 0) as a function of x, indicated by the
gray shade in-between [22 µm, 88 µm]; (upper right panel) temporal
scaling of G (1)(0, t ) as a function of t1/2, indicated by the gray
shade in-between [9 × 102 ps, 9 × 103 ps]; (lower panel) collapse
of G (1)(x, t ) onto the EW scaling universal function gEW.

nonlinearity. Note that this also induces a change of the other
KPZ parameters ν, D, and of the length κh, such that the effect
of the KPZ nonlinearity on �∞ cannot be isolated by varying
the gGPE microscopic parameters. The maximal value of g
studied is chosen such that λ vanishes, and the Edwards-
Wilkinson limit of the effective phase dynamics (8) is reached.
The noise strength is fixed to σ = 0.1σN to avoid any defect
and, as the interaction strength increases, the integration time
step is gradually decreased from dt = 0.076 ps to 0.010 ps
to keep the phase dynamics well resolved in time. Note that
ge < 0 for all these values of g, such that the condensate does
not exhibit any modulation instability. When the KPZ nonlin-
earity λ vanishes for g = gmax, the scaling form of G (1)(x, t )
changes from CKPZ

hh [Eq. (14)] to CEW
hh [Eq. (15)]. We show

in Fig. 6 that the EW scaling regime is indeed reached when
g = gmax. For this value, as the KPZ scaling is not visible
anymore, �∞ is computed within the temporal window of the
EW scaling.

According to the Bogoliubov prediction (34), the blueshift
correction �∞ should vary linearly with λ until it vanishes in
the EW regime. However, since varying g also induces a vari-
ation of ν and D, the global behavior of (34) is more complex.
We show in Fig. 7 the variation of the blueshift correction
computed both from the Bogoliubov prediction (34) and from
reconstruction of the full dynamics (4), as a function of the
effective KPZ nonlinearity λ. We observe that it decreases
with λ, in an algebraic way not too far from linear. This
indicates that the variation of λ is a dominant contribution to
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FIG. 7. �∞ as a function of the KPZ nonlinearity λ extracted
from the reconstruction of the full dynamics (4) (orange triangle)
and from the Bogoliubov prediction (34) (purple squares). Inset:
condensate depletion 〈ñ〉S as a function of λ.

the behavior of �∞ when varying the interaction strength g.
Moreover, for the Bogoliubov prediction, it vanishes as ex-
pected when λ = 0 and the EW limit is reached. The blueshift
correction �∞ evaluated from the full gGPE qualitatively
exhibits the same decay with λ as predicted from Eq. (34), but
it does not vanish at λ = 0. As in Sec. IV D, the shift between
these two curves can be explained by the discrepancy between
the predicted and numerically observed condensate depletion
(shown in the inset of Fig. 7).

F. Experimental observability

We restricted so far our theoretical analysis to idealized
parameter conditions, in particular small noise levels, in order
to damp the emergence of defects in the phase. Under these
conditions, the overall stochastic correction to the blueshift
�∞ is found to be very small compared to the mean-field con-
tribution �0, typically of order �∞/�0 � 5 × 10−3, which
makes it hardly observable in actual experiments. From the
Bogoliubov expression (34), this correction increases linearly
with the noise strength, and also with gR as ∼g3/2

R .
The noise level can be increased in experiments in a con-

trollable fashion by increasing the temperature of the cryostat.
This leads to a growth of the population of the phonons of
the semiconductor material. Such phonons are coupled to the
cavity polaritons via the exciton-phonon coupling, and act as
an additional bath for the polaritons [42,43]. We performed
additional simulations up to twice the nominal noise. In this
regime, we found that the KPZ universal properties are re-
silient to the presence of some defects and for σ = 2σ0 we
obtain �∞/�0 � 10−2, which becomes experimentally de-
tectable. For higher values of the noise strength, the number
of phase defects rapidly increases as shown in [9,18], making
it difficult to distinguish between the linear evolution of the
average unwrapped phase caused by blueshift corrections �∞
and the evolution arising from phase defects.

The interaction strength with the reservoir gR can be also
experimentally controlled to some extent by increasing the
number of quantum wells in the optical microcavities. How-
ever, in our parameter setting, increasing gR readily leads
to modulation instabilities for which the condensate exhibits

many phase defects. It should be emphasized that the esti-
mated values for �∞ as well as the appearance of modulation
instability depend on the whole set of parameters of the model.
In our simulations, we have chosen parameters close to the
experiment of Ref. [15], but by changing the design of the
experimental sample and conditions, one could explore a large
parameter space, which may allow one to increase blueshift
corrections without triggering the modulational instability.

V. CONCLUSIONS

We showed that the blueshift of a 1D exciton-polariton
condensate fluctuates around its mean-field value, result-
ing in a nonzero average correction �∞. This correction
originates from the nonlinear stochastic dynamics of the
driven-dissipative condensate and was studied in its defect-
free KPZ phase. Using Bogoliubov theory, we determined an
analytical expression for �∞, which, although sensitive to
short-distance properties of the condensate correlation func-
tions, can surprisingly be summarized in terms of both the
KPZ effective parameters and characteristic length scales of
the condensate. We then performed numerical simulations of
the full dynamics, varying both the noise and the interaction
strength, to check this prediction. We highlighted in particular
that spatial variations of the density, which can be safely
neglected to study the long-distance properties of the phase,
give in contrast an important contribution to the blueshift
correction.

With idealized parameter conditions, in particular small
noise levels, the overall stochastic correction to the blueshift is
very small. However, we verified that our predictions remain
valid for larger noise strength up to twice the nominal noise,
for which it could become detectable. As a consequence,
blueshift corrections could in principle be accessed in experi-
mental platforms where phonon-polariton interaction strength
is sufficiently strong. In outlook, it would be interesting to
investigate how to enhance this correction in other ways, for
example, exploring other regions of the parameter space, in
order to make it more easily observable in experiments.
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APPENDIX A: BOGOLIUBOV THEORY

We start from the dynamical equations for the condensate
and reservoir equations (1) and (2), setting h̄ = 1 for simplic-
ity of notations:

i∂t� =
[
F−1

[
εk̂ − i

2
γ�(k̂)

]
+ iR

2
nR

+g|�|2 + 2gRnR

]
� + ξ, (A1)

∂t nR = P − (γR + R|�|2)nR, (A2)
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where 〈ξ 〉 = 0 and 〈ξ (x, t )ξ ∗(x′, t ′)〉 = 2σδ(x − x′)δ(t − t ′).
In the adiabatic approximation of the reservoir ∂t nR ≈ 0,
Eq. (A2) reduces to nR = P/(γR + R|�|2). Expanding the
wave function around its fluctuations � = e−i�0t [

√
n0 +

δ�(x, t )] and injecting it into Eq. (A1) leads at zeroth order
to nR0 = γ0/R and �0 = gn0 + 2gRnR0. At first order in δ�,
Eq. (A1) yields the linear dynamics

i∂t

(
δ�

δ�∗

)
= F−1[L]

(
δ�

δ�∗

)
+ √

σ

(
ξ̃

−ξ̃

)
, (A3)

where we introduced ξ̃ = ξe−i�0t and the Bogoliubov matrix

L =
(

εk̂ + gen0 + i�k̂ gen0 − igin0

−gen0 − igin0 −(εk̂ + gen0) − i�k̂

)
, (A4)

with �k̂ = �γ (k̂)
2 − gin0, �γ (k̂) = RnR0 − γ�(k̂), and gi =

(RnR0)2/2P.
We introduce the rotation matrix

A = 1

2
√

n0

(
1 1
−i i

)
(A5)

such that (
δn/2n0

δθ

)
= A

(
δ�

δ�∗

)
. (A6)

The dynamics of the density and phase is given by

(∂t − F−1[Lrot])

(
δn/2n0

δθ

)
=

√
σ

n0

(
Im

(
ξ̃
)

−Re
(
ξ̃
)
)

(A7)

with

Lrot =
(

�k̂ − gin0 εk̂

−(
εk̂ + 2gen0

)
�k̂ + gin0

)
(A8)

whose eigenvalues read as

ω± = −i�k̂ ±
√

εk̂ (εk̂ + 2gen0) − g2
i n

2
0. (A9)

From Eq. (A7), and after integrating over the frequency ω, we
obtain the equal-time correlation functions

〈δn(k)δn(−k)〉 = −σn0

�k̂

ε2
k̂

+ �γ (k̂)2/4

E2
k̂

+ �2
k̂
− g2

i n
2
0

−σn0

�k̂

, (A10)

〈δθ (k)δθ (−k)〉 = 〈δn(k)δn(−k)〉
4n2

0

+ σ

�k̂n0

×�k̂gin0 − εk̂ge − g2
en2

0

E2
k̂

+ �2
k̂
− g2

i n
2
0

, (A11)

〈δn(k)δθ (−k)〉 = −σn0

�k̂

giεk̂ + ge�γ (k̂)

E2
k̂

+ �2
k̂
− g2

i n
2
0

, (A12)

where Ek̂ = √
εk̂ (εk̂ + 2gen0).

APPENDIX B: EFFECT OF THE k-DEPENDENT
DISSIPATION

The momentum dependence of the loss rate γ�(k̂) af-
fects the large-momentum behavior of the Bogoliubov

FIG. 8. Real (left panel) and imaginary (right panel) parts of the
Bogoliubov spectrum (A9) for different losses γ�(k̂). Red dotted line:
flat dissipation γ

f
� (k̂) = γ0. Brown plain line: parabolic dissipation

γ
p
� (k̂) = γ0 + γ2k2. Orange dashed line: saturated dissipation γ s

� (k̂)
defined in Eq. (B1), with γsat = 55 µeV.

eigenvalues (A9) through the effective loss rate �k̂ , similarly
to the frequency-dependent amplification of Ref. [33]. This
is illustrated on Fig. 8 below, where the Bogoliubov eigen-
values are shown for three experimentally relevant loss rates.
While the momentum-independent loss rate γ

f
� (k̂) = γ0 is

most of the time sufficient to describe the phenomenology
of EP BECs, it is rather observed that the exciton-polariton
linewidth broadens quadratically at small k before saturating
to γsat at large momentum, which is modeled by the following
saturated loss rate:

γ s
� (k̂) = γ0

1 + α

e−βk2 + α
, (B1)

where α = γ0

γsat−γ0
and β = γ2

γ0
(1 + α) [15]. Expanding (B1)

at small k, the polariton linewidth can be approximated by a
parabola γ s

� (k̂) ≈ γ
p
� (k̂) = γ0 + γ2k2.

Let us now discuss the consequences of the shape of the
loss rate on blueshift corrections. Replacing εk̂ = h̄2k2/2m
and γ

f
� (k̂) in Eqs. (A10)–(A12), we recover the equal-time

correlations given in [33]. Inserting them in Eq. (31) we
find that their UV diverging contributions (discussed in the
main text and Ref. [33]) compensate such that �∞ = κhD
remains well defined. This leads to the estimate �∞ ≈ �0/10
for γ

f
� (k̂). A similar value is expected from the saturated

linewidth γ s
� (k̂). In this work, as in experimental realizations

of EP condensates, the pump P extends over a large number
of sites. As a consequence, the exciton reservoir, hence the
condensate, are occupied in the vicinity of the momentum
k = 0 only. This implies that the parabolic linewidth γ

p
� (k̂)

is the most relevant to describe losses in the condensate.

APPENDIX C: BLUESHIFT CORRECTIONS IN HIGHER
DIMENSIONS

The Bogoliubov approximation developed in Sec. III and
Appendix A can be extended to higher dimensions by re-
placing ∂x → ∇ and k → k. Note that for εk̂ = h̄2k2/2m
and independently of the specific choice of γ�(k̂), the
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connected phase correlation function Cθθ (r) contains a term
∝∫

dk
(2π )d

eik·r−1
k2 . This term yields an Edwards-Wilkinson con-

tribution CEW(r, 0) to the phase spatial correlations, of the
form CEW(r, 0) ∼ |r|2α where α = 2−d

2 is the EW spatial
exponent. Similarly in time, one would find CEW(0, t ) ∼ t2β

with β = 2−d
4 . In a one-dimensional system, this gives a

stretched exponential decay of the first-order correlation func-
tion |g(1)(r, t )|2 ∝ e−√

t followed for a finite-size system by
Schawlow-Townes exponential decay |g(1)(r, t )|2 ∝ e−t [13].
As commented in the main text, a similar exponential decay
is obtained for equilibrium condensates at finite temperature
[17].

In addition, the UV divergences mentioned in Sec. III for

γ�(k̂) = γ0 + γ2k̂
2

become more severe when increasing the
spatial dimension. Bogoliubov theory remains valid provided
〈(∇δθ )2〉 ∝ σ

n0γ2�d is a small parameter. In fact, if we first set
γ2 = 0 and perform again the calculation, we recover the same
condition for the validity of Bogoliubov theory as in Ref. [34],
namely, that 〈(�∇δθ )2〉 ∝ σ

n0�d is a small parameter, where the
driven-dissipative nature of the condensate explicitly appears
through the noise strength σ . Nevertheless, �∞ remains well
defined in the UV regime for d � 3 and follows the general
expression

�∞,d = −λD

2ν
κ2

h κ2
d

∫
dk/(2π )d(

k2 + κ2
h

)(
k2 + κ2

d

) . (C1)

Setting d = 1 in Eq. (C1), we recover Eq. (34) of the main
text.

In d > 1, the linearized theory cannot capture any effect
from the KPZ physics. This is because the KPZ fixed point
becomes genuinely nonperturbative in d > 1 [44]. It was
shown that the perturbation theory in λ fails to all orders to
access the KPZ fixed point [45]. Thus, the results obtained
from Bogoliubov theory in d > 1 cannot be related to KPZ
physics. We still express them for convenience in terms of the
KPZ parameters, although this should not be interpreted as
resulting from nonlinear KPZ physics.

For d = 2 we find by parity that �d=2
∞ = 0, thus the

stochastic dynamics gives no correction to the blueshift within
the Bogoliubov approximation. The case d = 3 is of fun-
damental interest for EP BECs, as the driven-dissipative
condensate is predicted to recover some characteristics
of its equilibrium counterpart [46]. For example, it was
shown in Ref. [33] within Bogoliubov approximation that
the IR divergence of the momentum distribution, which
is a manifestation of the Mermin-Wagner-Hohenberg the-
orem for d < 2, is suppressed for d = 3. Setting d = 3
in Eq. (C1), we find �d=3

∞ = λD
8πν

κhκd

κ−1
h +κ−1

d
. In typical pa-

rameter regimes, this blueshift correction is approximately
500 times smaller than for d = 1. This is consistent with
the idea that fluctuations are enhanced in low-dimensional
systems.
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